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R. Kallen, Bern

Einführung in die Schaltalgebra
Zusammenfassung. Nach einer Darstellung der allgemeinen

Form von Digitalschaltungen werden die Rechenregeln der
Schaltalgebra mitgeteilt und gezeigt, wie sich damit Schaltkreisprobleme
lösen lassen. Ferner wird ein praktisches Kontaktnetzwerk-Vereinfachungsverfahren

beschrieben, das im deutschen Sprachgebiet
wenig verbreitet ist und abschliessend die Synthese von
elektronischen Verknüpfungsschaltungen aus Gatterbausteinen skizziert.
Die wesentlichsten Angaben sind in ganzseitigen Tafeln
zusammengestellt, die als Zusammenfassung verwendet werden
können.

1. Einleitung

Die Schaltalgebra ist ein Verfahren für die
mathematische Behandlung von Schaltkreisproblemen in
der Digitaltechnik. Der Begriff ist seit dem zweiten
Weltkrieg bekannt geworden; die mathematischen
Grundlagen sind indessen schon 1847 von G. Boole
in Cambridge (England) in seiner Arbeit «The
Mathematical Analysis of Logic» geschaffen worden,
vermochten aber zunächst als Algebra der Logik nur die
Mathematiker zu interessieren.

Es ist das Verdienst von G.E.Shannon, mit seiner

Diplomarbeit «A Symbolic Analysis of Relay and
Switching Circuits», im Jahr 1938 die praktischen
Anwendungsmöglichkeiten der Booleschen Algebra
aufgezeigt zu haben; er hat damit dem Schaltungsingenieur

ein nützliches Hilfsmittel in die Hand
gegeben.

Viele Autoren haben das Werkzeug seither ständig
vervollkommnet und damit ein Arbeitsinstrument
geschaffen, dem alterfahrene Schaltungsfachleute
zum Teil etwas skeptisch gegenüberstehen, weil sie

mit ihrem reichen Katalog an Schaltungsfinessen
geringen praktischen Nutzen einer wissenschaftlichen
Behandlung von Schaltkreisproblemen sehen. Es kann
aber nicht geleugnet werden, dass die jüngsten
Erkenntnisse auf diesem Gebiet die digitale Schaltungstechnik

befruchtet haben.

621.3.06:512

Wie kann nun die Schaltalgebra nutzbringend
eingesetzt werden

Sie erlaubt zunächst, logische Verknüpfungen
zwischen zweiwertigen* Aussagen klar zu formulieren,
also die Schlussfolgerung aus verschiedenen
Voraussetzungen in eine mathematische Formel zu kleiden,
was sonst nur mit einer Anzahl Textsätzen umständlich

zu bewerkstelligen wäre. Da solche Schlüsse in
logischen Verknüpfungsschaltungen unter anderem
auch mit Relaiskontaktnetzwerken gezogen werden
können, ist die Schaltalgebra ein Mittel, um die
Arbeitsweise von Kontaktnetzwerken eindeutig
mathematisch zu beschreiben.

Mit Hilfe der sogenannten Theoreme ist es weiter
möglich, allfällige Redundanzen eines Kontaktnetzwerkes

aufzudecken, das heisst, für die Funktion völlig
überflüssige Teile zu eliminieren. Ferner lassen sich
gegebene Netzwerke in anders geartete, aber
äquivalente Gebilde umformen, was oft erlaubt, gewisse
Engpässe und Schwierigkeiten in der
Kontaktbestückung von Relais zu umgehen.

Ein wesentliches Hilfsmittel sind die besonders
entwickelten, zum Teil graphischen Vereinfachungsmethoden

(Minimizing), welche darauf hinzielen, ein
bestimmtes Pflichtenheft für eine Schaltung mit
minimalem Aufwand zu erfüllen. Ein besonders
nützliches Verfahren wird später beschrieben.

Wesentliche Vorteile bringt die Schaltalgebra bei
der Behandlung von Eintakt- oder Kombinationsschaltungen,

bei denen die Wirkung am Ausgang nur
von der Eingangskonstellation abhängt und wo es

keine Rolle spielt, welches die zeitliche Folge der Ein-
gangswirkungen ist.

* Im Rahmen dieses Aufsatzes soll nur die binäre Schalt-
algebra betrachtet werden
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Blockierungsschaltungen, Codewandler, Rechenwerke

und andere sind typische Anwendungsbeispiele
dafür. Der Begriff «Zeit» fehlt in der Terminologie
der Schaltalgebra, es ist also auch nicht vorgesehen,
die Länge der Relaisschaltzeiten mathematisch einzu-
beziehen. Es sind aber einige Verfahren bekannt
geworden, die auch Mehrtakt- oder Folgeschaltungen zu
behandeln gestatten, also Schaltungen mit
Gedächtnisfunktionen, die unterscheiden, ob zum Beispiel
Wirkung A vor oder nach B eintrat und danach die
Ausgangsfunktion bestimmen [1,2].

Solche Schaltungen finden sich in der Praxis sehr
häufig in der Form von Zählschaltungen, Impulsgebern,

Untersetzern und Steuerschaltungen. Das
Pflichtenheft einer Mehrtaktschaltung besteht dann
nicht mehr einfach aus einer Kombinationstafel,
sondern erhält die Form eines Folgediagramms oder einer
Folgetabelle. Das Problem wird damit auf jenes einer
reinen Kombinationsschaltung zurückgeführt.

Eine wesentliche Beschränkung der Schaltalgebra
liegt in der Anzahl der Variablen. Werden diese zu
zahlreich, dann steigt der rechnerische Aufwand stark an.
Es ist also nicht möglich, eine komplexe und umfangreiche

Schaltung in einer einzigen Stufe vollständig
mathematisch zu behandeln, sondern das Problem
muss in Teilprobleme zerlegt werden, und an gewissen
Stellen hilft die konventionelle intuitive Synthese
weiter. Gerade im zweckmässigen Zusammenwirken
der ältern Schaltungstechnik mit der wissenschaftlichen

Systematik ist der grösste Nutzen aus der
Schaltalgebra zu ziehen, und diese ist dazu berufen,
dem Beginnenden brauchbare Teillösungen zu liefern,
die er rein intuitiv vielleicht nicht so bald gefunden
hätte.

Besonders eng ist die Symbolik der Schaltalgebra
aber mit der Synthese von elektronischen
Verknüpfungsschaltungen verbunden, wo man mit den
Begriffen der elektromechanischen Schalttechnik nicht
mehr gut zurechtkäme.

Die nachfolgenden Ausführungen sollen den
Algorithmus der binären Sehaltalgebra erläutern und
die Möglichkeiten andeuten, die sich mit diesem
Arbeitsinstrument ergeben. Sie erheben keinen
Anspruch auf eine umfassende Darstellung. Für jenen,
der sich näher mit der Materie befassen möchte, sind
ein paar empfehlenswerte Standardwerke im
Literaturverzeichnis aufgeführt.

2. Allgemeine Form einer Relaisschaltung

Die beiden einleitend erwähnten Schaltungsgattungen
sind mit ihren Merkmalen in Tafel I erläutert.

