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Allgemeine aktive. passive und nichtreziproke Vierpole

Eine Einfiihrung in neuere Probleme der Vierpoltheorie, insbesondere in der Mikrowellentechnik

Von Georg W. Epprecht, Bern

Zusammenfassung. In der Theorie der Schaltungen aus
Wellenleitern allgemeinster Art verwendet man an Stelle der kon-
ventionellen Impedanz-, Admittanz- und Kettenmatrizen oft
vorteilhafter die Wellenmatrizen. Beide Arten won Matrizen
werden hier einander gegeniibergestellt, zundchst ber der Diskus-
sion der allgemeinen Bedingungen fiir einrichtige und vollstin-
dige Passivitit von Vierpolen und dann in einem Kapitel diber
die Reziprozititsetgenschaften, wober die Vierpole tn die Klassen
der areziproken und der komplex reziproken eingeteilt werden.
Unter den letzteren sind die gewdhnlichen reziproken und die
antireziproken Netzwerke von besonderer Bedeutung. Im weiteren
werden die interessanten Gruppen der I'mpedanz-invertierenden
und -konvertierenden Vierpole besprochen, von denen besonders
jene mit nichtreziproken Phasenbeziehungen steigende Bedeu-
tung erlangen. Ein weiterer Abschnitt befasst sich mit dimpfungs-
unsymmetrischen Vierpolen, die, zusammen mit den vorgingig
behandelten, schliesslich die Synthese allgemeinster Vierpole aus
etner Kettenschaltung von Elementarvierpolen mit je einer ein-
zigen Besttmmungsgrdsse erlauben.

1. Allgemeines

Die Vierpoltheorie ist vor etwas iiber 30 Jahren
hervorgegangen aus der Leitungstheorie, aus der sie
ja viele Bezeichnungen iibernommen hat. Wihrend
die Leitungstheorie mit verteilten Kapazitéiten,
Induktivititen, Widerstinden und Leitwerten zu tun
hat, wurde die Vierpoltheorie mit Erfolg auf Uber-
tragungsnetzwerke mit konzentrierten aktiven und
passiven Elementen erweitert. Die grosste Bedeutung
hat die Vierpoltheorie wahrscheinlich in der Filter-
technik erlangt. Dabei versteht man unter einem Vier-
pol fast immer eine Schaltung, die vielleicht zutref-
fender Zweiklemmenpaar genannt wiirde. Wir be-
schrinken uns in dieser Arbeit denn auch im wesent-
lichen auf solche Vierpole, obwohl die Vierpoltheorie
sich in der Folge erweitert hat zur Theorie der
n-Klemmenpaare.

Besonders in den letzten 10 bis 15 Jahren sind
neue Impulse auf die Vierpoltheorie iibergegangen,

621.372.5:621.3.029.6

Résumé. Dans la théorie des circuits formés de guides d’ondes
du type le plus général on emploie souvent avec avantage les
matrices d’ondes au liew des matrices habituelles d’impédance,
d’admittance et de chaine. On compare d’abord les deux genres
de matrices dans la discussion des conditions générales pour
réaliser, d'une part, des quadripéles passifs unidirectionnels, et,
d’autre part, des quadripbles passifs dans les deux directions.
La comparaison se powrsuit dans un chapitre sur les caractéres
de réciprocité, chapitre dans lequel on classe les quadripdles
en aréciproques et en réciproques complexes. Parmi ces derniers
les réseaux réciproques ordinaires et les réseaux antiréciproques
revétent une importance particuliére. Ensuite on traite des inté-
ressants groupes de quadripdles tnverseurs et convertisseurs
d’impédances en relevant le role croissant joué par ceux dont les
relations de phase ne sont pas réciproques. Le chapitre suivant
est consacré aux quadripdles a affaiblissement asyméirique. En
combinant ces derniers avec ceux ébtudiés précédemment on
aboutit a la synthése du quadripdle le plus général formé par
une chaine de quadripdles élémentaires définis chacun par une
seule grandeur caractéristique.

einerseits von der Servotechnik her und anderseits
aus der Technik der Dezimeter- und der Zentimeter-
wellen. Diese letztere Technik ist eine ausgesprochene
Leitungstechnik, es gibt darin fast nur noch Elemente,
die als Leitungen behandelt werden miissen.

Die Frequenzbinder, die bis Ende der dreissiger
Jahre erschlossen waren, wurden schaltungsmissig
noch fast ausschliesslich durch die Technik der kon-
zentrierten Elemente beherrscht. Entsprechend ent-
wickelte sich auch die Vier- und Mehrpoltheorie in
dieser Richtung und man gewdhnte sich so an das
Rechnen mit konzentrierten Impedanzen, dass beim
vermehrten Aufkommen der Leitungstechnik in
dieser zunidchst noch hauptsichlich mit Ersatz-
schaltungen aus konzentrierten Elementen gearbeitet

“wurde. In der Hohlleitertechnik, wo eindeutige

«Klemmenstréme» und «Klemmenspannungen» nicht
mehr definiert werden konnen, wirken jedoch die
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Ersatzschaltungen manchmal gekiinstelt, obwohl sie
oft noch eine willkommene Briicke bilden zu analogen
Problemen aus der Technik der konzentrierten Im-
pedanzen. Es zeichnet sich nun aber die Tendenz ab,
bei dieser Technik wieder mehr in Feldern und Wellen
statt in Impedanzen, Spannungen und Stromen zu
denken. Die Probleme dieser Technik sind im allge-
meinen besser zu iiberblicken, wenn man sich fort-
schreitende und reflektierte Wellen vorstellt, als
wenn man versucht, sich die Impedanzen und ihre
Transformationen zu vergegenwirtigen. In der Vier-
poltheorie &dusserte sich dies im Aufkommen der
Wellenmatrizen an Stelle der iiblichen Impedanz-,
Admittanz- und Kettenmatrizen. Die Elemente der
Wellenmatrizen sind nicht mehr Impedanzen und
Ubertragungsverhiltnisse, sondern Reflexions- und
Durchlass-Koeffizienten, sie setzen nicht Strome und
Spannungen in Beziehung zueinander, sondern ein-
fallende, reflektierte und durchtretende Wellen.

