Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und
Telegrafenbetriebe = Bulletin technique / Entreprise des postes,

téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe
Band: 41 (1963)

Heft: 6

Artikel: Einfihrung in die Schaltalgebra

Autor: Kallen, R.

DOI: https://doi.org/10.5169/seals-874331

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-874331
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

No6 - BERN, VI. 1963 - JAHRGANG - ANNEE - ANNO XLI

TECHNISCHE MITTEILUNGEN

BULLETIN TEGHNIQUE

Herausgegeben von den Schweizerischen Post-, Telephon- und Telegraphen-Betrieben -

téléphones et télégraphes suisses. -

BOLLETTINO TECNICO

Publié par I'entreprise des postes,

Pubblicato dall’Azienda delle poste, dei telefoni e dei telegrafi svizzeri

R. Kallen, Bern

Einfiihrung in die Schaltalgebra

Zusammenfassung. Nach einer Darstellung der allgemeinen
Form von Digitalschaltungen werden die Rechenregeln der Schalt-
algebra mitgeteilt und gezeigt, wie sich damit Schaltkreisprobleme
losen lassen. Ferner wird ein praktisches Kontakinetzwerk-Ver-
einfachungsverfahren beschrieben, das im deutschen Sprachgebiet
wenig verbreitet st und abschliessend die Synthese von elektro-
nischen Verkniipfungsschaltungen aws Gatterbausteinen skizziert.
Die wesentlichsten Angaben sind in ganzseitigen Tafeln zu-
sammengestellt, die als Zusammenfassung verwendet werden
konnen.

1. Einleitung

Die Schaltalgebra ist ein Verfahren fiir die mathe-
matische Behandlung von Schaltkreisproblemen in
der Digitaltechnik. Der Begriff ist seit dem zweiten
Weltkrieg bekannt geworden; die mathematischen
Grundlagen sind indessen schon 1847 von (. Boole
in Cambridge (England) in seiner Arbeit «The Mathe-
matical Analysis of Logic» geschaffen worden, ver-
mochten aber zunéchst als Algebra der Logik nur die
Mathematiker zu interessieren.

Es ist das Verdienst von C.K.Shannon, mit seiner
Diplomarbeit «A Symbolic Analysis of Relay and
Switching Circuits», im Jahr 1938 die praktischen
Anwendungsmoglichkeiten der Booleschen Algebra
aufgezeigt zu haben; er hat damit dem Schaltungs-
ingenieur ein niitzliches Hilfsmittel in die Hand ge-
geben.

Viele Autoren haben das Werkzeug seither stindig
vervollkommnet und damit ein Arbeitsinstrument
geschaffen, dem alterfahrene Schaltungsfachleute
zum Teil etwas skeptisch gegeniiberstehen, weil sie
mit ihrem reichen Katalog an Schaltungsfinessen
geringen praktischen Nutzen einer wissenschaftlichen
Behandlung von Schaltkreisproblemen sehen. Eskann
aber nicht geleugnet werden, dass die jingsten Kr-
kenntnisse auf diesem Gebiet die digitale Schaltungs-
technik befruchtet haben.
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Wie kann nun die Schaltalgebra nutzbringend ein-
gesetzt werden ?

Sie erlaubt zundchst, logische Verkniipfungen
zwischen zweiwertigen™ Aussagen klar zu formulieren,
also die Schlussfolgerung aus verschiedenen Voraus-
setzungen in eine mathematische Formel zu kleiden,
was sonst nur mit einer Anzahl Textséitzen umstéind-
lich zu bewerkstelligen wire. Da solche Schliisse in
logischen Verkniipfungsschaltungen unter anderem
auch mit Relaiskontaktnetzwerken gezogen werden
koénnen, ist die Schaltalgebra ein Mittel, um die
Arbeitsweise von Kontaktnetzwerken eindeutig ma-
thematisch zu beschreiben.

Mit Hilfe der sogenannten 7T'heoreme ist es weiter
moglich, allfillige Redundanzen eines Kontaktnetz-
werkes aufzudecken, das heisst, fir die Funktion vollig
iiberfliisssige Teile zu eliminieren. Ferner lassen sich
gegebene Netzwerke in anders geartete, aber dqui-
valente Gebilde umformen, was oft erlaubt, gewisse
Engpésse und Schwierigkeiten in der Kontakt-
bestiickung von Relais zu umgehen.

Kin wesentliches Hilfsmittel sind die besonders
entwickelten, zum Teil graphischen Vereinfachungs-
methoden (Minimizing), welche darauf hinzielen, ein
bestimmtes Pflichtenheft fiir eine Schaltung mit
minimalem Aufwand zu erfiillen. Ein besonders niitz-
liches Verfahren wird spiéter beschrieben.

Wesentliche Vorteile bringt die Schaltalgebra bei
der Behandlung von Hintakt- oder Kombinations-
schaltungen, bei denen die Wirkung am Ausgang nur
von der Eingangskonstellation abhingt und wo es
keine Rolle spielt, welches die zeitliche Folge der Hin-
gangswirkungen ist.

* Im Rahmen dieses Aufsatzes soll nur die binidre Schalt-
algebra betrachtet werden
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Blockierungsschaltungen, Codewandler, Rechen-
werke und andere sind typische Anwendungsbeispiele
dafiir. Der Begriff «Zeit» fehlt in der Terminologie
der Schaltalgebra, es ist also auch nicht vorgesehen,
die Léinge der Relaisschaltzeiten mathematisch einzu-
beziehen. Es sind aber einige Verfahren bekannt ge-
worden, die auch Mehrtakt- oder Folgeschaltungen zu
behandeln gestatten, also Schaltungen mit Gedécht-
nisfunktionen, die unterscheiden, ob zum Beispiel
Wirkung 4 vor oder nach 5 eintrat und danach die
Ausgangsfunktion bestimmen [1,2].

Solche Schaltungen finden sich in der Praxis sehr
hédufig in der Form von Zihlschaltungen, Impuls-
gebern, Untersetzern und Steuerschaltungen. Das
Pflichtenheft einer Mehrtaktschaltung besteht dann
nicht mehr einfach aus einer Kombinationstafel, son-
dern erhélt die Form eines Folgediagramms oder einer
Folgetabelle. Das Problem wird damit auf jenes einer
reinen Kombinationsschaltung zuriickgefiihrt.

Eine wesentliche Beschrinkung der Schaltalgebra
liegt in der Anzahl der Variablen. Werden diese zu zahl-
reich, dann steigt der rechnerische Aufwand stark an.
Es ist also nicht méglich, eine komplexe und umfang-
reiche Schaltung in einer einzigen Stufe vollstindig
mathematisch zu behandeln, sondern das Problem
muss in Teilprobleme zerlegt werden, und an gewissen
Stellen hilft die konventionelle intuitive Synthese
weiter. Gerade im zweckmiissigen Zusammenwirken
der dltern Schaltungstechnik mit der wissenschaft-
lichen Systematik ist der grisste Nutzen aus der
Schaltalgebra zu ziehen, und diese ist dazu berufen,
dem Beginnenden brauchbare Teillosungen zu liefern,
die er rein intuitiv vielleicht nicht so bald gefunden
hitte.

Besonders eng ist die Symbolik der Schaltalgebra
aber mit der Synthese von elektronischen Verkwiip-
fungsschaltungen verbunden, wo man mit den Be-
griffen der elektromechanischen Schalttechnik nicht
mehr gut zurechtkéme.

Die nachfolgenden Ausfithrungen sollen den Al-
gorithmus der bindren Schaltalgebra erldutern und
die Moglichkeiten andeuten, die sich mit diesem Ar-
beitsinstrument ergeben. Sie erheben keinen An-
spruch auf eine umfassende Darstellung. Fiir jenen,
der sich naher mit der Materie befassen mochte, sind
ein paar empfehlenswerte Standardwerke im Litera-
turverzeichnis aufgefiihrt.