Folgeschaltungen enthalten immer die sogenannten
Sekundärrelais, die ausser von den Eingangsvariablen
A, B, C... durch andere Sekundärrelais gesteuert
werden und oft im steuernden Kontaktnetzwerk
eigene Haltekontakte aufweisen. Folgeschaltungen
ohne Primärrelais erzeugen ein internes Geschehen,
das bei entsprechender Bemessung wiederholt wird,
wie dies zum Beispiel beim Impulsgeber der Fall ist.

Es ist zweckmässig, den Pluspol der speisenden
Batterie als geerdet anzunehmen und die Relais-
wicklungen einseitig mit Minus zu verbinden. Eine
Erde an einem Eingang, z. B. C. bewirkt dann
die Betätigung des entsprechenden Primärrelais C;
man sagt, der Eingang C sei aktiv oder C 1.

Die angedeuteten Kontaktnetzwerke können nur
entweder sperren oder leiten und dies in Abhängigkeit
einer oder mehrerer Variablen.

Die Wirkung an einem oder an mehreren Ausgängen

erscheint als Erde oder keine Erde, dies ebenfalls
im allgemeinen Fall als Funktion einer oder mehrerer
Variablen. Können einzelne Kontakte mehreren
Netzwerken gleichzeitig dienen, dann tendiert man
auf die ökonomische Bildung von Drei- oder Mehrpol-
Netzwerken. Es ist aber grundsätzlich möglich, jede
gesteuerte Variable, also hier X, Y, Zx, Z2 mit einem
eigenen Netzwerk zu bedienen.

Die beschriebene allgemeine Schaltungsform gilt
auch für elektronische Digitalschaltungen, mit dem
Unterschied, dass die Relais durch Gatterbausteine
und Kippschaltungen zu ersetzen sind.

3. Symbolik der Schaltalgebra

Die Tafel II macht mit der hier verwendeten
Symbolik bekannt, wobei wir uns an das sogenannte
Transmissionskonzept halten, d.h. man ordnet einem
leitenden Netzwerk die Transmissionsfunktion T 1

zu. Das ältere Hinderniskonzept geht von der
Annahme aus, dass ein gerade sperrendes Netzwerk dem
Stromdurchgang ein maximales Hindernis in den
Weg lege, also H 1 [1,2].

Betätigt ein Kontaktnetzwerk einen Verbraucher
X, dann wird mit Vorteil die neutrale Grösse T durch
die spezielle Grösse X ersetzt, oder handelt es sich
um das Steuernetzwerk eines Relais A, dann bedeutet
geschlossener Strompfad : T 1, A 1, oder Relais
A erregt.

Beim Aufzeichnen von Kontaktnetzwerken kann
man auf die üblichen Kontaktsymbole verzichten,
indem man einen Arbeitskontakt des Relais A
einfach als einen in den Leitungszug eingeschobenen
Buchstaben a, den Ruhekontakt als a' (in der Literatur

manchmal auch als a bezeichnet) und einen
Umschaltkontakt als Gabel mit a und a' darstellt. Da
bei einem erregten und aufgezogenen Relais der
Arbeitskontakt geschlossen, der Ruhekontakt aber offen
ist, gilt offenbar:

A I a=l a' 0

und bei aberregtem und abgefallenem Relais:
A 0 a 0 a' 1

Diese Zuordnung wird in der Schaltalgebra
stillschweigend vorausgesetzt, indem in der Regel nur die
stabilen Relaiszustände betrachtet werden. Während
der Schaltzeiten ist diese Zuordnung aber gestört;
doch gehen die unstabilen Zustände immer ohne
äusseres Dazutun in den naheliegenden stabilen
Zustand über, sofern man von Spezialitäten, wie Haftrelais

oder Fehlstromerregung, absieht.
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Die Variablen a und a' sind Komplemente zueinander,
das heisst in den angenommenen Zuständen 1, 0 stets
einander entgegengesetzt.

Man findet die algebraische Transmissionsfunktion
zusammengesetzter Netzwerke, indem man nun der
Parallelschaltung das logische Verknüpfungszeichen
+ (oder V in der rein mathematischen Schaltalgebra)
und der Serieschaltung das Zeichen • (&) zuordnet.
Diese beiden Schaltungen, die ODER und die UND-
Schaltung, bilden zusammen mit der NICHT-
Schaltung die drei wichtigen logischen Grundschaltungen,

mit denen sich alle, auch komplexe,
Verknüpfungsaufgaben zwischen Eingangs- und
Ausgangsvariablen einer Schaltung lösen lassen.

Die Beispiele in der obern Hälfteder Tafel III zeigen
wie sich in den algebraischen Ausdrücken die Struktur
der zugehörigen Serie-Parallel-Netzwerke widerspiegelt.

Bei Brückennetzwerken versagt die direkte
Umsetzung des Netzwerkes in eine algebraische Strukturformel,

da nicht mehr reine Serie- und
Parallelschaltung vorliegt. Es lässt sich aber ein äquivalentes

Serie-Parallelnetzwerk angeben, das dadurch
entsteht, dass man alle möglichen Durchgangswege
zwischen Eingangs- und Ausgangsklemme aufzählt
und dann parallel schaltet. Brückennetzwerke zeichnen

sich durch kleinen Aufwand aus, so dass sie

mit Vorteil angestrebt werden [4, 6, 10]. Das in den
Abschnitten 6 und 7 beschriebene Vereinfachungsverfahren

besitzt den wesentlichen Vorteil, dass es

automatisch zu Brückenschaltungen führt, wenn
solche möglich sind.

Die abwerfende Aktion von Shunt-Netzwerken wird
mit dem Verknüpfungszeichen Minus dargestellt, dem
die logische Aussage «wenn nicht», «sofern nicht»,
«falls nicht» zugeschrieben werden kann [4, 10].
Beispiele finden sich in Tafel III unten. Das Rechnen
mit der Subtraktion schaltalgebraischer Grössen ist
wegen der dabei nötigen ungewöhnlichen Rechenregeln

selten ; ausserdem kann aus der Beziehung
X a-h ab' a (1 - b)

und auch durch Überlegung erkannt werden, dass ein
Shunt-Netzwerk durch sein Komplement im Aufzugskreis

ersetzt werden kann.

4. Ilechenregeln (1er Schaltalgehra

Beschränkt man sich auf die Verknüpfungen
ODER und UND, dann sind die schaltalgebraischen
Rechenregeln sehr einfach und entsprechen mit einigen

wenigen Ausnahmen der gewöhnlichen Algebra.
Man unterscheidet Postulate und Theoreme.

Voraussetzungen oder Postulate legen fest, wie mit den
Werten 0 und 1 gerechnet wird. Dabei ist zu bedenken,
dass 0 und 1 hier Zustände eines Organs oder eines
Schaltkreises darstellen und nicht etwa mit den
Binärwerten 0, 1 des dualen Zahlensystems identisch sind.
Die Richtigkeit der in Tafel IV dargestellten Postulate
lässt sich leicht nachprüfen, wenn man 0 mit Leerlauf,
1 mit Kurzschluss in einem Netzwerk einsetzt und
die resultierende Transmission prüft.

Beispiel:
1+1 entspricht der Parallelschaltung eines
Kurzschlusses mit einem andern, was eine leitende
Verbindung bleibt, also ist 1 + 1=1.

