Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und

Telegrafenbetriebe = Bulletin technique / Entreprise des postes, téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 39 (1961)

Heft: 3

Artikel: Stabilisierung des Gleichstromarbeitspunktes von Transistoren

Autor: Bachmann, A.E.

DOI: https://doi.org/10.5169/seals-875239

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Stabilisierung des Gleichstromarbeitspunktes von Transistoren*

Zusammenfassung. Für das Abwandern des Gleichstromarbeitspunktes mit der Temperatur sind zwei Phänomene verantwortlich:

1. Der Kollektorsperrstrom I_{CBO} , der in einem normal betriebenen Transistor fliesst, wenn dessen Emitterstrom Null ist. Er steigt bei zunehmender Temperatur für Germanium-Transistoren mit 6 bis 9% je °C und für Silizium-Transistoren mit 4 bis 5% je °C an.

2. Die Emitter-Basis-Spannung U_{EB} sinkt bei zunehmender Temperatur für Germanium- und Silizium-Transistoren mit 1,7 bis 2,4 mV/° C ab.

Diese beiden physikalisch bedingten Eigenschaften kann der Schaltungstechniker nicht eliminieren. Er kann aber sehr wohl ihre schädlichen Auswirkungen auf das Verhalten einer Schaltung durch geeignete Massnahmen reduzieren.

Es war bisher üblich, die Änderungen des Arbeitspunktes infolge der Zu- oder Abnahme des Kollektorsperrstromes durch einen sogenannten (Strom-) Stabilitätsfaktor auszudrücken. Hier wird nun auch der Einfluss der Emitter-Basis-Spannung auf den Arbeitspunkt durch einen (Spannungs-) Stabilitätsfaktor berücksichtigt.

Ideale Stabilisierung ist dann erreicht, wenn die Stabilitätsfaktoren Null sind. Die Stabilitätsfaktoren werden in erster Linie durch die Grössen der Widerstände in der Speiseschaltung bestimmt und erst in zweiter Linie durch die Transistordaten.

Anhand von Berechnungen wird gezeigt, dass bei Transistoren mit kleinen Kollektorsperrströmen der Einfluss der Emitter-Basis-Spannung auf das Abwandern des Arbeitspunktes überwiegen kann und deshalb nicht vernachlässigt werden darf.

In Tabellenform werden hier zum ersten Mal sämtliche Stabilitätsfaktoren von zwei- und dreistufigen direktgekoppelten Transistorverstärkerschaltungen angegeben.

Nur kurz wird auch die Gleichstromstabilisierung mit nichtlinearen Elementen sowie das Problem der thermischen Stabilität erwähnt.

Einleitung

Der Transistor hat die unangenehme Eigenschaft, dass er stark temperaturabhängig ist. Seine Kennlinienfelder verändern sich mit der Temperatur. Dadurch ändert sich, je nach der betreffenden Schaltung, der Arbeitspunkt mehr oder weniger. Dies hat aber auch eine Rückwirkung auf die Parameter des Transistors. Diese Parameter ändern sich zusätzlich noch mit der Temperatur. Der Berechnung des Arbeitspunktes und seiner Stabilisierung über einen verlangten Temperaturbereich kommt deshalb eine grosse Bedeutung zu.

Die folgenden beiden Grössen sind für das Abwandern des Gleichstromarbeitspunktes mit der Temperatur verantwortlich:

Kollektorsperrstrom: I_{CBO} Emitter-Basis-Spannung: U_{EB}

1. Kollektorsperrstrom I_{CBO}

Der Kollektorsperrstrom I_{OBO} ist gleich dem Kollektorstrom eines normal betriebenen Transistors, wenn der Emitterstrom Null ist, das heisst bei leerlaufender Emitter-Basis-Junction. I_{CBO} ist gegeben durch:

$$I_{CBO} = I_{OO} \cdot \exp\left[c_1 \cdot (T - T_O)\right] \tag{1}$$

Dabei ist I_{00} gleich dem Sperrstrom bei der Temperatur T_0 . Es ist bei Flächentransistoren 1 :

$$c_{1 ext{Ge}} = rac{e U_G}{k T^2} \cong 0,06 \dots 0,09 / { ext{°C}}$$
 (2)
 $c_{1 ext{Si}} \cong 0,04 \dots 0,05 / { ext{°C}}$

 $e = 1.6 \cdot 10^{-19} \, \text{Clb} \, (\text{Ladung eines Elektrons})$

 $k=1,37\cdot 10^{-23}$ Wattsec/oK (Boltzmann-Konstante) $U_G=0,67$ V (für Ge): Energiebandlücke

Durch Ableiten der Gleichung [= Gl.] (1) findet man:

$$\frac{\partial I_{CBO}}{\partial T} = c_1 \cdot I_{CBO} \cong 6 \dots 9\% \text{ je °C für Ge}$$

$$4 \dots 5\% \text{ je °C für Si}$$
(3)

Dies entspricht einem Anstieg des I_{CBO} von 6...9% je °C oder einer Verdoppelung alle 9 °C bei Germanium und einer Verdoppelung alle 16 °C bei Silizium.

Typische Werte von I_{00} sind (pnp-Transistor):

$$I_{\theta\theta \text{Ge}} = -10 \,\mu\text{A}$$

$$I_{\theta\theta \text{Si}} = -0.01 \,\mu\text{A}$$
(4)

Der Kollektorsperrstrom I_{CEO} ist gleich dem Kollektorstrom eines normal betriebenen Transistors, wenn der Basisstrom null ist. Er ist gegeben durch:

$$I_{CEO} = \frac{1}{1 - \alpha_N} \cdot I_{CBO} \tag{5}$$

Dabei ist zu beachten, dass α_N bei den kleinen Strömen gegenüber jenen bei normalen Arbeitsströmen stark abgesunken ist. Anderseits sind die c_1 etwas grösser.

2. Emitter-Basis-Spannung U_{EB}

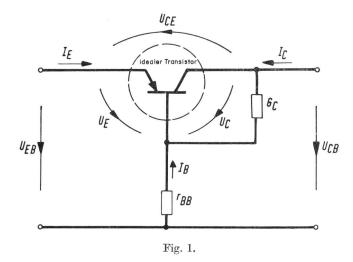
Die Grundgleichungen für den idealen pnp-Transistor lauten ² (Strom- und Spannungsrichtungen, siehe *Figur 1*).

$$I_E = I_{SE} \cdot [\exp(U_E/U_B) - 1] - \alpha_I \cdot I_{SC} \cdot [\exp(U_C/U_B) - 1]$$
(6)

$$I_{C} = -\alpha_{N} \cdot I_{SE} \left[\exp \left(U_{E}/U_{B} \right) - 1 \right] + I_{SC} \cdot \left[\exp \left(U_{C}/U_{B} \right) - 1 \right]$$

$$(7)$$

Darin bedeuten:


$$U_B = \frac{kT}{e} \tag{8}$$

 U_B ist die sogenannte Boltzmann-Spannung. Sie beträgt bei Raumtemperatur $U_{BO}\!\cong\!25\,\mathrm{mV}.$

$$I_{SE} = \frac{-I_{EBO}}{1 - \alpha_N \alpha_I} \qquad (>0)$$

 I_{SE} ist der Kurzschluss-Sättigungsstrom, der im negativ vorgespannten Emitter ($U_E \ll -U_B$) fliesst wenn $U_C = 0$ ist.

 $[\]ast$ In gekürzter Form vorgetragen im Transistorkurs der Forschungs- und Versuchsanstalt PTT, Winter 1959/60.

 I_{EBO} ist der Leerlauf-Sättigungsstrom (Emittersperrstrom), der im negativ vorgespannten Emitter fliesst, wenn $I_C=0$ ist.

$$I_{SC} = \frac{-I_{CBO}}{1 - \alpha_N \alpha_I}$$
 (>0)

 I_{SC} ist der Kurzschluss-Sättigungsstrom, der im negativ vorgespannten Kollektor fliesst, wenn $U_E=0$ ist.

 I_{CBO} ist der Leerlauf-Sättigungsstrom (Kollektor-Sperrstrom), der im negativ vorgespannten Kollektor-fliesst, wenn $I_E=0$ ist.