2. Allgemeine Form einer Relaisschaltung

Die beiden einleitend erwiahnten Schaltungsgattun-
gen sind mit ihren Merkmalen in Tafel I erlidutert.
Folgeschaltungen enthalten immer die sogenannten
Sekunddrrelais, die ausser von den Eingangsvariablen
A, B, C... durch andere Sekundirrelais gesteuert
werden und oft im steuernden Kontaktnetzwerk
eigene Haltekontakte aufweisen. Iolgeschaltungen
ohne Primdérrelais erzeugen ein internes Geschehen,
das bei entsprechender Bemessung wiederholt wird,
wie dies zum Beispiel beim Impulsgeber der Fall ist.
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Es ist zweckmaéssig, den Pluspol der speisenden
Batterie als geerdet anzunehmen und die Relais-
wicklungen einseitigc mit Minus zu verbinden. Kine
Erde an einem Eingang, z. B. ¢, bewirkt dann
die Betatigung des entsprechenden Primérrelais (;
man sagt, der Eingang (' sei aktiv oder ' — 1.
Die angedeuteten Kontaktnetzwerke koénnen nur
entweder sperren oder leiten und dies in Abhéngigkeit
einer oder mehrerer Variablen.

Die Wirkung an einem oder an mehreren Ausgin-
gen erscheint als Erde oder keine Erde, dies ebenfalls
im allgemeinen Fall als Funktion einer oder mehrerer
Variablen. Kénnen einzelne Kontakte mehreren
Netzwerken gleichzeitig dienen, dann tendiert man
auf die 6konomische Bildung von Drei- oder Mehrpol-
Netzwerken. Es ist aber grundsitzlich moglich, jede
gesteuerte Variable, also hier X, Y, Z,, Z, mit einem
eigenen Netzwerk zu bedienen.

Die beschriebene allgemeine Schaltungsform gilt
auch fir elektronische Digitalschaltungen, mit dem
Unterschied, dass die Relais durch Gatterbausteine
und Kippschaltungen zu ersetzen sind.

3. Symbolik der Schaltalgebra

Die Tafel Il macht mit der hier verwendeten
Symbolik bekannt, wobei wir uns an das sogenannte
Transmasstonskonzept halten, d.h. man ordnet einem
leitenden Netzwerk die Transmissionsfunktion 7' = 1
zu. Das édltere Hinderniskonzept geht von der An-
nahme aus. dass ein gerade sperrendes Netzwerk dem
Stromdurchgang ein maximales Hindernis in den
Weg lege, also H = 1 [1,2].

Betitigt ein Kontaktnetzwerk einen Verbraucher
X, dann wird mit Vorteil die neutrale Grosse 7' durch
die spezielle Grosse X ersetzt, oder handelt es sich
um das Steuernetzwerk eines Relais A, dann bedeutet
geschlossener Strompfad: 7 = 1, A = 1, oder Relais
A erregt.

Beim Aufzeichnen von Kontaktnetzwerken kann
man auf die iiblichen Kontaktsymbole verzichten,
indem man einen Arbeitskontakt des Relais A ein-
fach als einen in den Leitungszug eingeschobenen
Buchstaben @, den Ruhekontakt als ¢’ (in der Litera-
tur manchmal auch als @ bezeichnet) und einen Um-
schaltkontakt als Gabel mit @ und «’ darstellt. Da
bei einem erregten und aufgezogenen Relais der Ar-
beitskontakt geschlossen, der Ruhekontakt aber offen
ist, gilt offenbar:

A =1 a =1 a =0
und bei aberregtem und abgefallenem Relais:
4 =0 a =0 a =1

Diese Zuordnung wird in der Schaltalgebra still-
schweigend vorausgesetzt, indem in der Regel nur die
stabilen Relaiszustinde betrachtet werden. Wihrend
der Schaltzeiten ist diese Zuordnung aber gestort;
doch gehen die unstabilen Zustédnde immer ohne
dusseres Dazutun in den naheliegenden stabilen Zu-
stand iiber, sofern man von Spezialititen, wie Haft-
relais oder Fehlstromerregung, absieht.
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Die Variablen aund «’sind Komplemente zueinander,
das heisst in den angenommenen Zustédnden 1, 0 stets
einander entgegengesetzt.

Man findet die algebraische Transmissionsfunktion
zusammengesetzter Netzwerke, indem man nun der
Parallelschaltung das logische Verkniipfungszeichen
+ (oder V in der rein mathematischen Schaltalgebra)
und der Serieschaltung das Zeichen . (&) zuordnet.
Diese beiden Schaltungen, die ODER und die UND-
Schaltung, bilden zusammen mit der NICHT-
Schaltung die drei wichtigen logischen Grundschal-
tungen, mit denen sich alle, auch komplexe, Ver-
kniipfungsaufgaben zwischen Hingangs- und Aus-
gangsvariablen einer Schaltung 16sen lassen.

Die Beispiele in der obern Hilfteder T'afel 111 zeigen
wie sich in den algebraischen Ausdriicken die Struktur
der zugehorigen Serie-Parallel-Netzwerke widerspie-
gelt.

Bei Briickennetzwerken versagt die direkte Um-
setzung des Netzwerkes in eine algebraische Struktur-
formel, da nicht mehr reine Serie- und Parallel-
schaltung vorliegt. Es ldsst sich aber ein dquiva-
lentes Serie-Parallelnetzwerk angeben, das dadurch
entsteht, dass man alle moglichen Durchgangswege
zwischen Eingangs- und Ausgangsklemme aufzihlt
und dann parallel schaltet. Briickennetzwerke zeich-
nen sich durch kleinen Aufwand aus, so dass sie
mit Vorteil angestrebt werden [4, 6, 10]. Das in den
Abschnitten 6 und 7 beschriebene Vereinfachungs-
verfahren besitzt den wesentlichen Vorteil, dass es
automatisch zu Briickenschaltungen fiihrt, wenn
solche moglich sind.

Die abwerfende Aktion von Shunt-Netzwerken wird
mit dem Verkniipfungszeichen Minus dargestellt, dem
die logische Aussage «wenn nicht», «sofern nichty,
«falls nicht» zugeschrieben werden kann [4, 10]. Bei-
spiele finden sich in Tafel III unten. Das Rechnen
mit der Subtraktion schaltalgebraischer Grossen ist
wegen der dabei nétigen ungewdhnlichen Rechen-
regeln selten; ausserdem kann aus der Beziehung

X =a-b=ab =a(l-0)
und auch durch Uberlegung erkannt werden, dass ein
Shunt-Netzwerk durch sein Komplement im Aufzugs-
kreis ersetzt werden kann.

4. Rechenregeln der Schaltalgebra

Beschrinkt man sich auf die Verkniipfungen
ODER und UND, dann sind die schaltalgebraischen
Rechenregeln sehr einfach und entsprechen mit eini-
gen wenigen Ausnahmen der gewohnlichen Algebra.

Man unterscheidet Postulate und T heoreme. Voraus-
setzungen oder Postulate legen fest, wie mit den
Werten 0 und 1 gerechnet wird. Dabei ist zu bedenken,
dass 0 und 1 hier Zustinde eines Organs oder eines
Schaltkreises darstellen und nicht etwa mit den Binér-
werten 0, 1 des dualen Zahlensystems identisch sind.
Die Richtigkeit der in T'afel 1V dargestellten Postulate
lasst sich leicht nachpriifen, wenn man 0 mit Leerlauf,
1 mit Kurzschluss in einem Netzwerk einsetzt und
die resultierende Transmission priift.

Technische Mitteilungen PTT Nr.6/1963

Beispiel:
1-+1 entspricht der Parallelschaltung eines Kurz-

schlusses mit einem andern, was eine leitende Ver-
bindung bleibt, also ist 1-+1=1.