Theoreme mit einer oder mehreren Variablen lassen
sich aus den Postulaten und aus bereits bekannten
und bewiesenen Theoremen ableiten. Alle Theoreme
lassen sich ferner durch die Methode der «perfect
induction » bestätigen, die auf der vollständigen
Kombinationstabelle oder Wertetafel beruht [2], Der
Beweis für die Richtigkeit eines bestimmten Theorems
ist erbracht, wenn für alle 2" Kombinationsmöglichkeiten

von n Variablen auf beiden Seiten des
Gleichheitszeichens der gleiche Wert 0 oder 1 erscheint.

Beispiel: Theorem (13')

Wertetafel
x y

linke Seite
x' x'y x~i-x'y

rechte Seite

x+y

0 0
1 0

1 1

0 1

* identisch für a

1 0 0

0 0 1

0 0 1

1 1 1*

le 4 Kombinationen

0
1

1

1*

von x und y

Von besonderem Interesse ist das Theorem von
De Morgan (18, 18') das erlaubt, ein gegebenes Netzwerk

aus parallelen oder seriegeschalteten Teilen in
das inverse oder Komplementärnetzwerk zu
verwandeln, also in eines, das in allen Kombinationsfällen

die entgegengesetzte Transmissionsfunktion
aufweist.

Die Entwicklungssätze (19, 19') gestatten, eine
bestimmte Variable aus der Transmissionsfunktion zu
extrahieren, so dass sie nachher höchstens je einmal als
x und x' erscheint. Praktisch bedeutet dies, dass man
ein gegebenes Kontaktnetzwerk so in ein äquivalentes

Netzwerk umformen kann, dass das Relais X
höchstens einen Umschaltkontakt erhält. Dies kann
zum Beispiel bei polarisierten Relais zwingend sein.

Extrahiert man nacheinander sämtliche Variablen
gemäss Theorem (19), so erhält man die sogenannte
Standardsumme (oder Disjunktive Normalform,
vergleiche dazu Tafel V) einer Transmissionsfunktion.
Nach (19') entwickelt, resultiert das Standardprodukt
(oder Konjunktive Normalform).

5. Darstellung von Transmissionsfunktionen

Das Verhalten eines zweipoligen Kontaktnetzwerkes

(offen oder geschlossen) in Funktion der
beteiligten Variablen, das heisst seine Transmissionsfunktion,

kann mathematisch auf verschiedene
Weise dargestellt werden.

Die Minimalsumme enthält keinerlei redundante
Grössen, sondern nur jene Ausdrücke, die für das
richtige Arbeiten des Netzwerkes nötig sind. Sie
liefert denn auch das einfachste Serie-Parallel-Netz-
werk, wenn man die Formel gemäss der Symbolik in
Tafel II unten umsetzt. Figur 1 zeigt ein Beispiel.
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Fig. 1

Die schon erwähnte Standardsumme weist wegen
der von ihr geforderten Normalform eine starke
Redundanz auf, wollte man sie direkt in ein Serie-
Parallel-Netzwerk umsetzen. Dies ist sinnlos, obwohl
das entstehende Netzwerk keine falsche Funktion
ausüben würde. Die Standardsumme erhält ihre
Berechtigung vor allem als Ausgangsbasis füs das später
zu besprechende Vereinfachungsverfahren.

In der vollständigen Kombinationstabeile (vergleiche
Tafel V) wird für die 2n Kombinationsfälle von n
Variablen jeweils in der Kolonne T angegeben, ob
das betreffende Netzwerk leitet (1) oder sperrt (0).
So ist das im Beispiel in Tafel V erwähnte Netzwerk

offen für den Fall, dass a allein 1 ist (a 1,

b 0, c 0, oder anders geschrieben: abc 100),
wie im einfachen Schema sofort nachgeprüft werden
kann. Die Kombinationstabelle stellt gleichsam das
Pflichtenheft des Netzwerkes dar, das vorschreibt,
wie sich dieses in allen möglichen vorkommenden
Fällen zu verhalten habe. Die Tabelle enthält stets
gleich viele Zeilen mit T 1 wie die zugehörige
Standardsumme Summanden (Terme) hat; man
findet die gegenseitige Zugehörigkeit sofort, wenn man
in der Tabelle in der Kolonne einer Variablen, zum
Beispiel b, eine Null setzt, wenn im entsprechenden
Term das b' gestrichen erscheint und eine 1, wenn b

direkt erscheint.
Also entsprechen sich :

abc 1 1 1

abc' 110a'bc' 0 1 0

a'b'c' 000
Da das Aufstellen einer vollständigen Kombinationstabelle

bei mehreren Variablen bald eine ansehnliche

Zeilenzahl ergibt, ist es zweckmässiger, die
Zeilen eindeutig zu numerieren und dann in einer
symbolischen Schreibweise diejenigen Nummern
aufzuzählen, bei denen T 1 wird. Man nimmt dazu
gerade die Dezimaläquivalente (DÄ) der Binärzahlen,
die sich in den betreffenden Zeilen präsentieren. Die
Bildung der DÄ geht aus Tafel V hervor.

Eine besondere Darstellungsform bildet das
Karnaugh-Diagramm, das nach bestimmten Regeln
gestattet, auf graphischem Wege Netzwerke zu
vereinfachen [2], Es enthält soviel Felder wie
Kombinationsmöglichkeiten, hier also 8, und die Felder sind
auch liier eindeutig zugeordnet. Das untere Feld
rechts aussen stellt also beispielsweise den Fall
abc 110 dar. Da in diesem Fall T 1 wird,
enthält das Feld eine 1 eingeschrieben. Das
Vereinfachungsverfahren, für dessen näheres Studium auf
den Literaturhinweis verwiesen sei, besteht darin,
möglichst viele 1-Felder zu grössern Rechteck- oder Qua¬

dra tflächen zusammenzufassen, wobei es sich zeigt, dass

gewisse Variablen als unwesentlich ausscheiden.
Vergleicht man etwa die beiden nebeneinanderliegenden
Felder rechts unten, so wird augenfällig, dass T 1

bleibt, was auch c sein mag, sofern a 1 und 6=1.
Die beiden Terme abc-^abc' können also vereinfacht
werden zu ab. Diese Vereinfachung ergibt sich auch
rein algebraisch aus den Theoremen (15) und (10):

T ab (c+c') ab -1 ab

1

Eine weitere Darstellungsform bedeutet die
Normalkontaktpyramide nach Tafel VI oben, die man
durch fortgesetzte Anwendung des Entwicklungssatzes,

Theorem (19), erhält. Die hier dargestellte
Pyramide gilt für 3 Variablen a, b, c. Setzt man unter
Beachtung der eingeschriebenen Vorschrift eine
beliebige T-Funktion, in unserem Beispiel «6+a'c', in
alle Rechteckkästchen ein, dann sieht man, dass

genau so viele Kästchen leitend werden wie Standard-
summen-Terme vorliegen, und zwar sind es

diejenigen Kästchen-Nummern, die den DÄ in der
symbolischen Schreibweise entsprechen.

