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Allgemeine aktive, passive mid nielitreziproke Vierpole
Eine Einführung in neuere Probleme der Vierpoltheorie, insbesondere in der Mikrowellentechnik

Yon Oeorg W. Epprecht, Bern 621.372.5:621.3.029.6

Zusammenfassung. In der Theorie der Schaltungen aus
Wellenleitern allgemeinster Art verwendet man an Stelle der
konventionellen Im-pedanz-, Admittanz- und Kettenmatrizen oft
vorteilhafter die Wellenmatrizen. Beide Arten von Matrizen
werden hier einander gegenübergestellt, zunächst bei der Diskussion

der allgemeinen Bedingungen für einrichtige und vollständige

Passivität von Vierpolen und dann in einem Kapitel über
die Reziprozitätseigenschaften, wobei die Vierpole in die Klassen
der areziproken und der komplex reziproken eingeteilt werden.
Unter den letzteren sind die gewöhnlichen reziproken und die
antireziproken Netzwerke von besonderer Bedeutung. Im weiteren
iverden die interessanten Gruppen der Impedanz-invertierenden
und -konvertierenden Vierpole besprochen, von denen besonders

jene mit nichtreziproken Phasenbeziehungen steigende Bedeutung

erlangen. Ein weiterer Abschnitt befasst sich mit
dämpfungsunsymmetrischen Vierpolen, die, zusammen mit den vorgängig
behandelten, schliesslich die Synthese allgemeinster Vierpole aus
einer Kettenschaltung von Elementarvierpolen mit je einer
einzigen Bestimmungsgrösse erlauben.

1. Allgemeines

Die Vierpoltheorie ist vor etwas über 30 Jahren
hervorgegangen aus der Leitungstheorie, aus der sie

ja viele Bezeichnungen übernommen hat. Während
die Leitungstheorie mit verteilten Kapazitäten,
Induktivitäten, Widerständen und Leitwerten zu tun
hat, wurde die Vierpoltheorie mit Erfolg auf
Übertragungsnetzwerke mit konzentrierten aktiven und
passiven Elementen erweitert. Die grösste Bedeutung
hat die Vierpoltheorie wahrscheinlich in der
Filtertechnik erlangt. Dabei versteht man unter einem Vierpol

fast immer eine Schaltung, die vielleicht zutreffender

Zweiklemmenpaar genannt würde. Wir
beschränken uns in dieser Arbeit denn auch im wesentlichen

auf solche Vierpole, obwohl die Vierpoltheorie
sich in der Folge erweitert hat zur Theorie der
n-Klemmenpaare.

Besonders in den letzten 10 bis 15 Jahren sind
neue Impulse auf die Vierpoltheorie übergegangen,

Résumé. Dans la théorie des circuits formés de guides d'ondes
du type le plus général on emploie souvent avec avantage les
matrices d'ondes au lieu des matrices habituelles d'impédance,
d'admittance et de chaîne. On compare d'abord les deux genres
de matrices dans la discussion des conditions générales pour
réaliser, d'une part, des quadripôles passifs unidirectionnels, et,
d'autre part, des quadripôles passifs dans les deux directions.
La comparaison se poursuit dans un chapitre sur les caractères
de réciprocité, chapitre dans lequel on classe les quadripôles
en aréciproques et en réciproques complexes. Parmi ces derniers
les réseaux réciproques ordinaires et les réseaux antiréciproques
revêtent une importance particulière. Ensuite on traite des
intéressants groupes de quadripôles inverseurs et convertisseurs
d'impédances en relevant le rôle croissant joué par ceux dont les
relations de phase ne sont pas réciproques. Le chapitre suivant
est consacré aux quadripôles à affaiblissement asymétrique. En
combinant ces derniers avec ceux étudiés précédemment on
aboutit à la synthèse du quadripôle le plus général formé par
une chaîne de quadripôles élémentaires définis chacun par une
seule grandeur caractéristique.

einerseits von der Servotechnik her und anderseits
aus der Technik der Dezimeter- und der Zentimeterwellen.

Diese letztere Technik ist eine ausgesprochene
Leitungstechnik, es gibt darin fast nur noch Elemente,
die als Leitungen behandelt werden müssen.

Die Frequenzbänder, die bis Ende der dreissiger
Jahre erschlossen waren, wurden schaltungsmässig
noch fast ausschliesslich durch die Technik der
konzentrierten Elemente beherrscht. Entsprechend
entwickelte sich auch die Vier- und Mehrpoltheorie in
dieser Richtung und man gewöhnte sich so an das
Rechnen mit konzentrierten Impedanzen, dass beim
vermehrten Aufkommen der Leitungstechnik in
dieser zunächst noch hauptsächlich mit
Ersatzschaltungen aus konzentrierten Elementen gearbeitet
wurde. In der Hohlleitertechnik, wo eindeutige
«Klemmenströme» und «Klemmenspannungen» nicht
mehr definiert werden können, wirken jedoch die
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Ersatzschaltungen manchmal gekünstelt, obwohl sie
oft noch eine willkommene Brücke bilden zu analogen
Problemen aus der Technik der konzentrierten
Impedanzen. Es zeichnet sich nun aber die Tendenz ab,
bei dieser Technik wieder mehr in Feldern und Wellen
statt in Impedanzen, Spannungen und Strömen zu
denken. Die Probleme dieser Technik sind im
allgemeinen besser zu überblicken, wenn man sich
fortschreitende und reflektierte Wellen vorstellt, als

wenn man versucht, sich die Impedanzen und ihre
Transformationen zu vergegenwärtigen. In der
Vierpoltheorie äusserte sich dies im Aufkommen der
Wellenmatrizen an Stelle der üblichen Impedanz-,
Admittanz- und Kettenmatrizen. Die Elemente der
Wellenmatrizen sind nicht mehr Impedanzen und
Übertragungsverhältnisse, sondern Reflexions- und
Durchlass-Koeffizienten, sie setzen nicht Ströme und
Spannungen in Beziehung zueinander, sondern
einfallende, reflektierte und durchtretende Wellen.

Ein weiterer Anstoss zu vermehrter Aktivität auf
dem Gebiete der Vierpoltheorie ging ebenfalls aus der
cm-Wellentechnik hervor, und zwar durch die
Realisierung eines neuen Elementes, des Gyrators. Der
ideale Gyrator ist ein verlustloser, passiver Vierpol,
bei dem eine rückwärts durch den Vierpol laufende
Welle eine um n grössere Phasendrehung erleidet als
eine vorwärts durchlaufende Welle. Der Gyrator ist
also ein sogenannter nichtreziproker Vierpol. Solche
Vierpole hatte man lange Zeit in der Theorie etwas
vernachlässigt, weil sie als passiv nicht realisierbar
erschienen. Neben dem Gyrator sind in der Folge eine
Reihe anderer nichtreziproker Vierpole entwickelt
worden, die sich jedoch (wenigstens theoretisch) alle
auf Schaltungen mit Gyratoren zurückführen lassen.
Man kann zeigen, dass sich alle physikalisch möglichen

beliebigen Vierpole realisieren lassen, wenn man
Gyratoren zu Hilfe nimmt [3, 11].

In der vorliegenden Arbeit soll nun versucht werden,

die besonderen Eigenschaften und die Stellung
dieser neuen Elemente im Rahmen der Vierpoltheorie
aufzuzeigen. Wenn auch die Realisierung von Gyratoren

ohne aktive Elemente im Frequenzgebiet unterhalb

einiger Hundert MHz noch nicht gelungen ist,
so ist doch zu erwarten, dass von der Theorie der
nichtreziproken Elemente aus auch auf die
Schaltungstechnik dieser Frequenzen neue Anregungen
ausgehen werden, so dass sich eine Übersicht über
diesen Teil der Vierpoltheorie umsomehr rechtfertigt.

2. Wellenmatrizen

Da wir später von den Wellenmatrizen, deren
Kenntnis noch nicht allgemein vorausgesetzt werden
kann, Gebrauch machen werden, sei hier kurz auf
diese Darstellungsart des Vierpoles eingegangen.

Stellt man sich einen Vierpol als Schaltung aus
konventionellen Elementen, wie Kondensatoren,
Induktivitäten, Widerständen und klassischen
Verstärkerröhren, vor, aussen zugänglich durch zwei
Eingangs- und zwei Ausgangsklemmen, so entspricht

dem die Behandlung mit den üblichen Matrizen, die
Ströme und Spannungen in Beziehung setzen. Die
Vierpolgleichungen lassen sich dann auf folgende
Arten schreiben: [1]

mit der Impedanzmatrix Z

U1 Z11 Z12 h
U2 Z21 Z22 h
mit der Admittanzmatrix Y

ü 2/n 2/12 U

h UiX 2/22 u2

ferner mit der Kettenmatrix A
U1 «11 «12 ü2

h «21 «22 h
und mit der Reihen-Parallelmatrix D

üx dn d12 U 2

h d2x d2 2 h

(1)

(2)

(3)

(4)

In der Koaxialtechnik und bei allen Leitersystemen,

auf denen der transversal elektromagnetische
Wellentyp (Lec/ierwelle) existiert, haben die Begriffe
Strom und Spannung eines bestimmten Leiterquerschnittes

eine eindeutige Definition. Da man es aber
mit verteilten Netzwerkelementen zu tun hat, sind
die Ersatzschaltungen mit konzentrierten Elementen,
die bei tieferen Frequenzen so erfolgreich verwendet
werden, nur noch beschränkt gültig. Noch deutlicher
werden die Unzulänglichkeiten der Ersatzschaltungen
bei der Wellenleitertechnik, wo man überhaupt nicht
mehr von Klemmen reden kann und wo der englische
Ausdruck «two port» die Situation treffender
beschreibt. Messtechnisch arbeitet man hier mehr mit
dem Wellenbegriff; man bestimmt stehende Wellen,
misst einfallende und reflektierte Wellen und hat mit
Feldverzerrungen zu tun. Ein weiterer Umstand, der
die Wellenanschauung begünstigt, ist, dass man in
dieser Technik fast immer mehr oder weniger aneinander

angepasste Schaltelemente verwendet, also ein
System aufbaut aus Elementen mit gleichen oder
ähnlichen Wellenwiderständen. Dieser Tatsache wird nun
die Vierpoltheorie durch Einführung der Wellenmatrizen

gerecht.
Wie in Figur 1 dargestellt, kann der Betriebszustand

eines Vierpoles durch vier Wellen charakteri-

Fig. 1. Ein- und auslaufende Wellen an einem Vierpol

siert werden, zwei einlaufende «p» und zwei auslaufende

« q». Man kann nun auch hier immer zwei dieser
Wellen als Funktion der andern beiden darstellen.
Wichtig sind die beiden folgenden Fälle :
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1. austretende Wellen in Funktion der eintretenden:

h sn Pi + «12 lh
Ç-2 — S21 Pl + S22 p2

2. Wellen am Vierpoleingang (Index 1) in Funktion

(5)

der Wellen am Ausgang (Index 2) :

h ~ P2 + ^12 I2

Pi ^21 P2 + ^22 I2
(6)

Mit (5) ist auch schon, wenigstens formell, die
Streumatrix

S
125u

S21 S22

und mit (6) die Transfermatrix:

S-i

T
kl tl2

21 t-22
(8)

definiert.
Hier muss nun noch etwas über die Zählrichtungen

gesagt werden. Für die Zählrichtung der Ströme in
den klassischen Vierpolmatrizen sind zwei Systeme
üblich :

«1

A B

Fig. 3. Zählrichtungen für normierte Wellengrössen

Im Falle A werden also die vier Wellen stets in
ihrer Ausbreitungsrichtung positiv gerechnet, während

im Fall B die positive Zählrichtung immer gegen
den Vierpol gerichtet ist. Wir werden das Zählschema
nach Figur 3 A verwenden, da es der physikalischen

Vorstellung besser entgegenkommt. Dabei werde die
Phase des elektrischen Feldes als Bezugsphase
definiert, so dass ein Kurzschluss einen negativen, eine
offene Leitung einen positiven Reflexionskoeffizienten
hat, sofern dessen Phase auf die Kurzschluss-, bzw.
Öffnungsebene bezogen wird. Dann ist auch der
Reflexionskoeffizient einer reinen Induktivität (<x> L Z0),
rL + j und einer Kapazität rc - j, (l/a> G Z0).

Will man vom Zählsystem A zu B oder umgekehrt
übergehen, so hat man bei den Matrizen Z und A das
Vorzeichen der Elemente in der zweiten Kolonne, bei
Y und D in der zweiten Reihe, bei T in der Haupt
diagonale und schliesslich bei S das Vorzeichen allei
Elemente zu wechseln.

Es bleibt nun noch die Bedeutung der Grössen p
und q festzulegen. Man kann die Wellen durch ihre
Spannungs- oder Stromamplituden (oder Effektivwerte)

charakterisieren; p und q würden dann also
die Amplituden oder Effektivwerte der hin-, bzw.
rücklaufenden Wellen bedeuten. Anstelle von Strom-
oder Spannungswerten erweist es sich jedoch als
günstiger, für p und q normierte Werte zu definieren, und
zwar so, dass man diese Grössen direkt mit der
Leistung der Wellen in Verbindung bringt. Ist die
Leistung1 der beiden Wellen Pp und Pg, so definieren
wir die normalisierten Effektivwerte p und q so, dass

A B

Fig. 2. Zählrichtungen für Ströme und Spannungen

Beide Systeme haben ihre Berechtigung. Die
Zählrichtung nach Figur 2 A, die wir im folgenden
verwenden werden, hat den Vorteil, dass bei der
Kettenschaltung, die wohl die häufigste Art der Verbindung

von Vierpolen ist, in den Berechnungen keine
Vorzeichen gewechselt werden müssen. Auch kommt
sie der Vorstellung in allen jenen Fällen entgegen, wo
die eine Richtung des Energieflusses vor der andern
ausgezeichnet ist. Die Zählrichtung nach Figur 2 B
wird vor allem in der 2 n-Pol-Theorie verwendet,
wo eine eindeutige Unterscheidung in Eingang und
Ausgang dahinfällt. Sie ist aus Gründen der
mathematischen Symmetrie überall dort vorzuziehen, wo
beide Durchlassrichtungen gleichberechtigt auftreten.

Auch bei den Wellenmatrizen werden verschiedene
Zählsysteme verwendet. Die wichtigsten sind in
Figur 3 angegeben:

Pp p p*
P„= q-q* (9)

Die Wellenmatrizen sind Betriebsmatrizen, das
heisst, ihre ganze Definition schliesst in sich, dass

Eingang und Ausgang in einen Wellenleiter (im
allgemeinsten Sinne des Wortes, es kann z.B. ein
Hohlleiter, ein Koaxialleiter, eine Lecherleitung, ein
dielektrischer Leiter oder der freie Raum sein) münden, in
dem eine einfallende und eine austretende Welle
unterschieden werden können. Solange nicht für
Eingang und Ausgang je ein (im allgemeinen verschiedene)

Wellenleiter festgelegt ist, hat auch der Begriff
von ein- und austretenden Wellen keinen Sinn, mit
anderen Worten: die Unterscheidung von vor- und
rücklaufenden Wellen enthält implizite die Definition
einer bestimmten Leitung. Im allgemeinen bieten sich
hier praktisch keine Schwierigkeiten ; bei weitaus den
meisten Vierpolen der Leitungstechnik entsprechen
Ein- und Ausgang in ihrer geometrischen Struktur
genau den Wellenleitern, auf die p und q bezogen sind.
Stossen ausnahmsweise zwei Vierpole mit verschiedenen

Wellenleitern zusammen, so hat man sich zu
entscheiden, auf welchen sich p und q beziehen sollen
(sie sind im allgemeinen verschieden in den verschiedenen

Leitern wegen der Reflexion der Stoßstelle).
Je nachdem ist dann die Sprungstelle noch ein Teil
des einen oder andern Vierpoles.