 α_N ist die Stromverstärkung für Gleichstrom im normalen Betrieb des Transistors, d. h. $U_E\!>\!0, U_C\!<\!0.$

 α_I ist die Stromverstärkung für Gleichstrom, wenn der Transistor rückwärts (invertiert) betrieben wird.

Aus den Gleichungen (6) und (7) findet man durch Addition:

$$I_E + \alpha_I I_C = -I_{EBO} \cdot [\exp(U_E/U_B) - 1]$$
 (11)

$$\alpha_N I_E + I_C = -I_{CBO} \cdot [\exp(U_C/U_B) - 1]$$
 (12)

Im aktiven Bereich des Transistors ist $U_C \leq -U_B$, so dass die übliche Näherung gilt:

$$\exp\left(U_C/U_B\right) \leqslant 1\tag{13}$$

 $I_{\it C}$ aus Gl. (12) be rechnet und in Gl. (11) eingesetzt ergibt :

$$I_E = -rac{1}{1-lpha_I\,lpha_N}\cdot \left\{I_{EBO}\cdot \left[\exp\left(U_E/U_B
ight)-1
ight] + lpha_I\,I_{CBO}
ight\} \eqno(14)$$

Ferner gilt

$$\alpha_N \cdot I_{EBO} = \alpha_I \cdot I_{CBO} \tag{15}$$

Damit geht Gl. (14) über in:

$$I_E = \frac{-\alpha_I \cdot I_{CBO}}{1 - \alpha_I \alpha_N} \cdot \left\{ \frac{1}{\alpha_N} \left[\exp\left(U_E/U_B\right) - 1 \right] + 1 \right\} \quad (16)$$

In den meisten Fällen gilt auch

$$\alpha_N \cong 1$$
 (17)

Somit lautet Gl. (16):

$$I_{E} \cong \frac{-\left(\alpha_{I}/\alpha_{N}\right) I_{CBO}}{1 - \alpha_{I} \alpha_{N}} \cdot \exp\left(U_{E}/U_{B}\right) \tag{18}$$

Daraus folgt:

$$U_E = U_B \cdot \ln \left(\frac{1 - \alpha_I \alpha_N}{-(\alpha_I/\alpha_N) \cdot I_{CBO}} \cdot I_E \right)$$
 (19)

Die Emitter-Basis-Spannung U_{EB} des realen Transistors, wird demnach (siehe Fig. 1)

$$U_{EB} = U_E + r_{BB} \left[I_E (1 - \alpha_N) + I_{CBO} \right]$$
 (20)

Darin ist U_E durch Gl. (19) gegeben und r_{BB} ist der Basiszuleitungswiderstand ⁶.

Bei nicht zu hohen Temperaturen kann Gl. (20) wie folgt linear approximiert werden:

$$U_{EB} \cong U_{EBO} + c_3 \left(\vartheta - \vartheta_o\right) \tag{21}$$

Darin ist U_{EBO} gleich der Emitter-Basis-Spannung bei der Temperatur ϑ_0 und die Konstante c_3 hat für Silizium und Germanium ungefähr dieselbe Grösse¹:

$$\frac{\partial~U_{EB}}{\partial~T} = c_3 \cong -~U_B \cdot c_1 \cong -~1,7 \dots 2,4 \text{ mV/°C}$$
 (22)

Die Abnahme der Emitter-Basis-Spannung mit steigender Temperatur bedeutet, dass der Vorwärtswiderstand der Emitter-Basis-Diode R_{dv} mit steigender Temperatur abnimmt. Typische Ausgangswerte bei Raumtemperatur sind:

$$egin{aligned} R_{dv} &= 100 \, \Omega \ U_{EBO} = + \, 0.15 \, ext{V beim Germanium} \, pnp ext{-Transistor} \ + \, 0.5 \, \, ext{V beim Silizium} & pnp ext{-Transistor} \end{aligned}$$

Wenn der Emitter eines Transistors aus einer Stromquelle (hochohmig) gespeist wird, so verringern sich die beiden Störeinflüsse: Der Emitterstrom I_E ist konstant, unabhängig von den sich ändernden I_{CEO} und U_{EB} (resp. R_{dv}).

So hat denn die typische Speiseschaltung von Figur 4 stets einen grössern Widerstand R_I im Emitterpfad, welcher für gute Stabilität nach Möglichkeit etwa

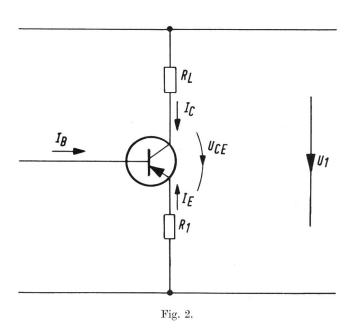
$$R_1 \cong 10 \cdot R_{dv} \tag{24}$$

gemacht wird.

3. Thermische Stabilität

Eine Schaltung ist dann thermisch stabil, wenn die je °C zugeführte elektrische Verlustleitung gleich wie die je °C abgeführte Wärme ist. Es lässt sich zeigen, dass diese Forderung auf die folgende Ungleichung führt ³:

$$U_{CE} \leq \frac{1}{R_{th} \cdot S_C \cdot c_1 \cdot I_{CBO}}$$
 (25)


In dieser Gleichung bedeutet S_C die Änderung des Kollektorstromes I_C infolge einer Änderung von I_{CBO} :

$$S_C = \frac{\partial I_C}{\partial I_{CBO}} \tag{26}$$

 S_C ist der sogenannte Stabilitätsfaktor nach Shea ⁴, der auf den Kollektorstrom I_C bezogen ist. Er ist – ganz analog wie die nachfolgend hergeleiteten Strom-

stabilitätsfaktoren S_I – welche auf den Emitterstrom $\mathbf{I}_{\mathbb{E}}$ bezogen sind – eine konstante Grösse für eine gegebene Schaltung.

Aus der Gl. (25) kann entweder die maximal zulässige Kollektor-Emitter-Spannung U_{CE} für eine gegebene Schaltung (S_C) und Kühlung (R_{th}) oder aber der maximale thermische Widerstand R_{th} bei gegebener Schaltung (S_C) und Spannung U_{CE} oder der maximale Stabilitätsfaktor S_C bei gegebenem R_{th} und U_{CE} berechnet werden. Man beachte, dass diese 3 Maximalwerte mit steigendem I_{CBO} (das heisst mit steigender Temperatur) um etwa 6...9% je °C abnehmen.

Die Berechnung der thermischen Stabilität der Schaltung nach $Figur\ 2$ führt in erster Näherung auf die folgende Bedingung 3 :

$$I_{C}(R_{L}+R_{1}) > \frac{1}{2} \cdot (U_{1}+I_{CEO} \cdot R_{1})$$
 (27)

Dies bedeutet, dass die Schaltung nach Figur 2 dann thermisch stabil ist, wenn die Summe der Spannungsabfälle über den beiden Widerständen R_L und R_I grösser ist, als ungefähr die halbe Batteriespannung U_I .

1. Spezialfall: Emitterwiderstand $R_1 = 0$.

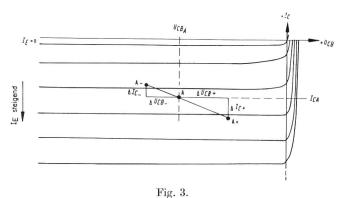
Gl. (27) geht über in

$$I_C R_L > \frac{U_1}{2} \tag{28}$$

Für $R_I=0$ ist die Schaltung dann thermisch stabil, wenn mehr als die Hälfte der Batteriespannung U_I im Lastwiderstand R_L verbraucht wird.

2. Spezialfall: Kollektorwiderstand $R_L = 0$.

Hier gilt:


$$\left(I_C - \frac{I_{CEO}}{2}\right) R_1 > \frac{U_1}{2} \tag{29}$$

Für $R_L=0$ muss also auch ungefähr die Hälfte der Speisespannung U_I im Emitterwiderstand R_I verbraucht werden, damit keine thermische Instabilität auftritt und der Transistor infolge zu hoher Selbsterwärmung zerstört wird.