Ein weiterer Anstoss zu vermehrter Aktivitit auf
dem Gebiete der Vierpoltheorie ging ebenfalls aus der
cm-Wellentechnik hervor, und zwar durch die Reali-
sierung eines neuen KElementes, des Gyrators. Der
ideale Gyrator ist ein verlustloser, passiver Vierpol,
bei dem eine riickwérts durch den Vierpol laufende
Welle eine um 7 grossere Phasendrehung erleidet als
eine vorwérts durchlaufende Welle. Der Gyrator ist
also ein sogenannter nichtreziproker Vierpol. Solche
Vierpole hatte man lange Zeit in der Theorie etwas
vernachlissigt, weil sie als passiv nicht realisierbar
erschienen. Neben dem Gyrator sind in der Folge eine
Reihe anderer nichtreziproker Vierpole entwickelt
worden, die sich jedoch (wenigstens theoretisch) alle
auf Schaltungen mit Gyratoren zuriickfiihren lassen.
Man kann zeigen, dass sich alle physikalisch mogli-
chen beliebigen Vierpole realisieren lassen, wenn man
Gyratoren zu Hilfe nimmt [3, 11].

In der vorliegenden Arbeit soll nun versucht wer-
den, die besonderen Eigenschaften und die Stellung
dieser neuen Elemente im Rahmen der Vierpoltheorie
aufzuzeigen. Wenn auch die Realisierung von Gyra-
toren ohne aktive Elemente im Frequenzgebiet unter-
halb einiger Hundert MHz noch nicht gelungen ist,
so ist doch zu erwarten, dass von der Theorie der
nichtreziproken Elemente aus auch auf die Schal-
tungstechnik dieser Frequenzen neue Anregungen
ausgehen werden, so dass sich eine Ubersicht iiber
diesen Teil der Vierpoltheorie umsomehr rechtfertigt.

2. Wellenmatrizen

Da wir spiter von den Wellenmatrizen, deren
Kenntnis noch nicht allgemein vorausgesetzt werden
kann, Gebrauch machen werden, sei hier kurz auf
diese Darstellungsart des Vierpoles eingegangen.

Stellt man sich einen Vierpol als Schaltung aus
konventionellen Elementen, wie Kondensatoren, In-
duktivititen, Widerstinden und klassischen Ver-
starkerrchren, vor, aussen zuginglich durch zwei
Eingangs- und zwei Ausgangsklemmen, so entspricht

dem die Behandlung mit den iiblichen Matrizen, die
Strome und Spannungen in Beziehung setzen. Die
Vierpolgleichungen lassen sich dann auf folgende
Arten schreiben: [1]

mit der Impedanzmatrix Z

I
I (1)

Uy || 1 12

U, %91 Ra2

mit der Admittanzmatrix Y

I, Yuu Y2 U,

I, B Yo1 Yoo U, )
ferner mit der Kettenmatrix A

U, A1 Qg U,

I, B | Qo1 Qg I, )

und mit der Reihen-Parallelmatrix D

Uy dy  dyy U,

H I Bl ‘ | H Iy &

In der Koaxialtechnik und bei allen Leitersyste-
men, auf denen der transversal elektromagnetische
Wellentyp (Lecherwelle) existiert, haben die Begriffe
Strom und Spannung eines bestimmten Leiterquer-
schnittes eine eindeutige Definition. Da man es aber
mit verteilten Netzwerkelementen zu tun hat, sind
die Ersatzschaltungen mit konzentrierten Elementen,
die bei tieferen Frequenzen so erfolgreich verwendet
werden, nur noch beschréinkt giiltig. Noch deutlicher
werden die Unzulanglichkeiten der Ersatzschaltungen
bei der Wellenleitertechnik, wo man iiberhaupt nicht
mehr von Klemmen reden kann und wo der englische
Ausdruck «two port» die Situation treffender be-
schreibt. Messtechnisch arbeitet man hier mehr mit
dem Wellenbegriff; man bestimmt stehende Wellen,
misst einfallende und reflektierte Wellen und hat mit
Feldverzerrungen zu tun. Ein weiterer Umstand, der
die Wellenanschauung begiinstigt, ist, dass man in
dieser Technik fast immer mehr oder weniger anein-
ander angepasste Schaltelemente verwendet, also ein
System aufbaut aus Elementen mit gleichen oder &hn-
lichen Wellenwiderstdnden. Dieser Tatsache wird nun
die Vierpoltheorie durch Einfiihrung der Wellenma-
trizen gerecht.

Wie in Figur 1 dargestellt, kann der Betriebszu-
stand eines Vierpoles durch vier Wellen charakteri-

Py P2
— -
94 92

Fig. 1. Ein- und auslaufende Wellen an einem Vierpol

siert werden, zwei einlaufende «p» und zwei auslau-
fende « g». Man kann nun auch hier immer zwei dieser
Wellen als Funktion der andern beiden darstellen.
Wichtig sind die beiden folgenden Fille:
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1. austretende Wellen in Funktion der eintretenden:
91 = S11.P1 + S12 P
9> = Sa1 P1 T S22 P2
2. Wellen am Vierpoleingang (Index 1) in Funktion
der Wellen am Ausgang (Index 2):
¢ =ty Pa + ts Gs
D1 =ty Py + 13 4

Mit (5) ist auch schon, wenigstens formell, die
Streumatrix

(5)

(6)

S S
§ — 11 12 (7)

So1 Sa

und mit (6) die Transfermatrix:

T = (8)

definiert.

