Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und

Telegrafenbetriebe = Bulletin technique / Entreprise des postes, téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 40 (1962)

Heft: 1

Artikel: Temperaturverhalten und Anwendungsbeispiele von elektronsichen

Schaltern mit komplementären Transistoren

Autor: Bachmann, A.E.

DOI: https://doi.org/10.5169/seals-875102

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

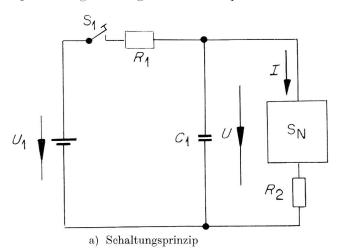
Download PDF: 01.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

A. E. Bachmann, Bern 621.318.57:621.395.345

Temperaturverhalten und Anwendungsbeispiele von elektronischen Schaltern mit komplementären Transistoren (Schluss)

II. TEIL


Anwendungen von elektronischen Schaltern mit komplementären Transistoren

Die nachfolgende Zusammenstellung von Anwendungen der im I. Teil behandelten Transistorschalter beschränkt sich auf einige typische Beispiele wie sie etwa in der Telephonie, aber auch ganz allgemein, vorkommen können. Auf das Problem der Sprechleiterdurchschaltung in vollelektronischen Zentralen nach dem System der räumlichen Aufteilung kann nicht eingetreten werden. Es sei auf die schon bestehende Literatur ^{16, 17} hingewiesen.

1. Zeitschalter, Taktgeber und Sägezahngeneratoren

1.1. Zeitschalter

Jeder Schalter S_N mit negativer Impedanzcharakteristik eignet sich zum Bau von Zeitschaltern. Die Figur 20 zeigt das allgemeine Prinzip für Schalter mit

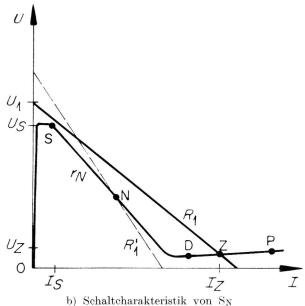
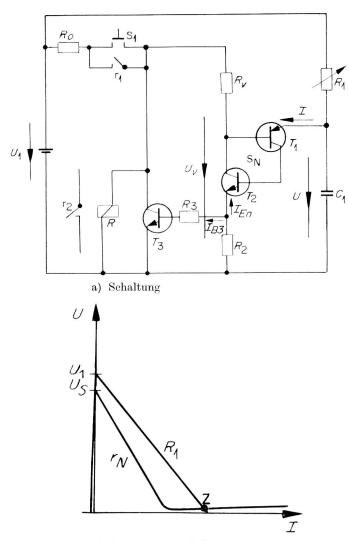


Fig. 20. Zeitschalter mit elektronischem Schalter SN

leerlaufstabiler Charakteristik, nach welchem ein Kondensator C_1 über den Widerstand R_1 auf- und über \mathbf{S}_N entladen wird. Nach dem Schliessen des Schalters \mathbf{S}_1 steigt die Spannung U am Kondensator mit der Zeitkonstanten $\tau_1 = R_1 \cdot C_1$ an. Wenn die Schaltspannung U_S des Schalters \mathbf{S}_N erreicht wird, so entlädt sich der Kondensator über denselben mit einer meist kleinen Zeitkonstante $\tau_2 \approx R_2 \cdot C_1$. Der Arbeitspunkt des Schalters \mathbf{S}_N wandert bei diesem Vorgang von O über S und P nach Z. Die Zeit, die er dazu benötigt, ist praktisch gegeben durch τ_1 .

 R_1 und U_1 müssen wie folgt gewählt werden:


$$R_1 < |r_N| \tag{5.1}$$

$$U_1 > U_S + I_S R_1 \tag{5.2}$$

Mit der Bedingung (5.1) wird sichergestellt, dass im eingeschalteten Zustand der Arbeitspunkt Z in den positiven Bereich der Schaltcharakteristik, zwischen D und P, zu liegen kommt. Die Ungleichung (5.2) sorgt dafür, dass beim Schaltvorgang der Punkt S der Charakteristik sicher überschritten wird. Der Widerstand R_2 begrenzt den Entladestrom auf einen zulässigen Wert.

In Figur 21 ist eine praktische Schaltung mit einem Dreipolschalter S_N angegeben. Nach dem Betätigen der Drucktaste S₁ wird das Relais R über den Widerstand R_o aufgezogen, hält sich über den Kontakt $\mathbf{r_1}$ und legt die Referenzspannung U_v über \mathbf{R}_v an den Schalter S_N . Der Kondensator C_1 lädt sich über R_1 auf. Wenn seine Spannung $U = U_S \approx U_v$ wird, so beginnt der vorher gesperrte Transistor T₁ zu leiten, U sinkt und der Kondensator C_1 entlädt sich über den Schalter S_N, der auf den stabilen Arbeitspunkt Z umkippt. Der Emitterstrom I_{En} verteilt sich auf die beiden Strompfade über R_2 und R_3 . Der durch R_3 fliessende Basisstrom I_{B3} genügt, um den ursprünglich gesperrten Transistor T₃ vollständig leitend zu machen, wodurch die Relaiswicklung kurzgeschlossen wird und das Relais R (nach der entsprechenden Verzögerung) abfällt. Es lassen sich mit dieser Anordnung – je nach der Grösse des Kondensators C_1 – Schaltzeiten bis zu einigen Sekunden realisieren. Wichtig ist, dass R_v nicht zu gross gemacht wird $(< 1 \text{ k}\Omega)$, damit U_S über weite Bereiche der Temperatur genügend konstant bleibt. Anstelle des Dreipolschalters S_N kann auch ein Zwei- oder Vierpolschalter verwendet werden. Der Betrag des negativen Widerstandes r_N ist beim Dreipolschalter gegeben durch die Gl. (2.18).

Aus Gründen der Temperaturstabilität sollte nach Gl. (2.17) R_v nicht zu gross gemacht werden. Dies hat gemäss Bedingung (5.1) zur Folge, dass auch R_1 nicht zu gross gemacht werden kann und demnach C_1 gross wird, wenn die Zeitkonstante τ_1 gross sein soll.