4. Stabilitätsfaktoren

Die Figur 3 zeigt das Kollektorkennlinienfeld eines pnp-Transistors in Basisschaltung mit einem eingetragenen Arbeitspunkt A bei Raumtemperatur. Die Ausgangswerte bei $\vartheta=\vartheta_0$ seien:

$$I_{CA}$$
, U_{CBA} , I_{CBOA}

Steigt nun die Temperatur des Transistors um $\Delta \vartheta +$, dann steigt der Kollektor-Sperrstrom I_{CBO} um $\Delta I_{CBO} +$. Dieser Anstieg verursacht eine Vergrösserung des Kollektorstrombetrages um ΔI_{C+} und des Emitterstromes um ΔI_{E+} , während der Betrag der Kollektor-Basis-Spannung U_{CB} um den Wert ΔU_{CB+} sinkt. Bei sinkender Temperatur tritt das Umgekehrte ein (Index — statt +). Es ist selbstverständlich, dass man versucht, die Abwanderung des Arbeitspunktes nach Möglichkeit zu verhindern.

Die grundsätzlichen Zusammenhänge liefert das totale Differential wie folgt:

$$\frac{\partial I_E}{\partial T} = \frac{\partial I_E}{\partial I_{CBO}} \cdot \frac{\partial I_{CBO}}{\partial T} + \frac{\partial I_E}{\partial U_{EB}} \cdot \frac{\partial U_{EB}}{\partial T} \qquad (30)$$

$$\frac{\partial U_{CB}}{\partial T} = \frac{\partial U_{CB}}{\partial I_{CBO}} \cdot \frac{\partial I_{CBO}}{\partial T} + \frac{\partial U_{CB}}{\partial U_{EB}} \cdot \frac{\partial U_{EB}}{\partial T} \qquad (31)$$

Die zweiten Faktoren in den obigen Summanden sind Transistorkonstanten und durch die Gl. (3) und (22) gegeben. Die ersten Faktoren werden als *Stabilitätsfaktoren* bezeichnet und hängen nur von der Speiseschaltung ab. Sie werden wie folgt bezeichnet:

$$S_{II} = \frac{\partial I_E}{\partial I_{CBO}}[...]; \quad S_{IU} = \frac{\partial I_E}{\partial U_{EB}} \left[\frac{1}{\text{ohm}} \right]$$

$$S_{UI} = \frac{\partial U_{CB}}{\partial I_{CBO}}[\text{ohm}]; S_{UU} = \frac{\partial U_{CB}}{\partial U_{EB}}[...]$$
(32)

Hier ist zu beachten, dass S_{II} die Änderung des Emitterstromes angibt. Soll statt dessen S_{C} die Änderung des *Kollektors*tromes angegeben werden, so folgt aus Gl. (33):

$$S_C = rac{\partial I_C}{\partial I_{CRO}} = - \alpha_N rac{\partial I_E}{\partial I_{CRO}} + 1 = 1 - \alpha_N \cdot S_{II} \quad (32^{17})$$

Für grosse Werte ($|S_{XY}| \ge 1$) werden beide Stabilitätsfaktoren gleich.

Die Stabilitätsfaktoren geben also an, um wieviel sich der Arbeitspunkt (I_E, U_{CB}) ändert, wenn sich der Kollektorsperrstrom um ∂I_{CBO} und die Emitter-Basis-Spannung um ∂U_{EB} ändert. Sie sind zum Teil dimensionslos, oder haben die Dimension Ohm, bzw. 1/Ohm. Je kleiner die Stabilitätsfaktoren sind, umso

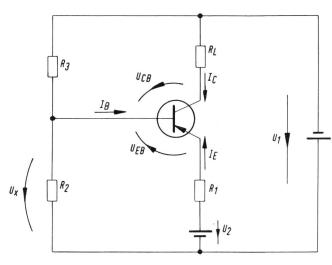


Fig. 4.

weniger wandert der Arbeitspunkt ab. Der Idealfall ist dann erreicht, wenn $S_{XY} = 0$ ist.

Im Gegensatz zu andern Arbeiten werden in dieser Berechnung alle Ströme und Spannungen mit ihrem Vorzeichen (für pnp und npn) berücksichtigt, so dass auch die Stabilitätsfaktoren mit einem Vorzeichen behaftet sind 7 .

4.1. Verschiedene Gleichstromspeiseschaltungen

Eine häufig verwendete Speiseschaltung mit zwei Batterien ist in Figur 4 aufgezeichnet. Zur Bestimmung der Stabilitätsfaktoren berechnet man zuerst I_E bzw. U_{CB} als Funktion von I_{CBO} und U_{EB} .

Nach Gl. (12) gilt im aktiven Bereich:

$$I_C = -\alpha_N I_E + I_{CBO} \tag{33}$$

daraus folgt mit $I_B + I_C + I_E = 0$

$$I_B = -I_E (1 - \alpha_N) - I_{CBO} \tag{34}$$

Aus Figur 4 folgt:

$$U_X \left(1 + \frac{R_3}{R_2} \right) + I_B R_3 = U_1 \tag{35}$$

$$U_X = U_2 - I_E R_1 - U_{EB} (36)$$

Gl. (34) und (36) in Gl. (35) eingesetzt ergibt:

$$\begin{split} I_{E} \left[\frac{R_{1}}{R_{2}} + \frac{R_{1}}{R_{3}} + (1 - \alpha_{N}) \right] \\ &= -\frac{U_{1}}{R_{3}} - I_{CBO} + (U_{2} - U_{EB}) \cdot \left(\frac{1}{R_{2}} + \frac{1}{R_{3}} \right) \end{aligned} \tag{37}$$

Aus dieser Gl. (37) findet man S_{II} durch partielle Differentiation nach ∂I_{CRO} :

$$S_{II} = \frac{\partial I_E}{\partial I_{CBO}} = \frac{-1}{\frac{R_1}{R_3} + \frac{R_1}{R_2} + (1 - \alpha_N)} = \frac{-G_1}{G_2 + G_3 + G_1 (1 - \alpha_N)}$$
(38)

Analog folgt daraus auch:

$$S_{IU} = \frac{\partial I_E}{\partial U_{EB}} = \frac{-\left(\frac{1}{R_2} + \frac{1}{R_3}\right)}{\frac{R_1}{R_2} + \frac{R_1}{R_3} + 1 - \alpha_N} = \frac{-G_1}{1 + \frac{G_1}{G_2 + G_3}(1 - \alpha_N)} \cong -G_1$$
(39)

Aus Figur 4 findet man ebenfalls:

$$U_{CB} = I_E (R_1 + \alpha_N R_L) + U_{EB} - I_{CBO} R_L + U_1 - U_2$$
 (40)

Daraus folgt durch Differentiation:

$$S_{UI} = rac{\partial \ U_{CB}}{\partial \ I_{CBO}} = S_{II} \cdot (R_1 + lpha_N \ R_L) - R_L$$
 (41)

$$S_{UU} = rac{\partial \; U_{CB}}{\partial \; U_{EB}} = S_{IU} \; (R_1 + lpha_N \; R_L) + 1 \cong - lpha_N \; R_L \, G_1$$

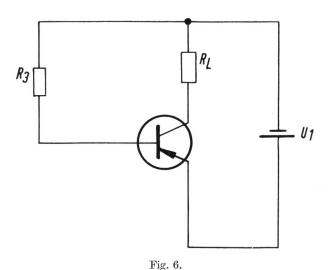
Man sieht sofort, dass die vorgenannten Stabilitätsfaktoren der Schaltung nach Figur 4 auch für den häufigen Fall gelten, wo nur eine Batterie U_1 vorhanden und $U_2 = 0$ ist.