Hier muss nun noch etwas iiber die Zahlrichtungen
gesagt werden. Fiir die Zihlrichtung der Strome in
den klassischen Vierpolmatrizen sind zwei Systeme
iblich:

I, I, I I,
] e ] e
m v m u
19 y V2 19 y Ve
P EE——— - P —— S S
A B

Fig. 2. Zahlrichtungen fiir Strome und Spannungen

Beide Systeme haben ihre Berechtigung. Die Zihl-
richtung nach Figur 2 A, die wir im folgenden ver-
wenden werden, hat den Vorteil, dass bei der Ket-
tenschaltung, die wohl die hdufigste Art der Verbin-
dung von Vierpolen ist, in den Berechnungen keine
Vorzeichen gewechselt werden miissen. Auch kommt
sie der Vorstellung in allen jenen Fillen entgegen, wo
die eine Richtung des Energieflusses vor der andern
ausgezeichnet ist. Die Z#hlrichtung nach Figur 2 B
wird vor allem in der 2 n-Pol-Theorie verwendet,
wo eine eindeutige Unterscheidung in Eingang und
Ausgang dahinfillt. Sie ist aus Griinden der mathe-
matischen Symmetrie iiberall dort vorzuziehen, wo
beide Durchlassrichtungen gleichberechtigt auftreten.

Auch bei den Wellenmatrizen werden verschiedene
Zihlsysteme verwendet. Die wichtigsten sind in
Figur 3 angegeben:

+ Py +py + Py +Pq

—_— - — -
- — - —-—
+q A +9, -9 B LF)

Fig. 3. Zahlrichtungen fiir normierte Wellengrossen

Im Falle A werden also die vier Wellen stets in
ihrer Ausbreitungsrichtung positiv gerechnet, wih-
rend im Fall B die positive Zahlrichtung immer gegen
den Vierpol gerichtet ist. Wir werden das Zahlschema
nach Figur 3 A verwenden, da es der physikalischen

Vorstellung besser entgegenkommt. Dabei werde die
Phase des elektrischen Feldes als Bezugsphase defi-
niert, so dass ein Kurzschluss einen negativen, eine
offene Leitung einen positiven Reflexionskoeffizienten
hat, sofern dessen Phase auf die Kurzschluss-, bzw.
Offnungsebene bezogen wird. Dann ist auch der Refle-
xionskoeffizient einer reinen Induktivitéit (o L = Z,),
r, = + jund einer Kapazitit r. = —j, (1/o C = Z,).

Will man vom Zihlsystem A zu B oder umgekehrt
iibergehen, so hat man bei den Matrizen Z und A das
Vorzeichen der Elemente in der zweiten Kolonne, bei
Y und D in der zweiten Reihe, bei T in der Haupt-
diagonale und schliesslich bei S das Vorzeichen aller
Elemente zu wechseln.

Es bleibt nun noch die Bedeutung der Grossen p
und ¢ festzulegen. Man kann die Wellen durch ihre
Spannungs- oder Stromamplituden (oder Effektiv-
werte) charakterisieren; p und ¢ wiirden dann also
die Amplituden oder Effektivwerte der hin-, bzw.
riicklaufenden Wellen bedeuten. Anstelle von Strom-
oder Spannungswerten erweist es sich jedoch als giin-
stiger, fiir p und ¢ normierte Werte zu definieren, und
zwar so, dass man diese Grossen direkt mit der Lei-
stung der Wellen in Verbindung bringt. Ist die
Leistung! der beiden Wellen P, und P,, so definieren
wir die normalisierten Effektivwerte p und ¢ so, dass

P,=1p.p*

Pyp=gq-9* S

Die Wellenmatrizen sind Betriebsmatrizen, das
heisst, ihre ganze Definition schliesst in sich, dass
Eingang und Ausgang in einen Wellenleiter (im all-
gemeinsten Sinne des Wortes, es kann z. B. ein Hohl-
leiter, ein Koaxialleiter, eine Lecherleitung, ein dielek-
trischer Leiter oder der freie Raum sein) miinden, in
dem eine einfallende und eine austretende Welle
unterschieden werden kénnen. Solange nicht fir Ein-
gang und Ausgang je ein (im allgemeinen verschie-
dene) Wellenleiter festgelegt ist, hat auch der Begriff
von ein- und austretenden Wellen keinen Sinn, mit
anderen Worten: die Unterscheidung von vor- und
riicklaufenden Wellen enthilt implizite die Definition
einer bestimmten Leitung. Im allgemeinen bieten sich
hier praktisch keine Schwierigkeiten; bei weitaus den
meisten Vierpolen der Leitungstechnik entsprechen
Ein- und Ausgang in ihrer geometrischen Struktur
genau den Wellenleitern, auf die p und g bezogen sind.
Stossen ausnahmsweise zwei Vierpole mit verschie-
denen Wellenleitern zusammen, so hat man sich zu
entscheiden, auf welchen sich p und ¢ beziehen sollen
(sie sind im allgemeinen verschieden in den verschie-
denen Leitern wegen der Reflexion der Stofstelle).
Je nachdem ist dann die Sprungstelle noch ein Teil
des einen oder andern Vierpoles.