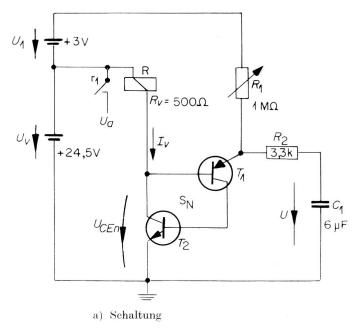
b) Schaltcharakteristik von S_N

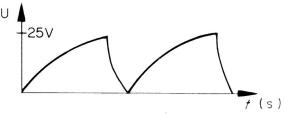
1.2. Taktgeber und Sägezahngeneratoren

Fig. 21. Zeitrelais mit Dreipolschalter S_N

Besser als für Zeitschalter eignet sich der Dreipolschalter zur Erzeugung von Sägezahnspannungen. Wird in der Figur 20 der Ladewiderstand R_1^* so gewählt, dass die Charakteristik des Schalters im negativen Bereich geschnitten wird (Punkt N), dann kippt der Schalter S_N abwechslungsweise vom leitenden in den gesperrten Zustand, ähnlich einem freischwingenden Multivibrator. Über C_1 entsteht eine sägezahnförmige Spannung U. Die Schaltung entsteht beispielsweise aus der Figur 21 durch Weglassen des Haltekontaktes r_1 und Ersetzen der Drucktaste S_1 durch einen festen Schalter. Die Bedingung (5.1) lautet nun umgekehrt:

$$R_1 > |r_N| \tag{5.3}$$


während Bedingung (5.2) erhalten bleibt. So kann nun R_1 hochohmig und R_v niederohmig gemacht werden, wodurch längere Zeitkonstanten und bessere Temperaturkonstanz erreicht werden.


Eine einfache, in ihrer Funktionsweise aber sehr überzeugende Schaltung eines Taktgebers mit einem Dreipolschalter zeigt Figur 22. Der Quellenwiderstand R_v wird hier durch die Relaiswicklung selber erzeugt.

Der Kondensator C_1 lädt sich über R_1 und R_2 auf. Wenn U die Zündspannung $U_S \approx U_v$ erreicht hat, entlädt er sich über R_2 und S_N . Das Relais R zieht kurzzeitig auf und fällt ab, wenn der Schalter wieder von neuem sperrt. Am Arbeitskontakt r_1 entstehen Ausgangsimpulse, die voneinander einen zeitlichen Abstand T_p besitzen. Dieser Impulsabstand lässt sich mit Hilfe des Widerstandes R_1 sowie des Kondensators C_1 variieren.

Massgebend für das einwandfreie Arbeiten der Anordnung nach Figur 22 ist die Gl. (2.11). Der Ruhestrom I_{vo} aus der Referenzspannungsquelle U_v muss bei der höchsten auftretenden Temperatur kleiner sein als der Abfallstrom I_f des Relais.

Damit die Periodendauer T_p möglichst konstant bleibt, darf sich unter anderem die Schaltspannung U_S nur wenig mit der Temperatur verändern (siehe Gl. (2.17)). Im Abschnitt 2.2 wurde gezeigt, dass diese beiden letzten Bedingungen am besten erfüllt sind, wenn R_v klein ist und Si-Transistoren verwendet werden.

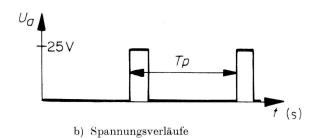


Fig. 22. Taktgeber mit Dreipolschalter S_N

Die Entladezeitkonstante $\tau_2 \approx R_2 \cdot C_1$ muss genügend gross sein, damit das Relais sicher aufzuziehen vermag.

Die Schaltung nach Figur 22 wurde mit fünf verschiedenen Transistorpaaren über einen Temperaturbereich $t=0...+50^{\circ}$ C ausgemessen. Die Eigenschaften der Transistoren sind in Tabelle 8 zusammengestellt; die Resultate der Messungen zeigt die Figur 23.

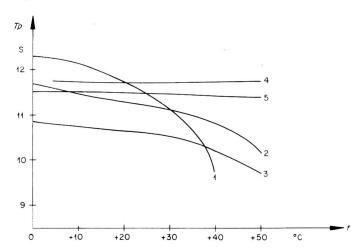


Fig. 23. Temperaturabhängigkeit der Periode Tp des Taktgebers nach Fig. 22

Tabelle 8: Transistordaten bei $t=20^{\circ}$ C für die Messungen von Figur 23

Kurve Nr.	T_1 : pnp T_2 : npn	I_{CBOj}	$lpha_{Ej}$	I_{vO} nach Gl. (2.11)
1	OC 77 OC 140	$-1.7~\mu\mathrm{A} \ +0.2~\mu\mathrm{A}$	115 70	$135~\mu\mathrm{A}$
2	OC 77 TF 70	$-1.7 \mu A + 2.3 \mu A$	115 19	$80~\mu\mathrm{A}$
3	OC 77 204 A	-1.7 μA $+0.3$ μA	115 18	$38~\mu\mathrm{A}$
4	PAT 25 TI 830	$-0.01 \mu \text{A} \\ +0.2 \mu \text{A}$	21 19	$4~\mu\mathrm{A}$
5	PAT 25 204 A	$-0.01 \mu A + 0.3 \mu A$	21 18	5,7 μΑ

Aus den Transistordaten ist auf Grund von Gl. (2.11) zu erwarten, dass die Messungen Nr. 4, 5, 3, 2, 1 in dieser Reihenfolge nach Konstanz von T_p geordnet ausfallen sollten, was Figur 23 bestätigt. Die Anordnung Nr. 4 mit zwei Silizium-Transistoren weist über den ganzen Temperaturbereich von $0...+50^{\circ}$ C nur eine gesamte Abweichung $\Delta T_p = 0.09$ s (0.77%) auf, bei einer mittleren Dauer $T_p = 11.7$ s.

Die Schaltung stellt demnach einen sehr einfachen, aber recht konstanten, neuartigen Taktgeber dar.

Mit solchen Taktgebern lassen sich auch Blinkschaltungen verwirklichen. Die Figur 24 zeigt ein

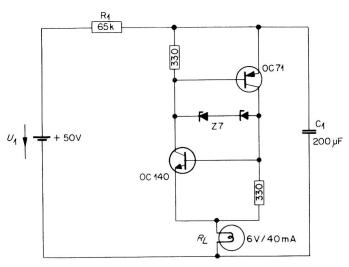


Fig. 24. Blinker mit Zweipolschalter

einfaches Beispiel mit einem Zweipolschalter. Da R_1 für zyklisches Verhalten gross gemacht werden muss, anderseits C_1 ebenfalls gross sein muss, damit die Lampe genügend aufleuchtet, besitzt diese Schaltung recht grosse Zeitintervalle. Anstelle des Zweipolschalters kann auch ein Vierpolschalter verwendet werden.