Das oberste Rechteck fordert zum Beispiel, dass

man beim Einsetzen der Funktion ab+a't die
Vorschrift beachte : abc 111. Damit wird «6 1-1 =1
und a'c' =0-0 =0, somit «6+a'c' 1; also leitet
der oberste Ast. Die Ziffer 7 ist denn auch in der
Form T f (a,b,c) />// (0, 2, 6, 7) enthalten.

Analog lässt sich zeigen, dass die Rechtecke 0, 2, 6

ebenfalls leiten. Lässt man nun von der
Normalpyramide alle diejenigen Teile weg, die auf ein
sperrendes Rechteck hinführen (sie werden dadurch
gegenstandslos), dann erhält man direkt ein
vereinfachtes Netzwerk, das bereits auf die federsparenden
Umschaltkontakte tendiert.

Kennt man also von einer 7'-Funktion die Summe
der DÄ, dann kann man sofort ein Netzwerk auf der
Basis der Pyramide zeichnen.

6. Verwendung der Dezimaläquivalente als
Leitzahlen in einer numerisch-graphischen Netzwerk-

Vereinfacliungsmethode

Da in der Mehrzahl der Fälle nur Teile der
Kontaktpyramide (Tafel VI) am gesuchten Netzwerk beteiligt

sind, bedeutet es unnötige Arbeit, wenn zuerst
die ganze Pyramide angedeutet, dann aber wieder
ein Teil davon weggelassen werden soll.

Man kann direkt auf die unbedingt nötigen Teile
hinsteuern, wenn man die DÄ als Leitzahlen verwendet,

die an jeder Verzweigungsstelle angeben, welchen
Ast man belegen muss, um zum richtigen der hier
total acht Ausgangsäste zu gelangen [8], Man
verwendet dazu wieder die Gewichte der Variablen a A 4,
6 A 2, c A 1. An der ersten Verzweigung zu a/a'
scheidet man die vorhandenen DÄ in die beiden
Gruppen A 4 und < 4, führt alle DÄ A 4 dem Ast a
zu und diejenigen < 4 dem Ast In den beiden
Verzweigungen 6/6' wiederholt sicli der Vorgang, wobei
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nur noch Leitzahlen < 4 auftreten. Das Verfahren
enthält nämlich die Vorschrift, dass heim Passieren
der ungestrichenen Variablen a deren Wertigkeit von
den Leitzahlen zu subtrahieren sei. Dies entfällt bei
der gestrichenen Variablen a'. Tafel VI zeigt unten
das Vorgehen, das dann abgeschlossen ist, wenn nur
noch Nullen herauskommen. Alle mit 0 bezifferten
Aste sind anschliessend zusammenzufassen und mit
dem Ausgang zu verbinden. Für das gewählte Beispiel
T f (a,b,c,) 51 (0, 2, 6, 7) ergibt sich also zunächst
die Entwicklung nach Figur 2.

erst dann sichtbar, wenn eine komplizierte
Transmissionsfunktion vorliegt, etwa
T [ab (cd' + cd) + 6' (ef + ac'd)\-c
von der man zudem noch nicht weiss, ob sie eine
Minimalsumme darstellt. Es ist ferner möglich, die
algebraischen Formen ganz zu meiden, wenn aus der
Aufgabenstellung das Pflichtenheft eines Netzwerkes
direkt aufgestellt wird und aus diesem die DÄ
entnommen werden.

Eine ähnliche Vereinfachungsmethode ist in [3]
beschrieben.

.0,2,6,7

h::
-c:

4 2 1

Fig. 2

Einige Äste sind als leer angeschrieben, weil für
diese keine Leitzahlen vorliegen. Das Netzwerk
enthält nur diejenigen vier Äste zum Ausgang, die den
Ziffern 0, 2, 6, 7, in Tafel VI oben entsprechen. Die
andern vier figurieren nicht mehr im Netzwerk. Das
Netzwerk ist demnach schon bei der Entstehung
aufmöglichst einfache Form gebracht worden; trotzdem
weist es noch nicht die Minimalform auf. Man sieht
zum Beispiel, dass man vom Ast 0, 1 immer zum
Ausgang gelangt, unbekümmert um den Zustand der
Variablen c. Ist nämlich c 1, dann leitet der oberste
Ast, mit c 0 ist c' — 1, folglich leitet der
zweitoberste Ast. Es ist also die Parallelschaltung von c
und c' immer ein Kurzschluss, was auch im Theorem
(10) zum Ausdruck kommt.

Fig. 3

7. Vereinfachungsregelii

Das beschriebene Verfahren liefert nur dann
weitgehend vereinfachte Netzwerke, wenn einige zusätzliche

Regeln nach Tafel VII angewendet werden.
Da es zu weit führen würde, im Rahmen dieses
Artikels die Beweise für die Zulässigkeit der Regeln
einzeln zu erbringen, seien diese nur knapp kommentiert

:

1) sagt aus, dass man einen Kontakt als überflüssig
kurzschliessen kann, wenn die dahinter folgenden
DÄ (das heisst die Restfunktion oder das Residuum)
in jenem des andern Zweiges vollständig enthalten
sind. Die deckenden DÄ werden bei Ausnützung dieser
Vereinfachungsmöglichkeit durch Querstrich
markiert.

2) sagt aus, dass man gleichlautende Residuen
vereinigen darf.

3) legt fest, wie man überstrichene Residuen
behandelt. Nach einer Vereinigung erhalten nur
diejenigen DÄ den Querstrich, die bereits vor der
Vereinigung in beiden Ästen überstrichen erschienen.
Enthält ein Ast nur noch lauter überstrichene DÄ,
dann ist er belanglos und kann weggelassen werden.
Eine Ausnahme von dieser Regel wird gemacht, wenn
der betreffende Ast mit einem andern so vereinigt
werden kann, dass die Form 6+6'= 1

Kurzschluss resultiert, wodurch gleich zwei Kontakte
wegfallen.

4) macht auf die Kriechweggefahr aufmerksam,
das heisst auf unerwünschte Nebenwege durch das
Netzwerk, wenn die Regel 1) zweimal nacheinander
oder mit 2) zusammen angewendet wird. Kriechwege
müssen durch Kontrolle des fertig entwickelten
Netzwerkes aufgespürt und eliminiert werden.

5) zeigt schliesslich, dass der gleichlautende Kontakt

in beiden Ästen vor die Verzweigung verlegt
werden kann.

Weiter sind die Aequivalenzen nach Figur 3 leicht
einzusehen, so dass das fertige Netzwerk genau der
Figur 1 und damit der Minimalsumme entspricht.

Das hier gewählte Beispiel ist natürlich sehr
einfach aufgebaut, so dass bei Kenntnis der algebraischen
Form T a.6+a'c' der Vorteil der Vereinfachungs-
methode mit Hilfe der Leitzahlen nicht augenfällig
wird. Die grossen Vorzüge dieser Methode werden

8. Beispiele für Netzwerksynthese

Mit der soeben besprochenen Netzwerk-Vereinfach

ungsmethode lässt sich nun jedes beliebige
Zweipolnetzwerk in kurzer Zeit aufbauen, wobei man von
der Kombinationstabelle (Tafel V) ausgeht, die die
Funktion des Netzwerkes genau vorschreibt. Es
genügt, wenn man nur jene Kombinationen einschreibt,
für welche T 1 sein soll, da nur für diese die DÄ
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als Leitzahlen verwendet werden. Für das erste
Beispiel in Tafel VIII, ein Netzwerk, das nur leiten soll,
wenn von vier Relais beliebige zwei aufgezogen
haben, sind also systematisch die sechs möglichen
Kombinationen zu verwenden, die je Zeile genau
zwei Einsen und zwei Nullen aufweisen. Das bereinigte
Netzwerk enthält lauter Umschaltkontakte ; seine
korrekte Funktion kann leicht überprüft werden.