L Ppund P, sind Wirkleistungen. Bei reellem Wellenwiderstand
und fortschreitender Welle sind Spannung und Strom, bzw. elek-
trische und magnetische Feldkomponenten senkrecht zur Aus-
breitungsrichtung immer in Phase.
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Etwas anders liegen die Dinge bei den klassischen
Vierpolmatrizen. Diese sagen an sich iiber das Be-
triebsverhalten des Vierpoles noch nichts aus, da sie
von den Anschlussnetzwerken abstrahieren. Zwei
Vierpole mit der gleichen A- oder Z-Matrix konnen
sich also, je nach den angeschlossenen weiteren Vier-
polen, zum Beispiel in bezug auf Leistungsiibertra-
gung, ganz verschieden verhalten, das heisst zugleich,
dass ihnen verschiedene Wellenmatrizen entsprechen.
In diesem Sinne besteht zwischen klassischen und
Wellenmatrizen kein eindeutiger Zusammenhang.
Sobald wir jedoch den Vierpolen mit konzentrierten
Elementen je einen Bezugswiderstand fiir Eingang
(Zoy) und Ausgang (Z,,) zuordnen, ist die Relation
zwischen den verschiedenen Matrizen eindeutig, denn
damit ist nun auch die Aufteilung in die beiden «Wel-
leny p und ¢ festgelegt. Zunichst ergibt sich dann die
Aufteilung der Gesamtleistung P in P = P,—P, aus
folgender Gleichung:

1—2z,\2
e (122

1+2
wobei z, = Z,/Z, ist und Z, den Eingangswiderstand
des Vierpoles und Z, den Bezugswiderstand darstellt.
Fiir einen gewohnlichen Vierpol mit konzentrierten
Elementen gelten dann zwischen den Spannungen U
und Strémen I und den normalisierten Wellenwerten
p und ¢ folgende Beziehungen (U, I, p und ¢ sind als
Effektivwerte zu betrachten):

(10)

Up =m \/Tm Ups = P2 \/%
Uy =a \/Zm Up = ¢ ’\/Z02 (11)
Iy, = Pl//\/Zo; Iy = "“Z’z/\/zoz

Iy =— 91/\/Z01 Iy = Qz/’\/Zoz
wobei Zy; und Z,, die gewidhlten Wellenwiderstéande
an Ein- und Ausgang sind.2 Die Zahlrichtungen fiir die
Teilstrome und Teilspannungen sind dabei dieselben
wie fir die gesamten Strome und Spannungen
(s. Fig. 2 A). Die totalen Spannungen und Strome am
Ein-, bzw. Ausgang des Vierpols sind dann

Uy=Un+Un) = (pr+ @) \/Zm
Up= (Upy+ Up) = (p2 + q5) \/Zoz (12)
I= In+ In) = (P~ ¢) /\/Zm

I,= (Ipo+ Igp) = (=P + %)/\/Zoz

Diese Gleichungen vermitteln den Anschluss an
die Vierpolmatrizen Z, Y, A und D. In der Wellen-
leitertechnik, genauer gesagt immer wenn es sich
nicht um Lecherwellen (TEM oder L-Wellen) handelt,
ist es besser, wenn man die Grossen U und [ iiber-
haupt vermeidet. Da durch (9) die normierten Wel-
lenwerte p und ¢ direkt von der Leistung abgeleitet

2 Obwohl die Wahl dieser Wellenwiderstédnde an sich beliebig
ist, liegt jedoch in den praktischen Anwendungen meist schon ein
spezieller Wert vor, der sich dafiir besonders gut eignet. Z,, wird
hier als reeller Wert angenommen.

werden, umgeht man die Vieldeutigkeit der Grossen
U, I und Z,. [In Gleichung (10), die ebenfalls fiir p
und ¢ bestimmend ist, erscheint nur ein relativer oder
normierter Eingangswiderstand z,, der in allen Féllen
eindeutig definiert ist.] Ausser diesem Vorteil liegt
der Grund fiir diese Normierung darin, dass die Art
des Vierpoles nun viel augenfilliger aus den Eigen-
schaften der Wellenmatrizen herausgelesen werden
kann [2], was man sofort sieht, wenn man neben den
normierten die nichtnormierten Matrizen anschreibt.

Jede Vierpolmatrix beschreibt den Vierpol voll-
standig und eindeutig, so dass es auch moglich sein
muss, aus einer Matrix eine andere zu bestimmen.
Diese Zusammenhinge sind, soweit nicht allgemein
bekannt, im Anhang 1 aufgefiihrt.

Die Zusammenhinge zwischen den verschiedenen
Matrizenarten und entsprechenden Vierpolen seien
an einigen Beispielen illustriert:

1
0 2oy = %
e Y }\Bezuqsebene
RS I
S~
1 o0 1 o
A=llo 1 T=lo 1
a
201 Zo2 =
10
“lo T (-1 (b‘+1/6')
¥="/202/%01
b
i2=24, /25,
25, g E 202 =
[ 10
= T=
A=lo 1/ o
c
5
Zoy 209 =
0
A= . . (u+1/u) (§-1/d)
. (i -v/5) (i+1/d)
d

Fig. 4. Gegeniiberstellung von Vierpolen in konventioneller und
Wellendarstellung. Vierpole mit der gleichen Ketten-
matrix haben nicht die gleiche Transfermatrix; der Zu-
sammenhang ist abhangig von der Wahl der Bezugs-
widerstande



1957, No 5

Bulletin Technique PTT 173

In den Figuren 4 a und 4 b sind zwei Fille gegen-
iibergestellt, die als konventionelle Vierpole die gleiche
Schaltung haben, ndmlich die einfachste Verbindung
von Ein- und Ausgangsklemmen. Sie haben die glei-
chen klassischen Matrizen, hingegen seien die Bezugs-
widerstinde verschieden. Die entsprechenden Vier-
pole im Falle von Hohlleitern und die T-Matrix als
Wellenmatrix sind in jedem Falle angegeben. Die
Verschiedenartigkeit der Fille ist hier auch in den
Matrizen deutlich.