Mit Hilfe der Gl. (38)...(42) können die Stabilitätsfaktoren der gebräuchlichsten Speiseschaltungen berechnet werden. Die Resultate sind in der Figur 5 zusammengefasst. Bei allen Schaltungen ist $S_{IU} \cong -G_I$. Dies bedeutet, dass der Einfluss von $\triangle U_{EB}$ auf den Emitterstrom I_E umso kleiner wird, je kleiner G_I , das heisst je grösser R_I gemacht wird. Um den Einfluss

Batterie	Koppl.	Schaltung		Eigenschaften	Stabilitätsfaktoren		
	Trafo	B-Sch	R_1 U_2 U_3 U_4				
		E-Sch	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{aligned} R_2 &= 0 \ R_3 &= \infty \ R_L &= 0 \end{aligned}$	$egin{array}{lll} S_{II} &= 0 \ S_{IU} &= -G_I \ S_{UI} &= 0 \ S_{UU} &= 0 \end{array}$		
schaltungen		C-Sch	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$				
2-Batterie-Speiseschaltungen	ВС	B-Seh	R ₁	$egin{array}{l} R_2=0 \ R_3=\infty \end{array}$	$egin{array}{ll} S_{II} &= 0 \ S_{IU} &= -G_I \ S_{UI} &= R_L \ S_{UU} &= -lpha_N R_L G_I \end{array}$		
		E-Sch	$R_2 \qquad \qquad$	$R_3=\infty$	$S_{II} = rac{-G_I}{G_2 + G_I (1 - lpha_N)} \ S_{IU} = G_2 S_{II} \ S_{UI} = S_{II} (R_I + lpha_N R_L) - R_L \ S_{UU} \cong - lpha_N R_L G_I$		
		C-Sch	R_2 Q R_1 Q	$egin{aligned} R_3 &= \infty \ R_L &= 0 \end{aligned}$	$S_{II} = rac{-G_I}{G_2 + G_I (1 - lpha_N)} \ S_{IU} = rac{G_2}{G_2} S_{II} \stackrel{\sim}{\cong} -G_I \ S_{UI} = rac{-1}{G_2 + G_I (1 - lpha_N)} \ S_{UU} = S_{IU} R_I + 1 \stackrel{\sim}{\cong} 0$		
1-Batterie-Speiseschaltungen	Trafo	B-Sch	$R_2 = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$				
		E-Sch	R_2 R_2 R_1 R_2 R_1 R_2 R_1 R_2	$R_L=0$	$egin{aligned} S_{II} &= rac{-G_I}{G_2 + G_3 + G_I (1 - lpha_N)} \ S_{IU} & \cong -G_I \ S_{UI} &= S_{II} R_I \ S_{UU} &= S_{IU} R_I + 1 \cong 0 \end{aligned}$		
		C-Sch	R_2 R_1 R_1 R_2 R_1 R_2 R_3 R_4				
	RC	B-Sch	$\begin{array}{c c} R_3 & & & & \\ \hline & R_L & & \\ \hline & R_2 & & & \\ \hline & & & \\ R_2 & & & \\ \hline \end{array}$		$S_{II} = rac{G_{I}}{G_{2} + G_{3} + G_{I} (1 - lpha_{N})}$		
		E-Sch	R_2 R_1 R_2 U_1		$egin{array}{l} S_{IU} \cong -G_I \ S_{UI} = S_{II} \left(R_I + lpha_N R_L ight) - R_L \ S_{UU} \cong - lpha_N R_L G_I \end{array}$		
		C-Sch	R_2 Q	$R_L = 0$	S_{II} u. S_{IU} wie B–Sch u. E–Sch $S_{UI}=S_{II}R_I$ $S_{UU}=S_{IU}R_I+1{\cong}0$		

Fig. 5

von $\triangle I_{CBO}$ zu verringern, müssen die Verhältnisse R_2/R_1 und R_3/R_1 klein gehalten werden.

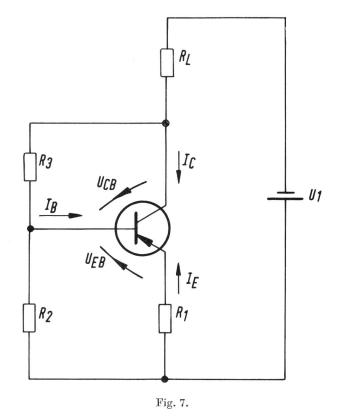

Eine Verbesserung der Stromstabilitätsfaktoren S_{II} und S_{IU} hat nach Gl. (41) und (42) auch automatisch eine Verbesserung der Spannungsstabilitätsfaktoren S_{UI} und S_{UU} zur Folge.

Eine sehr schlecht stabilisierte Schaltung zeigt die Figur 6, bei welcher $R_I=0$ und $R_2=\infty$ ist. Das Potential an der Basis des Transistors ändert sich proportional zum Basisstrom. Es gilt:

$$S_{II} = \frac{-1}{1 - \alpha_N}; \qquad S_{UI} = \frac{-R_L}{1 - \alpha_N}$$

$$S_{IU} = \frac{-G_3}{1 - \alpha_N}; \qquad S_{UU} = 1 - \left(\frac{\alpha_N}{1 - \alpha_N}\right) \cdot \frac{R_L}{R_3}$$

$$(43)$$


Eine gute Stabilisierung wird auf Kosten erhöhter Batterieleistung erkauft. Im Buche von Shea 4 wird gezeigt, dass für eine gegebene Schaltung bei gleichen Stabilitätsfaktoren S_{XY} die Zwei-Batterie-Speisung wirtschaftlicher ist, als jene mit nur einer Batterie. Es ist $P_1 > P_2$ (44)

wobei die Batterieleistungen gegeben sind durch:

1-Batterie-Speisung:
$$P_1 \cong I_E [U_{CB} (1 + S_{II}) + S_{UI} I_E]$$
(45)

2-Batterie-Speisung:
$$P_2 \cong (U_1 + U_2) I_E$$
 (46)

Eine weitere Speisemöglichkeit zeigt die Figur 7. In dieser Anordnung wird eine gleich- und wechselstrommässige Gegenkopplung vom Kollektor auf die Basis zurückgeführt.

Die Berechnung der Stabilitätsfaktoren geht genau gleich vor sich wie bei der Schaltung der Figur 4 (Gl. 33 ff) und führt zu folgenden Resultaten:

$$S_{II} = \frac{\partial I_E}{\partial I_{CBO}} = \frac{-G_1}{G_1 (1 - \alpha_N) + G_2 + G_3 + \frac{G_3}{G_L} (G_1 + G_2)}$$

$$S_{IU} = \frac{\partial I_E}{\partial U_{EB}} = S_{II} \left[G_2 + G_3 \left(1 + \frac{G_2}{G_1} \right) \right] \cong -G_1 \text{ (für } G_1 \leqslant G_2)$$

$$S_{UI} = \frac{\partial U_{CB}}{\partial I_{CBO}} = S_{II} \cdot R_1 \cdot [1 + R_L (G_1 + G_2)]$$

$$S_{UU} = \frac{\partial U_{CB}}{\partial U_{EB}} = 1 + \frac{R_L}{R_2} + S_{IU} R_1 [1 + R_L (G_1 + G_2)]$$
(47)

Ein Vergleich der ersten Zeile von Gl. (47) mit Gl. (38) zeigt, dass die gegengekoppelte Schaltung bei gleichen Widerstandswerten ein kleineres $S_{\rm II}$ aufweist als die gewöhnliche Schaltung nach Figur 4. Dies deutet auf eine bessere Stabilisierung hin, die mit der Gegenkopplung erkauft wird.

4.2. Numerisches Beispiel Nr. 1

Um einen Begriff der auftretenden Grössenordnungen zu bekommen sei das folgende numerische Beispiel durchgerechnet. Ein-Batterie-Speisung nach $Figur\ 8\ (U_2=0)$ mit folgenden Werten:

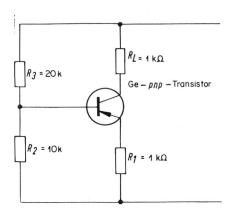


Fig. 8.

$$R_1 = 1 \text{ k}\Omega; R_2 = 10 \text{ k}\Omega; \alpha_N = 0.98$$

 $R_L = 1 \text{ k}\Omega; R_3 = 20 \text{ k}\Omega; I_{CBOA} = -1 \mu\text{A}$ (48)

Nach Gl. (38)...(42) werden die Stabilitätsfaktoren:

$$S_{II} = -5.9$$
 $S_{UI} = -12.7 \text{ k}\Omega$ $S_{IU} = -\frac{1}{1,14 \text{ k}\Omega}$ $S_{UU} = -0.74$ (49)

Die Änderung von I_E und U_{CB} mit der Temperatur erhält man aus den Gl. (30)...(32):

$$\frac{\partial I_E}{\partial T} = S_{II} \cdot \frac{\partial I_{CBO}}{\partial T} + S_{IU} \cdot \frac{\partial U_{EB}}{\partial T}$$

$$\frac{\partial I_E}{\partial T} = S_{II} \cdot \frac{\partial I_{CBO}}{\partial T} + S_{IU} \cdot \frac{\partial U_{EB}}{\partial T}$$
(50)

$$\frac{\partial U_{CB}}{\partial T} = S_{UI} \cdot \frac{\partial I_{CBO}}{\partial T} + S_{UU} \cdot \frac{\partial U_{EB}}{\partial T}$$
 (51)