Bei jedem dieser Taktgeber lässt sich über dem Kondensator C_1 eine Sägezahnspannung U abgreifen (Fig. 22b).

2. Amplitudenvergleichsschaltung

Ähnlich einem Schmitt-Trigger lässt sich der Dreiaber auch der Vierpolschalter als Spannungsdetektor verwenden. Sobald die angelegte Meßspannung U in der $Figur\ 25$ einen bestimmten Wert U_x überschreitet, kippt der Schalter S_N in den leitenden Zustand. Wenn die Eingangsspannung einen von U_x verschiedenen Wert U_y unterschreitet, kippt der Schalter wieder zurück in den sperrenden Zustand. Die Vorgänge sind ganz analog wie beim Zeitschalter oder

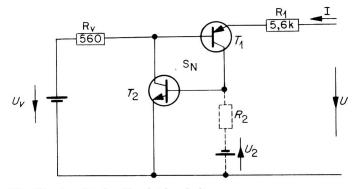


Fig. 25. Amplituden-Vergleichsschaltung

Taktgeber. Insbesondere muss I_{vo} und ψ_3 nach Gl. (2.11) und (2.15) für gute Konstanz von U_x über einen weiten Bereich der Temperatur so klein als möglich gemacht werden. Die nachfolgende Tabelle~9 gibt Aufschluss über die gemessenen Resultate mit den Transistorpaaren Nr. 1 und Nr. 5. Mit Nr. 1* ist der Vierpolschalter bezeichnet, der aus dem Dreipol-

schalter entsteht, indem T₂ mit Hilfe von $R_2=56\,\mathrm{k}\Omega$ und $U_2=1,55\,\mathrm{V}$ zusätzlich gesperrt wird, wie dies in Figur 25 gestrichelt angegeben ist. Mit Hilfe der Gl. (3.5) und (3.14) wurde gezeigt, dass die Temperaturkonstanz von U_S und I_{vo} durch diese Massnahme verbessert wird, was die Messungen von Tabelle 9 bestätigen.

Tabelle 9: Abweichungen $\triangle U_x$ der Einschaltspannung der Schaltung nach Figur 25 als Folge von Temperaturänderungen $\triangle t$, bezogen auf $t_0=22^\circ$ C

$\triangle t$	Nr. 1	Nr. 1*	Nr. 5
+ 20° C	- 0,25 V + 0,12 V	0,08 V	— 0,08 V
— 20° C		+ 0,09 V	+ 0,1 V

Die Änderung ΔU_x ist weitgehend unabhängig von der Grösse der Referenzspannung U_v . Das Transistorpaar Nr. 5 erlaubt deshalb Spannungspegel von 10 V an aufwärts mit einer Genauigkeit von besser als \pm 1% über einen Temperaturbereich von 0° C bis +40° C zu messen und zu schalten. Die Einschaltspannung U_x ist weniger temperaturabhängig als die Ausschaltspannung U_y . Alle diese Amplitudenvergleichsschaltungen haben eine Hysterese $U_x - U_y \neq 0$.

3. Temperaturschalter

Während in den bisher erwähnten Schaltungen die Temperaturabhängigkeit des Dreipolschalters nachteilig ist, zieht die Schaltung der Figur 26 daraus

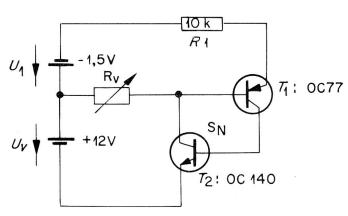


Fig. 26. Temperatur-Schalter

Nutzen. Je nach dem Wert des Quellenwiderstandes R_v kippt der Schalter S_N bei einer andern Temperatur t_x vom gesperrten in den leitenden Zustand. Eine gemessene Kurve zeigt die $Figur\ 27$. Danach sinkt die Einschalttemperatur t_x in Funktion von $\log\ R_v$ (für $R_v \ge 1$ k Ω) linear wie folgt ab:

$$t_x = -c_t \ln (R_v/R_o) + t_o$$
 (5.4)

$$\begin{array}{c} c_t \approx 11.2^{\circ} \text{ C} \\ t_o \approx 41.5^{\circ} \text{ C} \\ R_o = 1 \text{ k}\Omega \end{array} \right\} \text{ (aus Fig. 27)}$$
 (5.5)

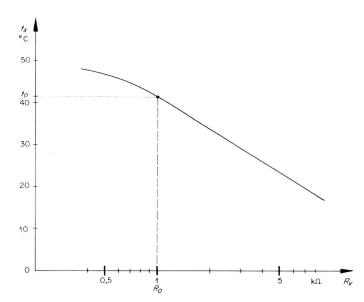


Fig. 27. Einschalttemperatur t_x des Temperaturschalters von Fig. 26

Es wäre deshalb möglich, einen solchen Temperaturschalter mit Hilfe eines logarithmischen Potentiometers R_v über einen weiten Bereich linear zu eichen. Ein Vorteil liegt darin, dass das Auftreten einer bestimmten Temperatur durch einen sehr raschen Kippvorgang festgestellt wird, der dazu benutzt werden könnte, um etwa einen Überlastungsschalter zu betätigen. Nach dem Ansprechen des Schalters bleibt derselbe so lange im eingeschalteten Zustand, bis er von aussen wieder zurückgestellt wird.

4. Zählschaltungen

4.1. Ringzähler

Zu Demonstrationszwecken wurde ein vierstufiger Ringzähler mit Vierpolschaltern so aufgebaut, dass jede Stufe im leitenden Zustand ein Lämpehen zum Leuchten bringt. Die Grundschaltung der einzelnen Stufe zeigt Figur 28. Die Schaltcharakteristik ist ungefähr gleich jener von Figur 14 mit $R_2 = 0.97 \text{ k}\Omega$.