Theoreme mit einer oder mehreren Variablen lassen
sich aus den Postulaten und aus bereits bekannten
und bewiesenen Theoremen ableiten. Alle Theoreme
lassen sich ferner durch die Methode der «perfect
wnduction» bestitigen, die auf der vollstindigen Kom-
binationstabelle oder Wertetafel beruht [2]. Der Be-
weis fiir die Richtigkeit eines bestimmten Theorems
ist erbracht, wenn fiir alle 2" Kombinationsmoglich-
keiten von n Variablen auf beiden Seiten des Gleich-
heitszeichens der gleiche Wert 0 oder 1 erscheint.

Beispiel: Theorem (137)

Wertetafel linke Seite rechte Seite
x y | 2y w2y x+y
0 0 1 0 0 0
1 0 0 0 1 1
1 1 0 0 1 1
0 1 1 1 1* 1*
* = identisch fiir alle 4 Kombinationen von x und y

Von besonderem Interesse ist das Theorem von
De Morgan (18, 18°) das erlaubt, ein gegebenes Netz-
werk aus parallelen oder seriegeschalteten Teilen in
das inverse oder Komplementirnetzwerk zu ver-
wandeln, also in eines, das in allen Kombinations-
fillen die entgegengesetzte Transmissionsfunktion
aufweist.

Die Entwicklungssitze (19, 19°) gestatten, eine be-
stimmte Variable aus der Transmissionsfunktion zu
extrahieren, so dass sie nachher hichstens je einmalals
2 und 2’ erscheint. Praktisch bedeutet dies, dass man
ein gegebenes Kontaktnetzwerk so in ein dquivalen-
tes Netzwerk umformen kann, dass das Relais X
héchstens einen Umschaltkontakt erhilt. Dies kann
zum Beispiel bei polarisierten Relais zwingend sein.

Extrahiert man nacheinander simtliche Variablen
gemiss Theorem (19), so erhidlt man die sogenannte
Standardsumme (oder Disjunktive Normalform, ver-
gleiche dazu Tafel V) einer Transmissionsfunktion.
Nach (19°) entwickelt, resultiert das Standardprodukt
(oder Konjunktive Normalform).

5. Darstellung von Transmissionsfunktionen

Das Verhalten eines zweipoligen Kontaktnetz-
werkes (offen oder geschlossen) in Funktion der
beteiligten Variablen, das heisst seine Transmissions-
funktion, kann mathematisch auf verschiedene
Weise dargestellt werden.

Die Mintmalsumme enthilt keinerlei redundante
Grossen, sondern nur jene Ausdriicke, die fiir das
richtige Arbeiten des Netzwerkes nitig sind. Sie
liefert denn auch das einfachste Serie-Parallel-Netz-
werk, wenn man die Formel gemiiss der Symbolik in
Tafel 1I unten umsetzt. Figur 1 zeigt ein Beispiel.
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Fig. 1

Die schon erwihnte Standardsumme weist wegen
der von ihr geforderten Normalform eine starke Re-
dundanz auf, wollte man sie direkt in ein Serie-
Parallel-Netzwerk umsetzen. Dies ist sinnlos, obwohl
das entstehende Netzwerk keine falsche Funktion
ausiiben wiirde. Die Standardsumme erhélt ihre Be-
rechtigung vor allem als Ausgangsbasis fiis das spéter
zu besprechende Vereinfachungsverfahren.

In der vollstiindigen Kombinationstabelle (vergleiche
Tafel V) wird fiir die 2" Kombinationsfille von n
Variablen jeweils in der Kolonne 7' angegeben, ob
das betreffende Netzwerk leitet (1) oder sperrt (0).
So ist das im Beispiel in Tafel V erwdhnte Netz-
werk offen fiir den Fall, dass a allein = 1 ist (¢ = 1,
b =0, ¢ =0, oder anders geschrieben: abc = 100),
wie im einfachen Schema sofort nachgepriift werden
kann. Die Kombinationstabelle stellt gleichsam das
Pflichtenheft des Netzwerkes dar, das vorschreibt,
wie sich dieses in allen moglichen vorkommenden
Fillen zu verhalten habe. Die Tabelle enthélt stets
gleich viele Zeilen mit 7" =1 wie die zugehdrige
Standardsumme Summanden (Terme) hat; man
findet die gegenseitige Zugehorigkeit sofort, wenn man
in der Tabelle in der Kolonne einer Variablen, zum
Beispiel b, eine Null setzt, wenn im entsprechenden
Term das b’ gestrichen erscheint und eine 1, wenn b
direkt erscheint.

Also entsprechen sich:

abe 1 1 1
abc’ 1 1 0
a’be 0 1 0

a’b’c 0 0 0

Da das Aufstellen einer vollstéindigen Kombinations-
tabelle bei mehreren Variablen bald eine ansehn-
liche Zeilenzahl ergibt, ist es zweckmaéssiger, die
Zeilen eindeutig zu numerieren und dann in einer
symbolischen Schreibweise diejenigen Nummern auf-
zuzihlen, bei denen 7' = 1 wird. Man nimmt dazu
gerade die Dezimaliquivalente (DA) der Binirzahlen,
die sich in den betreffenden Zeilen présentieren. Die
Bildung der DA geht aus Tafel V hervor.

Eine besondere Darstellungsform bildet das Karn-
augh-Diagramm, das nach bestimmten Regeln ge-
stattet, auf graphischem Wege Netzwerke zu ver-
einfachen [2]. Es enthilt soviel Felder wie Kombi-
nationsmoglichkeiten, hier also 8, und die Felder sind
auch hier eindeutig zugeordnet. Das untere Feld
rechts aussen stellt also beispielsweise den Fall
abc = 110 dar. Da in diesem Fall 7' = 1 wird, ent-
halt das Feld eine 1 eingeschrieben. Das Verein-
fachungsverfahren, fiir dessen nidheres Studium auf
den Literaturhinweis verwiesen sei, besteht darin, mog-
lichst viele 1-Felder zu grossern Rechteck- oder Qua-
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dratflichen zusammenzufassen, wobei es sich zeigt,dass
gewisse Variablen als unwesentlich ausscheiden. Ver-
gleicht man etwa die beiden nebeneinanderliegenden
Felder rechts unten, so wird augenfillig, dass 7" = 1
bleibt, was auch ¢ sein mag, sofern ¢« = 1 und b = 1.
Die beiden Terme abc+abe’ konnen also vereinfacht
werden zu ab. Diese Vereinfachung ergibt sich auch
rein algebraisch aus den Theoremen (15) und (10):
T =ab(c+c’) =ab-1 =ab
N——
1

Kine weitere Darstellungsform bedeutet die Nor-
malkontakipyramide nach Tafel VI oben, die man
durch fortgesetzte Anwendung des Entwicklungs-
satzes, Theorem (19), erhdlt. Die hier dargestellte
Pyramide gilt fiir 3 Variablen a, b, ¢. Setzt man unter
Beachtung der eingeschriebenen Vorschrift eine be-
liebige 7'-Funktion, in unserem Beispiel ab+a’c’, in
alle Rechteckkistchen ein, dann sieht man, dass
genau so viele Késtchen leitend werden wie Standard-
summen-Terme vorliegen, und zwar sind es die-
jenigen Kistchen-Nummern, die den DA in der
symbolischen Schreibweise entsprechen.

Das oberste Rechteck fordert zum Beispiel, dass
man beim Einsetzen der Funktion ab-+4a’c’ die Vor-
schrift beachte: abc = 111. Damit wird ab = 1-1 =1
und a’¢’ = 0.0 = 0, somit ab-ta’c’ = 1; also leitet
der oberste Ast. Die Ziffer 7 ist denn auch in der
Form T = f (a,b,c) = > (0, 2, 6, 7) enthalten.

Analog lasst sich zeigen, dass die Rechtecke 0, 2, 6
ebenfalls leiten. Lésst man nun von der Normal-
pyramide alle diejenigen Teile weg, die auf ein
sperrendes Rechteck hinfiihren (sie werden dadurch
gegenstandslos), dann erhédlt man direkt ein verein-
fachtes Netzwerk, das bereits auf die federsparenden
Umschaltkontakte tendiert.