1 Pv und Pq sind Wirkleistungen. Bei reellem Wellenwiderstand
und fortschreitender Welle sind Spannung und Strom, bzw.
elektrische und magnetische Feldkomponenten senkrecht zur
Ausbreitungsrichtung immer in Phase.
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Etwas anders liegen die Dinge bei den klassischen
Vierpolmatrizen. Diese sagen an sich über das
Betriebsverhalten des Vierpoles noch nichts aus, da sie

von den Anschlussnetzwerken abstrahieren. Zwei
Vierpole mit der gleichen A- oder Z-Matrix können
sich also, je nach den angeschlossenen weiteren
Vierpolen, zum Beispiel in hezug auf Leistungsübertragung,

ganz verschieden verhalten, das heisst zugleich,
dass ihnen verschiedene Wellenmatrizen entsprechen.
In diesem Sinne besteht zwischen klassischen und
Wellenmatrizen kein eindeutiger Zusammenhang.
Sobald wir jedoch den Vierpolen mit konzentrierten
Elementen je einen Bezugswiderstand für Eingang
(Z01) und Ausgang (Z02) zuordnen, ist die Relation
zwischen den verschiedenen Matrizen eindeutig, denn
damit ist nun auch die Aufteilung in die beiden «Wellen»

p und q festgelegt. Zunächst ergibt sich dann die
Aufteilung der Gesamtleistung P in P Pp -Pq aus
folgender Gleichung:

P*=P
1—Zx\2

1+2, (10)

up

u,

01

n

Vi \+
?i V+i

up:

üa

Ipi — 2h/'V+01

in — hl 01

lP2

12

v% y+2
12 V^02

P2I V '^02

?2/V^02

(H)

02
(12)

wobei Z01 und Z02 die gewählten Wellenwiderstände
an Ein- und Ausgang sind.2 Die Zählrichtungen für die
Teilströme und Teilspannungen sind dabei dieselben
wie für die gesamten Ströme und Spannungen
(s. Fig. 2 A). Die totalen Spannungen und Ströme am
Ein-, bzw. Ausgang des Vierpols sind dann

U1 (Upl + Ujj) (px + qx) \/Z01

P2 — Pp2 + Pq2) {Vi + Q2) \+0
11 (Ip1 + Iql) (Vi ~ 11) l \lZ01

12 (Ip2 + I12) — {~Pz + l2)lV^02

Diese Gleichungen vermitteln den Anschluss an
die Vierpolmatrizen Z, Y, A und 1). In der
Wellenleitertechnik, genauer gesagt immer wenn es sich
nicht um Lecherwellen (TEM oder L-Wellen) handelt,
ist es besser, wenn man die Grössen U und I
überhaupt vermeidet. Da durch (9) die normierten
Wellenwerte p und q direkt von der Leistung abgeleitet

2 Obwohl die Wahl dieser Wellenwiderstände an sich behebig
ist, liegt jedoch in den praktischen Anwendungen meist schon ein
spezieller Wert vor, der sich dafür besonders gut eignet. Zon wird
hier als reeller Wert angenommen.

werden, umgeht man die Vieldeutigkeit der Grössen
U, I und Z0. [In Gleichung (10), die ebenfalls für p
und q bestimmend ist, erscheint nur ein relativer oder
normierter Eingangswiderstand zv der in allen Fällen
eindeutig definiert ist.] Ausser diesem Vorteil liegt
der Grund für diese Normierung darin, dass die Art
des Vierpoles nun viel augenfälliger aus den
Eigenschaften der Wellenmatrizen herausgelesen werden
kann [2], was man sofort sieht, wenn man neben den
normierten die nichtnormierten Matrizen anschreibt.

Jede Vierpolmatrix beschreibt den Vierpol
vollständig und eindeutig, so dass es auch möglich sein

muss, aus einer Matrix eine andere zu bestimmen.
Diese Zusammenhänge sind, soweit nicht allgemein
bekannt, im Anhang 1 aufgeführt.

Die Zusammenhänge zwischen den verschiedenen
Matrizenarten und entsprechenden Vierpolen seien
an einigen Beispielen illustriert:

wobei Z1/Z0 ist und Z1 den Eingangswiderstand
des Vierpoles und Z0 den Bezugswiderstand darstellt.
Für einen gewöhnlichen Vierpol mit konzentrierten
Elementen gelten dann zwischen den Spannungen U
und Strömen I und den normalisierten Wellenwerten
p und q folgende Beziehungen (U, I, p und q sind als
Effektivwerte zu betrachten) :

Z01 0M

A

Z01 Z02

A
i_II(y-1/er) (jr-i/r)|Tb l(ir-vr) (ar+Vr)|

-= ywv1

"2 Z0l/Z02

Z01
O

O Z02

P 1/ü

Z01 Z01

A
1/ü T_i II (ü +1/Ü) (ü-l/ü)

2 (ü-1/ü) (Ü + 1/Ü)

d

Fig. 4. Gegenüberstellung von Vierpolen in konventioneller und
Wellendarstellung. Vierpole mit der gleichen Kettenmatrix

haben nicht die gleiche Transfermatrix; der
Zusammenhang ist abhängig von der Wahl der
Bezugswiderstände
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In den Figuren 4 a und 4 b sind zwei Fälle
gegenübergestellt, die als konventionelle Vierpole die gleiche
Schaltung haben, nämlich die einfachste Verbindung
von Ein- und Ausgangsklemmen. Sie haben die
gleichen klassischen Matrizen, hingegen seien die
Bezugswiderstände verschieden. Die entsprechenden Vierpole

im Falle von Hohlleitern und die T-Matrix als
Wellenmatrix sind in jedem Falle angegeben. Die
Verschiedenartigkeit der Fälle ist hier auch in den
Matrizen deutlich.

Ähnliche Fälle liegen in Figur 4 c und 4 d vor. An
diesen einfachen Beispielen ist ersichtlich, dass die
Beziehungen zwischen den verschiedenen
Darstellungsarten am einfachsten sind, wenn Z01 Z02

angenommen wird. Wir wollen deshalb im folgenden
im allgemeinen diese Annahme stillschweigend
voraussetzen, um so mehr, als grundsätzlich an der
Allgemeinheit der Diskussion dadurch nichts verlorengeht.

Um den allgemeinsten Fall aus diesem speziellen
zu erhalten, genügt es nämlich immer, zu den
fraglichen Vierpolen einen Übertrager mit der
Spannungsübersetzung \jZ0X j Z02 in Kette zu schalten.

Ein weiterer Punkt, der hier klargestellt werden
muss, ist die Wahl der Bezugsebenen. Bei den
Vierpolen aus konzentrierten Elementen tritt dieses
Problem nicht in Erscheinung, da die Wellenlänge
gross ist gegen die Dimensionen der Schaltung. So

ist zum Beispiel die Phase der Eingangsgrössen
(U1 und 71 oder auch p1 und qx) gegeneinander immer
dieselbe, ob sie nun beide auf Eingang oder Ausgang
bezogen werden; demgegenüber ist bei der Leitungstechnik,

wegen der relativ grossen Abmessungen
gegen die Wellenlänge, die gegenseitige Phase dieser
Grössen sehr abhängig vom Bezugsort. Jeder Vierpol
in der Leitungstechnik ist daher ausser seinen anderen
Eigenschaften, auch ein Phasenschieber, was schon
dadurch bedingt ist, dass Ein- und Ausgang räumlich
nicht zusammenfallen können. Dies ist für die
theoretische Behandlung ein Nachteil gegenüber den
konzentrierten Vierpolen, weil die Vierpoleigenschaften
immer durch diese Phasenbeziehungen verschleiert
sind. Um dies zu umgehen, führen wir folgende
Abstraktion ein: Alle Grössen werden auf eine einzige
Bezugsebene reduziert (also nicht eine Eingangs- und
eine Ausgangsebene), so dass der Vierpol in diese
Bezugsebene zusammengedrückt erscheint. Im
praktischen Falle wird dann nachträglich ein
Phasenschieber in Kette geschaltet, der jene Phasenbeziehungen

enthält, die der geometrischen Länge der
Struktur entsprechen.

Bei theoretischen Zerlegungen eines Vierpoles in
eine Kettenschaltung muss also unter Umständen
berücksichtigt werden, dass die Teilvierpole in der
Realisierung nur unter Zwischenschaltung eines
Phasengliedes verbunden werden können. In vielen
Fällen können aber alle Phasenglieder zusammen-
gefasst werden, nämlich dann, wenn die Teilvierpole
kommutativ sind. Dies ergibt schon einen Hinweis

auf die Zweckmässigkeit der Zerlegung in Diagonalmatrizen,

deren Multiplikation ebenfalls kommutativ
ist.

Die Wellenmatrizen sind nicht nur in der
Wellenleitertechnik von Bedeutung, sie können auch bei
tieferen Frequenzen, bei Vierpolen mit konzentrierten

Schaltelementen verwendet werden, wenn auch der
Wellencharakter des Energietransportes dort weniger
augenfällig ist. Ein grosser Vorteil, der für ihre
universelle Verwendung spricht, ist nämlich, dass die
Wellenmatrizen praktisch immer existieren, während
bei speziellen Vierpolen einzelne der A, D, Z und Y-
Matrizen nicht angeschrieben werden können.

Es ist allgemein bekannt, welche Matrizenoperationen
beim Zusammenschalten von Vierpolen

durchgeführt werden müssen, wenn es sich um die
konventionellen A, Z, Y und D-Matrizen handelt [1]. Für
den wichtigsten Fall, nämlich die Kettenschaltung
zweier Vierpole, seien die entsprechenden Operationen
mit den Wellenmatrizen hier angegeben :

Schaltet man die beiden Vierpole mit den
Streumatrizen S' und S" in Kette, so wird (s. Anhang 2)
die Matrix S des resultierenden Vierpoles :

S'#S" S
1 ii ® iidetS); s 12£ 12

sV'21; (s"22-s'22detS") (13)

Man beachte, dass diese Berechnung besonders
einfach wird, wenn die Elemente der Hauptdiagonale
der beiden Matrizen verschwinden.

Im allgemeinen ist die Berechnung einer
Kettenschaltung einfacher mit den Transfer-Matrizen.

T T' # T" T' • T" (14)

Es gelten also bei der Kettenschaltung die gleichen
Regeln für die T-Matrix wie für die A-Matrix: die
Matrix der Kettenschaltung ist das Matrizenprodukt
der Einzelmatrizen.

3. Aktive und passive Vierpole

Wenn wir die Energieübertragungseigenschaften
und die physikalischen Realisierbarkeitsbedingungen
betrachten, so stossen wir auf die Begriffe der aktiven
und passiven Vierpole. Es ist besonders das Auftauchen

nichtreziproker Vierpole, das Anlass gegeben hat
zu erneuten Untersuchungen in dieser Angelegenheit.

Als passiv werden gewöhnlich solche Vierpole
bezeichnet, die keine Energiequellen enthalten.
Gelegentlich trifft man auch die Anschauung, dass alle
passiven Vierpole aus Widerständen, Kapazitäten,
Induktivitäten und Gegeninduktivitäten aufgebaut
werden können. Diese Definition ist zwar hinreichend,
aber nicht notwendig für Passivität einer Schaltung.
Weiter fragt es sich, wo jene Vierpole eingereiht
werden sollen, die zwar aktive Elemente enthalten,
aber nicht mehr Energie nach aussen abgeben können,
als sie aufnehmen.

3 Mit # symbolisieren wir allgemein die Kettensehaltung von
Vierpolen.
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Man könnte den Begriff des passiven Vierpoles
folgendermassen präzisieren :

Ein Vierpol ist passiv, wenn keinerlei
Betriebsbedingungen existieren, bei denen er im Mittel eine

grössere Wirkleistung abgibt als er aufnimmt.
Damit ist umgekehrt auch der aktive Vierpol schon

definiert. Es sei darauf hingewiesen, dass ein aktiver
Vierpol in bezug auf Frequenz und Lastimpedanz
meistens Betriebsbereiche, mindestens aber Betriebspunkte

hat, bei denen er sich passiv verhält, also

weniger oder gleichviel Wirkleistung abgibt als er
aufnimmt (selbstverständlich gehört z. B. bei einem
netzgespeisten Verstärker die an den Netzklemmen
bezogene Speiseleistung nicht zur Energiebilanz des

eigentlichen Vierpoles).
Ein Vierpol kann ferner einrichtig oder beidrichtig

passiv sein; im ersteren Fall darf der Vierpol, wie
beispielsweise ein gewöhnlicher Verstärker, nur nach
einer Seite mehr Leistung abgeben als er an der
anderen aufnimmt.

Diese Art der Unterscheidung zwischen aktiven und
passiven Vierpolen hat verschiedene Vorteile:

- Erstens werden diejenigen Vierpole eindeutig
klassiert, die zwar aktive Elemente enthalten, die
aber an den Klemmen nicht mehr Wirkleistung
abgeben können als sie aufnehmen;

- zweitens wird die Unsicherheit umgangen, welche
Elemente als aktiv zu gelten haben (ist z. B. eine
Verstärkerröhre, die als variabler Widerstand
benützt wird, ein aktives Element?);

- drittens, und dies ist der wichtigste Punkt, ist die
Definition der Vierpoltheorie besser angepasst,
denn sie definiert eine äusserlich messbare
Eigenschaft, unabhängig davon, durch welche internen
Schaltmassnahmen diese Eigenschaft zustande
kommt. Die gesamte hier zur Diskussion stehende
Vierpoltheorie befasst sich ja in erster Linie mit
den allgemeinen Übertragungseigenschaften von
2-Klemmenpaaren, unabhängig von deren Aufbau
und erst in zweiter Linie mit den praktischen
Realisiermöglichkeiten einer geforderten Eigenschaft.
Nach dieser Definition ist also zum Beispiel ein

Gyrator grundsätzlich ein passiver Vierpol, ohne
Rücksicht darauf, ob er nun mit aktiven oder passiven
Elementen realisiert wird. Es ist also vorerst durchaus

denkbar, dass es passive Vierpole (nach dieser
Definition) gibt, die mit den üblichen passiven
Elementen nicht oder noch nicht realisiert werden können.

Carlin [3] hat jedoch nachgewiesen, dass es
keine passiven Vierpole gibt, die nicht - wenigstens
theoretisch - aus gewöhnlichen reziproken
Netzwerken und idealen Gyratoren zusammengesetzt
werden könnten.

Der verlustlose oder leistungsgleiche Vierpol, der
in jedem Betriebszustand gleichviel Energie abgibt,
wie er aufnimmt, bildet die Grenze zwischen aktivem
und passivem Vierpol, er wird definitionsgemäss zum
passiven gerechnet.

Die Kriterien, an Hand derer bei den verschiedenen
Matrizen festgestellt werden kann, ob sich die
entsprechenden Vierpole einrichtig oder beidrichtig
passiv oder verlustlos verhalten, sind nur teilweise
bekannt und sollen daher im folgenden angegeben
werden.

Wir betrachten zunächst die A-Matrix (3), und
zwar mit den Zählrichtungen nach Figur 2 A.

«11 «12

«2i «22

Im allgemeinen sind die Elemente aik komplex.
Die Wirkleistung ist das skalare Produkt der Vektoren

U-i und It, wenn Ui und I; zusammengehörige
Spannungs-, bzw. Stromeffektivwerte bedeuten.