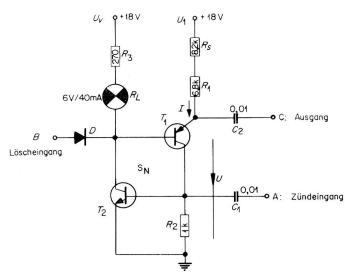


Fig. 28. Ringzähler-Einheitsstufe mit Vierpolschalter S_N

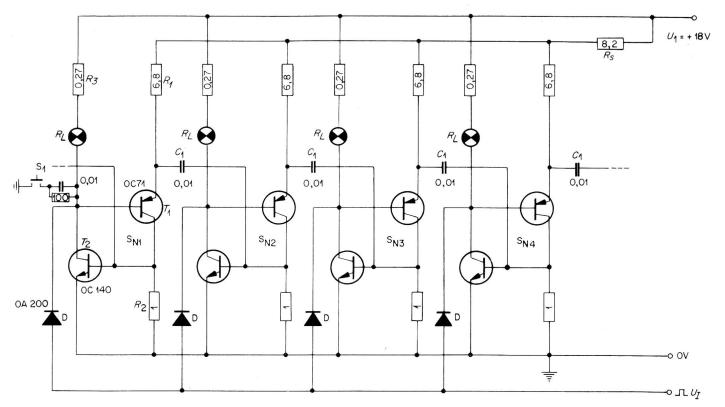


Fig. 29. Vierstufiger Ringzähler mit Vierpolschalter nach Fig. 28 (R in k Ω , C in μ F)

Das Anlegen eines positiven Impulses an den Zündeingang A hat zur Folge, dass der Transistor T_2 geöffnet und somit der Schalter eingeschaltet wird. Durch R_3 und die Lampe R_L fliesst ein Strom I_{vZ} wie folgt:

$$I_{vZ} \approx \frac{U_v - U_{Brenn}}{R_3}$$
 (5.6)

Die Bedingung für das Halten im eingeschalteten Zustand ist:

$$R_s + R_1 < |r_N| \approx \alpha_{En} \left(R_3 + R_L \right) \tag{5.7}$$

Hier ist R_L der Widerstand der Lampe im brennenden Zustande (ungefähr 150 Ohm). Der Widerstand R_2 dient auch zum Entladen des Kondensators C_1 .

Wird nun an den Eingang B ein positiver Löschimpuls angelegt, so sperrt Transistor T_1 und damit der ganze Schalter; dadurch entsteht am Ausgang C ein positiver Spannungsstoss, der zum Beispiel auf den nächstfolgenden Eingang A geführt und dort zum Zünden benutzt werden kann.

Das Gesamtschema des vierstufigen Ringzählers, der als Einzelstufe die Schaltung von Figur 28 verwendet, ist in der Figur 29 angegeben. Die Emitter der vier pnp-Transistoren werden über einen gemeinsamen Sperrwiderstand R_s gespeist. Dieser Widerstand dient zum gegenseitigen Ausschluss von gleichzeitigen Zündungen. Sobald ein Schalter leitet, tritt über dem Widerstand R_s ein so grosser Spannungsabfall auf, dass kein zweiter Schalter mehr gleichzeitig leitend werden kann (siehe Abschnitt 5).

Der am Eingang angelegte positive Zählimpuls U_I gelangt auf sämtliche Löschdioden D. Er kann aber

nur bei jenem Schalter einwirken und ihn sperren, der gerade leitend ist. Bei den andern ist er ohne Wirkung, da deren Dioden stark rückwärts vorgespannt sind. Der nun löschende Schalter zündet über den Kopplungskondensator C_1 den nächstfolgenden Schalter usw. Die Drucktaste \mathbf{S}_1 erlaubt den Zählvorgang zu starten.

Dieser Ringzähler wurde einem Dauerversuch unterworfen. Er arbeitete ohne einen Ausfall, ununterbrochen während 4800 Stunden. Dabei wurden anstelle der OC 71 Si-pnp-Transistoren PAT-26 verwendet.

Der Ringzähler arbeitet bei Normalspeisung von $18\,\mathrm{V}$ über einen Temperaturbereich von $-5...+50\,\mathrm{^{\circ}\,C}$. Dabei bleibt die Stromaufnahme praktisch konstant und beträgt etwa 44 mA.

Die maximale Taktfrequenz, mit welcher der Ringzähler bei Raumtemperatur betrieben werden kann, beträgt ungefähr 20 kHz.

Bei Raumtemperatur verarbeitet der Ringzähler die folgenden Speisespannungsschwankungen:

$$U_1 = 14.5 \text{ V} ... > 25 \text{ V}$$

4.2. Bistabile Stufe

Die Figur 30 zeigt eine binäre Einheitsstufe mit einem Dreipolschalter S_N , der auf jeden zweiten positiven Eingangsimpuls U_I einen positiven Ausgangsimpuls U_C erzeugt. Je nachdem ob der Schalter leitet oder sperrt, kann U_I über D_L , beziehungsweise D_Z einwirken und S_N in den andern Zustand kippen. Eine typische Schaltcharakteristik U = f(I) zeigt die Figur 31.

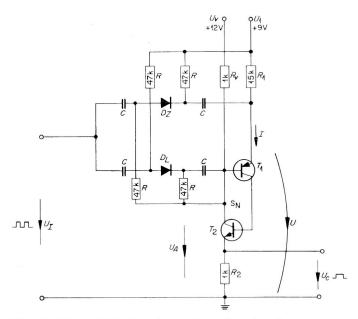


Fig. 30. Binäre Einheitsstufe mit Dreipolschalter S_N

Im gesperrten Zustand ist der Arbeitspunkt in L. Die Transistoren leiten nicht. Die Spannungen U, U_A, U_C betragen (Index L):

$$U = U_L \approx U_1 = + 9 \text{ V}$$
 $U_{AL} \approx U_v = + 12 \text{ V}$
 $U_{CL} \approx 0$ (5.8)

Gleichzeitig folgt aus Figur 30, dass mit diesen Potentialen die Löschdiode D_L rückwärts und die Zünddiode D_Z vorwärts vorgespannt wird. Erscheint nun am Eingang ein positiver Impuls mit einer Amplitude von

$$U_{IZ} \ge U_v - U_1 = +3 \text{ V}$$
 (5.9)

so kann er über D_Z , nicht aber über D_L auf den Schalter S_N einwirken, so dass dieser in den leitenden

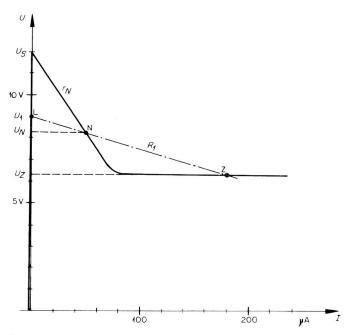


Fig. 31. Schalteharakteristik $U={\rm f}\left(I\right)$ des Dreipolschalters von Fig. 30, $\alpha_{En}\approx77$