Kennt man also von einer 7'-Funktion die Summe
der DA, dann kann man sofort ein Netzwerk auf der
Basis der Pyramide zeichnen.

6. Verwendung der Dezimaliquivalente als Leit-
zahlen in einer numerisch-graphischen Netzwerk-
Yereinfachungsmethode

Da in der Mehrzahl der Félle nur Teile der Kontakt-
pyramide (Tafel VI) am gesuchten Netzwerk betei-
ligt: sind, bedeutet es unnotige Arbeit, wenn zuerst
die ganze Pyramide angedeutet, dann aber wieder
ein Teil davon weggelassen werden soll.

Man kann direkt auf die unbedingt nétigen Teile
hinsteuern, wenn man die DA als Leitzahlen verwen-
det, die an jeder Verzweigungsstelle angeben, welchen
Ast man belegen muss, um zum richtigen der hier
total acht Ausgangsdste zu gelangen [8]. Man ver-
wendet dazu wieder die Gewichte der Variablen a A 4,
bA2 c¢Al. An der ersten Verzweigung zu aja’
scheidet man die vorhandenen DA in die beiden
Gruppen = 4 und < 4, fiihrt alle DA = 4 dem Ast a
zu und diejenigen << 4 dem Ast @’. In den beiden Ver-
zweigungen b/b’ wiederholt sich der Vorgang, wobei
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nur noch Leitzahlen < 4 auftreten. Das Verfahren
enthédlt namlich die Vorschrift, dass beim Passieren
der ungestrichenen Variablen a deren Wertigkeit von
den Leitzahlen zu subtrahieren sei. Dies entfillt bei
der gestrichenen Variablen a’. Tafel VI zeigt unten
das Vorgehen, das dann abgeschlossen ist, wenn nur
noch Nullen herauskommen. Alle mit 0 bezifferten
Aste sind anschliessend zusammenzufassen und mit
dem Ausgang zu verbinden. Fiir das gewéhlte Beispiel
T =1 (ab,c,) =3 (0,2,6,7)ergibt sich also zunichst
die Entwicklung nach Figur 2.

Ca R

c — leer

ey

i | +f

4 2 1

Fig. 2

0,2,6,7

Einige Aste sind als leer angeschrieben, weil fiir
diese keine Leitzahlen vorliegen. Das Netzwerk ent-
hiilt nur diejenigen vier Aste zum Ausgang, die den
Ziffern 0, 2, 6, 7, in Tafel VI oben entsprechen. Die
andern vier figurieren nicht mehr im Netzwerk. Das
Netzwerk ist demnach schon bei der Entstehung auf-
moglichst einfache Form gebracht worden; trotzdem
weist es noch nicht die Minimalform auf. Man sieht
zum Beispiel, dass man vom Ast 0, 1 immer zum Aus-
gang gelangt, unbekiimmert um den Zustand der
Variablen c¢. Ist namlich ¢ = 1, dann leitet der oberste
Ast, mit ¢ = 0 ist ¢’ = 1, folglich leitet der zweit-
oberste Ast. Es ist also die Parallelschaltung von ¢
und ¢’ immer ein Kurzschluss, was auch im Theorem
(10) zum Ausdruck kommt.

b .. c' 0
_———a _
b 0 o _0
b
3
b

—_————a

Fig. 3

Weiter sind die Aequivalenzen nach Figur 3 leicht
einzusehen, so dass das fertige Netzwerk genau der
Figur 1 und damit der Minimalsumme entspricht.

Das hier gewidhlte Beispiel ist natiirlich sehr ein-
fach aufgebaut, so dass bei Kenntnis der algebraischen
Form 7' = ab-+a’c’ der Vorteil der Vereinfachungs-
methode mit Hilfe der Leitzahlen nicht augenfillig
wird. Die grossen Vorziige dieser Methode werden
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erst dann sichtbar, wenn eine komplizierte Trans-
missionsfunktion vorliegt, etwa
= [ab (cd’ + c’'d) + b (ef’ + ac’d)]-c

von der man zudem noch nicht weiss, ob sie eine
Minimalsumme darstellt. Es ist ferner moglich, die
algebraischen Formen ganz zu meiden, wenn aus der
Aufgabenstellung das Pflichtenheft eines Netzwerkes
direkt aufgestellt wird und aus diesem die DA ent-
nommen werden.

Eine &dhnliche Vereinfachungsmethode ist in [3]
beschrieben.

7. Vereinfachungsregeln

Das beschriebene Verfahren liefert nur dann weit-
gehend vereinfachte Netzwerke, wenn einige zusétz-
liche Regeln nach Tafel VII angewendet werden.
Da es zu weit fithren wiirde, im Rahmen dieses Ar-
tikels die Beweise fiir die Zulédssigkeit der Regeln
einzeln zu erbringen, seien diese nur knapp kommen-
tiert:

1) sagt aus, dass man einen Kontakt als iiberfliissig
kurzschliessen kann, wenn die dahinter folgenden
DA (das heisst die Restfunktion oder das Residuum)
in jenem des andern Zweiges vollstindig enthalten
sind. Die deckenden DA werden bei Ausniitzung dieser
Vereinfachungsmoglichkeit durch Querstrich mar-
kiert.

2) sagt aus, dass man gleichlautende Residuen ver-
einigen darf.

3) legt fest, wie man iiberstrichene Residuen be-
handelt. Nach einer Vereinigung erhalten nur die-
jenigen DA den Querstrich, die bereits vor der Ver-
einigung in beiden Asten iiberstrichen erschienen.
Enthélt ein Ast nur noch lauter iiberstrichene DA,
dann ist er belanglos und kann weggelassen werden.
Eine Ausnahme von dieser Regel wird gemacht, wenn
der betreffende Ast mit einem andern so vereinigt
werden kann, dass die Form b-+0 =1 = Kurz-
schluss resultiert, wodurch gleich zwei Kontakte weg-
fallen.

4) macht auf die Kriechweggefahr aufmerksam,
das heisst auf unerwiinschte Nebenwege durch das
Netzwerk, wenn die Regel 1) zweimal nacheinander
oder mit 2) zusammen angewendet wird. Kriechwege
miissen durch Kontrolle des fertig entwickelten Netz-
werkes aufgespiirt und eliminiert werden.

5) zeigt schliesslich, dass der gleichlautende Kon-
takt in beiden Asten vor die Verzweigung verlegt
werden kann.

8. Beispiele fiir Netzwerksynthese

Mit der soeben besprochenen Netzwerk-Verein-
fachungsmethode ldsst sich nun jedes beliebige Zwei-
polnetzwerk in kurzer Zeit aufbauen, wobei man von
der Kombinationstabelle (Tafel V) ausgeht, die die
Funktion des Netzwerkes genau vorschreibt. Es ge-
niigt, wenn man nur jene Kombinationen einschreibt,
fiir welche 77 = 1 sein soll, da nur fiir diese die DA
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als Leitzahlen verwendet werden. Fiir das erste Bei-
spiel in T'afel VIII, ein Netzwerk, das nur leiten soll,
wenn von vier Relais beliebige zwei aufgezogen
haben, sind also systematisch die sechs moglichen
Kombinationen zu verwenden, die je Zeile genau
zwei Einsen und zwei Nullen aufweisen. Das bereinigte
Netzwerk enthilt lauter Umschaltkontakte; seine
korrekte Funktion kann leicht iiberpriift werden.

Bei den praktisch vorkommenden Problemen, bei
denen Eintaktschaltungen auftreten, sind sehr oft
zwei oder sogar mehrere Ausginge zu steuern. Man
hat dann ein Interesse daran, Variablen, die an beiden
Ausgangsfunktionen beteiligt sind, durch Kontakte
darzustellen, die beiden Ausgéngen gemeinsam dienen
koénnen.