Ahnliche Fille liegen in Figur 4 ¢ und 4 d vor. An
diesen einfachen Beispielen ist ersichtlich, dass die
Beziehungen zwischen den verschiedenen Darstel-
lungsarten am einfachsten sind, wenn Z, = Z,,
angenommen wird. Wir wollen deshalb im folgenden
im allgemeinen diese Annahme stillschweigend vor-
aussetzen, um so mehr, als grundsitzlich an der All-
gemeinheit der Diskussion dadurch nichts verloren-
geht. Um den allgemeinsten Fall aus diesem speziellen
zu erhalten, geniigt es ndmlich immer, zu den frag-
lichen Vierpolen einen Ubertrager mit der Spannungs-
tibersetzung  1\/Zy, | Zy, in Kette zu schalten.

Ein weiterer Punkt, der hier klargestellt werden
muss, ist die Wahl der Bezugsebenen. Bei den Vier-
polen aus konzentrierten Elementen tritt dieses
Problem nicht in Erscheinung, da die Wellenlinge
gross ist gegen die Dimensionen der Schaltung. So
ist zum Beispiel die Phase der KEingangsgrossen
(U; und I; oder auch p, und ¢,) gegeneinander immer
dieselbe, ob sie nun beide auf Eingang oder Ausgang
bezogen werden ; demgegeniiber ist bei der Leitungs-
technik, wegen der relativ grossen Abmessungen
gegen die Wellenléinge, die gegenseitige Phase dieser
Grossen sehr abhangig vom Bezugsort. Jeder Vierpol
in der Leitungstechnik ist daher ausser seinen anderen
Eigenschaften, auch ein Phasenschieber, was schon
dadurch bedingt ist, dass Ein- und Ausgang rdumlich
nicht zusammenfallen kénnen. Dies ist fiir die theo-
retische Behandlung ein Nachteil gegeniiber den kon-
zentrierten Vierpolen, weil die Vierpoleigenschaften
immer durch diese Phasenbeziehungen verschleiert
sind. Um dies zu umgehen, fithren wir folgende Ab-
straktion ein: Alle Grossen werden auf eine einzige
Bezugsebene reduziert (also nicht eine Eingangs- und
eine Ausgangsebene), so dass der Vierpol in diese
Bezugsebene zusammengedriickt erscheint. Im prak-
tischen Falle wird dann nachtréiglich ein Phasen-
schieber in Kette geschaltet, der jene Phasenbezie-
hungen enthidlt, die der geometrischen Léange der
Struktur entsprechen.

Bei theoretischen Zerlegungen eines Vierpoles in
eine Kettenschaltung muss also unter Umstéinden
beriicksichtigt werden, dass die Teilvierpole in der
Realisierung nur unter Zwischenschaltung eines
Phasengliedes verbunden werden koénnen. In vielen
Fillen konnen aber alle Phasenglieder zusammen-
gefasst werden, nimlich dann, wenn die Teilvierpole
kommutativ sind. Dies ergibt schon einen Hinweis

auf die Zweckméssigkeit der Zerlegung in Diagonal-
matrizen, deren Multiplikation ebenfalls kommutativ
ist.

Die Wellenmatrizen sind nicht nur in der Wellen-
leitertechnik von Bedeutung, sie konnen auch bei
tieferen Frequenzen, bei Vierpolen mit konzentrier-
ten Schaltelementen verwendet werden, wenn auch der
Wellencharakter des IEnergietransportes dort weniger
augenfillig ist. Hin grosser Vorteil, der fir ihre uni-
verselle Verwendung spricht, ist ndmlich, dass die
Wellenmatrizen praktisch immer existieren, wihrend
bei speziellen Vierpolen einzelne der A, D, Z und Y-
Matrizen nicht angeschrieben werden kénnen.

Es ist allgemein bekannt, welche Matrizenoperatio-
nen beim Zusammenschalten von Vierpolen durch-
gefiihrt werden miissen, wenn es sich um die konven-
tionellen A, Z, Y und D-Matrizen handelt [1]. Fiir
den wichtigsten Fall, nimlich die Kettenschaltung
zweier Vierpole, seien die entsprechenden Operationen
mit den Wellenmatrizen hier angegeben :

Schaltet man die beiden Vierpole mit den Streu-
matrizen §' und §” in Kette, so wird (s. Anhang 2)
die Matrix S des resultierenden Vierpoles:

1 ‘ (818" 11det8"); 8’15812

81#8112827’

’ r
1-8"998"11

8218”215 (8"206"99det 8") (13)

Man beachte, dass diese Berechnung besonders
einfach wird, wenn die Elemente der Hauptdiagonale
der beiden Matrizen verschwinden.

Im allgemeinen ist die Berechnung einer Ketten-
schaltung einfacher mit den Transfer-Matrizen.

T=T#T' =T.T" (14)

Es gelten also bei der Kettenschaltung die gleichen
Regeln fiir die T-Matrix wie fiir die A-Matrix: die
Matrix der Kettenschaltung ist das Matrizenprodukt
der Kinzelmatrizen.

3. Aktive und passive Vierpole

Wenn wir die Energieiibertragungseigenschaften
und die physikalischen Realisierbarkeitsbedingungen
betrachten, so stossen wir auf die Begriffe der aktiven
und passiven Vierpole. Es ist besonders das Auftau-
chen nichtreziproker Vierpole, das Anlass gegeben hat
zu erneuten Untersuchungen in dieser Angelegen-
heit. Als passiv werden gewdohnlich solche Vierpole
bezeichnet, die keine Energiequellen enthalten. Gele-
gentlich trifft man auch die Anschauung, dass alle
passiven Vierpole aus Widerstinden, Kapazitiaten,
Induktivititen und Gegeninduktivititen aufgebaut
werden kénnen. Diese Definition ist zwar hinreichend,
aber nicht notwendig fiir Passivitdt einer Schaltung.
Weiter fragt es sich, wo jene Vierpole eingereiht
werden sollen, die zwar aktive Elemente enthalten,
aber nicht mehr Energie nach aussen abgeben kénnen,
alg sie aufnehmen.