Für einen vorwärts (Energieübertragung von 1

nach 2) passiven Vierpol gilt4

(Gi, 7X) â (U2, I2) (15a)

Ist der Vierpol rückwärts passiv (Speisung an
Seite 2) so gehorcht er der Bedingung5

(U2,I2) ïî (U1, 7X) (15b)

und wenn er vollständig passiv ist, so gelten beide
Beziehungen, je nachdem der Vierpol von Seite 1

oder 2 gespeist wird. Dabei ist selbstverständlich
vorausgesetzt, dass die Lastimpedanz des Vierpoles
einen positiven Realteil hat, also passiv ist. Damit
(15 a) erfüllt ist, ergeben sich für die Elemente der
A-Matrix folgende Forderungen (Ableitung s.

Anhang 3)

(«n, a21) < 0 (16a)

(«i2» «22) " 0 (16b)

(«n xa2 )- Ka x «21) =0 (16c)

(«ii, «2 J+(«i2, «21) 4 (idetA[2+ 1) (16d)

Die Bedingung (16d) muss nur erfüllt sein, wenn die
linke Seite dieser Ungleichung kleiner als eins ist.

Für Passivität in umgekehrter Richtung (15 b)
ergeben sich analog die Forderungen:

(«21, «22) — 0 (17a)

(«u, «i2) ä: 0 (17b)

Kl X «22) + («12 x «21) 0 (17c)

(«u, «22) + («12, «21 ^ T (| det A |2 + 1) (17d)

bzw. à 1

Bei einem beidrichtig passiven Vierpol müssen die
Gleichungen (16) und (17) erfüllt sein. Im verlustlosen

Falle gelten immer die Gleichheitszeichen in den
angegebenen Bedingungen (16) bzw. (17). Für
vorwärts und rückwärts verlustlose Vierpole ergibt sich

4 mit a, b sei das skalare,
mit a b das vektorielle und
mit a b (a, b*) - j (a x b*) das komplexe Produkt zweier
komplexer Grössen bezeichnet.

5 Der positive Zählsinn für die Ströme ist dabei immer vom
Generator gegen die Last gewählt.
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an Stelle von (16c), (16d), (17c) und (17d) dann die
Bedingung :6

det A I 1 (18a)

oder ni «12

«22
M + jO) (18b)

Ferner kann man zeigen (s. Anhang 3), dass ein
vorwärts verlustloser Vierpol auch rückwärts verlustlos
sein muss. Dabei muss immer

0
(19)

(®ii x «22)

(«12 «21) ~ b
sein.

Denkt man sich diese Matrizenelemente als
Vektoren, so sind im verlustlosen Falle die Elemente
einer Diagonale gleich oder entgegengesetzt gerichtet
(dabei können höchstens zwei Elemente entgegengesetzt

gerichtet sein), ferner stehen die Elemente
der einen Diagonale senkrecht zu jenen der anderen
Diagonale (s. Figur 5).

i* »ii

a12

a21^^

a22

V21

7^^*22

An Stelle der Kettenmatrix A kann man zur
Formulierung der Passivitätsbedingungen auch die
andern Matrizen benützen. Hier seien noch die
Zusammenhänge zwischen den Elementen der Transfermatrix

T angegeben (Ableitung s. Anhang 3). Ein-
richtig passiv ist ein Vierpol, wenn folgende Bedingung

erfüllt ist :

<22 I22 + hi <11 — <12 1*2 hi l*i 1 + | det T |2 (22)

Die Bedingung (22) muss im einrichtigen Falle nur
erfüllt sein, wenn:

1 — hi <11 — hi ^21 j hi t*2 — hi <22 I (23)

andernfalls treten an deren Stelle die schwächeren
Forderungen (24) (25)

(h2<22 ~ h2 <12 1 (24)

I221*2 — hi <11— h2 1*2 + hi t*1 > 2 I hi t*2 — hi ha | (25)

Für den rückwärts passiven Vierpol lauten die
entsprechenden Bedingungen :

(h21*2 ~ hi t*i j det T |2

und
(24a)

Fig. 5. Mögliche Lage der A-Matrixelemente in der kompexen
Ebene für einen verlustlosen Vierpol

An dieser Stelle kann man darauf hinweisen, dass
ein Vierpol mit drei verschwindenden Elementen
in der A- oder der T-Matrix keinen verlustlosen Vierpol

darstellen kann. Um Irrtümern vorzubeugen, sei
hier besonders hervorgehoben, dass trotz den
voranstehenden Resultaten Fälle von Vierpolen möglich
sind, die zum Beispiel vorwärts verlustlos scheinen,
dagegen rückwärts als grosse Dämpfung wirken
(Richtleitung, Uniline). Solche Vierpole sind jedoch
nur unter ganz bestimmten Betriebsbedingungen,
also punktweise verlustlos (bei reflexionsfreier
Anpassung) und fallen daher nicht in die Klasse der
(vollständig) verlustlosen Vierpole. Damit ein Vierpol

bei einem bestimmten reellen Abschlusswiderstand
R2 punktweise passiv, bzw. verlustlos ist, reduziert
sich die Forderung (16) auf:

(«11, «22) F («12 ; «2l) — 1 —-®2 («11 j «2l) — («21 ; «22)/-®2 (^b)

Für den umgekehrten Vierpol tritt an Stelle von
(17):

(«11,«22)+ («12,«21) \detA\2-R1(an,a12)-(a21,a22)/R1
(21)

6 Die Determinate einer Matrix sei folgendermassen geschrieben

entweder 011 oder det A. In allen Fällen, wo nicht das
^21 «22

ganze Schema der Koeffizienten geschrieben wird, bedeuten die
vertikalen Striche den absoluten Betrag, also

det A [ Y(det A) (det A)*

h2 <22 — hi hi + <12 <12 — hi t*1^2 hi <21— h21*2 | (25a)

falls 1 <j 1 /fi -- /]2 hi +' J hi hi - h.21*2 [ (23a)

ansonst auch hier (22) gilt.

Für den beidrichtig verlustlosen Vierpol muss einzig
die Ungleichung (22) erfüllt sein, in diesem Falle
jedoch uneingeschränkt.

Bei einem beidrichtig verlustlosen Vierpol ergeben
sich die Beziehungen (26) :

hl hl ~ hi hl 1

h2<22 — tl2 <*2 : 1 (26)

hi <12 — <21 <22 0

Im Zusammenhang mit nichtreziproken Vierpolen
in der cm-Wellentechnik werden gelegentlich solche
erwähnt, die gegen den zweiten Hauptsatz der
Thermodynamik Verstössen. Ein solcher Vierpol wäre die
ideale reflektierende Richtleitung : sie lässt die Energie
in der einen Richtung ungedämpft durchtreten, während

sie Energie aus der andern Richtung vollständig
reflektiert. Dies widerspricht, wenn der Vierpol passiv

ist, dem zweiten Hauptsatz der Thermodynamik.
Würde nämlich ein solcher Vierpol zwischen zwei
Abschlusswiderstände geschaltet, so würde die
(thermische) Rauschleistung des einen Abschlusses
vollständig und von selbst in den anderen Widerstand
übergehen, der eine Abschluss würde sich erwärmen,
während sich der andere abkühlte. Ein solcher Vierpol

ist passiv nicht möglich. Die Frage ist nun, ob
der zweite Hauptsatz weitere Einschränkungen für
die Vierpolmatrix zur Folge hat. Es lässt sich jedoch
leicht zeigen (s. Anhang 4), dass dies nicht der Fall
ist. Ein Vierpol, dessen Matrix den oben angegebenen

Passivitätsbedingungen gehorcht, kann auch
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den zweiten thermodynamischen Hauptsatz nicht
verletzen, oder umgekehrt kann ein Vierpol, der dem
zweiten Hauptsatz widerspricht, nicht passiv sein.
Man kann dies sofort an folgendem Fall einsehen
(s. Fig. 6): Eine reflektierende Richtleitung liege
zwischen einem Generator und einer Last. Eine im
Generator erzeugte Welle laufe ungedämpft durch
den Vierpol in die zunächst angepasste Last. In
einem zweiten Betriebszustande falle eine Welle, zum
Beispiel gleicher Amplitude wie im ersten Fall, von
der Lastseite her ein. Diese wird vollständig
zurückreflektiert. Da der Vierpol linear ist, darf man die
beiden Betriebszustände superponieren, was man erreichen

kann durch Abschluss mit der Last r 0,5. Die
Phase des Generators werde nun so eingestellt, dass
sich am Ausgang des Vierpoles die beiden
Wellenamplituden addieren. Dann läuft rechts vom Vierpol
eine Welle mit doppelter Amplitude und daher
vierfacher Leistung nach der Last und eine Welle mit
einfacher Amplitude und Leistung in den Vierpol hinein.
Die Last absorbiert also die dreifache Leistung des

Generators, was nur möglich ist, wenn der Vierpol
selber aktiv ist.

Gen. PP1=1 Vierpol pq2 4

S
0 0
1 1

Last

r =0,5

Pq1 0 Pp2
1

Fig. 6. Ideale reflektierende Richtleitung (passiv nicht realisier¬
bar)

Wenn man von linearen Vierpolen spricht, so ist
vielleicht noch eine Präzisierung am Platze. Linear
nennt man einen Vierpol dann, wenn zwischen den
verschiedenen Betriebsgrössen (Ströme, Spannungen,
Wellenamplituden, Leistungen) an Ein- und Ausgang
lineare Zusammenhänge bestehen. Nun gibt es Vierpole,

zum Beispiel gesteuerte Spannungsquellen, die
eine Ausgangsleistung abgeben, die nicht verschwindet,

wenn keine Eingangsleistung vorhanden ist,
bei denen aber die Änderung entweder der Ausgangsspannung

(und des Ausgangsstromes) oder der
Ausgangsleistung proportional zu einer Eingangsgrösse
ist. Man könnte einen solchen Vierpol differentiell
linear nennen. Diese Vierpole sind immer aktiv, auch
wenn die Änderung der Ausgangsleistung geringer
ist als die Änderung der Eingangsleistung. Die
Änderungen können auch verschiedene Vorzeichen
haben, hingegen kann natürlich in diesem Falle nur
entweder die Differenz der Leistungen oder dann die
Differenz der Spannungen, nicht aber beide proportional

sein zur Eingangsgrösse. Wenn sowohl
Leistung als auch Spannung (oder Strom) proportional
sind, so wollen wir den Vierpol regulär linear nennen ;

in diesem Falle müssen bei verschwindenden Ein-
gangsgrössen auch die Ausgangsgrössen Null sein
(jedoch braucht einer Wirkleistung am Ausgang keine
Wirkleistung am Eingang zu entsprechen, der
Proportionalitätsfaktor ist beliebig komplex). Im

folgenden werden wir, ohne dies noch ausdrücklich
zu erwähnen, nur von regulär linearen Vierpolen
sprechen.

4. Reziprozität

Der allgemeine Vierpol ist nicht reziprok. Bei den
passiven Vierpolen existierte jedoch bis vor etwa
fünf Jahren der nichtreziproke Vierpol fast nur in
der Theorie, wenn man von den optischen Versuchen
Faradays absieht. Nichtreziprokes Verhalten war
indessen bei den aktiven Vierpolen beinahe
selbstverständlich (d. h. hauptsächlich bei den Verstärkern).
Es ist interessant und sicher nicht ganz zufällig, dass
ebenfalls in den letzten Jahren die reziproken aktiven
Vierpole beträchtlich an Bedeutung gewannen, obwohl
sie technisch schon längst realisierbar gewesen
waren. Wenn auch der nichtreziproke passive Vierpol

heute erst bei Frequenzen von über 1000 MHz
aus passiven Elementen technisch realisiert ist, so
dürfte er ebenfalls bei viel tieferen Frequenzen
interessante Anwendungen finden, auch wenn er dort
vorläufig noch mit Hilfe von aktiven Elementen
zusammengesetzt werden muss.

Es sei kurz in Erinnerung gerufen, was Reziprozität
bei Vierpolen bedeutet. Wird an die Klemmen 1-1'

eines Vierpoles eine Spannungsquelle U mit dem
inneren Widerstand Ri angelegt (s. Fig. 7), so fliesse am
mit Ra Ri belasteten Ausgang 2-2' der Strom /2.
Ist der Vierpol reziprok, so kann man Spannungsquelle

und Belastungswiderstand vertauschen, ohne
dass sich der Strom im Widerstand Ra ändern würde.

c-o

Es ist also I1 /2, ohne dass im allgemeinen Fall auch
CO

/i /2 wäre.7 Die Grösse von R„ R{ kann beliebig
gewählt werden. Man kann das Gesetz der Rezipro-

Fig. 7. Reziprozitätsgesetz für Vierpole in konventioneller Dar¬
stellung

zität auch für die normierten Wellen p und q formulieren.

Die Betriebsbedingungen sind dann folgende:
Der Vierpol werde gespeist aus einer Leitung mit dem

Fig. 8. Reziprozitätsgesetz für Vierpole in Wellendarstellung

bei der Normierung verwendeten Wellenwiderstand
(vorwärts Z01, rückwärts Z02) und reflexionsfrei
abgeschlossen mit dem entsprechenden, zur andern
Seite gehörenden Wellenwiderstand Z02, bzw. Z01

7 Das Zeichen oj über einer Grösse bedeutet hier immer, dass
diese sich auf den in umgekehrter Richtung betriebenen Vierpol
bezieht.
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(Fig. 8). Dann ist bei Reziprozität des Vierpoles
CO CO

1'ilVi 'hi'Pi' und zwar gilt die Gleichung für das

komplexe Verhältnis der Amplituden. (Da die
Wellengrössen normiert sind, treten in den Betriebsbedingungen

auch normiert gleiche und nicht absolut
gleiche Widerstände auf. Weil die Wahl der
Normierungswiderstände beliebig ist, so ist der Satz in
dieser Form ebenso allgemein wie in der ersten
Fassung.)

Ob ein Vierpol reziprok ist oder nicht, lässt sich
mit Hilfe irgend einer seiner Matrizen bekanntlich
leicht feststellen. Die - ausser der letzten - bekannten

Bedingungen sind [1] [2]:

Z12 ~ Z21

y i2 -y2i

det A — 1

d22dn —
(27)

SI2 — S21

det T 1

Alle diese Gleichungen sind äquivalent.
Um reziproke und nichtreziproke Vierpole im

folgenden in der graphischen Darstellung auseinanderhalten

zu können, seien hier folgende Schaltsymbole
eingeführt :

reziproker Vierpol nichtreziproker Vierpol

Fig. 9. Symbole für reziproke und nichtreziproke Vierpole

Falls irgendwelche Eigenschaften in dieses Symbol
eingeschrieben werden, so sollen sie in jenem Dreieck
eingetragen werden, dessen Spitze in der Richtung
weist, für die die Eigenschaft gilt.8

Neben dem reziproken Vierpol ist der antireziproke
der wichtigste, denn alle Vierpole können realisiert
werden, entweder durch Parallelschaltung oder durch
Kettenschaltung von reziproken und antireziproken
Vierpolen. Antireziproke Vierpole erkennt man an
einer der folgenden Eigenschaften der verschiedenen
Matrizen :

Z12 —

2/12

det A

(^n

det T

21

y2i
i
^22

" S21

(28)

s Vom Standpunkt der Systematik aus ist es vielleicht nicht
ganz richtig, diese zwei Symbole einander so gegenüber zu stellen,
da der reziproke Vierpol ein Spezialfall des nichtreziproken ist,
der 2 Freiheitsgrade weniger hat als dieser. Man könnte natürlich
entsprechend weitere Symbole einführen für antireziproke und
für komplex reziproke Netzwerke. Da aber, wenigstens vorläufig,
die reziproken Vierpole den weitaus grössten Teil der praktisch
verwendeten ausmachen und die nichtreziproken die Ausnahme
darstellen, wollen wir uns auf dieses Symbol beschränken.

Als wichtigstes Beispiel der antireziproken Vierpole

sei hier der ideale Gyrator genannt, der unter
den antireziproken Vierpolen eine ähnliche Stellung
einnimmt wie der ideale Übertrager bei den
reziproken.