Die beschriebene Methode eignet sich mit einer
kleinen Modifikation auch zur Behandlung von
Schaltungen mit mehreren Ausgingen [9]. Als Bei-
spiel ist ein Elementar-Addierwerk in Relaistechnik
dargestellt, das die Addition zweier Binarziffern 4, B
ausfithrt und die zu beriicksichtigenden Ubertrige
aus einer allfillig vorangehenden und in die néchst-
hoéhere Bindrstelle ebenfalls behandelt. Die Schaltung
weist also drei Einginge und zwei Ausginge auf.
Die Kombinationstabelle zeigt das Pflichtenheft des
Addierwerkes. Zu den beiden normalen Summanden
A, B tritt der Ubertrag U, hinzu; alle drei Ziffern
sind zu addieren. Beispielsweise ist das Rechnungs-
ergebnis .

(4 =0)+(B =0)+(U, =0)
natiirlich auch 0, also muss in der Kolonne fiir die
Summe S eine 0 stehen, und ein Ubertrag [/, kommt
ebenfalls nicht in Frage.

Ist aber etwa die Summe zu bilden

(4 =1)+(B=0)+(U; =1)
14+0+1=2,

dann muss man S = 0, [/, = 1 setzen, («schreibe 0,

behalte 1»), da die Ziffer 2 im Bindrsystem nicht exi-

stiert und alles, was tiber 1 hinausgeht, bereits die

nichsthéhere Stelle speist.

Schaltungstechnisch wird die Aufgabe dadurch
gelost, dass man das Netzwerk umdreht, mit der
Vereinfachungsmethode an den beiden Ausgingen
beginnt und gegen den gemeinsamen dritten Pol, den
Eingang, hin entwickelt. Die beiden Anfangsiste S
beziehungsweise [/, erhalten dabei nur jene DA als
Leitzahlen, denen in der fraglichen Tabellenkolonne
(S beziehungsweise U,) eine 1 gegeniibersteht. Die
Entwicklung fithrt dann zum dargestellten bereinigten
dreipoligen Ausgangsnetzwerk, wobei an zwei Stellen
auf die Vereinfachungsregel 1) gemass Tafel VII ver-
zichtet werden muss, um nicht Kriechwege ins Netz-
werk zu bekommen.

Sehr oft ergeben sich weitere Vereinfachungs-
moglichkeiten, indem man die Wertigkeiten der Va-
riablen umstellt oder fiir eine Ausgangsfunktion in
Kombinationsfillen nach Belieben eine 0 oder eine 1
wihlt, die infolge der dussern Rahmenbedingungen
itberhaupt nicht auftreten kénnen.

also
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9. Folgeschaltungen

An einem einfachen Beispiel soll gezeigt werden,
wie Folgeschaltungen zu behandeln sind, also jene
Schaltungen, bei denen die zeitliche Reihenfolge der
Eingangswirkungen die Ausgangswirkung mitbe-
stimmt.

Es sei ein Richtungsdiskriminator zu entwerfen,
der an einem Ausgang Z; Impulse liefert, wenn an
zwei Eingingen 4, B sich iiberlappende Impulse so
angelegt werden, dass zuerst A beaufschlagt wird.
Ist die Folge zeitlich umgekehrt, also B, A4, dann
sollen die Ausgangsimpulse an einem andern Ausgang
Z, erscheinen.

Das Pflichtenheft der Schaltung als Folgediagramm
muss alle moglichen Ereignisse aufzihlen (Figur 4).

Intervall

1 2 3 4 5 6 7

N N
Eing. {B I

Z]
Ausg.
z 2

9
Richtung A-B . Richtung B-A J
i =

Fig. 4

Es ist offensichtlich, dass diese Vorschrift mit einer
reinen Kombinationsschaltung nicht erfiillt werden
kann, da die Eingangskombination beispielsweise in
den beiden Intervallen 3 und 7 dieselbe ist (4 = 1,
B = 1), die Ausgangswirkung aber anders sein soll.
Das Analoge gilt fiir die Intervalle 4 und 6 (4 =0,
B =1).

Ein neues Element, das Sekundirrelais X (ver-
gleiche Tafel I), muss in diesem Geschehen so ope-
rieren, dass die Intervalle 3 von 7 und 4 von 6 unter-
schieden werden konnen. Dies ist moglich, wenn X
iiber die Intervalle 2, 3, 4 aufgezogen ist, nicht aber
wahrend 6 und 7. Bei Intervall 8 ist die Aktion von
X belanglos, da dort keiner der Ausgénge aktiv sein
soll. Man kommt somit auf das Diagramm gemiiss
Figur 5.

Intervall

Fig. 5

Beide Ausginge sollen zu ihrer Zeit aktiv sein,
solange der Eingang B aktiv ist. Mit Hilfe des Relais
X kann nun zwischen Z; und Z, unterschieden werden

(Figur 6).

Bulletin Technique PTT N° 6/1963



_________________ 9
|
|
A o— 7 X :
R_Q—D_' :
J— |
. ¥ b |
Eing. |
|
8 |
3 o } D— ! Ausg.
I - I
| |
{ i __ b [ Z,
i 1
: ik
L e e e J
Fig. 6

Die zeitliche Verschiebung der X-Aktion gegeniiber
den Intervallgrenzen markiert die Schaltzeiten des
Relais X, dessen Steuerfunktion nun noch anzugeben
bleibt. Diese setzt sich aus zwei parallel zu schaltenden
Teilen zusammen :

— Die Aufzugsfunktion beginnt mit Intervall 2

beziehungsweise 8; sie lautet X = ab’, das heisst
X =1,wenna = 1und 6 = 0.

— Die Haltefunktion gewahrleistet die fortdauernde
Erregung von X iiber die Intervalle 3 und 4,
dies auch, nachdem die Aufzugsbedingung auf-
gehort hat. Die Haltefunktion enthélt immer den
eigenen Haltekontakt z in Serie. Sie kann rein
formal auf Grund des Diagramms abgeleitet
werden; im vorliegenden einfachen Beispiel ist
sie augenfillig: X hélt sich an 4 oder an B, so
dass zu setzen ist: X = x (@ -+ b).

Die vollstandige Steuerfunktion lautet dann:
X =ab + x(a+b)

Das Relais 4 konnte eingespart werden, wenn die
Variable ¢ nur einfach erscheinen wiirde. Statt einem
Arbeitskontakt @ kann dann die Eingangsklemme A4
selbst dessen Funktion iibernehmen.

Man erhélt nach der Ausmultiplikation:
X =ab + ax + bx
und nach Beifiigen von bb’ = 0, was zuldssig ist:
X =ab +ax - bx +bb = (a + b) (b + )
Es liegt hier der interessante Fall vor, dass durch
Anhéngen weiterer Buchstaben ein algebraischer
Ausdruck schliesslich wesentlich einfacher wird (vier

statt sechs Buchstaben). Die vollstdndige Schaltung
erhélt also die Form nach Figur 6.

10. Logische Yerkniipfung
mit elektronischen Gatterbausteinen

Die Logikfunktionen ODER, UND bilden nur einen
kleinen Ausschnitt aus der Vielzahl der méglichen
logischen Verkniipfungen. Mit zwei Variablen lassen
sich die insgesamt sechzehn Logikfunktionen nach
Tafel 1X unterscheiden, von denen allerdings einige
als Spezialfille (wie Leerlauf und Kurzschluss) eher
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als entartete logische Verkniipfungen zu bezeichnen
sind. Auch die Funktionen s, ¥s, ¥19, Y12 Sind in-
sofern entartet, als das Ergebnis nur vom Zustand
der einen Variablen allein abhingt.

Fiir die wichtigsten Logikfunktionen sind im Laufe
der Zeit sehr unterschiedliche graphische Symbole
eingefithrt worden, die leider eine einheitliche Norm
vermissen lassen. Es ist zu begriissen, dass Versuche
unternommen werden, die Symbole zu vereinheit-
lichen [11].