Es werde mit den folgenden typischen Werten aus Gl. (3) und (22) weitergerechnet:

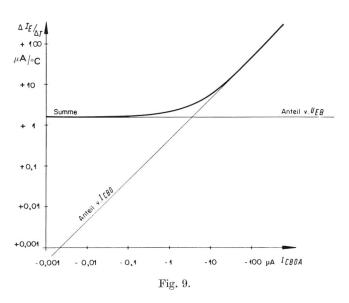
$$\frac{\partial I_{CBO}}{\partial T} = c_1 \cdot I_{CBOA} = 0.08 \cdot (-1 \,\mu\text{A}) / \,^{\circ}\text{C} = -0.08 \,\mu\text{A} / \,^{\circ}\text{C}$$
 (52)

$$\frac{\partial U_{EB}}{\partial T} = c_3 = -2 \text{ mV/oC}$$
 (53)

Gl. (49) (52) und (53) eingesetzt in Gl. (50) und (51) ergibt:

$$rac{\partial\,I_E}{\partial\,T} = +~0.47~\mu{
m A}/{
m ^{o}C} + 1.76~\mu{
m A}/{
m ^{o}C} = +~2.23~\mu{
m A}/{
m ^{o}C}$$
 (54)

$$rac{\partial~U_{~CB}}{\partial~T} = +~1,02~{
m mV/\,^{o}C} + 1,48~{
m mV/\,^{o}C} = +~2,5~{
m mV/\,^{o}C} \end{(55)}$$


Aus der Gl. (54) ist ersichtlich, dass bei dem mit $I_{CBOA} = -1~\mu \rm A$ angenommenen Transistor in der gegebenen Schaltung Figur 8 der Störeinfluss auf den Emitterstrom I_E durch das $\triangle U_{EB}$ rund 3,7 mal grösser ist als durch das $\triangle I_{CBO}$. Daraus ersieht man die Bedeutung des Stabilitätsfaktors S_{IU} , der in diesem Falle nicht vernachlässigt werden dürfte. Wäre dagegen $I_{CBOA} = -10~\mu \rm A$, so ginge Gl. (54) über in:

$$\frac{\partial I_E}{\partial T} = +4.7 \,\mu\text{A/°C} + 1.76 \,\mu\text{A/°C} = +6.46 \,\mu\text{A/°C}$$
 (56)

In diesem Falle ist nun der Störeinfluss auf I_E durch das \triangle I_{CBO} rund 2,7mal grösser, als jener durch das \triangle U_{EB} . Die Rollen sind also schon vertauscht, doch müssen immer noch beide Einflüsse berücksichtigt werden. Die beiden Anteile sind in der Figur 9 für verschiedene Werte von I_{CBOA} aufgetragen und summiert. Man sieht daraus, dass in der gegebenen Schaltung von Figur 8 alle Änderungen des Emitterstromes durch die Änderung von U_{EB} verursacht werden, wenn der Betrag des I_{CBOA} des Transistors kleiner als etwa 0,1 μ A ist. Umgekehrt rührt praktisch alle Änderung des I_E von \triangle I_{CBO} her, wenn der Ausgangswert $|I_{CBOA}| > 10$ μ A ist. Durch Vergrössern von R_I allein kann der Einfluss von \triangle U_{EB} (S_{IU}) verkleinert werden.

Aus der Gl. (55) kann geschlossen werden, dass im berechneten Fall beide Störeinflüsse eine ähnlich grosse Änderung in der Kollektor-Basis-Spannung $U_{\it CB}$ verursachen.

Je nach Art der Schaltung, der Grösse der Widerstände und der Grösse des Kollektorsperrstromes I_{CBO} des Transistors ändert sich der Arbeitspunkt mehr infolge des $\triangle I_{CBO}$ oder des $\triangle U_{EB}$ oder aber beider. Es werden deshalb mit Vorteil alle vier Stabilitätsfaktoren berücksichtigt.

4.3. Mehrstufige Schaltungen

Wenn in mehrstufigen Schaltungen die einzelnen Stufen durch Transformatoren oder Kondensatoren gleichstrommässig voneinander getrennt sind, dann kann jede einzelne Stufe für sich nach den Ausführungen des vorausgegangenen Abschnittes 4.1. behandelt werden. Sehr häufig werden aber auch Schaltungen verwendet, bei denen die Stufen gleichstrommässig gekoppelt sind.

Figur 10 zeigt ein erstes Beispiel mit zwei gleichstromgekoppelten Stufen mit Transistoren gleichen Typs. Genau gleich wie im letzten Abschnitt können auch für diese Schaltung die Stabilitätsfaktoren berechnet werden. Im Gesamten gibt es deren 16.

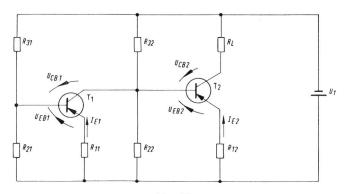


Fig. 10.

Die Resultate sind in der Tabelle 1 zusammengestellt. Die ersten vier Stabilitätsfaktoren geben die Änderungen der beiden Transistorarbeitspunkte an, wie sie von der Änderung des Kollektorsperrstromes des ersten Transistors (∂I_{CBOI}) herrühren. Die zweiten vier Stabilitätsfaktoren beziehen diese auf ∂U_{EBI} , die dritten vier auf ∂I_{CBO2} und die letzten auf ∂U_{EB2} . Man sieht aus der Tabelle, dass zum Beispiel $|S_{II21}| > S_{II22}$, das heisst auf I_{E2} wirkt sich ein ΔI_{CBOI} stärker aus als ein ΔI_{CBO2} .

In $Figur\ 11$ ist ebenfalls eine gleichstrommässig gekoppelte, zweistufige Schaltung gezeichnet. Im Gegensatz zu der von Figur 10 verwendet diese aber komplementäre Transistoren. Die Transistorgleichungen gelten für npn-Transistoren ebenfalls, vorausgesetzt, dass das Vorzeichen bei allen Strömen und Spannungen in sämtlichen Formeln umgekehrt wird. Insbesondere gilt die folgende Vorzeichentabelle, wenn die positiven Strom- und Spannungsrichtungen wie in Figur 1 angenommen werden.

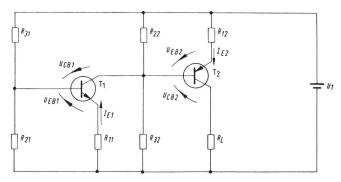


Fig. 11.

Vorzeichentabelle für Normalbetrieb (Fig. 1)

	I_B	I_E	I_C	U_{CB}	$U_{\it CE}$	U_{EB}	I_{CBO}	I_{EBO}	I_{SC}	I_{SE}	$\begin{array}{c c} & \text{für } \partial \\ \partial I_{CBO} \end{array}$	$artheta > 0$ ∂U_{EB}
pnp		+				+	_	_	+	+		_
npn	+-	_	+	+	+		+	+	_	—	+	+

Die Berechnung der Stabilitätsfaktoren der Schaltung nach Figur 11 geschieht nach denselben Methoden wie im Abschnitt 4.1. Es lässt sich zeigen, dass sie – bei der getroffenen Wahl der Bezeichnung der Widerstände – zu den genau gleichen Resultaten führt, wie sie für Figur 10 gefunden wurden. Also gilt für Figur 11 ebenfalls die Tabelle 1.