Bei den praktisch vorkommenden Problemen, bei
denen Eintaktschaltungen auftreten, sind sehr oft
zwei oder sogar mehrere Ausgänge zu steuern. Man
hat dann ein Interesse daran, Variablen, die an beiden
Ausgangsfunktionen beteiligt sind, durch Kontakte
darzustellen, die beiden Ausgängen gemeinsam dienen
können.

Die beschriebene Methode eignet sich mit einer
kleinen Modifikation auch zur Behandlung von
Schaltungen mit mehreren Ausgängen [9]. Als
Beispiel ist ein Elementar-Addierwerk in Relaistechnik
dargestellt, das die Addition zweier Binärziffern A, B
ausführt und die zu berücksichtigenden Überträge
aus einer allfällig vorangehenden und in die nächsthöhere

Binärstelle ebenfalls behandelt. Die Schaltung
weist also drei Eingänge und zwei Ausgänge auf.
Die Kombinationstabelle zeigt das Pflichtenheft des
Addierwerkes. Zu den beiden normalen Summanden
A, B tritt der Übertrag Ü-, hinzu; alle drei Ziffern
sind zu addieren. Beispielsweise ist das Rechnungsergebnis

(A 0)-j-(-B + 0)

natürlich auch 0, also muss in der Kolonne für die
Summe S eine 0 stehen, und ein Übertrag Ü2 kommt
ebenfalls nicht in Frage.

Ist aber etwa die Summe zu bilden
(A 1) + (B =0) + (Ü1 1)

also 1+0 + 1 =2,
dann muss man S 0, Ü2 1 setzen, («schreibe 0,
behalte 1»), da die Ziffer 2 im Binärsystem nicht
existiert und alles, was liber 1 hinausgeht, bereits die
nächsthöhere Stelle speist.

Schaltungstechnisch wird die Aufgabe dadurch
gelöst, dass man das Netzwerk umdreht, mit der
Vereinfachungsmethode an den beiden Ausgängen
beginnt und gegen den gemeinsamen dritten Pol, den
Eingang, hin entwickelt. Die beiden Anfangsäste S

beziehungsweise Ü2 erhalten dabei nur jene DÄ als
Leitzahlen, denen in der fraglichen Tabellenkolonne
(S beziehungsweise Ü2) eine 1 gegenübersteht. Die
Entwicklung führt dann zum dargestellten bereinigten
dreipoligen Ausgangsnetzwerk, wobei an zwei Stellen
auf die Vereinfachungsregel 1) gemäss Tafel VII
verzichtet werden muss, um nicht Kriechwege ins Netzwerk

zu bekommen.
Sehr oft ergeben sich weitere Vereinfachungsmöglichkeiten,

indem man die Wertigkeiten der
Variablen umstellt oder für eine Ausgangsfunktion in
Kombinationsfällen nach Belieben eine 0 oder eine 1

wählt, die infolge der äussern Rahmenbedingungen
überhaupt nicht auftreten können.

9. Folgescha]tu iigen
An einem einfachen Beispiel soll gezeigt werden,

wie Folgeschaltungen zu behandeln sind, also jene
Schaltungen, bei denen die zeitliche Reihenfolge der
Eingangswirkungen die Ausgangswirkung
mitbestimmt.

Es sei ein Richtungsdiskriminator zu entwerfen,
der an einem Ausgang Zx Impulse liefert, wenn an
zwei Eingängen A, B sich überlappende Impulse so
angelegt werden, dass zuerst A beaufschlagt wird.
Ist die Folge zeitlich umgekehrt, also B, A, dann
sollen die Ausgangsimpulse an einem andern Ausgang
Z2 erscheinen.

Das Pflichtenheft der Schaltung als Folgediagramm
muss alle möglichen Ereignisse aufzählen (Figur 4).

1 2 3456789
Eing.

LB

Richtung A-B Richtung B-A

Fig. 4

Es ist offensichtlich, dass diese Vorschrift mit einer
reinen Kombinationsschaltung nicht erfüllt werden
kann, da die Eingangskombination beispielsweise in
den beiden Intervallen 3 und 7 dieselbe ist (.4=1,
B 1), die Ausgangswirkung aber anders sein soll.
Das Analoge gilt für die Intervalle 4 und 6 (4 =0,
B 1).

Ein neues Element, das Sekundärrelais X
(vergleiche Tafel I), muss in diesem Geschehen so
operieren, dass die Intervalle 3 von 7 und 4 von 6
unterschieden werden können. Dies ist möglich, wenn X
über die Intervalle 2, 3, 4 aufgezogen ist, nicht aber
während 6 und 7. Bei Intervall 8 ist die Aktion von
X belanglos, da dort keiner der Ausgänge aktiv sein
soll. Man kommt somit auf das Diagramm gemäss
Figur 5.

Intervall
1 2345678 9

A

B

X ___
Z,

Z2

Fig. 5

Beide Ausgänge sollen zu ihrer Zeit aktiv sein,
solange der Eingang B aktiv ist. Mit Hilfe des Relais
X kann nun zwischen Z1 und Z2 unterschieden werden
(Figur 6
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Fig. 6

Die zeitliche Verschiebung der X-Aktion gegenüber
den Intervallgrenzen markiert die Schaltzeiten des

Relais X, dessen Steuerfunktion nun noch anzugeben
bleibt. Diese setzt sich aus zwei parallel zu schaltenden
Teilen zusammen:

- Die Aufzugsfunktion beginnt mit Intervall 2

beziehungsweise 8 ; sie lautet X ab', das heisst
X 1, wenn a 1 und 6=0.

- Die Haltefunktion gewährleistet die fortdauernde
Erregung von X über die Intervalle 3 und 4,
dies auch, nachdem die Aufzugsbedingung
aufgehört hat. Die Haltefunktion enthält immer den
eigenen Haltekontakt x in Serie. Sie kann rein
formal auf Grund des Diagramms abgeleitet
werden; im vorliegenden einfachen Beispiel ist
sie augenfällig: X hält sich an A oder an B, so
dass zu setzen ist: X x (a + b).

Die vollständige Steuerfunktion lautet dann :

X ab' + x(a-\-b)
Das Relais A könnte eingespart werden, wenn die

Variable a nur einfach erscheinen würde. Statt einem
Arbeitskontakt a kann dann die Eingangsklemme A
selbst dessen Funktion übernehmen.

Man erhält nach der Ausmultiplikation :

X ab' + ax + bx

und nach Beifügen von bb' 0, was zulässig ist:
X ab' + ax + bx + bb' (a + b) (b' + x)

Es liegt hier der interessante Fall vor, dass durch
Anhängen weiterer Buchstaben ein algebraischer
Ausdruck schliesslich wesentlich einfacher wird (vier
statt sechs Buchstaben). Die vollständige Schaltung
erhält also die Form nach Figur 6.