Wie Schaltkreisprobleme mit elektronischen Bau-
elementen grundsétzlich zu 16sen sind, ist von ver-
schiedenen Autoren bereits erldutert worden [5, 13].
Die Struktur einer Schaltung wird am besten iber
die algebraische Ausdrucksweise gefunden. Wie das
folgende Beispiel zeigt, erhédlt man aus der Kombi-
nationstabelle zunichst die Ausgangsfunktionen als
Standardsumme, die algebraisch vereinfacht als
Minimalsumme direkt auf die einzusetzenden Gatter-
bausteine hinweist.

Es sei eine einfache kontaktlose Schaltung zu ent-
werfen, die an drei Eingingen je eine bejahende (1)
oder verneinende (0) Zustandsmeldung empfingt und
am Ausgang folgende Auswertung abgibt: Wenn mehr
bejahende als verneinende Eingangsmeldungen ein-
treffen, dann soll der Ausgang die Allgemeintendenz
«ja» abgeben und umgekehrt.

A B C Z
(@ (b)) (o)
A o—
0 0 0 0 B o—— Tendenzauswerter |—o Z
0 0 1 0
G, ios=—]
0 1 0 0
0 1 1 1
1 0 0 0 Z = a’hc + ab’c + abc’ + abc
1 0 1 1 =(a’b+ab’)c+ab
1 1 0 1
1 1 1 1
a ab +c{a'b +ab’
: ) ™\ ob+c{abtab’) 5

c(a'b +ab’)

Fig. 7. Beispiel einer Kombinationsschaltung aus kontaktlosen
Gatterbausteinen

Figur 7 zeigt den Losungsgang mit Symbolen
zusammengesetzter Logikfunktionen und Figur &
zwel mogliche Loésungen fiir die Bildung der Teil-
funktion a’b6 4 ab’ aus den Grundbausteinen UND,
ODER, NICHT.
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athb

(a +b)(a" +b")

Fig. 8. Bildung der EXCLUSIV ODER - Funktion aus den
Grundschaltungen

Von den praktisch vorkommenden Schaltkreis-
problemen kénnen mit Dioden-Toren allein nur wenige
gelost werden, da Dioden nur UND sowie ODER-
Verkniipfungen zulassen. Dioden-Tore kénnen ausser-
dem nicht ohne weiteres in Kaskade geschaltet werden
und bediirfen der Zwischenverstidrker. Dagegen kann
man sie in Form einer Matrix mit Vorteil fir Code-
wandler anordnen (Tafel X ), sofern die negierten
Variablen zur Verfiigung stehen.

Transistor-Tore (Tafel X1 ) werden in der sogenann-
ten RTL-Technik (Resistor-Transistor-Logic, eine
Spezialform der Gleichstromlogik) sehr einfach und
iibersichtlich.

Sie haben den wesentlichen Vorteil, dass siezugleich
als Leistungsverstiarker dienen und deshalb bei pas-
sender Dimensionierung in Kaskade angeordnet
werden konnen. Ein Torausgang kann somit, wenn
notig, auch die KEingénge mehrerer verschiedener
nachfolgender Tore speisen (als fan-out-Charakter
bezeichnet). Sie gestatten ausserdem den Bau von
Logikfunktionen, die iiber die einfachen Grundfunk-
tionen hinausgehen. So werden héufig die Ver-
kniipfungen y, und y, oder y, verwendet, die mit
Transistoren in einer einzigen Stufe realisiert werden
konnen. Verschiedene Firmen gehen sogar so weit,
dass sie nur mit den Nor-Toren arbeiten und durch
Kombination dieser Bausteine riickwarts die Grund-
funktionen bilden, wenn dies né&tig ist (vergleiche
Tafel XI rechts unten). Dass dabei Einginge un-
beniitzt bleiben miissen, kann in Kauf genommen
werden, weil es immer noch giinstiger ist, grosse
Serien eines Bausteins zu fertigen als verschiedene
Typen zu verwenden. Mit der Mikroelektronik, bei
der ganze Schaltkomplexe auf einem einzigen Halb-
leiterplidttchen basieren, kann man sich unbeniitzte
Teile ohne weiteres leisten.

Um die Funktion der gezeichneten Transistor-Tore
zu verstehen, muss man die Potentialfestlegung in
Tafel XI oben beachten. Fiir die beiden Zustdnde
«0» beziehungsweise «1» sind Potentialbereiche mit
einer gewissen Breite erforderlich, da ein leitender
Transistor zwischen Kollektor und Emitter immer
noch die Sattigungsspannung von etwa 0,1...0,2 V
aufweist. Besonders bei Kaskadenschaltungen kann
deshalb an den letzten Ausgingen nicht mehr mit den
Grenzwerten 0 V beziehungsweise —6 V gerechnet
werden.
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Mit elektronischen Halbleiterbausteinen konnen
ebenfalls Folgeschaltungen realisiert werden. Die
Gedéchtnisarbeit eines selbsthaltenden Relais wird
dabei von einem Transistor-Flip-Flop iibernommen,
der als bistabiler Multivibrator zwei diskrete Kipp-
Endstellungen einnehmen und aus diesen durch
Potentialspriinge an den Steuereingingen umgekippt
werden kann [5].

Kurzzeitige Speicherung einer bindren Grosse ist
im monostabilen Multivibrator moglich, einer Ein-
richtung, die, von aussen gekippt, nach einer be-
stimmten Zeit wieder in die Vorzugslage zuriick-
klappt. Bei all diesen Multivibratoren sind die
Zustinde 0, 1 als Potentiale an den Kollektorklemmen
greifbar.

Bei Anlagen, in denen Gedichtnisaufgaben vor-
herrschen, werden besonders entwickelte Informations-
speicher (zum Beispiel Magnettrommel-, Magnetkern-,
Magnetband-, Diinnschicht- und elektrostatische
Speicher) eingesetzt, da die Flip-Flop-Schaltungen
zu viele Bauelemente und zu grosse Volumen er-
fordern wiirden.
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Eingange<

A, B, C heissen
Eingangsvariablen

A = 0: keine Erde
an A

A =1:Erde an A

e

Kontaktnetz -
werk
X =f(A,B,C,
X,Y)

s

ev. 3-Pol -

Netzwerk

Kontaktnetz -

S 4

werk
Y =f(A,B,C,
X, Y)
Kontaktnetz -
werk
Z], zZ 2

f(A,B,C, X, Y)

>

Netzwerk

ev. 2 x 2-Pol-

z

Kombinationsschaltung, Eintakt- oder Statische Schaltung:

I
-

Z,
Z,

Primaérrelais,
nur von den Eingangs-
variablen gesteuert

Sekundaérrelais,

durch Eingangsvariablen
und durch Sekundar-
variablen (eigeneKontakte)
gesteuert

/
\
O Z] Ausgénge
durch Primar-
L und Sekundér-
variablen
o) 22 gesteuert
/

und Z, heissen Ausgangs-

variablen
0 : keine Erde an Z,
1: Erde an Z,

Nur Primérrelais und Ausgangsnetzwerk vorhanden; fir die Wirkung an den Ausgdngen wird nur die
Kombination der aktiven (geerdeten) Eingange betrachtet, nicht aber die zeitliche Folge ihrer Aktion.

Folgeschaltung, Mehrtakt- oder Dynamische Schaltung:

Enthélt im allgemeinen Fall Primdr- und Sekundérrelais sowie das Ausgangsnetzwerk; die Wirkung an
den Ausgédngen ist sowohl von der Kombination der Eingangsvariablen als auch von der Reihenfolge
ihrer Aktion abh&ngig. Folgeschaltungen ohne Primérrelais erzeugen eine wiederholte Folge von Ausgangs-
wirkungen, sobald die Batterie angelegt wird.