3 Mit 4+ symbolisieren wir allgemein die Kettenschaltung von
Vierpolen.
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Man konnte den Begriff des passiven Vierpoles
folgendermassen prézisieren:

Ein Vierpol ist passiv, wenn keinerler Betriebs-
bedingungen existieren, bei denen er vm Mittel eine
grossere Wirkleistung abgibt als er aufnimmt.

Damit ist umgekehrt auch der aktive Vierpol schon
definiert. Es sei darauf hingewiesen, dass ein aktiver
Vierpol in bezug auf Frequenz und Lastimpedanz
meistens Betriebsbereiche, mindestens aber Betriebs-
punkte hat, bei denen er sich passiv verhilt, also
weniger oder gleichviel Wirkleistung abgibt als er
aufnimmt (selbstverstindlich gehért z. B. bei einem
netzgespeisten Verstirker die an den Netzklemmen
bezogene Speiseleistung nicht zur Energiebilanz des
eigentlichen Vierpoles).

Ein Vierpol kann ferner einrichtig oder beidrichtig
passiv sein; im ersteren Fall darf der Vierpol, wie
beispielsweise ein gewohnlicher Verstarker, nur nach
einer Seite mehr Leistung abgeben als er an der an-
deren aufnimmt.

Diese Art der Unterscheidung zwischen aktiven und
passiven Vierpolen hat verschiedene Vorteile:

— Erstens werden diejenigen Vierpole eindeutig
klassiert, die zwar aktive Elemente enthalten, die
aber an den Klemmen nicht mehr Wirkleistung
abgeben konnen als sie aufnehmen;

— zweitens wird die Unsicherheit umgangen, welche
Elemente als aktiv zu gelten haben (ist z. B. eine
Verstirkerrohre, die als variabler Widerstand
beniitzt wird, ein aktives Element?);

— drittens, und dies ist der wichtigste Punkt, ist die
Definition der Vierpoltheorie besser angepasst,
denn sie definiert eine dusserlich messbare Eigen-
schaft, unabhéngig davon, durch welche internen
Schaltmassnahmen diese Eigenschaft zustande
kommt. Die gesamte hier zur Diskussion stehende
Vierpoltheorie befasst sich ja in erster Linie mit
den allgemeinen Ubertragungseigenschaften von
2-Klemmenpaaren, unabhéingig von deren Aufbau
und erst in zweiter Linie mit den praktischen Reali-
siermdglichkeiten einer geforderten Eigenschaft.

Nach dieser Definition ist also zum Beispiel ein
Gyrator grundsétzlich ein passiver Vierpol, ohne
Riicksicht darauf, ob er nun mit aktiven oder passiven
Elementen realisiert wird. Es ist also vorerst durch-
aus denkbar, dass es passive Vierpole (nach dieser
Definition) gibt, die mit den iiblichen passiven Ele-
menten nicht oder noch nicht realisiert werden kon-
nen. Carlin [3] hat jedoch nachgewiesen, dass es
keine passiven Vierpole gibt, die nicht — wenigstens
theoretisch — aus gewohnlichen reziproken Netz-
werken und idealen Gyratoren zusammengesetzt
werden koénnten.

Der verlustlose oder leistungsgleiche Vierpol, der
in jedem Betriebszustand gleichviel Energie abgibt,
wie er aufnimmt, bildet die Grenze zwischen aktivem
und passivem Vierpol, er wird definitionsgemiiss zum
passiven gerechnet.

Die Kriterien, an Hand derer bei den verschiedenen
Matrizen festgestellt werden kann, ob sich die ent-
sprechenden Vierpole einrichtig oder beidrichtig
passiv oder verlustlos verhalten, sind nur teilweise
bekannt und sollen daher im folgenden angegeben
werden.

Wir betrachten zunichst die A-Matrix (3), und
zwar mit den Zahlrichtungen nach Figur 2 A.

\

Im allgemeinen sind die Elemente a; komplex.
Die Wirkleistung ist das skalare Produkt der Vekto-
ren U, und I;, wenn U; und I; zusammengehorige
Spannungs-, bzw. Stromeffektivwerte bedeuten.

a1 Qg

gy Qoo

Fiir einen vorwirts (Energietibertragung von 1
nach 2) passiven Vierpol gilt*

(Uy, Iy) = (Uy, 1) (15a)

Ist der Vierpol riickwirts passiv (Speisung an
Seite 2) so gehorcht er der Bedingung?®

(U, 1) = (Uy, 1)

und wenn er vollstindig passiv ist, so gelten beide
Beziehungen, je nachdem der Vierpol von Seite 1
oder 2 gespeist wird. Dabei ist selbstverstdndlich
vorausgesetzt, dass die Lastimpedanz des Vierpoles
einen positiven Realteil hat, also passiv ist. Damit
(15 a) erfillt ist, ergeben sich fiir die Elemente der
A-Matrix folgende Forderungen (Ableitung s. An-
hang 3)

(15Db)

(@3, ay) =0 (16a)
(@12, @g9) = 0 (16Db)
(a3 X @y )= (@13 X Agy) = 0 (16¢)
(@1, @ )+ (@, @) = 5 ((detA|2+1)  (16d)

Die Bedingung (16d) muss nur erfiillt sein, wenn die
linke Seite dieser Ungleichung kleiner als eins ist.