10. Logische Verknüpfung
mit elektronischen Gatterbausteinen

Die Logikfunktionen ODER, UND bilden nur einen
kleinen Ausschnitt aus der Vielzahl der möglichen
logischen Verknüpfungen. Mit zwei Variablen lassen
sich die insgesamt sechzehn Logikfunktionen nach
Tafel IX unterscheiden, von denen allerdings einige
als Spezialfälle (wie Leerlauf und Kurzschluss) eher

als entartete logische Verknüpfungen zu bezeichnen
sind. Auch die Funktionen y3, yr>, y10, y12 sind
insofern entartet,, als das Ergebnis nur vom Zustand
der einen Variablen allein abhängt.

Für die wichtigsten Logikfunktionen sind im Laufe
der Zeit sehr unterschiedliche graphische Symbole
eingeführt worden, die leider eine einheitliche Norm
vermissen lassen. Es ist zu begrüssen, dass Versuche
unternommen werden, die Symbole zu vereinheitlichen

[11].
Wie Schaltkreisprobleme mit elektronischen

Bauelementen grundsätzlich zu lösen sind, ist von
verschiedenen Autoren bereits erläutert worden [5, 13].
Die Struktur einer Schaltung wird am besten über
die algebraische Ausdrucksweise gefunden. Wie das

folgende Beispiel zeigt, erhält man aus der
Kombinationstabelle zunächst die Ausgangsfunktionen als

Standardsumme, die algebraisch vereinfacht als
Minimalsumme direkt auf die einzusetzenden
Gatterbausteine hinweist.

Es sei eine einfache kontaktlose Schaltung zu
entwerfen, die an drei Eingängen je eine bejahende (1)
oder verneinende (0) Zustandsmeldung empfängt und
am Ausgang folgende Auswertung abgibt : Wenn mehr
bejahende als verneinende Eingangsmeldungen
eintreffen, dann soll der Ausgang die Allgemeintendenz
«ja» abgeben und umgekehrt.

ABC z
(a) (b) (c)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

A O

R 0 Ten den zau swerter

c »—

Z a'bc + ab'c + abc' + abc

(a'b + ab') c + ab

ab + c o'b + ob'

PC
(o'b + ob')

Fig. 7. Beispiel einer Kombinationssohaltung aus kontaktlosen
Gatterbausteinen

Figur 7 zeigt den Lösungsgang mit Symbolen
zusammengesetzter Logikfunktionen und Figur 8
zwei mögliche Lösungen für die Bildung der
Teilfunktion a'b + ab' aus den Grundbausteinen UND,
ODER, NICHT.
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Fig. 8. Bildung der EXCLUSIV ODER - Funktion aus den
Grundschaltungen

Von den praktisch vorkommenden Schaltkreisproblemen

können mit Dioden-Toren allein nur wenige
gelöst werden, da Dioden nur UND sowie ODER-
Verknüpfungen zulassen. Dioden-Tore können ausserdem

nicht ohne weiteres in Kaskade geschaltet werden
und bedürfen der Zwischenverstärker. Dagegen kann
man sie in Form einer Matrix mit Vorteil für
Codewandler anordnen (Tafel X), sofern die negierten
Variablen zur Verfügung stehen.

Transistor-Tore Tafel XI) werden in der sogenannten
RTL-Technik (Resistor-Transistor-Logic, eine

Spezialform der Gleichstromlogik) sehr einfach und
übersichtlich.

Sie haben den wesentlichen Vorteil, dass sie zugleich
als Leistungsverstärker dienen und deshalb bei
passender Dimensionierung in Kaskade angeordnet
werden können. Ein Torausgang kann somit, wenn
nötig, auch die Eingänge mehrerer verschiedener
nachfolgender Tore speisen (als fan-out-Charakter
bezeichnet). Sie gestatten ausserdem den Bau von
Logikfunktionen, die über die einfachen Grundfunktionen

hinausgehen. So werden häufig die
Verknüpfungen y2 und ?/,, oder ys verwendet, die mit
Transistoren in einer einzigen Stufe realisiert werden
können. Verschiedene Firmen gehen sogar so weit,
dass sie nur mit den Nor-Toren arbeiten und durch
Kombination dieser Bausteine rückwärts die
Grundfunktionen bilden, wenn dies nötig ist (vergleiche
Tafel XI rechts unten). Dass dabei Eingänge
unbenutzt bleiben müssen, kann in Kauf genommen
werden, weil es immer noch günstiger ist, grosse
Serien eines Bausteins zu fertigen als verschiedene
Typen zu verwenden. Mit der Mikroelektronik, bei
der ganze Schaltkomplexe auf einem einzigen Halb-
leiterplättchen basieren, kann man sich unbenützte
Teile ohne weiteres leisten.

Um die Funktion der gezeichneten Transistor-Tore
zu verstehen, muss man die Potentialfestlegung in
Tafel XI oben beachten. Für die beiden Zustände
« 0 » beziehungsweise « 1 » sind Potentialbereiche mit
einer gewissen Breite erforderlich, da ein leitender
Transistor zwischen Kollektor und Emitter immer
noch die Sättigungsspannung von etwa 0,1...0,2 V
aufweist. Besonders bei Kaskadenschaltungen kann
deshalb an den letzten Ausgängen nicht mehr mit den
Grenzwerten 0 V beziehungsweise —6 V gerechnet
werden.

Mit elektronischen Halbleiterbausteinen können
ebenfalls Folgeschaltungen realisiert werden. Die
Gedächtnisarbeit eines selbsthaltenden Relais wird
dabei von einem Transistor-Flip-Flop übernommen,
der als bistabiler Multivibrator zwei diskrete Kipp-
Endstellungen einnehmen und aus diesen durch
Potentialsprünge an den Steuereingängen umgekippt
werden kann [5],

Kurzzeitige Speicherung einer binären Grösse ist
im monostabilen Multivibrator möglich, einer
Einrichtung, die, von aussen gekippt, nach einer
bestimmten Zeit wieder in die Vorzugslage zurückklappt.

Bei all diesen Multivibratoren sind die
Zustände 0, 1 als Potentiale an den Kollektorklemmen
greifbar.

Bei Anlagen, in denen Gedächtnisaufgaben
vorherrschen, werden besonders entwickeltelnformations-
speicher (zum Beispiel Magnettrommel-, Magnetkern-,
Magnetband-, Dünnschicht- und elektrostatische
Speicher) eingesetzt, da die Flip-Flop-Schaltungen
zu viele Bauelemente und zu grosse Volumen
erfordern würden.
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A O-

Eingänge^ B O-

C O-

A, B, C heissen
Eingangsvariablen

A 0 : keine Erde

an A

A 1 : Erde an A

"h

f-
Kontaktnetz -

werk

Zl' 7 2

f( A, B,C, X, Y

{?-

{?-

{?-

Kontaktnetz -

werk r
Y f(A,B,C, L

X, Y

CP-

ev. 2x2- Pol-
Netz werk

H—-H

Primärrelais,
]> nur von den Eingangs¬

variablen gesteuert

Sekundärrelais,
durch Eingangsvariablen

]> und durch Sekundär¬
variablen (ei gene Kontakte)
gesteuert

^ i Ausgänge
durch Primär-
und Sekundärvariablen

gesteuert

Z, und Z2 heissen Ausgangs¬
variablen

Z, 0 : keine Erde an Z,

Z, 1 : Erde an Z,

Kombinationsschaltung, Eintakt- oder Statische Schaltung:
Nur Primärrelais und Ausgangsnetzwerk vorhanden; für die Wirkung an den Ausgängen wird nur die
Kombination der aktiven (geerdeten) Eingänge betrachtet, nicht aber die zeitliche Folge ihrer Aktion.