Seine Matrizen sind:

Z

T

0 s

s 0

0 a
1 ja 0

-1 0

0 1

Y

S

0 y

y 0

0 -i
i 0

(29)

Die Reihen-Parallelmatrix J) existiert nicht.
Nachdem wir reziproke und antireziproke Vierpole

betrachtet haben, machen wir eine Erweiterung des

Reziprozitätsbegriffes, indem wir den komplex
reziproken oder, abgekürzt, «reziplexen» Vierpol, fol-
gendermassen definieren: Ein Vierpol werde, wie in
Figur 7, bzw. Figur 8, aus einer Spannungsquelle mit
innerer Impedanz Z, bzw. von einer Leitung mit dem
normierten Wellenwiderstand Z0m gespeist; er sei
ferner belastet mit der Impedanz Z, bzw. mit dem
normierten Wellenwiderstand Z0re. Ein komplex
reziproker Vierpol kann dann umgedreht werden,
ohne dass sich der Betrag des Verhältnisses InjUm bzw.
ÇfnlPm ändern würde. (Die Phase dieses Verhältnisses
ist hingegen beliebig, nur bei einem im engeren Sinne
oder reell reziproken Vierpol ist auch die Phase in
beiden Betriebsrichtungen gleich, während im
antireziproken Falle die Phasendifferenz n ist.) Wenn wir
in (27) an Stelle aller Grössen deren absolute Werte
einsetzen, so ergeben sich die Beziehungen, die bei
reziplexen Vierpolen erfüllt sein müssen. Wenn auch
allgemeiner als der reell reziproke Vierpol, so ist der
reziplexe doch nicht der allgemeinste. Die gemeinsame
Eigenschaft aller komplex reziproken Vierpole liegt
in ihrer Übertragungssymmetrie, wenn man von der
Phase des Übertragungsmasses absieht. Die Beträge
der Übertragungsmasse vorwärts und rückwärts sind
gleich. Dies gilt für das Wellenübertragungsmass,
sowie auch für das Betriebsübertragungsmass, sofern
bei letzterem die innere Impedanz des Generators mit
der Belastungsimpedanz übereinstimmt oder wenn
in der Wellendarstellung der Vierpol reflexionsfrei
abgeschlossen ist. Alle verlustlosen Vierpole sind demnach

reziplex. Zwischen den Winkeln der
Übertragungsmasse und den Winkeln zwischen den
Matrixelementen bestehen folgende Beziehungen {ß1 bzw.
ß2 sind die Winkel des Übertragungsmasses vorwärts,
bzw. rückwärts) :

ßi ~ ß-2 ai'g (det A) - arg (zla/z21) - arg (y12/y21)

- arg (djd22) arg (sl2/s21) arg (det T) (30)

Zur Unterscheidung wollen wir alle Vierpole, die
nicht komplex reziprok sind, areziprok nennen.
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Bezüglich der gewöhnlichen oder reellen Reziprozität

sei hier noch ein weiterer Punkt erwähnt: Da
alle Vierpole, die aus Widerständen, Kapazitäten und
Induktivitäten aufgebaut werden können, reell
reziprok sind, könnte man glauben, dass auch das
Umgekehrte richtig sei. Dies ist aber nicht der Fall. Es
gibt reell reziproke Vierpole, die nicht aus diesen
Elementen realisiert werden können ; ein Beispiel
hierfür ist der reziproke Impedanzkonverter, auf den
wir später zurückkommen werden.

5. Konvertierende und invertierende Vierpole

Vierpole werden häufig dazu verwendet, um
verschiedene Schaltelemente impedanzmässig einander
anzupassen, sei es zur Vermeidung störender
Mehrfachreflexionen oder zur Erzeugung eines bestimmten
impedanzmässigen Verhaltens einer Schaltung. Solche
Vierpole sind Impedanztransformatoren im allgemeinsten

Sinne. Besteht zum Beispiel reelle Proportionalität
zwischen der Lastimpedanz und der Eingangsimpedanz

des Vierpoles, so liegt ein gewöhnlicher
Transformator im engeren Sinne des Wortes vor.

Eine besondere Gruppe des allgemeinen komplexen
Transformators bilden jene Vierpole, die wir
konvertierend nennen wollen. Jede Lastimpedanz
erscheint am Eingang eines solchen Vierpoles mit einer
komplexen Zahl multipliziert. Hat diese Zahl den
Betrag eins und ist der Vierpol komplex reziprok, so

nennen wir den Vierpol ideal konvertierend. Ist die
Phasendifferenz der Impedanzen dann zum Beispiel
7i, so liegt ein Vierpol vor, der einen reellen
Lastwiderstand in einen negativen Widerstand gleichen
Betrages verwandelt. Konvertierende Vierpole dieser
Art benützt man neuerdings beispielsweise in der
Telephonie zur Entdämpfung von Übertragungsleitungen.

Ein konvertierender Vierpol sei nicht etwa
mit einem gewöhnlichen Phasenschieber verwechselt :

ein Phasenschieber dreht die Phase einer
durchtretenden Welle (Strom und Spannung gleichzeitig),
während der konvertierende Vierpol die Phase der
Abschlussimpedemz dreht. Der allgemeine konvertierende

Vierpol hat folgende Matrizen :

Dazu gehören die Determinanten:

Ak

IL

a^Q j (<p+vO o

0 a2e>

a^'-r+v) 0

0
l -i (<T-f)

— e
aQ

TK -
e w
2

(a1ejv+a2e"J>) (aflv-a^e-lv)
(«jeiv-a2e-D) {a^v+agrb)

(djeb-a^e-b) 2a1a2eP

2e~Pl/(a1eJv-fa2e~1'')

(y yZojä/Z,

det A ax a2 e 2P

(32)
det I) {aja2) e2b

det T ax a2 e 2j>

det S - 1

<f und ip sind dabei beliebige Winkel.

Das Verhalten des allgemeinen konvertierenden
Vierpoles kann besser überblickt werden, wenn man
ihn folgendermassen in eine Kettenschaltung zerlegt :

Au Aa Ak
ü 0 a 0 Q\{<P+V>) o

0 l/ü 0 a 0 eJ I»"»'

TK
(ü + 1 jü) (ü — l/ü)
(ü-ljü) (ü + l/ü)

a 0
• eJV

cosip jsiny>

0 a jsin^ cos ip j

S
Ü+l/'Ü

0 e^/cosü"
::

.i'gv;
j l/a 0|j |jl/(ei«'cosy) j-jtgyr

(33)

(ü-ljü); 2

2;-(ü-l/ü)\
ü2 aja2

4f bedeutet : «in Kette geschaltet mit»

Es ist ohne weiteres ersichtlich, dass diese drei Vierpole

in beliebiger Reihenfolge in Kette geschaltet
werden können, da es sich um den speziellen Fall
kommutativer Matrizen handelt.

Der erste Vierpol dieser Zerlegung ist ein gewöhnlicher

reeller Übertrager mit dem Übersetzungsverhältnis

ü : 1 ; der zweite ist ein impedanztreuer
Leistungswandler, das ist vorwärts ein Verstärker
mit der Spannungsverstärkung a, während er
rückwärts als Dämpfungsglied mit dem Abschwächungs-
verhältnis a wirkt. Er ist areziprok und beidseitig
impedanztreu9, das heisst, eine am einen Ende
angeschaltete Lastimpedanz erscheint unverändert an den
andern Klemmen. Der dritte Vierpol ist nun ein
idealer Konverter. Er ist reziplex und kann im
allgemeinen nicht passiv realisiert werden, ausser wenn
ip 0 oder ip n. Zwischen der Eingangsimpedanz
Z, und der Lastimpedanz Z2 bestehen beim idealen
Konverter folgende Beziehungen:

Z1 e2j> Z2
oo oo

Zx e~2jv Z2

Vorwärtsrichtung)

(Rückwärtsrichtung)
(34)

(31)

I)

Beim allgemeinen Konverter muss noch der
zugeschaltete Übertrager berücksichtigt werden, indem
wir in (34) e2^ durch ü e2ü ersetzen (der zweite,
noch zugeschaltete Vierpol ist ja impedanztreu und
hat daher auf die Konversion keinen Einfluss). Während

die zwei ersten Vierpole der Zerlegung (33) auf
einen einzigen Freiheitsgrad reduziert sind, das heisst
deren Verhalten ist durch einen einzigen Wert
vollständig definiert, hat der ideale Konverter noch zwei
Bestimmungsgrössen oder Freiheitsgrade (der
allgemeinste Vierpol hat deren 8 oder 4 komplexe Werte).

9 Ein einseitig impedanztreuer Vierpol ist immer auch in der
umgekehrten Richtung impedanztreu, was sofort aus den bekannten

Formeln der Vierpoltheorie [1] hervorgeht.
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Wir können auch diesen Vierpol noch in zwei
Elementarvierpole mit je einem einzigen Freiheitsgrad
aufspalten, und zwar auf unendlich viele Arten, von
denen einige interessante hier angegeben seien:

Tabelle I. Zerlegungen des idealen Konverters.

A

Kettenmatrizen
qH<P+V) 0

0 eh''-''' T e5 v

Transfermatrizen

cos?/; j sin?/)

j sin?/; cosip

0

0 ej v

impedanztr 3uer

eb 0

0 e-b
Richtphasen
reziproker K

i

sc)

Oll

eb 0

0 eb
lieber (ve
verter (ak

I cos y> j siny;

j siny) cos ip
rlustlos, reziplex) ±fc

tiv) (35)

0 1 %
® ejv 0

0 -e-iv
0 eb

e'f 0

j siny; cos y>

j cosy; j sinyj
Negativ-Konverter (aktiv)#

antireziproker Konverter (aktiv) (36)

0 Z0ér
eir/Zo 0

Posi

0 Zo/eiv

ejv/Z0 0

jv-Inverter (i
antireziprokei

.7er

Ii

-eb 0 -cosy; -jsiny;
0 eb

| j siny> cosy;
ustlos, reziplex) #
iverter (aktiv) (37)

| 0 Z0ér

-eiv/Zo 0
•

0 -Z0/eii> \

e'v/Zo 0

0 eb1 j siny> cosy>

-ejc 0 ||—cosy»-jsiny;
Negativ-Inverter (aktiv) #
reziproker Inverter (aktiv) (38)

In der ersten Zerlegung tritt der interessante Rieht -

Phasenschieber auf. Dieser ist verlustlos, seine Phasenmaße

vorwärts und rückwärts sind entgegengesetzt
gleich. Im Gegensatz zu einem gewöhnlichen
Phasenschieber ist er beidseitig impedanztreu, was
insbesondere bedeutet, dass ein solches Phasenglied bei
Fehlanpassung keine von der Phase abhängige
Eingangsimpedanz aufweist. Diese Eigenschaft dürfte
in gewissen Fällen noch wichtiger sein als seine Nicht-
reziprozität. Ein derartiges Phasenglied ist in gewissen

Frequenzbereichen mit passiven Elementen
realisierbar.

Der impedanztreue Vierpol ist ein Spezialfall des
konvertierenden. Alle impedanztreuen Vierpole lassen

sich aufspalten in eine Kettenschaltung eines
impedanztreuen Leistungswandlers, der phasenfrei,
areziprok und aktiv ist und in einen Richtphasenschieber,

der verlustlos und reziplex ist.
Beachtenswert ist auch der Negativ-Konverter in

der zweiten Zerlegung der Tabelle I. Man kann damit
durch eine reelle Last negative Widerstände erzeugen,
ferner ergeben sich damit negative Kapazitäten und
Induktivitäten mit deren Hilfe man zum Beispiel
unvermeidliche positive Kapazitäten und Induktivitäten

breitbandig kompensieren kann. Eine negative
und eine gewöhnliche Reaktanz bilden dann gewisser-
massen einen Schwingkreis, der bei jeder Frequenz in
Resonanz ist. Netzwerke aus solchen Elementen
gehorchen dem Fosterschen Reaktanztheorem nicht.

Macht man ?/; n'A, so entsteht ein Vierpol, der
aus einer reellen Last eine frequenzunabhängige
Reaktanz erzeugt, was beispielsweise zur Realisierung
frequenzunabhängiger Phasenschieber von Bedeutung
sein kann. Dies sind einige wenige Hinweise darauf,
welche Rolle diese Vierpole in der Netzwerksynthese
in allen Frequenzbereichen spielen können. Die beiden

letzten Zerlegungen zeigen, dass konvertierende
Vierpole auch aus zwei invertierenden erzeugt werden
können.

Ein Vierpol ist invertierend, wenn zwischen
Eingangsimpedanz Z, und Last Z2 die folgende Beziehung
besteht :

Zx ?/Z2 (39)

'Q ist dabei die Inversionsimpedanz. (Bei den
Wellenmatrizen werden die Impedanzen Zx und Z2 vorteilhaft

durch die relativen Impedanzen zx und z2 ersetzt ;

an Stelle der Inversionsimpedanz 'Ç tritt dann die
Inversionskonstante c f/Z0). Die Matrizen eines
allgemeinen invertierenden Vierpoles ergeben sich aus
der Forderung (39) zu:

A:

h

Rxei b+«)

(1 /iî2)e-1 <i-*> 0

R2e' (t<=)

.ßj# b+<0

0 (40)

H

Sz

-(rjeb+e-byVg) (r,eb-e-b/r2) II

~(r1eb-e-b/r2) (r1eb+e-b/r2) ||

1 (ceb-e-b/c) -2be's
ce'' + e-b/c 2 b e~'s (c e b_e-b/c)

mit : c C/Z0; rx=RJZ0- r2 RJZ0- rxr2=c%

b <jRJR2 \JrJr2 c/r2 rjc ; Z0 \/Z01 Z02

und C2 Rx R2 (Inversionsimpedanz)2

e und rj sind beliebige Winkel ; r\ bestimmt
hauptsächlich die Inversionseigenschaften und damit auch
die Leistungsübertragung, während s die Art der
Reziprozität festlegt.

Für die dazugehörigen Determinanten findet man
folgende Beziehungen :

Äl "! det Zi C2 e2b R1 R2 e2b

(c eb-e-b/c)2 + 4 62

det Az - ' ç-
2

det TI -&2e2b

und für rx r2 :

det Sz

(c eb + e-b/c)2
det Sz | 1

b 1

(41)

Der allgemeine Inverter ist vorwärts oder
rückwärts oder vollständig passiv, wenn r\ 0 und

-Rj ^ R2 bzw. R2 S Rx bzw. Rx R2
(b A. 1 bzw. b iï 1 bzw. b 1) ist.

Um diesen Vierpol besser zu verstehen, wollen wir
ihn ebenfalls in elementare Kettenglieder zerlegen.
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Man kann sich durch Ausmultiplizieren überzeugen,
folgende Kettenzerlegungen richtig sind:

Ai — Aü • Aa • Aj —

AT

TT

ST

0 i?1ei(';+T)

e-Jfa-e)/R2 0

(c+l/c) (c-l/c)
(c-l/c) (c+l/c)

(c-l/c) 2

2 (c-l/c)

'\c Ol
il 0 1/c

16 0

0 61

6 0

0 6

0 Z0ej<e+>7>

eh

ei (£-»>/Z0 0

- cos»; j sin»;

- ] smrj cos»;
(42)

0 6 2 jsin»;; -eie
ff

1/6 0
ff

cos rj e~>erj ; j sin»;

Te

0

l/^o

-1
0

0

0

1

za

SK

0

0 i

0 -1
1 0

-TT/2 ./
ir/2 /ur/2

Anderseits entsteht aus dem idealen Konverter
durch Kettenschaltung mit einem Gyrator ein idealer
Inverter :

Ai

Ti

0 Z0 eh

e~b/Z0 0

-cos»; j sm rj

j sin»; cosrj

Inverter

ej'< 0

0 e~i'i

cost] j smrj

j sin»; cosrj

Konverter

0

1/Zo 0

1 O

0 1

(44)

Gyrator

Wie bei der Zerlegung des konvertierenden Vier-
poles ist der erste Teilvierpol ein idealer Übertrager
und der zweite ein impedanztreuer Leistungswandler.
Der dritte Teil hingegen ist der ideale Inverter. Dieser
ist reziplex und sein Inversionsfaktor ist 1. Auch diesen
Vierpol können wir noch in zwei Vierpole mit je
einem einzigen Freiheitsgrad zerlegen, zum Beispiel
in die folgenden Kombinationen:

idealer Inverter
Richtphasenschieber # antireziproker Inverter
Negativ-Konverter ff reziproker Inverter
Positiv-Inverter ff reziproker Konverter
negativer Inverter ff antireziproker Konverter

Die dabei vorkommenden Elementarvierpole sind
dieselben, wie die bei der Zerlegung des idealen
Konverters aufgeführten Beispiele, nur in anderen
Kombinationen.