Um einen Anhaltspunkt über die Grössenordnung der einzelnen Werte zu erhalten, sind in der Tabelle 1

noch die Werte für das folgende numerische Beispiel 2 berechnet:

4.4. Numerisches Beispiel Nr. 2

Schaltung nach Figur 11 mit folgenden Werten:

$$\begin{array}{lll} R_{II} = 10 & \mathrm{k}\Omega & R_{I2} = 0.6 \,\mathrm{k}\Omega & \alpha_{NI} = \alpha_{N2} = 0.98 \\ R_{2I} = 100 \,\mathrm{k}\Omega & R_{22} = 3 & \mathrm{k}\Omega & I_{CBOIA} = +1 \,\mu\mathrm{A} \\ R_{3I} = 100 \,\mathrm{k}\Omega & R_{32} = 18 \,\mathrm{k}\Omega & I_{CBO2A} = -1 \,\mu\mathrm{A} \\ R_{L} = 0.6 \,\mathrm{k}\Omega & c_{3} = -2 \,\mathrm{mV/^{\circ}C} \end{array} \tag{57}$$

Aus den Resultaten entnimmt man zum Beispiel:

$$|S_{II21}| > |S_{II11}|$$
 d.h. $\triangle I_{CBO1}$ wirkt sich stärker aus auf I_{E2} als auf I_{E1} $|S_{UI11}| > |S_{UI21}|$ d.h. $\triangle I_{CBO1}$ wirkt sich stärker aus auf U_{CB1} als auf U_{CB2} $|S_{IU21}| > |S_{IU11}|$ d.h. $\triangle U_{EB1}$ wirkt sich stärker aus auf I_{E2} als auf I_{E1} etc.

Analog zu Gl. (50) ist die totale Änderung des I_{E2} gegeben durch:

$$\frac{\partial I_{E2}}{\partial T} = S_{II2I} \cdot \frac{\partial I_{CBOI}}{\partial T} + S_{IU2I} \cdot \frac{\partial U_{EBI}}{\partial T} + S_{II22} \cdot \frac{\partial I_{CBO2}}{\partial T} + S_{IU22} \cdot \frac{\partial U_{EB2}}{\partial T}$$
(58)

Es ist analog zu Gl. (52) und (53):

$$\frac{\partial I_{CBOI}}{\partial T} = c_1 \cdot I_{CBOIA} = 0.08 \cdot (+1 \,\mu\text{A/oC}) = +0.08 \,\mu\text{A/oC} \qquad \frac{\partial U_{EBI}}{\partial T} = -c_3 = +2 \,\text{mV/oC}
\frac{\partial I_{CBO2}}{\partial T} = c_1 \cdot I_{CBO2A} = 0.08 \cdot (-1 \,\mu\text{A/oC}) = -0.08 \,\mu\text{A/oC} \qquad \frac{\partial U_{EBI}}{\partial T} = +c_3 = -2 \,\text{mV/oC}$$
(59)

Obige Werte Gl. (59) und die Stabilitätsfaktoren aus Tabelle 1 in die Gl. (58) eingesetzt ergibt:

$$\frac{\partial I_{E2}}{\partial T} = + (1,59 + 0,64 + 0,32 + 3,06) \ \mu \text{A/°C} = +5,61 \ \mu \text{A/°C}$$
(60)

Tabelle 1

Stabilitätsfaktoren der zweistufigen direktgekoppelten Schaltung nach Figur 10 mit Transistoren vom selben Typ und nach Figur 11 mit komplementären Transistoren (Numerische Werte für das Beispiel Nr. 2, Gl. 57)

	Doispiol III. 2, Oil Oil	
	0.1	Werte für Beispiel Nr. 2
$S_{II11} =$	$rac{\partial I_{EI}}{\partial I_{CBOI}} = rac{-G_{II}}{G_{2I}+G_{3I}+G_{II}\left(1-lpha_{NI} ight)}$	$-4,\!13$
$S_{II21} =$	$=rac{\partial \ I_{E2}}{\partial \ I_{CBO1}}=S_{II22}\left(lpha_{N1}\cdot S_{III1}\!-\!1 ight)$	+19,92
$S_{UI11} =$	$rac{\partial \mathit{U}_\mathit{CB1}}{\partial \mathit{I}_\mathit{CB01}} = \mathit{R}_\mathit{11} \cdot \mathit{S}_\mathit{II11} \! - \! \mathit{R}_\mathit{12} \cdot \mathit{S}_\mathit{II21}$	– 53,3 k Ω
$S_{\it UI21} =$	∂U_{ana}	$+$ 23,7 k Ω
$S_{IU11}=$	$\frac{\partial I_{E1}}{\partial U_{EB1}} = S_{IIII} \cdot (G_{2I} + G_{3I}) \cong -G_{II}$	$-\frac{1}{12,1~\mathrm{k}\Omega}$
$S_{IU21} =$	$rac{\partial I_{E2}}{\partial U_{EBI}} = S_{IUI1} \cdot S_{II22} \cdot lpha_{NI}$	$+\frac{1}{3.13~\mathrm{k}\Omega}$
$S_{UU11} =$	$\frac{\partial \textit{U}_\textit{CB1}}{\partial \textit{U}_\textit{EB1}} = 1 + \textit{R}_\textit{I1} \cdot \textit{S}_\textit{IUII} - \textit{R}_\textit{I2} \cdot \textit{S}_\textit{IU21}$	-0,018
$S_{UU21} =$	$=rac{\partial U_{CB2}}{\partial U_{EB1}} = S_{IU2I} \cdot (R_{I2} + lpha_{N2} R_L)$	+ 0,37
$S_{II12} =$	$rac{\partialI_{E1}}{\partialI_{CBO2}}=0$	0
	$rac{\partial \ I_{E2}}{\partial \ I_{CBO2}} = rac{-G_{12}}{G_{22} + G_{32} + G_{I2} \ (1 - lpha_{N2})}$	-3,95
$S_{\it UI12} =$	$rac{\partial U_{CB1}}{\partial I_{CB 02}} = - R_{I2} \cdot S_{II22}$	$+$ 2,37 k Ω
$S_{UI22}=$	$rac{\partial \mathit{U}_\mathit{CB2}}{\partial \mathit{I}_\mathit{CBO2}} = \mathit{S}_\mathit{II22} \cdot (\mathit{R}_\mathit{I2} + lpha_\mathit{N2} \mathit{R}_\mathit{L}) - \mathit{R}_\mathit{L}$	$-5,29~\mathrm{k}\Omega$
$S_{IU12} =$	$rac{\partial I_{E1}}{\partial U_{EB2}} = 0$	0
	∂I_{T0}	$-\frac{1}{0,65~\mathrm{k}\Omega}$
$S_{UU12}=% {\displaystyle\int\limits_{UU12}} \left[{$	$rac{\partial U_{CBI}}{\partial U_{EB2}} = - R_{I2} \cdot S_{IU22} - 1$	-0,075 $-0,83$
$S_{UU22}=$	$egin{align} rac{\partial U_{EB2}}{\partial U_{EB2}} &= S_{II22} \cdot (G_{32} + G_{22}) \cong -G_{I2} \ rac{\partial U_{CB1}}{\partial U_{EB2}} &= -R_{I2} \cdot S_{IU22} - 1 \ rac{\partial U_{CB2}}{\partial U_{EB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{EB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{EB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ \ rac{\partial U_{CB2}}{\partial U_{CB2}} &= S_{IU22} \cdot (R_{I2} + lpha_{N2} R_L) + 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	-0,83

Ganz analog lassen sich auch die andern Grössen berechnen. In der nachfolgenden *Tabelle 2* sind die Resultate zusammengestellt:

Tabelle 2: Anteile der Arbeitspunktänderungen im Beispiel Nr. 2 nach Figur 11.

	An	teile herr	~	Di-			
	∂I_{CBO1}	∂U_{EB1}	∂I_{CBO2}	∂U_{EB2}	Summe	mension	
$rac{\partial I_{E1}}{\partial T}$	0,33	0,165	0	0	0,49	$\mu\mathrm{A/o_C}$	
$rac{\partial I_{E2}}{\partialT}$	+ 1,59	+ 0,64	+ 0,32	+3,06	+ 5,61	$\mu\mathrm{A/o_C}$	
$rac{\partial U_{CB1}}{\partial T}$	4,26	0,04	0,19	+ 0,15	4,34	mV/o _C	
$rac{\partial U_{CB2}}{\partial T}$	+ 1,9	+ 0,74	+ 0,42	+ 1,66	+4,72	mV/o _C	

Aus dieser Tabelle 2 folgt:

- 1. Der Emitterstrom I_{EI} des ersten Transistors T_1 ändert sich nur infolge seiner eigenen Kollektorsperrstromänderung ∂I_{CBOI} und Emitter-Basis-Spannungsänderung ∂U_{EBI} . Der zweite Transistor wirkt sich gar nicht auf I_{EI} aus.
- 2. Der Emitterstrom I_{E2} des zweiten Transistors T_2 ändert sich hauptsächlich auf Grund seiner eigenen Emitter-Basis-Spannungsänderung ∂U_{EB2} , weil R_{I2} nur 600 Ω ist; dann aber auch noch auf Grund der Kollektorsperrstromänderung ∂I_{CB01} des ersten Transistors. ∂U_{EB1} und ∂I_{CB02} haben relativ wenig Einfluss.
- 3. Die Kollektor-Basis-Spannung U_{CBI} des ersten Transistors T_1 ändert sich praktisch nur infolge der Änderung ∂I_{CBOI} seines eigenen Kollektorsperrstromes.
- 4. Alle vier Veränderungen haben ähnlichen Einfluss auf die Änderung der Kollektor-Basis-Spannung $U_{\it CB2}$ des zweiten Transistors.