Tafel 1.

Allgemeine Form einer Relaisschaltung
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Kontakt -
Netzwerk

X

Eing.

Transmissionskonzept

Hinderniskonzept

Das Transmissionskonzept ist praktischer und wird allgemein verwendet

Ausg.

Ein Kontaktnetzwerk besteht im allgemeinen Fall aus
einem oder mehreren Relaiskontakten verschiedener Re-
lais oder Schalter.
nach der Kombination, in der die Relais erregt oder die
Schalter betétigt sind.

Netzwerk

leitet
sperrt

leitet
sperrt

Das Netzwerk leitet oder sperrt, je

Funktion
T=1 X =1
T=0 X=0
H=0
H=1

Arbeitskontakt auf Relais A: a _o o—"°% o G2 = 1 o
a =o =1
Ruhekontakt auf Relais A: a —0 o—0 o— —o
a'=1 a' =o
a —0
Umschaltkontakt auf Relais A: O_E
a'— o
A = 1: Relais
Wicklung des Relais A: o— A o erregt
A = 0: Relais stromlos
A=1, a=0, a =1 unstabiler Zustand wahrend Anzugszeit
A=1, a=1, a = stabiler Zustand
A =0, a=1, a =0 unstabiler Zustand wahrend Abfallzeit
A =0, a=0, a =1 stabiler Zustand
Logische Grundschaltungen und Verknlpfungszeichen:
Bezeichnung Netzwerk Transmissionsfunktion Bemerkung
O DER-Schaltung a T=a+b T =1 wenn a oder
(Disjunktion) | b , ° (@aVb) b =1 oder beide
UND-Schaltung b T=a-b T=1 wenn a und
(Konjunktion) O §—l—p (a & b) b =1
NICHT-Schaltung ) T=a T=1, wenn a=20
) o2 a —0 _
(Negation) (a)
Tafel Il. Symbolik der Schaltalgebra
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Serie-Parallel-Netzwerke

o__I ¢—o T=ab+c
c!
a (=
to————@ H }X— X=(a+b) (c+d)
bl dl

S
+ o c —@ ]—o—Y—— Y =ab" "+ c(d +¢€)+x
e’ B

¥ Oa’ s o? =id Z Z=a[b(c+x)+c d+e]-
-lef+ b +y(r+ s+ t)]

Briicken-Netzwerk

o———¢ e ¢——o T = ac + bd + aed + bec
b l., d
a (=4

b d — ¢
o— —o (Aequivalentes Serie-Parallel-Netzwerk,
? a € d ® nicht vereinfacht)
b e
Schaltung mit Shunt-Netzwerk
o X=a-b
+
& X —'r—D——O_ (X =1 wenn a=1und wenn nichtb=1)

O——a —e— b ——Y——T—E—o Y =al[b-(c+d)]

Tafel 1ll. Beispiele fiir Transmissionsfunktionen
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Die nachfolgend aufgefiihrten Variablen X, Y, Z kdnnen den Zustand eines einzelnen Schaltelementes
wie auch je von ganzen Netzwerken darstellen.

Voraussetzungen (Postulate)

x=0 wenn x +1 1) 1-0 = 0-1 = 0 4)

x=1 wenn x + 0 (1) 0+1 = 1+0 = 1 (4’)
0-0=0 (2) 0 =1 (5)
1+1=1 @) =0 ®)
T-1=1 @) Die paarweise zusammengefassten Voraus-
0+0=0 3) setzungen sind einander dual

Theoreme mit 1 Variablen

x+0=x (6) (x)’ =X’ 9)

X - 1=x (6" (x) =x 99

1+ x=1 (7) X+ x =1 (10)
0. x=0 (7) X 5 oxf =0 (10%)
X+ X=X (8) X, X sind Komplemente zueinander

X« X=X (8")

Theoreme mit 2 und 3 Variablen

x+y = y + x 11) Xy + xz = x (y + z) (15)
Xy = yX 117 x+y)(x+z)=x+yz (157)

X + xy = X (12) xX+yY)(y+2)(@Z+x)=(Kx+y)(z+x) (16)

X (x+y) = X (127) Xy + yz + zx’ = xy + zx’ (16")

x+vy)y=xy (13) (x+y)(x+2z)=xz+ XYy 17)

X+ xXy=xy+y=x+y (13")

X+y+z=x+y)+tz=x+(y+z) (14)

xyz = (xy) z = x (yz) (14)’

Theoreme mit n Variablen

x+y+z+..) = x -y -z ... (18)
x-y-z-...) = xX+y+z+... (18")
fx,v,z..)=x-f(,y,z..)+x -0, y,z...) (19)
fx,y,z..)=x+f0,y,z..)] - [x+f(,y,z...)] (19)

Tafel IV. Rechenregeln der Schaltalgebra
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Entwicklung einer Transmissionsfunktion zur Standardsumme

Die Standardsumme (Disjunktive Normalform) einer Transmissionsfunktion enthdlt Summanden (Terme),
von denen jeder alle vorkommenden Variablen oder deren Komplemente enthélt. Man erhélt sie durch
Multiplikation aller Summanden mit x + x’ = 1, die die Variable x oder x’ noch nicht enthalten, oder
durch Anwendung des Theorems 19 auf alle Variablen.

Varianten der Darstellung einer Transmissionsfunktion

— Als Minimalsumme: T=ab+ ac
— Entwickelt zur Standardsumme: T =ab (¢ +c¢’)+ a’c’ (b + b’)

= abc + abc’ + a’bc’ + a’b’c’

— Als vollstédndige Kombinationstabelle:

a b c Dezimal- a b c Dezimal-
T iqui- T Aqui-

4 2 valente 4 2 1 valente

0 0 0 1 0 1 0 0 0 4

0 0 1 0 1 1 0 1 0 5

0 1 0 1 2 1 1 0 1 6

0 1 1 0 3 1 1 1 1 7

Jede Zeile mit T =1 entspricht einem Summanden der Standardsumme. Die Dezimaldquivalente (DA)
erhdalt man, indem man die Variablen a, b, ¢ als Elemente eines Bindrcodes mit den Gewichten oder
Wertigkeiten 4, 2, 1 betrachtet und die Quersumme der Gewichte ermittelt.

— Als Summe von Dezimaldquivalenten, far die T =1 wird:

T=1(ab,c)==(0,26,7)

— In graphischer Form (zum Beispiel als Karnaugh-Diagramm):

b, c
00 01 11 10
o | 1 | | 1
a
1 I 1 ' 1

— Als Kontaktpyramide mit teilweise unbenitzten Zweigen (siehe Tafel VI)

Tafel V. Darstellung von Transmissionsfunktionen

Technische Mitteilungen PTT Nr.611963

213



c #1,1,1)

O = durchzu-
schaltende

@
, ®
c (1,1.0)—T Aste im vor-
—— a — angehenden
—S*T
4
3

Beispiel

c f(1,0,1)

|

S -

L ¢ (1,0,0)

c f(0,1,1)

c’ f(0, 1,0) @ ©

c £(0,0,1) ?

- i (0,0,0) @

tor

4 2 1 Gewicht

Die Transmissionsfunktion als Kontaktpyramide
1

22 1 0
|
-1
* 2,3 p 0.1 (-1)
(-2) * 0 .0 4
c
(=0)
> 4 4,56 .7 0,123 0
* (-4) 1 0
c —
* 0,1 .0,
b' —— ¢
<2 (=0 ) 0 i 0
0,12 3,4 5 6,7
1 0
22 c
0,1
| b o
< 4 (=2) 0 r 04'
0,1,2,3 ,0,1,2,3
a
(-0) 1 0$
(=
(-1)
‘ 0,1 pr_ 0,1
<2 (-0) 0 , 0
C
’ (#—0)
4 2 1 Gewicht

Tafel VI. Verwendung der Dezimalaquivalenten als Leitzahlen in einer numerisch-
graphischen Netzwerk-Vereinfachungsmethode
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Tafel VII.