Von besonderem Interesse sind immer die passiven
Vierpole, das heisst, unter den hier «ideal» genannten,
die verlustlosen. Beim Konverter ist der Richtphasenschieber

der einzige nicht triviale verlustlose Fall (die
andern sind die Übertrager mit ü ±1). Von den
idealen Invertern sind jene mit rj 0, die Positiv-
Inverter, verlustlos. Dazu gehört vor allem der ideale
Gyrator mit e 0,n. Dieser ist antireziprok (ein
gewöhnlicher Gyrator kann zerlegt werden in einen
Übertrager und einen idealen Gyrator). Die Matrizen
des idealen Gyrators sind

(43)

Der Bereich der invertierenden Vierpole ist
übersichtshalber in Figur 11 zusammengestellt. Man kann
von irgend einem der angegebenen Vierpole in
e-Richtung weiterschreiten, wenn man zum betreffenden

Vierpol einen Richtphasenschieber in Kette
schaltet. Da dieser impedanztreu ist, wird damit an

f-'VVL/\G rni2 G

\\\
ANI RVI,

RNI,
G

(Gyrator)

RVl,

RNI,

ANI

£—IJ

-Vi

G

M
rni2

Vtf>v

G

&/<*> \°-+

Der ideale Gyrator hat, wie alle in Tabelle II
aufgeführten Vierpole, den Freiheitsgrad 0.

Er entsteht in der Mikrowellentechnik aus der
Kettenschaltung eines Richtphasenschiebers und eines

gewöhnlichen Phasenschiebers, beide mit der Phase
?r/2.

Fig. 10. Synthese des Gyrators

Fig. 11. Familie der invertierenden Vierpole

der Inversionskonstante nichts geändert, und weil er
verlustlos ist, bleibt auch die Leistungssituation
dieselbe. Schaltet man dagegen einen reziproken
Konverter in Kette mit einem der Elementarvierpole,

so bewegt man sich in »;-Richtung. Dabei wird
am Reziprozitätszustand, der durch s gegeben ist,
nichts geändert, hingegen die Inversionskonstante
in der Phase gedreht.

Hier sei der Vollständigkeit halber ein weiterer
Begriff erwähnt, der gelegentlich verwendet wird. Es
ist dies die bilaterale Anpassung (bilaterally matched
twoports) [5], Ein Vierpol ist bilateral angepasst,
wenn für jede Betriebsrichtung am Eingang der
Wellenwiderstand erscheint, sobald auch der
Ausgang mit dem Wellenwiderstand abgeschlossen ist.
Dazu gehören die impedanztreuen Vierpole (ip 0),
also Leistungswandler, Richtphasenschieber sowie
die idealen verlustlosen Inverter (£ Z, c 1), also
zum Beispiel der Gyrator. Diese Eigenschaft zeigt
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sich sofort in den Wellenmatrizen. Es sind bei der
S-Matrix die Elemente der Hauptdiagonale und bei
der T-Matrix jene der Nebendiagonale gleich Null.
Dies sind übrigens jene Vierpole, bei denen sich die
S-Matrix einer Kettenschaltung als Matrizenprodukt
der S-Matrizen der Teil-Vierpole ergibt, eine Regel, die
sonst nur für die Transfermatrix T und die Kettenmatrix

A gilt. Man könnte auch einen Zustand der
unilateralen Anpassung definieren, bei dem die
«Anpassungstreue» nur in einer Richtung gilt. Dabei müss-
ten dann nur die Koeffizienten t12 oder ,sn, bzw. t21

oder s22 (vorwärts bzw. rückwärts) verschwinden.
Bilateral angepasste Vierpole sind unter sich kom-

mutativ, man kann sie also in beliebiger Reihenfolge
in Kette schalten, ohne dass sich die
Eigenschaften des resultierenden Vierpoles ändern würden,
was natürlich für die analytische Behandlung ein

grosser Vorteil ist. Alle Vierpolmatrizen haben wir
ja definitionsgemäss auf eine einzige Bezugsebene
reduziert; diese reduzierten Matrizen enthalten das
wesentliche der Vierpoleigenschaften. Im praktischen

Falle besteht der Vierpol dann aus dem
reduzierten Teil und einem reziproken Phasenschieber,
der von der physikalischen Länge der Struktur ab¬

hängt, ebenso wird die auf Ein- und Ausgangsebene
bezogene Matrix aus der reduziertenMatrix «in Kette»
mit der Phasenmatrix gewonnen. Liegt nun eine
Zerlegung in kommutative Vierpole oder Matrizen vor,
so kann man beim Zusammenschalten zunächst alle
reduzierten Matrizen «in Kette schalten» (multiplizieren

bei den T-Matrizen) und dann die Kette aller
einzelnen Phasenglieder zufügen.

Von den in den Tabellen II und III angegebenen
(reduzierten) Elementarvierpolen sind ausser
Übertrager, Reflektoren, Konvertern und Negativ-Inver-
tern alle bilateral angepasst und daher unter sich
kommutativ. Mit den Negativ-Invertern sind nur die
impedanztreuen Vierpole kommutativ. Hingegen ist
z. B. die Kettenschaltung von Negativ-Inverter und
Phasenglied nicht kommutativ ; kehrt man die Reihenfolge

der Schaltung um, so muss man das Vorzeichen
der Phase im Phasenschieber ebenfalls wechseln, wie
in Figur 12 dargestellt.

Fig. 12. Kommutationsregel von Negativ-Inverter und
Phasenschieber

Tabelle II. Elementare Vierpole mit null Freiheitsgraden (Anmerkungen siehe S. 183)

Bezeichnung

In Fig. 11

Matrix Scheinbare Schaltung

vorwärts rückwärts

Symbolische

Darstellung

Idealer

Gyrator

0

1/Zö

ANI
Antireziproker

Negativ-Inverter

0

VjZo

Ro

0
Of

JP,

-Jlf

Reziproker Negativ-Inverter

1. Art

0

-1/Zo

+ Zo

0

-Zn

RNL
Reziproker Negativ-Inverter

2. Art

0

1/Zo

-Zo

0

-Zo

Z,-
-Zo

RVI,
Reziproker verlustloser

Inverter (Tiefpass)

0

j/Zo

JZo

0

cüL Z0
O 'ÖÖÖ(R '*Ö5WV——O

=Fjc=zo

Reziproker verlustloser

Inverter (Hochpass)

0

1/jZo

-jZo

0

,,1/uOZo
0 II r II 0

|u)L Z0

Ideale Richtleitung

1/2

1/2 Z0

Z0/2

1/2 ÎC O<=0

RNK
Reziproker Negativ-

Konverter z,=-z.
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Tabelle III. Elementare Vierpole mit einem einzigen Freiheitsgrad

Bezeichnung

Matrix Scheinbare Schaltung

vorwärts rückwärts
Symbolische Darstellung

Richtphasenschieber

(impedanztreu)

0

0 e'y

e-JV

0 ;if -f

Gewöhnlicher

Phasenschieber (reziprok)

cos y j Zo sin f
sintP/jZo cos y

.-if
O e if

Impedanz- und reflexionstreuer

Leistungswandler

e"*

0

0 e"<*

0

0

~<A
Ü1 [el,

_jotgh(<//2)

|^j Zpsin hcK

+cK

Attenuator (a > 0)

beidrichtiger Verstärker

(*-0)

coshcK Zosinhcrt

sin h (A
—7 cosh«/»

e-"

O

Z0 tgh(<X/2)

Z0sinhcrt

Ein richtiger (angepasster)

Verstärker

1

1/Zo

Zo

1

O

1/v
Zo Jz0 Z.J

Leistungslos gesteuerte

Stromquelle (hochohmiger

Eingang)

1/g

0

i
gz0

-1

-i
I2=gUi g >-

Leistungslos gesteuerte

Spannungsquelle

(hochohmiger Eingang)

1/v

0 S vU« < v E-

Übertrager, 6

Sprung asym. Reflektor

(verlustlos)

0

1/ü

t

1 :ü

5 Sa

Symmetrischer reaktiver 7

Reflektor (verlustlos)

t jZoVhH

V^/jZo t

t

-jVFï t

0 ——
T

0

0

0 R

0

\l gl 1
+ jr +

(-) (-)

Symmetrischer reeller 9

Reflektor

o-t) -t

t (1-0

Widerstandschichh

|S N( SJ - r -
(+) (+)

Einseitiger passiver

Reflektor

1/t/HÏÏ

0

Z0r
VEirf
VEÎH

T-\r\ r/yi-|r|
0 i/i/Eki

Richfkoppler

Kopplung ="V"F

Reziproker Konverter
cosy j sinV

j sin y cosy
U,= e^U2

11
Zi=e2jVz:

Antireziproker Konverter

,if
.->f

jsinf cosy

cosy jsiny
Ih-e^U, E §)[ Z,-e^Z2

Negativ-Konverter
jt

sif
.if

.if
II ^)+_ (£[u4 z, =-Z,

Positiv-lnverter

0

d7Zo

ẐOe

0

-e 0

J*
U,=Z0e-lif'l2 12 U2-Z0 e"^I1

Z,=
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Unter Berücksichtigung dieser Regel und der
Vorschrift, den Xegativ-In verter nur mit impedanztreuen
Vierpolen in der Reihenfolge zu vertauschen, kann
auch der Phasenanteil des Negativ-Inverters mit den
Phasen anderer Teilvierpole zusammengefasst werden.

6. Ilichtdämpfimgen, Quellenvierpole

Während wir im letzten Kapitel hauptsächlich
solche Vierpole betrachtet haben, die auf die Phase
der Ströme, Spannungen, Wellen und Impedanzen
wirkten, so wollen wir hier die dämpfungs\msym-
metrischen Vierpole etwas genauer untersuchen. Dazu
sei zuerst der Begriff des Übertragungsmasses etwas
diskutiert. Das Wellenübertragungsmass ist definiert
[1] als Verhältnis von Eingangs- zu Ausgangsleistung
(gemessen in einem logarithmischen Maßstab), wenn
der Ausgang mit dem Wellenwiderstand abgeschlossen

ist. Diese Definition hat den Vorteil, dass dieses

Dämpfungsmass einen nur vom Vierpol abhängigen
Wert hat, also durch die Vierpolkonstanten eindeutig
festgelegt ist. Es haftet ihr der Nachteil an, dass sie
im allgemeinen nicht mit den praktisch gemessenen
Übertragungswerten in einer bestimmten Schaltung
übereinstimmt. Aus diesem Grunde hat man das Be-
triebsübertragungsmass eingeführt, das viel
allgemeiner ist und für beliebige Quellen- und
Abschlusswiderstände dem wirklich vorhandenen Leistungsverhältnis

entspricht; selbstverständlich muss für jeden
einzelnen Eall Quellenwiderstand und
Abschlusswiderstand angegeben werden. Wir möchten nun hier
ein Übertragungsmass einführen, das der Koaxial-
und Hohlleitertechnik besonders gut angepasst ist und
das sich ganz in die Theorie der Wellenmatrizen ein-

Legende zu den Tabellen II und III:
1) Negative Laufzeiten sind natürlich nicht möglich, deshalb

sind die hier angegebenen Elementarvierpole in der physikalischen

Realisierung immer noch mit einem reziproken
Phasenschieber (einem Leitungsstück mit Z0) in Kette geschaltet.

2) Feldtkeller und Normenmacher [6] verwenden für den
Gyrator das sehr prägnante Symbol nach Pig. A, das wir nur
im Interesse einer allgemeinen, einheitlichen Symbolisierung
der nichtreziproken Vierpole nicht übernommen haben;

Fig. B Fig. C

Hogan [12] benützt das Symbol nach Fig. B. Die Darstellung
nach Fig. C stammt von Tellegen [11], sie hat den Nachteil,
dass die Nichtumkehrbarkeit nicht zum Ausdruck kommt.

3) Zj Eingangsimpedanz Z2 Lastimpedanz

4) a >> 0 bedeutet hier Dämpfung, a<0 Verstärkung.
5) ü t + yt2 - 1 Reflexion r Vt2-l/t t 1 f\j\ - r2

6) r yt2 - 1/t reell

7) Reflexion jr j V't2 - 1/t imaginär (reaktiv)
8) Die Reflexion r wurde hier reell angenommen. Ist sie komplex,

so handelt es sich um einen Vierpol mit 2 Freiheitsgraden; die
Matrizen sind in diesem Falle dieselben.

9) r Z0/(2R+Z0) t Z0/2R S Jj ~r_ r)^ j|

fügt. Es hat die gleiche Definition wie das Betriebs-
übertragungsmass, wobei zusätzlich festgelegt wird,
dass der Quellenwiderstand gleich dem Bezugswiderstand

Z01 des Einganges und die Last gleich dem
Bezugswiderstand Z(j2 des Ausganges sein soll. Der
Ausgang ist also reflexionsfrei (p2 0) abgeschlossen.
Damit trägt man dem Umstand Rechnung, dass die
Wellenmatrizen eigentlich auch Betriebsmatrizen
sind, mit denen man genau jene Grösse erfasst, die
im praktischen Falle bei der Leitungstechnik an diesen

Elementen gemessen werden. Das so definierte
normierte Übertragungsmass wird also gemessen als
das Verhältnis der maximalen Leistung, die eine
Quelle mit dem inneren Widerstand Z01 nach aussen
abgeben kann, zu der Leistung, die sie über den Vierpol

an den Widerstand Z02 abgeben kann. Das Lei-
stungsVerhältnis wird in einem logarithmischen Maß-
stabe ausgedrückt und die Widerstände Z01 und
Z02 sind die Bezugswiderstände des Vierpoles. Falls
Z01= Z02, so ist die normierte Dämpfung (der Realanteil
des normierten Übertragungsmasses) gleich der Ein-
fügungsdämpfung, wenn diese ebenfalls auf Z01

bezogen wird. Wir sehen hier erneut, welch wichtige
Rolle die Bezugswiderstände (meistens der
Bezugswiderstand) eines Systèmes in der Leitungstechnik
spielen. Dies kommt daher, dass man im allgemeinen
bei dieser Technik bestrebt ist, jedes Schaltelement
möglichst gut an den nominellen Bezugswiderstand
anzupassen und seltener etwa an den wirklichen
Eingangswiderstand des darauffolgenden Elementes; die
Gründe dazu sind erstens messtechnischer, zweitens
fabrikatorischer Art, da ja oft bei der Fabrikation von
Einzelteilen nicht bekannt ist, in welchem Zusammenhang

das betreffende Element später verwendet wird.
So sind zum Beispiel handelsübliche koaxiale
Dämpfungen selten reflexionslos, das heisst, ihr
Wellenwiderstand weicht vom Bezugswiderstand, der
beispielsweise mit 50 Ohm angegeben wird, mehr oder
weniger ab. Die angegebene Dämpfung ist jedoch die
normierte, das heisst, jene, die man mit Messinstrumenten

misst, deren Wellenwiderstand genau gleich
dem Bezugswiderstand ist.