Arbeitspunkt Z gekippt wird. Die Spannungen U, U_A , U_C nehmen für $R_1 \gg R_v$ ungefähr folgenden Wert an (Index Z):

$$U=U_{Z}pprox U_{AZ}pprox U_{CZ}pprox rac{R_{2}\,U_{v}}{R_{2}+R_{v}}pprox +6\,\mathrm{V} \hspace{0.5cm} (5.10)$$

Bei dieser Potentialverteilung folgt aus Figur 30, dass jetzt die Löschdiode D_L vorwärts und die Zünddiode D_Z rückwärts vorgespannt ist. Der nächste positive Eingangsimpuls wirkt demnach über D_L , nicht aber über D_Z . Erfüllt er die folgende Bedingung:

$$U_{IL} \ge U_N - U_Z \approx + 2 \,\mathrm{V} \tag{5.11}$$

so bewirkt er das Sperren des Schalters S_N , wodurch wieder der ursprüngliche Zustand errreicht ist.

Werden die Impulsamplituden bedeutend grösser gemacht als angegeben, so tritt der Fall ein, bei dem die Impulse über beide Dioden auf den Schalter gelangen können und die Schaltung nicht mehr richtig funktioniert. Eine Messung zeigte, dass über den Temperaturbereich von $0^{\circ} \dots + 40^{\circ}$ C Impulse von $4\dots6$ V Amplitude sicher verarbeitet werden.

Der Innenwiderstand R_g der Quelle kann zwischen 100 Ohm und 5 kOhm variiert werden.

Die Stufe verarbeitet Impulsfrequenzen bis hinauf zu einigen kHz. Die einzelne Binärstufe von Figur 30 ist so dimensioniert, dass sie beliebig in Kaskade geschaltet werden kann und stets die nachfolgende Stufe richtig zu schalten vermag.

4.3. Untersetzer für die Zeitimpulszählung

Mit Hilfe von fünf einzelnen Binärstufen wurde ein 32:1 Untersetzer, wie er für die Zeitimpulszählung verwendet werden kann, konstruiert. Figur 32 zeigt das Gesamtschema. Die Eingangsimpulse haben eine Repetitionsfrequenz von 0,3...3 Hz, eine Impulsdauer von etwa 50 ms und eine Amplitude von beispielsweise 48 V. Sie werden durch den Spannungsteiler am Eingang auf ungefähr 6 V herabgesetzt. Der Untersetzer betätigt über eine Transistorverstärkerstufe T₃ auf je 32 periodisch eintreffende Eingangsimpulse ein Ausgangsrelais von zum Beispiel 2700 Ohm und 11 000 Windungen, kurzzeitig ein Mal. Dieser Untersetzer arbeitet über einen Temperaturbereich von $-10...+38^{\circ}$ C sowie für Speisespannungsschwankungen von 44...53 V, bei einer mittleren Stromaufnahme von 82 mA. Durch eine etwas andere Dimensionierung der Schalter kann die obere Grenztemperatur auf zum Beispiel 50° C gebracht werden.

5. Sperrschaltungen

Unter Sperrschaltungen versteht man sogenannte «lock-out»- oder Blockierungsschaltungen, bei denen von n möglichen parallel liegenden Schaltern immer nur ein einziger auf einmal leiten kann. Die n-1 andern Schalter sind blockiert oder gesperrt ^{18 bis 21}.

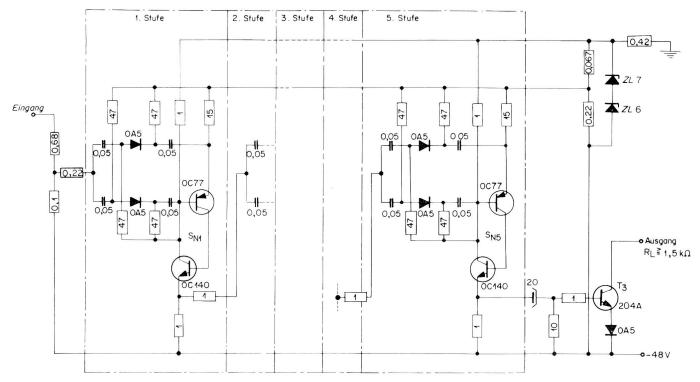


Fig. 32. Gesamtschema des Untersetzers 32:1 (R in $k\Omega$, C in μ F)

5.1. Sperrschaltung mit Zweipolschaltern

Die Figur 33 zeigt eine typische Sperrschaltung für Schalter mit Charakteristiken ähnlich derjenigen von Zwei- und Vierpolschaltern (skizziert in der Fig. 33b). Die Batteriespannung U_1 ist kleiner als die Anfangsspannung U_G , so dass alle Schalter S_{N1} bis S_{Nn} sperren. Wird nun die Triggerspannung U_T angelegt, so muss ein einziger der n Schalter zünden. Der dadurch fliessende Strom erzeugt über dem Blockierungswiderstand R_s einen Spannungsabfall, der verhindert,

dass noch ein weiterer Schalter zünden könnte. Es gilt nach Figur 33b:

Sperrbedingung:
$$U_1 \leq U_G$$
 (5.12)

$$ooksymbol{ ext{Haltebedingung:}} rac{U_1}{R_s} \geqq I_{S \; max.}$$
 (5.13)

Zündbedingung:
$$\frac{U_T - U_G}{\operatorname{n} R_s} \ge I_{S max}.$$
 (5.14)

$$\mbox{Maximal zul\"{assiger Strom}} : \frac{U_T}{R_s} \leq I_{zul.} \eqno(5.15)$$

Die letzte Bedingung (5.15) ist dann gültig, wenn der Schalter so rasch einschaltet, dass in keinem Fall

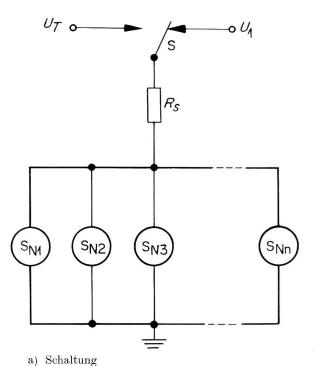
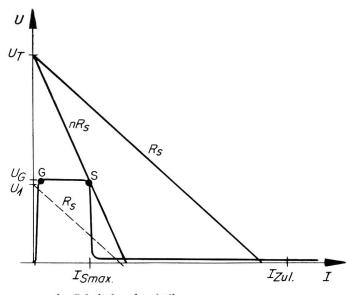



Fig. 33. Sperrschaltung mit Zweipolschaltern

b) Schaltcharakteristik

die, auf Grund der unter Umständen sehr grossen momentanen Verlustleistung entstehende Erwärmung zu gross wird.