Folgeschaltung, Mehrtakt- oder Dynamische Schaltung:
Enthält im allgemeinen Fall Primär- und Sekundärrelais sowie das Ausgangsnetzwerk; die Wirkung an
den Ausgängen ist sowohl von der Kombination der Eingangsvariablen als auch von der Reihenfolge
ihrer Aktion abhängig. Folgeschaltungen ohne Primärrelais erzeugen eine wiederholte Folge von Ausgangswirkungen,

sobald die Batterie angelegt wird.

Tafel I. Allgemeine Form einer Relaisschaltung
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E i ng.
O

Kontakt -

Netzwerk

X

Ausg.
O

Ein Kontaktnetzwerk besteht im allgemeinen Fall aus
einem oder mehreren Relaiskontakten verschiedener
Relais oder Schalter. Das Netzwerk leitet oder sperrt, je
nach der Kombination, in der die Relais erregt oder die

Schalter betätigt sind.

Netzwerk Funktion

Transmission s ko nzept leitet T 1

sperrt T 0

Hinderniskonzept leitet H 0

sperrt H 1

Das Transmissionskonzept ist praktischer und wird allgemein verwendet

Arbeitskontakt auf Relais A: o a O

Ruhekontakt auf Relais A: O a' O

Umschaltkontakt auf Relais A: ~e: 0

o

X 1

X 0

a1 1

a 1

a - 1

Wicklung des Relais A:
A 1 Relais

erregt
A 0 : Relais stromlos

A 1, a 0, a' 1 unstabiler Zustand während Anzugszeit

A 1, a 1, a' 0 stabiler Zustand

A 0, a 1, a' 0 unstabiler Zustand während Abfallzeit

A 0, a 0, a' 1 stabiler Zustand

Logische Grundschaltungen und Verknüpfungszeichen:

Bezeichnung

O D ER-Schaltung
(Disjunktion)

Netzwerk

-E.13-
Transmissionsfunktion

T a + b

(a V b)

Bemerkung

T 1 wenn a oder
b 1 oder beide

U N D-Schaltung
(Konjunktion)

T a • b

(a & b)

T 1 wenn a und
b 1

N IC H T- Schaltung
(Negation)

T a'

(a)

T 1, wenn a 0

Tafel II. Symbolik der Schaltalgebra
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Serie-Parallel - Netzwerke

T ab + c'

+ o-

b' d'-

X (a + b') (c + d)

4 i c < I

b"

- d'
Y ab' + c (d' + e') + x

I X -

rb "fc
+ O a ' ——< | c ' — d

— e — f —

b'-

B'J
-o Z

Brücken - Netzwerk

Z a' [b (c + x) + c' d + e'] •

• [ef + b' + y (r + s + t')]

T ac + bd + aed + bec

< » a

e c

Schaltung mit Shunt-Netzwerk

+ O a X

+ O b

Il—O

(Aequivalentes Serie-Parallel-Netz werk,
nicht vereinfacht)

X a-b
(X 1 wenn a 1 und wenn nicht b 1)

Y a [b - (c + d)]

Tafel III. Beispiele für Transmissionsfunktionen
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Die nachfolgend aufgeführten Variablen X, Y,

wie auch je von ganzen Netzwerken darstellen.
Z können den Zustand eines einzelnen Schaltelementes

Voraussetzungen (Postulate)

x 0 wenn x + 1

x 1 wenn x * 0

(1)

(1-)

1-0 0-1 0 (4)

0 + 1 1+0 1 (4')

0-0 0

1+1=1
(2)

(2')

0' 1 (5)

1=0 (5')

1-1=1
0 + 0 0

(3)

(3')

Die paarweise zusammengefassten
Voraussetzungen sind einander dual

Theoreme mit 1 Variablen

x + 0 x

x • 1 X

(6)

(6')

(x)' x' (9)

(x')' x (9')

o

-*

•

+
X

X

II
II

o

-*• (7)

(7')

o

b

T-

o

II

II

X

X

+

•

X

X

X + X X

X • X X

(8)

(8')

x, x' sind Komplemente zueinander

Theoreme mit 2 und 3 Variablen

x + y y + x

xy yx

(11)

(110

xy + xz x (y + z) (15)

(x + y) (x + z) x + yz (15')

x + xy x

x (x + y) x

(12)

(12')

(x + y) (y + z) (z + x') (x + y) (z + x') (16)

xy + yz + zx' xy + zx' (16')

(x + y') y xy

x + x'y xy' + y x + y

(13)

(13')

(x + y) (x' + z) xz + x'y (17)

x + y + z (x + y) + z x+(y + z)

xyz (xy) z x (yz)

(14)

(14)'

Theoreme mit n Variablen

(x + y +

(x y

z +...)'
z ...y

x' • y' • z' • (18)

x' + y' + z' + (18')

f (x, y, z

f (x, y, z

x • f (1, y, z + x' • f (0, y, z (19)

[x + f (0, y, z .)] - [x' + f (1, y, z .)] (19

Tafel IV. Rechenregeln der Schaltalgebra
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Entwicklung einer Transmissionsfunktion zur Standardsumme
Die Standardsumme (Disjunktive Normalform) einer Transmissionsfunktion enthält Summanden (Terme),
von denen jeder alle vorkommenden Variablen oder deren Komplemente enthält. Man erhält sie durch
Multiplikation aller Summanden mit x + x' 1, die die Variable x oder x' noch nicht enthalten, oder
durch Anwendung des Theorems 19 auf alle Variablen.

Varianten der Darstellung einer Transmissionsfunktion

— Als Minimalsumme: T ab + a'c'

— Entwickelt zur Standardsumme: T ab (c + c') + a'c' (b + b')

abc + abc' + a' be' + a' b' c'

— Als vollständige Kombinationstabelle:

a b c Dezimala b c Dezimal-

T äqui¬
2 1

T äqui4
2 1 valente 4 valente

0 0 0 1 0 1 0 0 0 4

0 0 1 0 1 1 0 1 0 5

0 1 0 1 2 1 1 0 1 6

0 1 1 0 3 1 1 1 1 7

Jede Zeile mit T 1 entspricht einem Summanden der Standardsumme. Die Dezimaläquivalente (DÄ)
erhält man indem man die Variablen a, b, c als Elemente eines Binärcodes mit den Gewichten oder
Wertigkeiten 4, 2, 1 betrachtet und die Quersumme der Gewichte ermittelt.