Zwischen dem normierten Übertragungsmass
(aA-+j/ü) und den Matrixelementen bestehen
folgende Beziehungen (vorwärts) :

p(«lN + j^ix) _ ü MO2
I n —

1

_i_

2 [ U V 12 V^oi ^o2

+ ®21 V^Ol ^02 T ®22 ^~Z^j ^22 ^S21

- 2t (** \/='in+v'z"z" ~vzä " \/In)
(45)

und rückwärts:

e(«2N + j/?2N) <22/detT l/s12 e(ßlN + i^1N)/detA
(46)

Fig. A

IT
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Auffallend sind vor allem die einfachen Beziehungen,

die sich zu den Elementen der Wellenmatrizen
ergeben.

Vierpole mit imaginärem Ubertragungsmass haben
wir im letzten Kapitel behandelt. Hier wollen wir uns
solchen mit reellem Übertragungsmass zuwenden,
also den Dämpfungsgliedern und Verstärkern.
Allgemeine Dämpfungsglieder und Verstärker werden
natürlich immer auch einen Phasengang haben; man
kann aber für die Berechnung immer einen Vierpol
abspalten, der nur die Phasenbeziehungen enthält.

Der bekannteste Vierpol mit reellem Übertragungsmass

ist das gewöhnliche angepasste Dämpfungsglied
mit U1/TJi Pi/q2 a ea. Seine Matrizen schreiben

sich:

A

Z

cosha Z0sinha
sinha/Z0 cosha

(a+l/a) -2

(a+l ja) Z0(a-l/a)
(a-l/a)/Z0 (a+l/a)

_Zo
a-l/a

T

S

2 (a+l/a)

l/a 0

0 a

0 1 ja
l/a 0

Falls a ë 1 ist, handelt es sich um ein passives
Dämpfungsglied, ist a < 1, so liegt ein aktiver Vierpol

vor, der in beiden Richtungen verstärkt. Beim
Betrachten der Matrizen fällt einem sofort die Analogie

zum Übertrager auf, wobei formal die Rollen
der A- und Z-Matrizen mit den Wellenmatrizen
vertauscht sind. Entsprechend kann man auch diesen
Vierpol als Wandler betrachten, und zwar als
reziproken Reflexionswandler oder Leistungswandler. Die
Reflexion einer Last wird durch Kettenschaltung
eines Dämpfungsgliedes um a2 geändert. Neben den
Vorteilen eines beidrichtigen Verstärkers ist durch
diese Betrachtungsweise auch ein Nachteil ersichtlich

: Störende Reflexionen werden vergrössert.

Einen weiteren Vierpol mit phasenfreiem
Übertragungsmass haben wir im letzten Abschnitt kennen
gelernt, den impedanz- und reflexionstreuen Leistungswandler.

Seine Matrizen waren :

A

T

l/a 0

0 l/a

l/a 0

0 l/a

0 l/a
a 0

(a ec)

(48)

Dieser Vierpol ist areziprok, er wirkt in der einen
Richtung als Verstärker (vorwärts, wenn a> 1) und
in der andern als Dämpfungsglied. Die Kettenschal¬

tung eines reziproken und eines impedanztreuen
Wandlers ergibt einen allgemeinen
dämpfungsunsymmetrischen Vierpol.

Fig. 13. Zerlegung des allgemeinen dämpfungsunsymmetrischen
Vierpols

Ist dabei aa ë ^ ë 0, so ist der Vierpol passiv
und wir nennen ihn Richtdämpfung oder, in der
Leitungstechnik, Richtleitung. Im Idealfall wäre dabei

0 ; œ. das heisst, die ideale
Richtleitung ist verlustlos für die eine Durchlassrichtung

und dämpft vollständig für die andere
Richtung; sie hat demnach folgende Matrizen:

(47) Z Z0

T

S

1

l/^o

1

2

0

0

0

1

:

z z0

T

S

-1 -2
0 1

1 0

0 0

0 1

0 0

(49)

Der so definierte Vierpol ist eine sogenannte
absorbierende Richtleitung, in der die rückwärts in den
Vierpol fliessende Leistung vollständig oder teilweise
absorbiert wird. Daneben gibt es auch eine
reflektierende Richtleitung, bei der die Leistung in einer
Richtung durchgelassen, in der andern reflektiert
wird. Diese letztere kann durch folgende Matrizen10
dargestellt werden:

sinh (99/2) Za cosh (99/2)

(l/Z0) sin (99/2) cosh (99/2)

(50)

A e-i ri2

0 0
T

-eJ' r 1

0 0 CO ej 1

S S
0 01 eh

Ein solcher Vierpol ist, wie wir schon im 3.
Abschnitt gesehen haben, aktiv. Es ist hingegen möglich,
passive Vierpole zu realisieren, die eine gewisse Näherung

zur idealen reflektierenden Richtleitung
darstellen, indem sie in einer Richtung die Energie
teilweise durchlassen, während sie in der andern Richtung

teilweise reflektieren, teilweise absorbieren. Die
in diesem Sinne optimale passive reflektierende
Richtleitung lässt in einer Richtung die Hälfte der Leistung
durch, während sie in umgekehrter Richtung die
Hälfte reflektiert. Der Rest der beiden einfallenden
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Leistungen wird absorbiert. Die Vierpolmatrizen10
sind also:

T
0 0

_ej« v'Y
S

1

yir
o

eD
(51)

Etwas allgemeinere passive, teilweise reflektierende
Richtleitungen erhält man, wenn man beachtet, dass

für Passivität

21 Ii
sein muss, falls man

2 S 1

0 annimmt.

(52)

Ähnlicher Art wie die Richtleitungen sind die

gewöhnlichen Verstärker, einzig dass die Leistung in
Durchlassrichtung nicht gleich bleibt oder abnimmt,
sondern vergrössert wird. Die Matrizen eines
beidseitig angepassten idealen Verstärkers sind:

A —
l/v Zjv

2 1 IZ0v l/v

0 0
T

0 l/v

Z Zn

S

1 0

V -i
0 0

V 0

(53)

dank dem zu jeder Stromquelle eine äquivalente
Spannungsquelle und umgekehrt gefunden werden
kann. Im Frequenzbereich der Leitungstechnik sind
die idealisierten Bedingungen von Strom- und
Spannungsquelle ohnehin fast immer schlecht erfüllt, so
dass es eine Vereinfachung bedeutet, hier mit einem
einzigen Quellentyp zu arbeiten. Quellen sind Zweipole

und können mit nachfolgenden Symbolen
dargestellt werden.

mit v2 Leistungsverstärkung Paus/Pem

Man erkennt aus der Ähnlichkeit mit den
Richtleitungen auch, warum letztere so wichtig sind: sie
ersetzen in vielen Fällen einen Verstärker, besonders
da, wo die Aufgabe des Verstärkers nicht in erster
Linie die Leistungsverstärkung, sondern die Trennung
ist, also zum Beispiel das Verhindern von Rückwirkungen

aus einem vielleicht unstabilen Teil einer
Schaltung in einen lastempfindlichen Teil. Eine solche

Trennung wird oft durch reziproke Dämpfungsglieder
erreicht. Mit Richtleitungen erspart man in diesem
Falle Leistungsverluste und dabei unter Umständen
Verstärker. In Frequenzgebieten, wo zur Realisierung
einer passiven Richtleitung aktive Elemente
notwendig sind, fallen diese Vorteile natürlich dahin.

Wenn wir von Verstärkern sprechen, so müssen
wir auch allgemein etwas über die Quellen sagen. In
der klassischen Netzwerktheorie unterscheidet man
Strom- und Spannungsquellen. Diese Unterscheidung

ist in der Leitungstechnik nicht sehr zweckmässig

und wir arbeiten hier besser mit dem Begriffe
der Leistungsquellen. Eine ideale Spannungsquelle
stellt impedanzmässig einen Kurzschluss dar, das
heisst, ein der Spannungsquelle von aussen
aufgedrückter Strom erzeugt in der Quelle keinen
Spannungsabfall. Sinngemäss definieren wir eine ideale
Leistungsquelle so, dass eine in die Quelle laufende
Welle nicht reflektiert wird, sie muss deshalb eine
innere Impedanz gleich dem normierten Wellenwiderstand

haben. Im praktischen Falle haben Strom- und
Spannungsquellen immer einen inneren Widerstand,

a) b) <0

Fig. 14. Symbole für Strom- und Spannungsquellen
a) Spannungsquelle
b) Stromquelle in konventioneller Darstellung
e) Leistungsquelle in Wellendarstellung

Da es immerhin auch vorkommen kann, dass
Leistungsquellen, von aussen gesehen, mit guter Näherung

einen Kurzschluss oder eine offene Leitung
darstellen, ist es angebracht, diese Eigenschaft im
Schaltsymbol ausdrücken zu können. Den idealen Strom-
und Spannungsquellen entsprechen dann folgende
Darstellungen für die Leistungsquelle :

Spännungsquelle

Stromquelle

kurzschliessende
'Leistungsquelle

offene
' Leistungsquelle

10 Bei diesen Matrizen sind die Phasenbeziehungen schon so
weit vereinfacht, als sich dies durch Abspalten eines reinen
reziproken Phasengliedes machen lässt, und zwar so, dass die
durchtretende Welle phasenfrei ist.

Fig. 15. Spannungs- und Stromquelle und ihre Äquivalente in der
Wellendarstellung

Wichtiger als diese Zweipole sind in der Vierpoltheorie

die gesteuerten Quellen. Auch hier kennt man
wieder die Unterscheidung in spannungsgesteuert und
stromgesteuert. Wellenmässig ausgedrückt heisst dies,
dass die Steuerwelle total reflektiert wird; im ersten
Falle mit r 1, im zweiten mit r -1. In der
Leitungstechnik besteht kein Grund, zwischen diesen
Steuerarten einen Wesensunterschied zu machen, da
der Reflexionsfaktor durch Verschieben der Bezugsebene

beliebig gedreht werden kann. Die leistungslose
Steuerung ist in der Leitungstechnik indessen kaum
zu verwirklichen, es scheint daher zweckmässiger, eine
reflexionslose Steuerung als Grundtyp anzusehen.
Einer teilweisen Reflexion kann dann zum Beispiel
durch Kettenschaltung eines idealen Übertragers
Rechnung getragen werden. Aus der gesteuerten
Quelle wird damit ein einrichtig wirkender, ange-
passter Verstärker mit den Matrizen nach (53). Als
graphisches Symbol ergibt sich dafür sinngemäss
Figur 16 a; nach Figur 16 b und c könnten gegebenenfalls

Quellenvierpole dargestellt werden, die auf der
Steuerseite nahezu vollständig reflektieren. Für die
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oder

b)-

Fig. 16. Symbole für auf der Ausgangsseite angepasste Verstärker
a) einrichtiger angepasster Verstärker
b) leistungslos (spannungs- bzw. ström-)
c) / gesteuerte Quellen oder Verstärker

Analyse kann ein praktischer, mit Anpassungsfehlern
behafteter einrichtiger Verstärker in eine
Kettenschaltung aus idealem Quellenvierpol mit Ein- und
Ausgangsübertrager und zwei Phasengliedern zerlegt
werden, wie in Figur 17 und Matrixzerlegung (54)
gezeigt11 :

»1 "2

ft *1 >> ?2

T

Fig. 17. Zerlegung des allgemeinen Verstärkers

abc abjc\

j| ac/b a/bc\

l e-i <*"+»*> \Jt2_! 02_! ; e-i ta-f.) \Jt\-1 • t
\V \ ej f ei \/t\-l ; eKç'i+ç'î) tx t2

e_j 'o 0
Ü Y^i 1 0 0

h V'22-1
e~i v* 0

0 ej VÜ"1 '1 0 1 lv\ <2 0 ei vi

11 Der Übertrager als reflektierender Vierpol wird in Kapitel 7

behandelt.

7. Synthese allgemeiner Vierpole

Nachdem wir nun die dämpfenden Vierpole
betrachtet haben, fällt es uns leicht, eine wichtige
Gruppe von Vierpolen, nämlich alle beidseitig ange-
passten, aus einer Kettenschaltung von Elementarvierpolen

zusammenzusetzen. Weil bei den angepass-
ten Vierpolen die beiden komplexen Reflexionen qx
und q2 Null sind, kann man sofort folgern, dass die
ursprünglich 8 Freiheitsgrade des allgemeinen Vierpols

sich hier auf 4 reduzieren müssen. Als Bestim-
mungsgrössen eines beidseitig angepassten Vierpoles
kann man zum Beispiel folgende Eigenschaften
wählen :

1. symmetrische (heidrichtig gleiche) Dämpfung
(oder Verstärkung).

2. asymmetrische (vor- und rückwärts entgegengesetzt

gleiche) Dämpfung.
3. symmetrisches Phasenmass.
4. asymmetrisches Phasenmass.

Für jede dieser Eigenschaften haben wir einen
bilateral angepassten Vierpol gefunden, die alle unter
sich kommutativ sind und daher in beliebiger Reihenfolge

in Kette geschaltet werden können. Diese
Synthese ist in Figur 18 und in der Matrizengleichung (55)
dargestellt.

/ *<*-2 / // - t /fz
Fig. 18. Zerlegung des allgemeinen, beidseitig angepassten

Vierpols

(54)

T
(55)

ü~"' 0 e~vi 0 e~Vi 0

0 e~"2 0 e fi 0 e~V'

In der ersten Matrix ist zum Ausdruck gebracht,
dass es sich um eine spezielle Matrix mit 6 Freiheitsgraden

handelt (a, b, c sind komplex, ebenso v,
dagegen sind tv t2, <px, (p2 skalar), wobei hier det T 0

ist. An Stelle der Übertrager hätte man bei der
Zerlegung auch Blenden (symmetrische Reflektoren)
oder einseitige Reflektoren verwenden können. Dieser
Fall (54) gibt genau den praktischen Fall zum Beispiel
eines KlystronVerstärkers wieder : Die mittlere Matrix
entspricht den eigentlichen Verstärkereigenschaften,
die anschliessenden Übertrager der Ein- und
Auskopplung, und die Phasenglieder ergehen sich je
nach Bezugsebene für Ein- und Ausgang, sie sagen
im übrigen nichts Wesentliches aus über den
Verstärker.

0- (ari + 02) - j ((pi+ q>i) 0

0 ($(ai~a2) +j (?>i

e~a' 0

0 ea'

In dieser Zerlegung, neben der natürlich viele
andere möglich sind, treten die wesentlichen reell
reziproken, komplex reziproken und areziproken
Eigenschaften besonders gut in Erscheinung. Es ist auch
leicht zu übersehen, was beispielsweise mit einer
Reflexion (oder Impedanz) geschieht, wenn sie nach
Zwischenschaltung dieses Vierpoles gemessen wird:
Die ersten beiden Teil-Vierpole sind phasenfrei.
(aQ ist ein reeller Wandler für die Reflexion (s.
Abschnitt 6), während der zweite reflexionstreu ist. Das
reziproke Phasenglied (q>x) dreht die Phase der
Reflexion um 2 tpv während der letzte Vierpol, der
Richtphasenschieber, wieder reflexionstreu ist.