Das Beispiel zeigt, wie bei einer gegebenen Schaltung mit Hilfe der Stabilitätsfaktoren die Änderungen der Arbeitspunkte sofort berechnet werden können.

Das Gesagte gilt nur für den angenommenen Fall, ist aber typisch. Wichtig ist, dass *alle* Einflüsse berücksichtigt werden, bevor nicht eindeutig abgeklärt ist, dass der eine oder andere vernachlässigt werden kann.

Wird noch eine weitere Stufe angefügt, so erhält man die dreistufige gleichstromgekoppelte Komplementärschaltung von Figur 12. Die Stabilitätsfaktoren können wieder ganz analog berechnet werden. Sie sind in der Tabelle 3 zusammengestellt und erlauben, jedes numerische Beispiel abzuklären

$$S_{IIII} = \frac{\partial I_{EI}}{\partial I_{CBOI}} = \frac{-G_{II}}{G_{2I} + G_{3I} + G_{II}(1 - \alpha_{NI})}$$

$$S_{II2I} = \frac{\partial I_{E2}}{\partial I_{CBOI}} = S_{II22} \cdot (\alpha_{NI}S_{IIII} - 1)$$

$$S_{II3I} = \frac{\partial I_{E3}}{\partial I_{CBOI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{II3I} = \frac{\partial I_{E3}}{\partial I_{CBOI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{CBOI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{II21}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{IIII}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{IIII}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{IIII}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{II33} \cdot \alpha_{N2} \cdot S_{IIII}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{IIII} \cdot \alpha_{III} \cdot S_{IIII}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{IIII} \cdot \alpha_{III} \cdot S_{IIII}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{IIII} \cdot \alpha_{III} \cdot \alpha_{III}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{EBI}} = S_{IIII} \cdot \alpha_{III} \cdot \alpha_{IIII}$$

$$S_{IIII} = \frac{\partial I_{E3}}{\partial I_{E3}} = S_{IIII} \cdot \alpha_{IIII} \cdot \alpha_{IIII}$$

$$S_$$

$$S_{II12} = \frac{\partial I_{EI}}{\partial I_{CBO2}} = 0$$

$$S_{II22} = \frac{\partial I_{E2}}{\partial I_{CBO2}} = \frac{-G_{I2}}{G_{22} + G_{32} + G_{I2} (1 - \alpha_{N2})}$$

$$S_{II32} = \frac{\partial I_{E3}}{\partial I_{CBO2}} = S_{II33} \cdot (\alpha_{N2} S_{II22} - 1)$$

$$S_{II32} = \frac{\partial I_{E3}}{\partial I_{CBO2}} = -R_{I2} \cdot S_{II22}$$

$$S_{II32} = \frac{\partial U_{CBI}}{\partial I_{CBO2}} = -R_{I2} \cdot S_{II22}$$

$$S_{II32} = \frac{\partial U_{CBI}}{\partial I_{CBO2}} = R_{I2} \cdot S_{II22}$$

$$S_{II32} = \frac{\partial U_{CBI}}{\partial I_{CBO2}} = R_{I2} \cdot S_{II22} - R_{I3} S_{II32}$$

$$S_{II32} = \frac{\partial U_{CBI}}{\partial U_{EB2}} = -(1 + R_{I2} S_{IU22})$$

$$S_{II32} = \frac{\partial U_{CB2}}{\partial I_{CBO2}} = S_{II32} \cdot (R_{I3} + \alpha_{N3} R_{L})$$

$$S_{II32} = \frac{\partial U_{CB3}}{\partial U_{EB2}} = S_{II32} \cdot (R_{I3} + \alpha_{N3} R_{L})$$

$$S_{II32} = \frac{\partial U_{CB3}}{\partial U_{EB2}} = S_{II32} \cdot (R_{I3} + \alpha_{N3} R_{L})$$

$$S_{III3} = \frac{\partial I_{EI}}{\partial I_{CBO3}} = 0$$

$$S_{II23} = \frac{\partial I_{E2}}{\partial I_{CBO3}} = 0$$

$$S_{II23} = \frac{\partial I_{E2}}{\partial U_{EB3}} = 0$$

$$S_{II33} = \frac{\partial I_{E3}}{\partial I_{CBO3}} = \frac{-G_{I3}}{G_{23} + G_{33} + G_{I3}} (1 - \alpha_{N3})$$

$$S_{III3} = \frac{\partial U_{CBI}}{\partial U_{EB3}} = 0$$

$$S_{III3} = \frac{\partial U_{CBI}}{\partial U_{CBI}} = 0$$

$$S_{III3} = \frac{\partial U_{CBI}}{\partial U_{CBI}} = 0$$

$$S_{III3} = \frac{\partial U_{CBI}}{\partial U_{CBI}} = 0$$

$$S_{III3} = \frac{\partial U_{CBI}}{\partial U_{$$

Es ist auch möglich eine Gleichstromgegenkopplung über mehrere Stufen zu benützen, um die Arbeitspunkte zu stabilisieren. In der Arbeit ¹ wird auf solche Schaltungen hingewiesen.

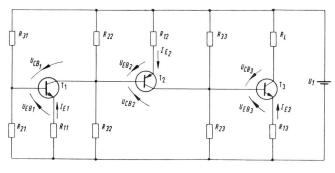
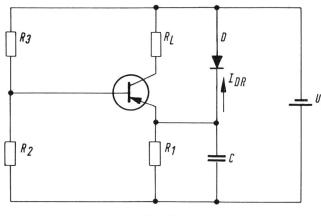
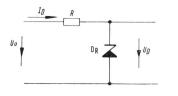


Fig. 12.

5. Gleichstromstabilisierung mit nichtlinearen Elementen

Es gibt Schaltungen (Demodulatoren, B-Verstärker), bei denen die vorstehend beschriebene Stabilisierungsmethode versagt, weil zum Beispiel der mittlere Gleichstrom von der Grösse des zu verarbeitenden Wechselstromsignals abhängig ist. Hier müssen zur Stabilisierung nichtlineare Elemente, wie Dioden, Varistoren oder Thermistoren verwendet werden.




Fig. 13.

Eine solche Schaltung mit einer rückwärts vorgespannten Diode zeigt Figur~13. Bei einem Temperaturanstieg $\triangle T$ will der Emitterstrom I_E um den Betrag $\triangle I_E$, gemäss Gl. (50), ansteigen:

$$\Delta I_E = (S_{II} \cdot c_1 I_{CBOA} + S_{IU} \cdot c_3) \cdot \Delta T \qquad (61)$$

Dies kann verhindert werden, wenn die Diode eine solche Rückwärtscharakteristik hat, dass infolge des Temperaturanstieges $\triangle T$ durch sie ein zusätzlicher Strom $\triangle I_E$ abfliesst.

Zur Stabilisierung von Gleichspannungen bei kleinen Leistungen eignen sich die Referenzspannungs-Dioden (Zener-Dioden) sehr gut. Nach dem Überschreiten der Referenzspannung $U_{Ref.}$ (siehe Figur 14)

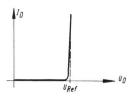


Fig. 14.

tritt ein Lawineneffekt ein, so dass der Strom sehr stark ansteigt, während die Spannung annähernd konstant bleibt.