Aus den beiden letzten Bedingungen (5.14) und (5.15) folgt:

$$U_T \ge \frac{U_G}{1 - \mathbf{n} \cdot \frac{I_{S max.}}{I_{zul.}}} > 0 \tag{5.16}$$

Diese Ungleichung sagt aus, dass $I_{zul.}$ sehr viel grösser als $I_{S\ max.}$ sein muss, damit die Triggerspannung U_T für grössere n nicht allzu gross gemacht werden muss. Damit $U_T>0$ wird, muss auch der Nenner in Gl. (5.16) positiv sein, womit die maximale Zahl Schalter, die parallel liegen dürfen, gegeben ist durch:

$$n_{\text{max.}} \le \frac{I_{zul.}}{I_{S max.}} (\text{ganze Zahl})$$
 (5.17)

Für n = 10 muss $I_{zul.} \ge 10 \cdot I_{S max.}$ sein, zum Beispiel $I_{zul.} = 11 \cdot I_{S max.}$ Damit folgt aus Gl. (5.16): $U_T \ge 11 \ U_G$, was unter Umständen eine sehr grosse Spannung sein kann.

5.2. Sperrschaltung mit Dreipolschaltern

Die Bedingungen im vorangehenden Abschnitt sind sehr stark von der Ausdehnung des Gebietes G bis S der Schaltcharakteristik abhängig. Dieses fehlt beim Dreipolschalter, wodurch die Verhältnisse stark vereinfacht werden. Die Figur~34a zeigt dieselbe Anordnung der Schalter S_{N1} bis S_{Nn} wie in Figur 33a, jedoch mit andern Schaltcharakteristiken, nach Figur 34b. Die neuen Bedingungen lauten in diesem Falle:

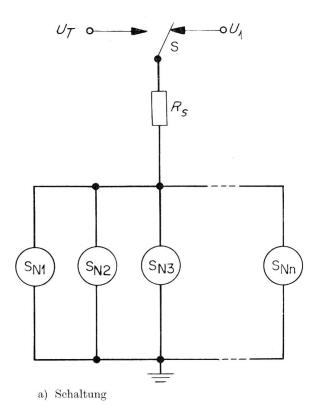


Fig. 34. Sperrschaltung mit Dreipolschaltern

Sperren: $U_1 < U_S$ (5.18)

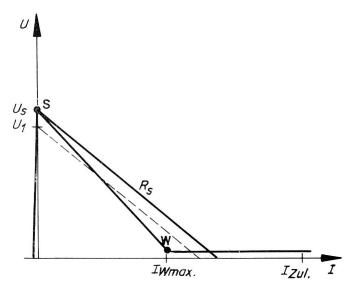
Halten: $\frac{U_1}{R_s} \ge I_{Wmax}$. (5.19)

Zünden: $U_T \ge U_S$ (5.20)

Blockieren: $\frac{U_T}{R_s} < 2 I_{Wmin.}$ (5.21)

Maximal zulässiger Strom: $\frac{U_T}{R_s} \leq I_{zul.}$ (5.22)

Diese Sperrschaltung ist sehr einfach und doch wirkungsvoll. Sie ist in der Anzahl Schalter nach oben weniger begrenzt, als bei Verwendung von Schaltern mit einer Charakteristik nach Figur 33b.


Die Bedingung (5.21) ist die eigentliche Sperrbedingung, die dafür sorgt, dass nie zwei Schalter gleichzeitig leitend sein können.

Dreipolschalter lassen sich sehr gut mit Hilfe von Impulsen, die über den dritten Anschluss (B in Fig. 28) eingegeben werden, triggern.

5.3. Sperrschaltung mit Vierpolschaltern

Wie schon angedeutet wurde, ermöglichen die speziellen Eigenschaften der Vierpolschalter eine Sperrschaltung besonderer Art. Die Figur~35 zeigt die Anordnung mit dem gemeinsamen Sperrwiderstand R_s .

Wenn keiner der n Schalter S_{N1} bis S_{Nn} leitet, so ist der Spannungsabfall über R_s Null und alle Schalter besitzen für $R_2 \gg R_s$ eine Schaltcharakteristik A nach Figur 35b. Wird nun einer der n Schalter leitend, so erzeugt der durch R_s fliessende Strom einen Spannungsabfall U_2 , der auf alle nichtleitenden Schalter als Sperrspannung – wie im Abschnitt 3.2.1. des I. Teils behandelt – einwirkt. Dadurch erhalten alle diese Schalter eine neue Schaltcharakteristik B nach Figur 35c, bei welcher der Schaltpunkt S nach grössern Stromwerten verschoben ist. Die Bedingungen lauten nun für:

b) Schaltcharakteristik

Sperren:
$$U_1 \leq U_G \approx U_v$$
 (5.23)

Halten:
$$\frac{U_1}{R_1 + R_s} \ge I_{W max}$$
. (5.24)

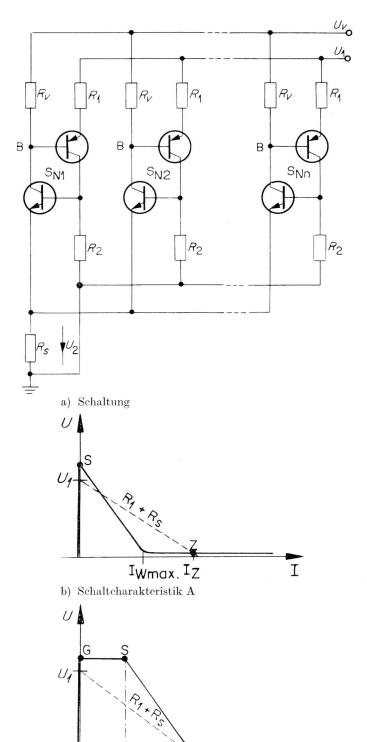
Zünden: negativer Impuls auf B von

$$|\Delta U_I| \ge U_v - U_1 \tag{5.25}$$

Blockieren:
$$I_{S min.} \approx \frac{U_2}{R_2} > I_Z - I_{W min.}$$
 (5.26)

$$U_2 \approx \frac{U_v R_s}{R_v + R_s} \tag{5.27}$$

$$ext{Maximal zulässiger Strom:} \ rac{U_1 + |igtriangle U_I|}{R_1 + R_s} \le I_{zul.} \quad (5.28)$$


Schlussfolgerungen

Der Zweipolschalter ist so stark temperaturabhängig, dass man ihn häufig nur bei Verwendung von Silizium-Transistoren praktisch gebrauchen kann. Mit Hilfe der beiden den Emittern gegenüberliegenden Widerständen R_{Ej} lässt sich der Schaltstrom I_S über einen weiten Bereich festlegen.