1
- 3,6,7 o b I2 o
—— |
i ,/
1 15 s />—/ !
3,6,11,14 ' ___0.2¢6 | I /
3,6' 0,2
7 o : o
a E
b 0,2,3, o *4
2,3
12,810, 11 — ,/
_2'_:.;'_.6L_4’__ _______ _0_-2,_3.
b 1,2 f o
—= . 2,3
A l}_.,._.]i.z__. / €
_9.10 b 12
3 4 /
‘ e / fffen
10 ' assen
o 68T . :
6,8,:5 3]3[3 \fanf weg
— S —— 9
6,8,10
—— — C' 3 ———
4 ] * 2 __
0,1
x —— b L
13,5 ~ 5 0.1,3,3 ¥ o
BLIETE D § /_L\ T3 71 R ¢ L33
— offen / l
’” 1,‘2 : lassen / b 0,1 J
Ausnahme
fallt weg
nicht
4 8 - zul. 8
-
2:3:5
c 2 y 2.5
— 2,5,6,10,13 s
2,10,11,13 0 184 _
I R VR 3 f 2,5,6_
2,5
, 2 —— ¢ ——— ———
\\i_,’ y _24211_
2,5,10,13,15
nicht zul. y' 2.5
Kriechweggefahr />_/
; K &
b 2 c 0 i B o,
3,6 ¥ —
—_———_— = —_— c
A
\\_/ P B LI W

Beispiele fiir Vereinfachungsregeln fiir numerisch-graphische Methode
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c Dezimal-
T 4qui-
2 valente Kontrollnetzwerk fiir «2 aus 4»-Code:
1 1 0 0 1 19 Das Netzwerk soll leiten, wenn von vier Relais be-
1 0 1 0 1 10 Ii?bige zwei aufgezogen sind und in allen Ubrigen
Féllen sperren.
1 0 0 1 1 9
0 1 1 0 1 6
0 1 0 1 1 5 T=1(,b,c,d == (356,9,10,12)
0 0 1 1 1 3
0 0
b c’ "
{7
o 1,2,4 } 4'0
b’ 1,2 c 0
1,2
9,10,12 y & d
39,6
b 1,2 o
.3,5,6' ) d 0
3 -‘ b (o}
S c
A B U, S U, | Dezimal-
aqui- A |
4 1 valente o Elementas - s
0 0 g ¥ g 0 ® Addierwerk -
0 0 1 1 0 1 0, o— —o U,
0 1 0 1 0 2
0 1 1 0 1 3
1 0 0 1 0 4 Ein duales Elementar-Addierwerk soll die
§ " ; B 4 g Summanden A, B und einen allfélligen
Uebertrag U, aus einer vorangehenden
1 1 0 0 1 6 Stelle geméss den Rechenregeln des du-
1 1 1 1 1 7 alen Zahlensystems addieren und das Resul-
tatan den Ausgangsklemmen S, U, abgeben
Substitution a b
S=1f(abc)=2=2(01,24T1); U,=f(@ b,c) = =(@3,567)
——————————— -
I |
B ot [ |
o 03] ) } b !
1,2,4,7 l— b’ "/—4) S
S o——¢ 0 }— c? —-O— |
.2t | b |
a 1 0 I I
bl
Tl c —eo | R [ |
1,2, 3 : —{ +——o | "—e—oc I
. ° b’ 1 C'L' I b s
0,022 074 S | l ) ")
- a’ < . /b L L (= 0 | 7 bl |
e / [ |
nicht zul. : {
A
Netzwerk mit 2 Ausgédngen, entwickelt von den | L
Ausgédngen zum gemeinsamen Eingang B ¢ B L {
| I | -
_— . Ui9 [c |
Tafel VIII. Beispiele fiir Netzwerksynthese @ L ___ _ 1~ _J
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Wertetafel

Graphische Symbole

= Mathematische Symbole Bemerkungen a0 o0 11
= bo 1 0 1 nach Rekowski Beispiele fiir Varianten
a
Yo 0 0 Leerlauf o0 0 00 b ] Yo
Und (And)
v ab a&b Koinzidenz 00 0 1 39_ Und
Konjunktion
, — Sperrung —
Yo ab ad&b Inhibition 0010 —4)—7 :;]_
Y3 a a 00 11 37
1
, — Sperrung — 4 ?-‘;]‘
Ve &b a &b Inhibition WL D‘
Y5 b b 01 01 ‘D_
Ungleich ]
Ye a’b + ab’ a /i E Exclusiv Oder 01 10 % e @ —
a8 Antivalenz ]
Oder (Or) I
¥7 a+b aVva Mischung 01 11 3_,:_)_
Disjunktion
a’'b’ Weder noch TR
th N
i (a + by a (Nor) tooo D_‘ :D— o
1
= Gleich —
‘b’ =b B
Yo ab + a'b a Kqutvalanz 1.0 0 1 D——
Y10 b’ b 1010 }
W I
%4 a+ b a—=b In‘:”ﬂ'k;:fo"n" 101 1 D_'
P —
Y12 a’ a 1100 5_
—
yig | a+b a~b Wenn, dann 11 0 1
Implikation R
a + b’ b Nicht Und i f 4 @ — } @
Y14 ’ a Nand
(ab) (Not And) —
Y5 1 1 Kurzschluss 11 11 : @__
Nicht (Not) _[D_ ®
o 1
y a’ a Negation, Inversion (1) 0
Komplement y __b_
Tafel IX. Logikfunktionen '
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Dezimal —_— 1 2 3 4 5 6 7 8 9 10

:’ Binéar
: a o 1 & ¥ & 1 @ 1 & 9 ’
b b @ o L R 1
° c (@) 0 0 0 1 1 1 1 0 0 0
N ‘@@ 6 & 8 © ®» ®© © 1 4 1
V) (-6 V)
”
1 o =\~\
2 o ‘\~\
3 o ‘\h\ ‘\h\
4 o \\
Ein- > @ :\h\ \
Dezimal — Binéar
gang ﬁ 6 o A\h\ A\Q\ (Oder — Tore)
p
7 o “\h\ X X
8 o ‘\&
]
9 o P <
RN R
10 o o "
N ¢ a\‘\r—o b ¢——o0 cx\»——o d Ausgang

R

UM T T TH A
> SIS T T [T
¥ i %

Binér

L @ = —- Dezimal

3 ‘\%. ‘\%. s (Und - Tore)
| W

Ein-
gang £ o

f
£
£
£

P,
£ 4

b p p

@ @ & @ & & PN

\d' ° \‘%&—o\yw—o\% ;\%s—o:*qb—o:%»—ox : »—c; 0_2 ¢—o Ausgang
SN

Tafel X. Diodenmatrix (Codewandler Dezimal <—= Binér)
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Festlegung

Zustand 0: ~ OV

Zustand 1: =~—-6V

ov
ab’
b
a

Oder Und Verstéarker fiir Diodentore
a a o -6V
a tb +te abe
b b
o-_
O0——a Tor
c 0O c :
o—1
TOI’ _—Y
St
ov -6V ov
Nicht (Inverter) Oder (pnp) Oder (npn)
-6V ov
-6Y
J
a
’ a O_‘E b
a
a
b
a+thb athb
ov
ov -6V
Und (pnp) Und (npn) Nicht Und
-6V ov - 6V
a (ab)®
a =a' +b’
a
b
ab © b
ab
ov -6V ov
Inhibitor (npn) Weder noch (Nor) Grundfunktionen mit einheitlich Nor-Toren
-6V Nicht
ﬁ a Nor | a’
+ -0 a +b)’
(a +b)’ a i Oder
= a'b’ Nor Nor |—2°
bo—— a+b

ao—— Nor

B Und

Ner o ab

bo—— Nor

Tafel XI.

Beispiele logischer Verkniipfungsschaltungen mit Dioden und Transistoren
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