Zum allgemeinsten Vierpol fehlen uns bei der
Synthese nach Figur 18 und (55) noch die
Reflexionseigenschaften auf den beiden Seiten. Wir wollen daher
zunächst noch einige Vierpole betrachten, die
Reflexionen erzeugen und die reell reziprok sind. Schon
früher sind wir auf den gewöhnlichen Übertrager
gestossen, der folgende Matrizendarstellung hat :
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Tabelle IV. Vierpole mit zwei Freiheitsgraden

Bezeichnung

Matrizen

A T
Zerlegungsmöglichkeiten Symbol

Impedanz-und reflexionstreuer

Vierpol

*v // -9

*0^

Z' ' ~ck

Allgemeiner Phasenschieber Ilfz
C°s*i jZ0siny>

sm^/jZo cosy,

e-jöpy2) 0

0 e'^"^ %
y2

/-Vz

Allgemeine Richtleitung
cosho^ Zgsinho^

sin C0Sho<i

e(<V»y o

o e
2)

+0<2

<^2

Idealer Konverter

,-jy
,if cosy jsiny

jsiny cosy
Zr°2'%

+y

/-9
Z,-e2^Z2

Idealer Inverter
0

ej1>/zo

ZoeJ"'

0

-costj jsini)
Il -jsirvrç cost)

Z,-e^Z2
+ 8

X -6
Z,=e^C

Aü

Tü=

Su

0

l/ü
I (ä+1/ä) (ii-l/ü) j

2 ||(ä-1/ä) (ii+l/«)|

1 || (ü-1/ü) ; 2 [J

«+!/«,! 2 ;—(«—!/«) j|

t\\Jt2~l

\!t^l ; t

s; yi-s'
yi -s3;-é

(56)

coshr sinhr

sinhr coshr

sin a cos g

coscr -sinn

wobei

ü t + '\A2-i
1 + « «l>i < i
1 -s

^(l_s2) l
Im Sonderfall des angepassten Übertragers werden

die Wellenmatrizen, wie schon aus den Beispielen im
Kapitel 2 hervorgeht, trivial :

1 0
Tü

0 1
SÜ

0 1

1 0

Dies rührt davon her, dass wir bei den Wellenmatrizen
die Anpassung zum Prinzip erklärt haben und

dass damit ein Übertrager bei der Verbindung
verschiedener Leitungen als selbstverständlich betrachtet
wird. Er trägt ja auch nichts bei zu den Eigenschaften
des ganzen Systems, erst beim Fehlen des Übertragers
wird man auf die Verbindungsstelle der zwei Leitungssysteme

aufmerksam. Hingegen ist der nicht ange-
passte Übertrager ein wichtiges Element der Leitungstechnik,

und zwar realisiert man gewöhnlich nicht,
dass es sich um das Äquivalent eines Übertragers
handelt, sondern man bezeichnet einen solchen Vierpol

meist als asymmetrische Stufe oder Sprungstelle.
Wir könnten ihn hier auch antisymmetrischen Reflek¬

tor nennen. Die Figuren 4 b und 4 d sind Beispiele
von solchen Stufen in Hohlleitern. Die Kopplung
durch eine solche Sprungstelle ist durcli t, die Reflexion

durch s bestimmt; die letztere ist, gesehen von
der einen Seite, entgegengesetzt gleich jener gesehen
auf der andern Seite.

Ein weiterer, wichtiger, ebenfalls verlustloser, reell
reziproker Vierpol ist der symmetrische Reflektor. Die
Sprungstelle war bezüglich Reflexion antisymmetrisch,
dieser Reflektor ist symmetrisch. Beispiele solcher
Vierpole in der Leitungstechnik sind Blenden,
Zentrierscheiben und unkompensierte (impedanzkonstante)

Sprünge, wie Figur 19 zeigt.

_e £

Fig. 19. Beispiele von symmetrischen Reflektoren

Die entsprechenden Matrizen sind :

Ar t_ ]Zä\/t2-l
\/t2-ll]Z0 t

Tr

Sr

j Vf-i
jy'üH t

]s yi-s
V1-'

"
s2 js

coshr j sinhr

-jsinhr coshr

sinh er cos a

cos a sinh a

(1*1 >1) (57)

(M<i)

In diesen beiden Beispielen seien s und t reelle
Grössen. Es handelt sich in beiden Fällen um Vierpole
mit einem einzigen Freiheitsgrad, das heisst, ein
einziger Wert beschreibt den Vierpol vollständig.
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Ein weiterer passiver, reell reziproker Vierpol ist
der einseitige passive Reflektor: Sein Übertragungs-
mass ist in beiden Richtungen dasselbe (< 1), jedoch
reflektiert er nach der einen Seite, während er -
Anpassung vorausgesetzt — nach der andern Seite keine
Reflexion hat ; er ist also ein Beispiel eines unilateral
angepassten Vierpoles. Der optimale Fall - grösste
einseitige Reflexion bei geringster Durchlassdämpfung

- hat folgende Matrixdarstellung :

T

S

A

V1—[r I

0

r

V HH

r\\j 1— | r |

1/VHH

V 1_\r
0

(58)

l/y'i-M v/V1-M
0 Y1 — I r I

Eine mögliche Realisierung durch Richtkoppler ist
in Figur 20 angegeben (p3 -\Jr px) :

P4
Ayv

P3 P2

"1
\F"

12

Fig. 20. Mögliche Realisierung eines einseitigen passiven
Reflektors

Ein Vierpol mit einseitiger Reflexion aber ohne
Durchlassdämpfung könnte realisiert werden durch
Kettenschaltung des eben besprochenen mit einem
beidrichtigen Verstärker.

Beim Vierpol nach Figur 20 kann die Phase des
Reflexionsfaktors durch Verschieben des Kurzschlusses

im 3. Kopplerzweig verändert werden. Man kann
die Reflexionsvierpole aber auch so definieren, dass
der Reflexionsfaktor reell ist. Ein in Kette geschaltetes

Phasenglied kann der Reflexion eine beliebige

Phase erteilen, wobei natürlich auch die Phase des

Übertragungsfaktors beeinflusst wird.
Nun haben wir alle Elemente zur Hand, um den

allgemeinsten Vierpol mit 8 Ereiheitsgraden aus einer
Kettenschaltung von 8 Vierpolen mit je einem einzigen

Freiheitsgrad zu erzeugen. Ein Beispiel einer
derartigen Synthese gibt die Figur 21 :

Fassen wir je zwei dieser Vierpole zusammen, so

ergibt sich die Synthese nach Figur 22:

Anstatt die Vierpole 3 und 4, 5 und 6 aus Figur 21

zusammenzufassen, kann man auch 4 und 5, 3 und 6

kombinieren. Dann enthält der Vierpol (4 # 5) alle
nicht reziproken Eigenschaften des Gesamtvierpoles.
Da (4 # 5) ausserdem mit jedem Vierpol kommutativ
ist, (die Matrix ist ein skalarer Faktor) oder, anders
ausgedrückt, weil er impedanztreu ist, kann dieser
Vierpol an beliebiger Stelle, also auch am Ende der
Kette eingeschaltet werden. So entsteht die Zerlegung
in einen reziproken und einen nichtreziproken Vierpol

[5],
Ersetzen wir in der Zerlegung nach Figur 21 die

Teile 2 und 7 zum Beispiel durch symmetrische
Reflektoren, so sind, ausser dem Vierpol (3 # 4), alle Teile
verlustlos. Da diese beiden Vierpole in der Zerlegung
auch an ein Ende der Kette gelegt werden können
(wobei sich dann natürlich andere Werte ergeben für
die Vierpole, da 3 nicht allgemein kommutativ ist),
so hat man damit eine Zerlegung in einen verlustlosen
Teil und einen Vierpol, der Leistung aufnimmt oder
abgibt.

Der allgemeine Vierpol kann natürlich auf manche
andere Art zerlegt werden, indem man geeignete
spezielle Vierpole, von denen wir im Verlaufe dieser
Diskussion eine grosse Zahl kennengelernt haben, in
Kette schaltet. Parallel- und Serieschaltungen und
Kombinationen aller drei Zusammenschaltarten geben
weitere Synthesemöglichkeiten, die in der Literatur,
besonders für Vierpole mit konzentrierten Elementen,
schon weitgehend analysiert wurden. Hier ging es

darum, jene Vierpole aufzuzeigen, die sich für die

1 2 3 4 5 6 7 8

verlustlos j mit Verlust

passiv

evtl. aktiv aktiv
verlustlos | mit Ve'lust

passiv

verlustlos

reell reziprok areziprok komplex reziprok reell reziprok

bilateral unilateral bilateral

angepasst

unilateral bilateral

dreht erzeugt

Reflexion

multipliziert
impedanz- und reflexionstreu

dreht erzeugt

Reflexion

dreht

Fig. 21. Synthese des allgemeinsten Vierpols durch eine Kette von acht elementaren Vierpolen mit einem einzigen Freiheitsgrad
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r,e2i* *<"y/ r2e'2'*

Einseitiger Reflektor Richtdämpfung Richtphasenschieber Einseitiger Reflektor

passiv aktiv12) passiv

reell reziprok areziprok reziplex reell reziprok

unilateral bilateral unilateral

erzeugt multipliziert dreht erzeugt

Reflexion

T

S

1 — det S

S21 ~~ S22

1 ^12 ^

^22 1

öii
1

det T

hi

(59)

(60)

12 Nur aktiv, wenn der Übertragungsfaktor in mindestens einer
Richtung grösser als 1 ist.

T
det T

S

hi hl
~~ ^12 hz

S22 SZ1

S12 «11

(61)

(62)

Fig. 22. Synthese des allgemeinsten Vierpols aus vier Vierpolen
mit zwei Freiheitsgraden

wellenmässige Betrachtung und für die Synthese von
Vierpolen der Leitungstechnik speziell gut eignen. Je
nach der Art des zu behandelnden Problèmes wird
man diese oder jene Elementarvierpole für die
Synthese bevorzugen.

Zum Schlüsse muss noch auf einen wichtigen Punkt
hingewiesen werden. Alle die Koeffizienten, die wir
als Matrixelemente zur Charakterisierung eines Vier-
poles benützt haben, können natürlich Punktionen
der Frequenz sein. Im allgemeinen wird ja einem Vierpol

bei Änderung der Frequenz ein bestimmtes
Verhalten vorgeschrieben. So können sich natürlich seine
Eigenschaften, wie Reziprozität, Passivität, Anpassung

usw., in Funktion der Frequenz ändern. In der
Breitbandtechnik strebt man an, die Eigenschaften
möglichst konstant zu halten, während die
Filtertechnik scharfe Änderungen verlangt. Einzelne Vierpole

eignen sich naturgemäss besser für diese, andere
für jene Frequenzanforderungen. Eine grosse Rolle
spielt in diesem Zusammenhang auch das Problem
der Stabilität, das mit der Frequenzabhängigkeit der
Matrixelemente zusammenhängt. Es würde jedoch
über den Rahmen dieser Arbeit hinausgehen, auf diese
Aspekte näher einzutreten.

Schlusswort
Für wertvolle Anregungen und für die kritische

Durchsicht des Manuskriptes möchte ich den Herren
Prof. Dr. F. Tank und Prof. E. Baumann herzlich
danken.

ANHANG 1

Zusammenhänge zwischen den verschiedenen Matrizen

Die Beziehungen zwischen den klassischen Matrizen

finden sich in [1] und [10], Aus den Gleichungen
(5) und (6) ergeben sich für T- und S-Matrix
(Wellenmatrizen) :

S und T sind die Matrizen der umgekehrten Vierpole.)

Will man den Zusammenhang zwischen den
klassischen und den Wellenmatrizen finden, so muss man
zunächst jeder Seite des Vierpoles einen Bezugswiderstand

zuordnen. Das Gleichungssystem (12) liefert
dann den Zusammenhang zwischen Spannungen und
Strömen einerseits und normierten Wellenamplituden
anderseits. Verwenden wir zudem (5) für die S-Matrix
und (3) für die A-Matrix, so können wir diese Gleichungen

nach den Elementen der S-Matrix auflösen.
Dies ergibt :

t / t r
CL ii i CL i9 ß oi CL oo

® 11 + ® 12 + ® 21 + ® 22

2 det A
® 11 V & 12 ® 21 "h ® 22

2

a ii + a i2 + a 21 + a 22

— fl. ii + & i2 ~ gl U' 22

® 11 f ® 18 t (I 51 +(î M

(63)

wobei

(64)

a h au '\ZZ02/Z01

a 12 a12 I \'Z01 Z()2

a 2i a21 \/Z01 Z02

a 22 ß22 \JZqi/ZQ2

Z01, Z(]2 Bezugswiderstände

Löst man umgekehrt nach den Elementen der A-
Matrix auf, so erhält man :

a ii —

a 12 —

^ ^11 dot S &22 11
" ^21 ^12

2«21(1-Su)
1 — det S -f- s22 — — Sj2 s21

2 s21 (1 Ä"n)

1 -f- det S ^ii #22
(65)

'21

-1 + det S + s.
22 2 9^ "21

Analog ergeben sich aus (3) (6) und (12) die
Beziehungen zwischen A- und T-Matrix:

^ii —

t\o

toi —

too —

Y (® 11 ~ a 12 ~ a 21 ® 22)

7 (® 11 ~b ® 12 — a 21 ~~ a 22)

— (a n — a 12 + a 21 — a 22)

— (a ji + a 12 + a 2i + a 22)

(66)
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au

a12

a21

a22

(67)

2
^11 + ^12 ~f hl "h ^22)

7 ~ ^11 + ^12 ~ ^21 + ^22)

J (~hl ~ ^12 + ^21 + ^22)

J ^11 ~ ^12 ~ hl + ^22)

ANHANG 2

Kettenschaltung von Vierpolen in der Darstellung
durch Streumatrizen

Gegeben seien zwei Vierpole mit den Streumatrizen
S' und S", also den Gleichungspaaren:

// _ n 1
11 tt

21 P 1 22 ft 2

(68)

(69)

11 « 11 P 1 + « 12 P 2

1 2 =S21Î>1+,S22Î'2
<z"i «"11 P"i + «"12 p'2
g 2

Diese Vierpole seien in Kette geschaltet, also:

ft"1 i 2 und l"i ft'2 (70)

und gesucht sei die Streumatrix der Kombination:

ü'i «11 ft'i + «12 P'2

1 2 S21 P 1 + S22 P 2 (7^)

Aus den Gleichungen (69) (70) und (71) müssen
also die Grössen pß', q2', qß', pß eliminiert werden.
Durch Einsetzen von (70) und (71 in (69) erhält man :

/ f /.ff/ ff f ff ff
1 — 5 11 P 1 + 5 12 5 11 P 1 + 5 12 S 12 P 2

SllPl + S125 12 P 2 + S 12 5 11 5 21 P 1

+ s 12 s h s 22 q 1

P 1 (s 11 + 5 12 s 21 s 11 + s 12 s 21 5 22 s Ii2 + • •

1 " / ' H 1 f 'f f ff 1 \+ P 215 12 s 12 + s 12 s 12s 22 s 11 + • • •

OO

P 1 11 "h s 21 S 12 S 11 (S 22 s 11)"]

V P 2 [S 12 S 12 (s 22 S 11)]
0

f f rr f rr^ 12 ^ 21 ^ 11 - ^ 12 ^ 12

f 1
/

S n +
1-«', + p 1

22

g 2 Pi
210 21

1-«',
+ p" s

21 12 5 22

22 1-s',22 11

S

1-5'22 0 11

#
S 11 s 12

Q" 0"S 21 S 22

det S') 5 12 S

ff
21 («"22 ~S 22

(72)

Die Mehrfachreflexionen bilden also eine
konvergierende geometrische Reihe, deren Summe sich nach
der bekannten Summenformel berechnen lässt. Analog

ergibt sich für q"2 der folgende Ausdruck:

ANHANG 3

Einrichtige und beidrichtige Passivitätsbedingungen
für A-Matrix und T-Matrix

Ausgangspunkt für die Ableitung sind die
Gleichungen (15a) und (15b). Im allgemeinen, komplexen
Fall ist

U V + }W
I J + j K (73)

<X\k — CLiJc + j ßifc

Darin sind V, W, J, K, a, ß reelle Grössen. Die
Vierpolgleichungen in Kettenform lauten also