Demgegenüber kann der Dreipolschalter so dimensioniert werden, dass sich seine Charakteristik mit der Temperatur nur wenig verändert. Er besitzt im Gegensatz zum Zweipolschalter auch im Sperrpunkt O einen sehr hohen Widerstand. Seine Schaltcharakteristik lässt sich mit Hilfe der Referenzspannungsquelle U_v , R_v und der Stromverstärkung α_{En} , sofern die zulässigen Werte der Transistoren nicht überschritten werden, praktisch beliebig ändern. Der dritte Anschluss kann als Steuerelektrode zum Ein- oder Ausschalten des Schalters verwendet werden. Dies hat den Vorteil, dass die Steuersignale nicht über die zu schaltende Leitung geführt werden müssen wie beim Zweipolschalter, sondern getrennt eingespeist werden können.

Der Vierpolschalter entspricht in seinem Temperaturverhalten einem Dreipolschalter mit mehr oder weniger in Sperrichtung vorgespanntem npn-Transistor T₂. Seine Schaltcharakteristik kann in sehr weiten Grenzen zwischen jener eines gewöhnlichen Dreipolschalters und derjenigen eines Zweipolschalters gewählt werden. Sie ist auch bei veränderlicher Temperatur sehr konstant. Von allen drei Schaltertypen lässt sich dieser wohl am besten gegebenen Verhältnissen anpassen. Auf Grund seiner besonderen Eigenschaften kann mit diesem Schalter auch eine spezielle Art von Sperrschaltung konstruiert werden.

Die Anwendungsbeispiele haben gezeigt, dass sich mit solchen Schaltern digitale Schaltungen, wie sie etwa in der Telephonie vorkommen, in einfacher Weise verwirklichen lassen. Dort wo die Stückzahl sehr gross ist, wie etwa bei den Kreuzpunkten für die Sprechleiterdurchschaltung, werden wohl nur die kompakten Elemente einmal Verwendung finden; dagegen lassen sich mit komplementären Transistorschaltern sehr gut kleinere Einheiten aufbauen. Dies ist ganz besonders dann angezeigt, wenn deren Charakteristik verhältnismässig enge Toleranzen aufweisen oder sogar von aussen einstellbar sein soll.

c) Schaltcharakteristik B Fig. 35. Sperrschaltung mit Vierpolschaltern

I_{Smin}

Für wertvolle Ratschläge und Diskussionen im Zusammenhang mit der vorliegenden Arbeit bin ich Herrn *Prof. H. Weber* zu grossem Dank verpflichtet.

Symbole und Konstanten

 $I_{Ej},\,I_{Bj},\,I_{Cj},\,U_{Ej},\,U_{Cj},\,U_{CEj}$: Transistorgleichstromwerte (Fig. 1) O, L, S, N, W, D, Z, P: Punkte der Schaltcharakteristik $U=\mathrm{f}\left(I\right)$ erscheinen als Indizes von U und I

j: Index p für pnp- und Index n für npn-Transistor

 $c_t \approx 11.2 \, {\rm ^oC}$: Konstante in Gl. (5.4)

 $c_u \approx 2 \text{ mV}$: Konstante in Gl. (2.33)

 $c_1 \approx 0.08/{\rm ^{o}C}$ für Ge- und $0.04/{\rm ^{o}C}$ für Si-Transistoren

 $c_2 \approx -2 \text{ mV/oC}$

 $e=1.6\cdot 10^{-19}$ Clb: Ladung des Elektrons

g = 1/r: Admittanz

 I_{CBOp} : Kollektorsperrstrom für $I_{Ep}=0$ und $-U_{Cp}\gg U_{B}$ (< 0)

 I_{CEOp} : Kollektorsperrstrom für $I_{Bp} = 0$ und $-U_{CEp} \gg U_B$ (< 0)

 I_f : Relais-Abfallstrom

 I_{SCp} : Kollektorsperrstrom für $U_{Ep}=0$ und $-U_{Cp}\gg U_{B}~(>0)$

 I_{SEp} : Emittersperrstrom für $U_{Cp} = 0$ und $-U_{Ep} \gg U_B$ (>0)

 I_{Smax} : max. Schaltstrom I_S

 I_v : Strom aus der Referenzspannungsquelle

 I_{00} : I_{CBOj} bei $T=T_0$

 $I_{zul.}$: max. zul. Schalterstrom

 $k = 1.38 \cdot 10^{-23} \text{ Ws/}^{\circ}\text{K}$: Boltzmann-Konstante

 $q_i = 1 + (R_{Bi}/R_{Ei})$: Rechnungsgrösse beim Zweipolschalter

 R_s : Blockierungswiderstand

 r_{Cj} : Kollektorwiderstand

 r_d : Durchlasswiderstand

 r_N : negativer Widerstand

 r_s : Sperrwiderstand

 $r_{sat.i}$: Sättigungswiderstand

 $r_{oj} = \partial U_{Ej}/\partial I$: Tangente an $U_{Ej} = f(I)$

 $r\infty$: Sättigungswiderstand für $I \rightarrow \infty$

T: abs. Temperatur in ${}^{\mathrm{o}}\mathrm{K}$

 T_p : Impulsabstand

t: Temperatur in ${}^{\mathrm{o}}\mathrm{C}$ (ev. Zeit)

 t_x : Einschalttemperatur

 $t_{1,2}$: Ein- bzw. Ausschaltzeit des Zweipolschalters

 $U_B = kT/e \approx 25 \,\mathrm{mV}$ bei $t = 22 \,\mathrm{oC}$: Boltzmann-Spannung

 U_{Brenn} : Brennspannung einer Anzeigelampe

 $U_{Eoj}: U_{Ej} \text{ für } I_{Ej} = 0 \text{ (Gl. 1. 12)}$

 U_{EFj} : Freie Spannung U_{Ej} für $I_{Bj}=0$ (Gl. 1. 22)