Fiir Passivitdt in umgekehrter Richtung (15 b)
ergeben sich analog die Forderungen:

(@g1, @) = 0 (17a)

(@31, ay5) = 0 (17b)

(@11 X Ags) + (@1 X Ag) = O (17¢)

(dy3, @) + (a3, ) = 5 ((det A[2+1)  (17d)
bzw. = 1

Bei einem beidrichtig passiven Vierpol miissen die
Gleichungen (16) und (17) erfiillt sein. Im verlust-
losen Falle gelten immer die Gleichheitszeichen in den
angegebenen Bedingungen (16) bzw. (17). Fiir vor-
wirts und rickwirts verlustlose Vierpole ergibt sich

4 mit a, b sei das skalare,
mit ¢ b das vektorielle und
mit a-b = (a, b*) —j (@ x b*) das komplexe Produkt zweier
komplexer Grossen bezeichnet.
5 Der positive Zahlsinn fiir die Strome ist dabei immer vom
Generator gegen die Last gewahlt.
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an Stelle von (16¢), (16d), (17¢) und (17d) dann die
Bedingung :6

(det A | = 1 (18a)

@y afs
d =1 0 18b
oder | —ay b (+130) ( )

Ferner kann man zeigen (s. Anhang 3), dass ein
vorwdrts verlustloser Vierpol auch riickwdirts verlustlos
sein muss. Dabei muss immer

(@11 X Agp) = 0 (19)
] (@19 % ag) = O
sein.

Denkt man sich diese Matrizenelemente als Vek-
toren, so sind im verlustlosen Falle die Elemente
einer Diagonale gleich oder entgegengesetzt gerichtet
(dabei konnen hochstens zwei Elemente entgegen-
gesetzt gerichtet sein), ferner stehen die Elemente
der einen Diagonale senkrecht zu jenen der anderen
Diagonale (s. Figur 5).

iy ay a2 iy

212 a4 a

a22

Fig. 5. Mogliche Lage der A-Matrixelemente in der kompexen
Ebene fiir einen verlustlosen Vierpol

An dieser Stelle kann man darauf hinweisen, dass
ein Vierpol mit drei verschwindenden KElementen
in der A- oder der T-Matrix keinen verlustlosen Vier-
pol darstellen kann. Um Irrtiimern vorzubeugen, sei
hier besonders hervorgehoben, dass trotz den voran-
stehenden Resultaten Fille von Vierpolen méglich
sind, die zum Beispiel vorwirts verlustlos scheinen,
dagegen rickwirts als grosse Dampfung wirken
(Richtleitung, Uniline). Solche Vierpole sind jedoch
nur unter ganz bestimmten Betriebsbedingungen,
also punktweise verlustlos (bei reflexionsfreier An-
passung) und fallen daher nicht in die Klasse der
(vollstandig) verlustlosen Vierpole. Damit ein Vier-
pol bei einem bestimmten reellen Abschlusswiderstand
Ry punktweise passiv, bzw. verlustlos ist, reduziert
sich die Forderung (16) auf:

(@415 Ag) + (W12, Aay) 2 1= Ry (@41, Agy) — (Agy, A20)/ By (20)

Fiir den umgekehrten Vierpol tritt an Stelle von
(17):

(@115 Aoa) + (@12, 051) = ’ det A 2— By (ay;,@y5)—(@ay, a22)(/R1
21)

¢ Die Determinate einer Matrix sei folgendermassen geschrieben

Z” le oder det A. In allen Fillen, wo nicht das
22
ganze Schema der Koeffizienten geschrieben wird, bedeuten die

vertikalen Striche den absoluten Betrag, also
| det A | = 1/(det A) (det A)*

entweder }

An Stelle der Kettenmatrix A kann man zur For-
mulierung der Passivititsbedingungen auch die
andern Matrizen beniitzen. Hier seien noch die Zu-
sammenhinge zwischen den Elementen der Transfer-
matrix T angegeben (Ableitung s. Anhang 3). Ein-
richtig passiv ist ein Vierpol, wenn folgende Bedin-

gung erfiillt ist:
bog 130 + by t — s to—1oy 851 = 1 + | det T |2 (22)

Die Bedingung (22) muss im einrichtigen Falle nur

erfiillt sein, wenn:
(1=t tfi—tor t31) > | by tio—tor 135 | (23)

andernfalls treten an deren Stelle die schwicheren
Forderungen (24) (25)

(oo tla—tiotls) = 1 (24)
toatla—tin i — bt + tor 85 > 2 |t th —tathe| (25)

Fiir den riickwirts passiven Vierpol lauten die ent-
sprechenden Bedingungen :

(tzz tfg — t21 t;el ) = | det T ‘2 (24&)

und
tootdo—ti B + hiatlo—tor B3 > 2|t 31— 12 83|  (25a)
falls (Tt —tiotly < |t t5 —tatds | (23a)

ansonst auch hier (22) gilt.

Fiir den beidrichtig verlustlosen Vierpol muss einzig
die Ungleichung (22) erfiillt sein, in diesem Falle
jedoch uneingeschrankt.

Bei einem beidrichtig verlustlosen Vierpol ergeben
sich die Beziehungen (26):