6. Schlussbemerkungen

Die Zunahme des Kollektorsperrstromes I_{CBO} um $6\dots 9\,\%$ je °C und die Abnahme der Emitter-Basis-Spannung U_{EB} um etwa 2 mV je °C bei steigender Temperatur, sind gegebene physikalische Eigenschaften des Transistors, an denen der Schaltungstechniker nichts ändern kann. Diese beiden Veränderungen rufen ein Abwandern des Arbeitspunktes hervor. Die eingeführten Stabilitätsfaktoren S_{XY} geben Aufschluss über die Grösse dieser Abwanderung.

So gibt zum Beispiel $S_{II} = \frac{\partial I_E}{\partial I_{CBO}}$ an, um wieviel sich der Emitterstrom in der gegebenen Schaltung ändert, wenn sich der Kollektorsperrstrom - infolge Temperaturänderung – um ∂I_{CBO} vergrössert oder verkleinert. Oder S_{IU} gibt die Änderung ∂I_E an, welche durch eine Änderung ∂U_{EB} der Emitter-Basis-Spannung hervorgerufen wird. Die Stabilitätsfaktoren sind in erster Linie von der Art der Speiseschaltung (Grösse der Widerstände) und erst in zweiter Linie (über α_N) vom verwendeten Transistor abhängig. Ideale Stabilisierung ist dann erreicht, wenn der betreffende Stabilitätsfaktor $S_{XY} = 0$ ist. Es wurde gezeigt, dass bei Verwendung von Transistoren mit kleinen Kollektorsperrströmen ($< 1 \mu A$) der Einfluss der Emitter-Basis-Spannung in typischen Speiseschaltungen überwiegen kann. Abhilfe bringt eine Vergrösserung des Emitterwiderstandes R_I (Fig. 4). Dagegen wird bekanntlich der Einfluss von I_{CRO} verkleinert, wenn die Spannungsteilerwiderstände R_2 und R_3 (oder nur einer davon) im Verhältnis zum Emitterwiderstand R_1 verkleinert werden.

Bei wechselstrommässig gekoppelten Schaltungen kann jede Stufe für sich einzeln berechnet werden. Sind dagegen zwei oder mehr Stufen gleichstrommässig gekoppelt, so können sich die beiden Änderungen ∂I_{CBOj} und ∂U_{EBj} jedes Transistors im Prinzip auf sämtliche Arbeitspunkte auswirken. Die Tabellen 1 bis 3 geben darüber Aufschluss. Das numerische Beispiel hat gezeigt, dass bei einer typischen Schaltung für einige Werte sämtliche Änderungen in den I_{CBO} und U_{EB} der beiden Transistoren zu berücksichtigen sind. Was für die einzelne Stufe bezüglich der Verbesserung der Stabilität gesagt wurde,

gilt auch hier: R_{11} und R_{12} möglichst gross; R_{21} , R_{31} , R_{22} , R_{32} möglichst klein.

Herr *E. Hauri* hat in der 3. Lektion des PTT-Transistorkurses unter anderem die Grundgleichungen des idealen Transistors, wie sie im vorliegenden Abschnitt 2 verwendet werden, zusammengestellt. Herr *E. J. Rathé* machte einige Anregungen und Beiträge. Der Verfasser möchte den beiden Herren seinen herzlichsten Dank aussprechen.

Bibliographie

- ¹ Guggenbühl W. und Schneider B.: Zur Stabilisierung des Gleichstromarbeitspunktes von Flächentransistoren, Archiv der elektrischen Übertragung, Bd. 10, H. 9/1956, S. 361 ff.
- ² Lo u. a., Transistor Electronics, Prentice Hall, 1955.

- ³ Ebbinge W., Dammers B. G. und Uitjens A. G. W.: Temperature Stable Transistor Circuit Based on the Half Supply Voltage Principle, Electronic Applications, Vol. 18, No. 1, 1957/58, S. 1ff.
- ⁴ Shea R. F. ed.: Transistor Circuit Engineering, New York, 1957.
- ⁵ Bowen B. A.: Correspondence on «Design of Transistor RC Amplifiers», IRE Transaction on Audio, Vol. AU-7, No. 1, 1959, S. 22.
- ⁶ Guggenbühl W. und Wunderlin W.: Experimentelle Bestimmung des Basis- und Emitterzuleitungswiderstandes von legierten Flächentransistoren mittels Niederfrequenzmessungen, Archiv der elektrischen Übertragung, Bd. 11, H. 9/1957, S. 355ff.,
- ⁷ Ghandhi S. K., Analysis and Design of Transistor Bias Networks, Proc. Natl. Electronics Conf., Vol. 12, Chicago 1956.

M. GFELLER, Bern

Betrachtungen über die Wirtschaftlichkeit von C-5-Trägeranlagen

Considérations d'ordre économique sur les installations à courants porteurs C5

Zusammenfassung. Anhand eines praktischen Beispiels wird zwischen einer C-5-Trägeranlage und einem neuen Niederfrequenzkabel ein Wirtschaftlichkeitsvergleich angestellt. Anschliessend wird der Einfluss der Einsatzdauer, der Grösse des Leitungsbündels, der Trassekosten und der gleichzeitigen Ortskabelausbauten auf die wirtschaftliche Grenzlänge Niederfrequenzkabel zu C-5-Trägeranlage untersucht.

erste 12-Kanal-Trägerfrequenzanlage schweizerischen Fernleitungsnetz wurde im Jahre 1943 zwischen Bern und Zürich in Betrieb genommen. Als Trägerleitung war für die beiden Sprechrichtungen in zwei verschiedenen Niederfrequenzkabeln je ein Paar entpupinisiert, abgeglichen und die ganze Anlage von etwa 130 km Länge in 6 Verstärkerfelder unterteilt worden. Diese erste Trägeranlage hatte somit einen Umfang von 1560 Kanalkilometern. Ihr folgten innert kurzer Zeit weitere Trägerfrequenzverbindungen auf Niederfrequenzkabeln, die jedoch bald durch das eigentliche paarsymmetrische Trägerkabelnetz, das sich praktisch über unser ganzes Land ausdehnt, und seit dem Jahre 1952 durch das gegenwärtig noch im Ausbau begriffene Koaxialnetz abgelöst wurden.

Zum Vergleich sei dieser ersten Anlage (von 1560 Kanalkilometern aus dem Jahre 1943) der heutige Stand des schweizerischen Fern- und Bezirksleitungsnetzes gegenübergestellt, wobei sowohl nationale als auch internationale Verbindungen eingerechnet sind [1]:

Tonfrequente Sprechkreise 708 352 Paarkm Trägerfrequente Sprechkreise:

5-Kanal-Systeme 54 519 Kanalkm 12-Kanal-Systeme 586 175 Kanalkm

640 694 Kanalkm

Richtstrahlanlagen

11 485 Kanalkm

Résumé. A l'aide d'un exemple pratique, l'auteur entreprend une étude économique comparative entre une installation à courants porteurs C5 et un nouveau câble à basse fréquence. Puis il examine l'influence de la durée d'exploitation, de la grandeur du faisceau, du coût du tracé et des extensions simultanées de câbles locaux sur la limite économique câble BF/porteurs C5.

621.395.44:621.315.2.003

La première installation à courants porteurs à 12 voies du réseau suisse interurbain fut mise en service en 1943 entre Berne et Zurich. Le circuit porteur fut constitué sur un lacet dépupinisé dans deux câbles BF différents pour chaque direction et équilibré; toute l'installation, qui comptait environ 130 km de longueur, fut divisée en 6 secteurs d'amplification. Cette première installation à courants porteurs représentait ainsi une capacité de 1560 km-voie. D'autres liaisons similaires sur câbles à basse fréquence suivirent assez rapidement; elles furent cependant bientôt remplacées par le réseau de câbles à paires symétriques qui couvre toute l'étendue de notre pays, puis, dès 1952, par le réseau suisse de câbles coaxiaux, dont la construction se poursuit encore activement aujourd'hui.

En regard des 1560 km-voie de la première installation de 1943, voici l'état actuel du réseau suisse interurbain et rural, dans lequel sont comprises aussi bien les liaisons nationales qu'internationales [1]:

Circuits à basse fréquence 708 352 km-lacet Circuits à courants porteurs:

Systèmes à 5 voies 54 519 km-voie Systèmes à 12 voies 586 175 km-voie

640 694 km-voie Installations de faisceaux hertziens 11 485 km-voie

Ces chiffres illustrent de manière frappante le développement important de la téléphonie à courants