 U_I : Impulsspanning

 U_r : Referenzspannung der Referenzdiode

 $U_{sat,j}$: Sättigungsspannung

 U_v : Batteriespannung der Referenzspannungsquelle

 U_T : Triggerspannung

 U_{00} : U_{Ej} für $T = T_0$

 U_1 : Batteriespannung

 U_2 : Sperrspannung beim Vierpolschalter

α_i : Gleichstromverstärkung, Basisschaltung Normalbetrieb

 α_{Ij} : Gleichstromverstärkung, Basissehaltung invertierter Betrieb

 α_{Ej} : Gleichstromverstärkung, Emitterschaltung Normalbetrieb

 α_{IEj} : Gleichstromverstärkung, Emitterschaltung invertierter Betrieb

 ψ_3 : $\triangle U_S$ beim Dreipolschalter (Gl. 2. 15)

 $\psi_{\mathbf{4}}$: $\triangle U_G$ beim Vierpolschalter (Gl. 3. 8)

 $\tau = RC$: Zeitkonstante

Literaturverzeichnis

- Bannochie, J. G. und Fursey, R. A. E. Sealed Contact Reed Relays, A.T. E. Journal, 14 (1958), S. 262...273.
- ² Feiner, A., Lovell, C. A., Lowry, T. N. und Ridinger, P. G. The Ferreed: A new Switching Device, Bell Syst. Techn. J., 39 (1960), S. 1...30.
- ³ v. Münch, W. und Salow, H. Anwendungen des speichernden Schalttransistors, NTZ, 12 (1959), S. 301...310.
- ⁴ Townsend, M. A. Cold-Cathode Gas Tubes for Telephone Switching Systems, Bell Syst. Techn. J., 36 (1957), S. 755...768.
- ⁵ de Wolf, N. The Binistor A New Semiconductor Device, Electronic Industries, 18 (1960), No. 8, S. 84...87.

- 6 Memelink, O.W. The Deplistor, a Semiconductor Switching Device, Philips Res. Rep., 13 (1958), S. 485...488.
- Mueller, C. W. und Hilibrand, J. The «Thyristor» A New High-Speed Switching Transistor, IRE Trans. on Electron Devices, ED-5 (1958), S. 2...5.
- 8 Hunter, L. P., Handbook of Semiconductor Electronics, McGraw-Hill, New York/London, 1956.
- ⁹ Suran, J. J. Double Base Expands Diode Applications, Electronics, 28 (1955), S. 198...202.
- ¹⁰ Shockley, W. Unique Properties of the Four-Layer Diode, Electronic Industries, 16 (1957), No. 8, S. 58...63.
- ¹¹ Grosser, H. K. M. Applications of Transistors in a Space-Division Electronic Telephone System, Proc. IEE, Part B, 106 (1960), Suppl. No. 18, S. 1211...1213.
- ¹² Harel, A. Transistorised Private Automatic Telephone System, ETH – Prom. Nr. 2804, 1958.
- ¹³ Lo, A. W., Endres, R. O., Zawels, J., Waldhauer, F. D. und Cheng, C. C. Transistor Electronics, Prentice Hall, 1955.
- ¹⁴ Early, I. M. Effects of Space-Charge Layer Widening in Junction Transistors, Proc. IRE, 40 (1952), S. 1401...1406.
- ¹⁵ Guggenbühl, W. und Schneider, B. Zur Stabilisierung des Gleichstromarbeitspunktes von Flächentransistoren, Arch. El. Übertr., 10 (1956), S. 361...375.
- ¹⁶ Flood, J. E. und Deller, W. B. The pnpn-Diode as a Cross-Point for Electronic Telephone Exchanges, Proc. IEE, Part B, 107 (1960), Suppl. No. 20, S. 291...302.
- ¹⁷ Endo, I., Yamagishi, K., Yoshida, S. und Goto, K. Properties of Compound Transistors for Speech-Path Switches, Rev. Electr. Commun. Lab., 8 (1960), S. 211...221.
- Domburg, J. und Six, W. Eine Gasentladungsröhre mit kalter Kathode als Schaltelement in Fernsprechwählanlagen, Philips Techn. Rdsch., 15 (1954), S. 321...336.
- ¹⁹ Feldman, T. und Rieke, J. W. Application of Breakdown Devices to Large Multistage Switching Networks, Bell Syst. Techn. J., 37 (1958), S. 1421...1453.
- ²⁰ Flood, J. E. und Warman, J. B. The Design of Cold-Cathode-Valve Circuits, Electronic Engineering, 28 (1956), S. 416...421.
- ²¹ Keister, W., Ritchie, A. E. und Washburn, S. H. The Design of Switching Circuits, van Nostrand Co., New York, 1951, Kapitel 15.
- Ward, E. E. The Design of Controlled Rectifiers using Triode Transistors, Proc. IEE, Part B, 107 (1960), S. 473, 480
- ²³ Leberwurst, K., Berechnung der Kippkennlinien einer pnp-npn-Kombination, Nachrichtentechnik, 9 (1959), S. 246...253.
- ²⁴ Vallese, L. M. Properties of Hook Transistors in Switching and Amplifying Circuits, J. Brit. IRE, 18 (1958), S. 725...732.
- ²⁵ Karp, M. A. A Transistor D-C Negative Immittance Converter, Proc. Natl. Electronics Conf. 12 (1956), S. 469...480.
- ²⁶ McDuffie, G. E. und Chadwell, W. L. An Investigation of the Dynamic Switching Properties of 4-Layer Diodes, Commun. and Electronics, Nr. 47/1960, S. 50...53.
- ²⁷ Ebers, J. J. Four-Terminal pnpn-Transistors, Proc. IRE, 40 (1952), S. 1361...1364.
- ²⁸ Mackintosh, J. M. The Electrical Characteristics of Silicon pnpn-Triodes, Proc. IRE, 46 (1958), S. 1229...1235.
- ²⁹ Matz, A. W. A Review of Semiconductor Switching Devices and Associated Design Requirements, ATE Journal, 15 (1959), S. 61...82.
- 30 Suran, J. J. Transient Analysis of Two-Terminal Negative Resistance Devices, Paper No. 116, Internatl. Symposium on Semicond. Devices, Paris, February 1961.
- 31 Bachmann, A. E. Complementary Transistor Diode and Triode as Bistable Electronic Switching Elements, Paper No. 81, Internatl. Symposium on Semicond. Devices, Paris, February 1961.