— Als Summe von Dezimaläquivalenten, für die T 1 wird:

T f (a, b, c) 5 (0, 2, 6, 7)

In graphischer Form (zum Beispiel als Karnaugh-Diagramm):

b, c

00 01 11 10

0 1 1

1 1 1

— Als Kontaktpyramide mit teilweise unbenutzten Zweigen (siehe Tafel VI)

Tafel V. Darstellung von Transmissionsfunktionen
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b" s,

0

©f(i,i,0)

f(l,0, 1)
5

f( 1,0,0)
4

i)

f(0,1,1)
3

© „f(0,1,0)

f(0,0,1)
1

(Ô)
f(0,0,0)

O durchzu¬
schaltende
Äste im

vorangehenden

Beispiel

t t t
Gewi cht

Die Transmissionsfunktion als Kontaktpyramide

> 4

> 2

4, 5, 6 7 0, 1, 2,3

t

0, 1, 2, 3, 4, 5, 6,7
O

< 4

(-4

2,3 0,1———— b

(-2

AI—b- -AI

(-D
0 0

(-0)

< 2

> 2

0,1,2,3 0 ,1,2,3
- 0)

(-0

2,3 0,1b -

(- 2

0 1

< 2

b".
(- 0

0 1 (-D

(-0

: h t

Tafel VI. Verwendung der Dezimaläquivalenten als Leitzahlen in einer numerisch¬
graphischen Netzwerk-Vereinfachungsmethode
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3,6,11,14,15

3,6,7

0, 2, 6

w/

— b —y V\/0,2

'

r-b °'2'3'

1,2,8,10,11

b' 1,2

1,2

9, 10 1,2

2,3

2,3,6,7 2,3

2,3 1

6,8, 10

6,8

6,8,10

1

,2,5 X
~,2

offen
lassen

t.
fällt weg

3,5,6

i4
T, 2

offen
lassen

fäl It weg

3

2

0,1

0,1,2,3

/I
I 0, 1

0,1

Ausnahme

licht
zul.

2,3,5 2,5

2, 10, 11,13
2,5,6,10,13

N./ 2,5, 10, 13,15

i cht zu I.

y
2,5,6

2,5

2,5,7

2.5

Kriechweggefahr

— b'-

Tafel VII. Beispiele für Vereinfachungsregeln für numerisch-graphische Methode
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a b c d Dezimal-

8 1

T äqui4
2 valente Kontrollnetzwerk für «2 aus 4»-Code:

1 1 0 0 1 12 Das Netzwerk soll leiten, wenn von vier Relais be1

0 1 0 1 10
liebige zwei aufgezogen sind und in allen übrigen
Fällen sperren.

1 0 0 1 1 9

0 1 1 0 1 6

0 1 0 1 1 5 T f (a, b, c, d) 2 (3, 5, 6, 9, 10, 12)

0 0 1 1 1 3

0 0

1,2,4

9, 10,12
Ol
3,5,6

1,2

1,2

,3,5,6

1,2

3

»Cd
>• O

Substitution

A B Ü,

4 2 1

S 0, Dezimal-

äquivalente

0 0 0 0 0 0

0 0 1 1 0 1

0 1 0 1 0 2

0 1 1 0 1 3

1 0 0 1 0 4

1 0 1 0 1 5

1 1 0 0 1 6

1 1 1 1 1 7

abc

E lementar -

Add ierwerk
-

Ein duales Elementar-Addierwerk soll die
Summanden A, B und einen allfälligen
Uebertrag Ü, aus einer vorangehenden
Stelle gemäss den Rechenregeln des
dualen Zahlensystems ad die ren und das Resultat

an den Ausgangsklemmen S, Ü2 abgeben

s o 1,2,4,7

f. 3,5,6,7
2 O

S f (a, b, c) 2 (1, 2, 4, 7);

0,3

b'

1,2
0 r

1,2, 3 r D

~T_b- 1

0,1

nicht zuI.

Netzwerk mit 2 Ausgängen, entwickelt von den

Ausgängen zum gemeinsamen Eingang

Tafel VIII. Beispiele für Netzwerksynthese

Ü2 f (a, b, c) 2 (3, 5, 6, 7)

I

v-

A $

B

U
1

L. j
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Funktion Mathematische Symbole Bemerkungen

Wertetafel
a 0 0 1 1

b 0 1 0 1

Graphische Symbole

nach Rekowski Beispiele für Varianten

Vo 0 0 Leerlauf 0 0 0 0
a

b

3
yo

Vi a b a & b

Und (And)
Koinzidenz

Konjunktion
0 0 0 1

-N
y— 3>- ^ U n 'h

y2 a b' a & b
Sperrung
Inhibition

0 0 10 D—
V

V3 a a 0 0 11 £—

y4 a' b a & b
Sperrung
Inhibition

0 10 0 )— i

b b 0 10 1 —

y6 a'b + ab' a A b

a © b

Ungleich
Exclusiv Oder

Antivalenz
0 110 DK ©-

y? a + b a V a

Oder (Or)
Mischung

Disjunktion
0 111 _ß- jOder-

y8
a' b'

(a + b)'
a t b

Weder noch
(Nor) 10 0 0

r-N

——s Nor

y9 ab + a' b' a b
Gleich

Äquivalenz 10 0 1 ')

yio b' "b 10 10 K—

yn a + b' a —» b
Wenn, dann
Implikation 10 11

y« a' a 110 0 0—

yia a' + b a b Wenn, dann

Implikation 110 1 —

yi4
a' + b'

(ab)'
a [ b

Nicht Und

(Not And) 1110 — 3 =1 N an d|-

yis 1 1 Kurzschluss 1111 :3-
y a' a

Nicht (Not)
Negation, Inversion

Komplement

a 0 1

y 1 0
—

—0—

— — NichtJ-

Tafel IX. Logikfunktionen
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Dezimal
Binär

a

b

c

d

(1)

(2)

(4)

(8)

1

1

0

0

0

(OV)

10

0

1

0

1

(-6 V)

Eingang

10

ü X 1

1

° Vi X 1
X 1

° X 1 X 1

X X
° X X X

X >

0 X > X
O b ' o X »

i

Dezimal
(Ode

>- Binär
r - Tore)

-o d Ausgang

OV

o O-

b o-

b'

Eingang
c o-

d O

d" O

X > X 1 xj 1 X > X
X s » S » S,,

X S*.
•

Sc, X
X » V > X,s »

s s X »

X Sc, 'S > s s V,
X s,,

Sc, -oX
1 ') a A

_x
A

1—o <

7

—O 1

- a
1—O 11—

_ 0

Binär

—*- Dezimal

(Und - Tore)

Ausgang

r r r n'H' r r
- 6 V

Tafel X. Diodenmatrix (Codewandler Dezimal Binär)
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Oder

a + b

Nor a'
I

Nor
b

U
Nor

Grundfunktionen mit einheitlich Nor-Toren

N i cht
—O a'

Festlegung Zustand 0 : ^ OV Zustand 1:^-6V

Tafel XI. Beispiele logischer Verknüpfungsschaltungen mit Dioden und Transistoren

Oder

Nicht (Inverter) Oder (pnp) Oder (npn)

Verstärker für Diodentore

- 6 V

Und (pnp)

-6V

Und (npn) Nicht Und

Inhibitor (npn) Weder noch (Nor)
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