Vy+jW, (V2+jW2) (an+]ßn) + (J2+]K2) (a12+ ]ß12)

j1^ jAi (V2~h jw2) («211" j/^21) V (<^2"f j-^2) (a22~'~ j/^22)

(74)

Nach Real- und Imaginärteil geordnet ergibt sich:

Vi «n V2 ßn W2 + a12 J2 ß12 K2

W1 ßn V2 + an W2 + ßl2 J2 a12 K2

Ji «21 V2 ß2i W2 + a22 J2 ß22 K2 (13)

Ky ß2y V2 + «21 V?2 + ß22 J2 + «22 "^2

Die Wirkleistung ist das skalare Produkt der
komplexen Grössen U und I, also

Py=VyJy+WyKy (76)

(75) in (76) eingesetzt ergibt:

Py (F22 + W22) g + (J22 + A22) r+(V2J2+W2 K2) n

+ (V2 K2 + W2 J2) m \U2\2g + \I2ßr + N2n + B2m
(77)

Dabei ist P2 die Wirkleistung und P>2 die Blindleistung

auf der Lastseite und :

g (an a21 + ßn ß21) (an, a21)

1 (a12 a22 "f" ^12^22) (®12 ' ®22) (18)

71 (all °22 + ßll ß22 + a12 a21 + ßl2 /^2l)

(üy ] «22) "f* (®12 ' ®2l)

m (®22 ßll " all ß22 °21 ßl2 + ß21 ö12)

(«22 X ®ll) L (®12 X ®2l)

Ein bei 1 gespeister Vierpol ist in Richtung 1 -> 2

passiv, wenn I\ ^ P2 ist für alle Lastimpedanzen Z2
mit nicht negativem Realanteil R2. Mit (77) schreibt
sich diese Forderung:

(l-»)Pa ^ \U2\*g + [72|2r + B2m (79)
oder

22 ö 11

Somit wird die Streumatrix S der Kettenschaltung :

5 11 5 12

S 21 S 22

Wii
"5 9|1 S

(1 n)^R2g + X/
Iii

r X2
g -\ + — m

Ro R0
(80)

wenn wir durch P2 12 R2 dividieren und
B2 I2 X2 setzen. Die Ungleichung (80) muss bei
einem vorwärts passiven Vierpol erfüllt sein für alle
X2 und für R2 0. Damit (80) für beliebige Werte
von X2 und sehr grosse und sehr kleine Werte von R2
erfüllt sein kann, muss jedenfalls
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g 2: 0

r ^ 0

m 0

(81)
(82)

(83)

sein.
Diese Bedingungen genügen aber noch nicht. Es

muss nun bestimmt werden, welches der Minimalwert
der rechten Seite von (80) ist, wenn Jt2 die Werte
0 —oo durchläuft. Dazu leitet man nach Jl2 ab:

d R,
R2 9

r
Ii,

g —

[X2 haben wir dabei gleich 0 gesetzt, da dies den
ungünstigsten Fall darstellt für (80)]. Das Minimum der
rechten Seite von (80) liegt somit an der Stelle

R2 \Jrtg

und (80) reduziert sich zu

(1— n) S 2 \Jgr
oder

($11, $22 "b (%2' «2l) — 1 ^ 121 (ü112 ' "11/

(84)

(84a)

Man kann zwei Fälle unterscheiden: Ist n> 1, so ist
(84) immer erfüllt, unabhängig von g und r, die ja
beide positiv sind. Ist dagegen n< 1, so kann man
(84 a) umformen in

[(tu, «22) "b (&i2 j «21 ïï — (1 + I det A 12) (85)
A

da man durch Ausmultiplizieren zeigen kann, dass

folgende Beziehung gilt:
to2 + n2 — 4 g r | det A |2 (86)

«22 «12

«21 «11

(«22 ' «2l) ' ' 0

(«12 ' "11/ ^ 0

(«12X«2l) («22X«ll) ®

(«11 > ^22 + («i2, «21

4 gr — m2 4 grV — to'2

wobei

g ($22 > «21)

Y (®12 ' «11)

m («12 x a21) — (a22 x an)

Zu (86) gilt die analoge Beziehung:

to'2 + n2, — 4 g'r I det A j

Damit kann man zeigen, dass für n < j det A |2 die
Gleichung (90) sich durch (85) ersetzen lässt. Ist
hingegen n > I det A ]42, so ist (90) immer erfüllt.

Aus der Kombination der abgeleiteten Bedingungen
ergibt sich, dass ein beidrichtig passiver Vierpol die
folgenden Forderungen gleichzeitig erfüllen muss:

(«11 > «12)

(«21 ' «22) ^
(«11 : «21) ^
(«12 > «22) ^
(«11 X «22)

(«12 X «2l)

0

0

0

0

0

0

(94)

Speist man den Vierpol von Seite 2 her, so hat er
bekanntlich die A-Matrix:

A (1/detA)

Analog der obenstehenden Ableitungen findet man
für die Passivität in Rückwärtsrichtung (2—>- 1):

(87)

(88)

(89)

ïï J detAj2 2'Y'((j22, «22) («12,«j]J
(90)

Man kann nach den Regeln der Vektorprodukte
zeigen, dass

(91)

(92)

(93)

(«H «22) ~b («12 ; «21) ~b ^ \ («11 ' «21) («12 ' «22)

^ 1 und ^ I det A ]2

Bei einem verlustlosen Vierpol gelten überall in
(94) die Gleichheitszeichen. Es ist ferner leicht
einzusehen, dass ein Vierpol, wenn er einrichtig verlustlos
ist, auch umgekehrt verlustlos sein muss und dass dann
[detAj 1, der Vierpol also komplex reziprok ist.

Soll ein Vierpol beim reellen Abschlusswiderstand
R2 (> 0) punktweise, einrichtig verlustlos sein, so

ergibt sich anstelle von (80)

I—11 'S R2 g + r/R2, oder (95)

(«11 > ^22 "b («22 «2l) ~ 1 R% («11 > «2l) («12 ' «22)/-^2

(95a)

Um die einrichtigen Passivitätsbedingungen für
die T-Matrix abzuleiten, geht man aus von der
Forderung :

I Ï2I2 - IP2I2 - |Pii2-| S'il2 (9Ö)

die erfüllt sein muss für

|re3e| 1 (97)

Mit (6) ergibt sich dann:

r2 — 1 + (re'e t21 + t22) (r e~k t*\ + t*2) —

e fe fjj + fe2) (r e ~k tu + t*2) ^ 0 (98)

(indem man durch | q \2 dividiert und die Quadrate
der Beträge als Produkte der Faktoren mit ihrem
konjugierten Wert schreibt.)

Benützt man nun folgende Abkürzungen :

(tu tu — fei t*i) a
(fe2 t*i —• tu t\2) — b (99)
[ fei <12 — fei fea | c

so lässt sich (98) in nachstehende Form bringen:

r2 1 — a) — r [ek (tu tt2~ fei <22) +
e ~k (ifi fe2 — fei fe2)] + 6 — 1 =0

oder (100)
r2 (1 — «) — 2 t Re { e k (tu t*2 — fei t*2)} + b — 1 0

Der ungünstigste Fall liegt dann vor, wenn der
Ausdruck in der geschweiften Klammer positiv reell wird,
was bei geeigneter Wahl von g immer möglich ist.
Somit ergibt sich folgende Bedingung, die für OSrä 1

erfüllt sein muss :
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r2(l_œ)_2rc + (6- 1) 2: 0 (101)

Setzt man r 0 und r 1, so ergeben sich sofort
die Bedingungen:

b ^ 1 (102)

b-a ^ 2C (103)

Die quadratische Funktion (101) kann ausserdem im
zulässigen r-Bereiche ein Minimum aufweisen, falls
a < (1 - c) ist, und zwar an der Stelle r cj(l - a).
Die Ungleichung (101) wird dann zu

(1—o) (6-1) ^ c2 (104)

Durch Ausmultiplizieren kann man sich überzeugen,
dass folgende Beziehung richtig ist :

c2 + ab | detT |3 (105)

Es ergibt sich dann aus (104), wenn man für a, b und
c die ursprünglichen Werte wieder einsetzt :

*22 !2 + hi !2 -1 h% 12 -1 hi 12 ^ 1 + Idet T12 (loe)

Nach dem vorangegangenen ist leicht einzusehen, dass
im verlustlosen Falle die Bedingungen lauten:

a 1

b 1 (107)
c 0

damit die linke Seite von (101) identisch Null sein
kann.

Mit Hilfe von (62) kann man analog die Forderungen
für den rückwärts passiven Vierpol aufstellen.

Für einen beidrichtig passiven Vierpol fällt die
einschränkende Bestimmung (97) weg, weil der Vierpol

unter allen Betriebsbedingungen mindestens so
viel Energie aufnehmen muss, wie er abgibt. Die
Ungleichung (106) muss dann immer erfüllt sein,
während im einrichtigen Fall dies nur erforderlich
ist für

a < 1 — c oder (108)
1 — tu t*l + fei t*i > | tl11*2 — fei t*2

während sonst die schwächere Forderung (103)
genügt.

ANHANG 4

Zweiter Hauptsatz der Thermodynamik

Wir betrachten ein geschlossenes System aus einem
Vierpol, der beidseitig mit Abschlusswiderständen
versehen ist. Diese sollen sich auf der gleichen
Temperatur und somit im thermodynamischen
Gleichgewicht befinden. Der zweite Hauptsatz verbietet
nun, dass sich der eine Widerstand von selbst auf
Kosten des anderen erwärmt. Der Vierpol als
Verbindungsglied sei streng passiv, er kann also von sich
aus keine Energie abgeben. In diesem Falle darf seine
Temperatur nicht höher sein als jene der
Abschlusswiderstände, sie könnte hingegen tiefer liegen, so dass
der Vierpol Energie aus einem der beiden Abschlüsse

Nr. 5, 1957

aufnehmen kann, bis zu einem gewissen Endzustand,
bei dem jedoch die Temperatur an keiner Stelle höher
sein kann als am Anfang. Es gilt nun festzustellen,
ob diese Bedingung eine Einschränkung der passiven
Vierpole ergibt. Man betrachte ein schmales
Frequenzband. Darin kann man das Rauschsignal
annähernd als Sinuswelle betrachten. Jeder
Abschlusswiderstand liefere ein gleich grosses Signal, entspre ¬

chend seiner verfügbaren Leistung, die ja nur von der
Temperatur abhängt (kT A /). Es sei also:

Pi eb p2 (109)

Damit der zweite Hauptsatz erfüllt ist, darf dann auf
keiner Seite des Vierpols die austretende Welle (q1
oder q2) grösser sein als p1.

Wir setzen den gewünschten Betriebszustand
zusammen aus der Überlagerung folgender zwei Fälle:
Im ersten Fall sei p'2 0, p\ pv Die Vierpolgleichungen

lauten dann

<Z 1 *12 12
V 1 *22 12

<? i Pi (*12^22) (HO)
1 2 Pl/*22

wählen wir p{' — 0; p2" p1:
J. H 1 J.

1 1 ~ *11 V 2 + *12 1 2

0 *21 V 2 *22 1 2

oder
1 1 P 2 (*u *12 *2l/*22)

q'\ -p"2(*2i/*22) (m)
Wir setzen nun pL 1, dann müssen folgende
Bedingungen erfüllt sein :

i q\ 12 + I 12 - 1 p\ \2 + v'\ 12 1

k'2r + k"212 ^ \v\\2 + \v\\2 1 (hü
Etwas umgeformt ergibt dies

*2212 — i *12 i2 ^ det T ;2

i *22
2 — I *2112 * 1 (HS)

Diese Bedingungen entsprechen genau der früheren
Forderung (102) für beide Übertragungsrichtungen.
Es entsteht also keine neue Einschränkung für die
möglichen Werte der Matrixelemente, ausser den
schon für den passiven Vierpol bekannten.
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Zusammenfassung. Die praktische Ausführung eines
Vorführungsmodells wird beschrieben. Es dient dazu, das Verhalten
eines gebundenen Elektrons mit nicht abgesättigtem Spin unter
dem Einfluss magnetischer Oleich- und Wechselfeider anschaulich
darzustellen und damit die gyromagnetischen Erscheinungen im
klassischen Bild zu verdeutlichen. Die hierfür wesentlichen
Eigenschaften Spin und magnetisches Moment des Elektrons sowie
verschiedene Magnetfelder sind im Modell mit mechanischen Mitteln
nachgebildet. Die grundlegenden Vorgänge, die für die Erscheinungen

der para- und ferromagnetischen Resonanz, des Fara-
day-Effekts, des Einstein-de-Haas- und Barnett-Effekts
verantwortlich sind, finden in dem vorliegenden mechanischen Modell

auf einfache Weise eine weitgehende Analogie.

Ferro- und paramagnetische Stoffe weisen im
Zusammenhang mit ihren magnetischen Eigenschaften

eine Reihe von Erscheinungen auf, deren Eigenart
dem Spin der magnetisch wirksamen Elektronen

zuzuschreiben ist. Alle diese Erscheinungen sollen
hier unter dem Begriff gyromagnetische Erscheinungen

verstanden werden. Am bekanntesten sind unter
diesem Namen wohl der Richardson-Einstein-de-Haas-
Effekt und der Barnett-Effekt bei ferromagnetischen
Stoffen. Ebenso gehört dazu aber auch das besondere
Verhalten para- oder ferromagnetischer Stoffe gegenüber

elektromagnetischen Wellen, wenn in diesen
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Résumé. Hauteur décrit ici l'exécution pratique d'un modèle
servant à montrer le comportement d'un électron non libéré avec

spin non saturé sous l'influence de champs magnétiques continus
et alternatifs et à expliquer ainsi les phénomènes gyromagnétiques
classiques. Les caractéristiques de l'électron entrant essentiellement

en considération, le spin et le moment magnétique, de même

que différents champs magnétiques, sont représentés dans le

modèle par des moyens mécaniques. Les phénomènes fondamentaux,

qui donnent naissance à la résonance paramagnétique et

ferromagnétique, aux effets de Faraday, d'Einstein-de-Haas et

de Barnett, sont rendus par le modèle de manière simple et avec

une grande analogie.

Stoffen äussere oder, im Falfe ferromagnetischer
Materialien, auch innere statische Magnetfelder
vorhanden sind. Hier treten der Faraday-Effekt, der
Cotton-Mouton-Effckt und die para- und ferromagne-
tische Resonanz auf.

Die Beeinflussung der Wellenausbreitung durch
Vorgänge gyromagnetischer Natur in magnetisch
wirksamen Stoffen tritt in typischer Weise und
besonders stark bei der Ausbreitung elektromagnetischer

cm-Wellen in Ferriten in Erscheinung, wenn
diese statischen Magnetfeldern ausgesetzt sind.
Betrachten wir ein unendlich ausgedehntes
Ferritmedium, das von einem magnetischen Gleichfeld
bestimmter Richtung durchsetzt wird und bis zur
Sättigung magnetisiert ist. Eine ebene, linear polarisierte

Welle, deren magnetischer Feldstärkevektor
parallel zum Gleichfeld liegt, erzeugt keine
Wechselmagnetisierung. Das Medium verhält sich magnetisch
unwirksam, seine Hochfrequenzpermeabilität ist eins.
Steht dagegen die Gleichfeldrichtung senkrecht auf
dem magnetischen Feldstärkevektor und der
Ausbreitungsrichtung der Welle, so tritt eine
Wechselmagnetisierung auf, die bei festem Gleichfeld in
bestimmter Weise von der Frequenz der Welle ab-

Ein mechanisches Modell
zur Vorführung gyromagnetischer Erscheinungen *
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	Allgemein aktive, passive und nichtreziproke Vierpole : eine Einführung in neuere Probleme der Vierpoltheorie, insbesondere in der Mikrowellentechnik