tathi—tatsh =1
ool —tiatly = 1 (26)
tntls—tatly = 0

Im Zusammenhang mit nichtreziproken Vierpolen
in der cm-Wellentechnik werden gelegentlich solche
erwihnt, die gegen den zweiten Hauptsatz der Ther-
modynamik verstossen. Ein solcher Vierpol wire die
ideale reflektierende Richtleitung : sie lasst die Energie
in der einen Richtung ungedimpft durchtreten, wih-
rend sie Energie aus der andern Richtung vollstindig
reflektiert. Dies widerspricht, wenn der Vierpol pas-
siv ist, dem zweiten Hauptsatz der Thermodynamik.
Wiirde ndmlich ein solcher Vierpol zwischen zwei
Abschlusswiderstinde geschaltet, so wiirde die (ther-
mische) Rauschleistung des einen Abschlusses voll-
stindig und von selbst in den anderen Widerstand
iibergehen, der eine Abschluss wiirde sich erwéirmen,
wahrend sich der andere abkiihlte. Ein solcher Vier-
pol ist passiv nicht moglich. Die Frage ist nun, ob
der zweite Hauptsatz weitere Einschrinkungen fiir
die Vierpolmatrix zur Folge hat. Es ldsst sich jedoch
leicht zeigen (s. Anhang 4), dass dies nicht der Fall
ist. Ein Vierpol, dessen Matrix den oben angegebe-
nen Passivititsbedingungen gehorcht, kann auch
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den zweiten thermodynamischen Hauptsatz nicht
verletzen, oder umgekehrt kann ein Vierpol, der dem
zweiten Hauptsatz widerspricht, nicht passiv sein.
Man kann dies sofort an folgendem Fall einsehen
(s. Fig. 6): KEine reflektierende Richtleitung liege
zwischen einem Generator und einer Last. Eine im
Generator erzeugte Welle laufe ungeddmpft durch
den Vierpol in die zunéchst angepasste Last. In ei-
nem zweiten Betriebszustande falle eine Welle, zum
Beispiel gleicher Amplitude wie im ersten Fall, von
der Lastseite her ein. Diese wird vollstindig zuriick-
reflektiert. Da der Vierpol linear ist, darf man die bei-
den Betriebszustéinde superponieren, was man errei-
chen kann durch Abschluss mit der Last » = 0,5. Die
Phase des Generators werde nun so eingestellt, dass
sich am Ausgang des Vierpoles die beiden Wellen-
amplituden addieren. Dann lauft rechts vom Vierpol
eine Welle mit doppelter Amplitude und daher vier-
facher Leistung nach der Last und eine Welle mit ein-
facher Amplitude und Leistung in den Vierpol hinein.
Die Last absorbiert also die dreifache Leistung des
Generators, was nur moglich ist, wenn der Vierpol
selber aktiv ist.

Gen. Pp1=1 Vierpol Pq2=4 Last
® ] o
- SR
pq 1 =0 pp 2 =1
Fig. 6. Ideale reflektierende Richtleitung (passiv nicht realisier-
bar)

Wenn man von linearen Vierpolen spricht, so ist
vielleicht noch eine Prizisierung am Platze. Linear
nennt man einen Vierpol dann, wenn zwischen den
verschiedenen Betriebsgrossen (Strome, Spannungen,
Wellenamplituden, Leistungen) an Ein- und Ausgang
lineare Zusammenhinge bestehen. Nun gibt es Vier-
pole, zum Beispiel gesteuerte Spannungsquellen, die
eine Ausgangsleistung abgeben, die nicht verschwin-
det, wenn keine KEingangsleistung vorhanden ist,
bei denen aber die Anderung entweder der Ausgangs-
spannung (und des Ausgangsstromes) oder der Aus-
gangsleistung proportional zu einer Eingangsgrosse
ist. Man konnte einen solchen Vierpol differentiell
linear nennen. Diese Vierpole sind immer aktiv, auch
wenn die Anderung der Ausgangsleistung geringer
ist als die Anderung der Eingangsleistung. Die An-
derungen konnen auch verschiedene Vorzeichen ha-
ben, hingegen kann natiirlich in diesem Falle nur
entweder die Differenz der Leistungen oder dann die
Differenz der Spannungen, nicht aber beide propor-
tional sein zur Eingangsgrosse. Wenn sowohl Lei-
stung als auch Spannung (oder Strom) proportional
sind, so wollen wir den Vierpol regulér linear nennen;
in diesem Falle miissen bei verschwindenden Kin-
gangsgrossen auch die Ausgangsgrossen Null sein
(jedoch braucht einer Wirkleistung am Ausgang keine
Wirkleistung am Eingang zu entsprechen, der Pro-
portionalitdtsfaktor ist beliebig komplex). Im

folgenden werden wir, ohne dies noch ausdriicklich
zu erwihnen, nur von reguldr linearen Vierpolen
sprechen.

4. Reziprozitiit

Der allgemeine Vierpol ist nicht reziprok. Bei den
passiven Vierpolen existierte jedoch bis vor etwa
finf Jahren der nichtreziproke Vierpol fast nur in
der Theorie, wenn man von den optischen Versuchen
Faradays absieht. Nichtreziprokes Verhalten war
indessen bei den aktiven Vierpolen beinahe selbst-
verstindlich (d. h. hauptsdchlich bei den Verstirkern).
Es ist interessant und sicher nicht ganz zufillig, dass
ebenfalls in den letzten Jahren die reziproken akitven
Vierpole betrichtlich an Bedeutung gewannen, obwohl
sie technisch schon ldngst realisierbar gewesen
waren. Wenn auch der nichtreziproke passive Vier-
pol heute erst bei Frequenzen von iiber 1000 MHz
aus passiven EKlementen technisch realisiert ist, so
diirfte er ebenfalls bei viel tieferen Frequenzen inter-
essante Anwendungen finden, auch wenn er dort
vorldufig noch mit Hilfe von aktiven Elementen
zusammengesetzt werden muss.

Es sei kurz in Erinnerung gerufen, was Reziprozi-
tét bei Vierpolen bedeutet. Wird an die Klemmen 1-1’
eines Vierpoles eine Spannungsquelle U mit dem in-
neren Widerstand R; angelegt (s. Fig. 7), so fliesse am
mit R, = R, belasteten Ausgang 2-2" der Strom I,.
Ist der Vierpol reziprok, so kann man Spannungs-
quelle und Belastungswiderstand vertauschen, ohne
dass sich der Strom im Widerstand R, dndern wiirde.

Esist also ?1 = I,, ohne dass im allgemeinen Fall auch

Iy = ?2 wire.?” Die Grosse von R, = R; kann beliebig
gewihlt werden. Man kann das Gesetz der Rezipro-

Ri Iy I, Ri 1, -1,

+ 1 2 + 2 1
v R3=Rj v Ra=Rj
- p 2' E] - 2 "

Fig. 7. Reziprozititsgesetz fiir Vierpole in konventioneller Dar-
stellung

zitdt auch fir die normierten Wellen p und ¢ formu-
lieren. Die Betriebsbedingungen sind dann folgende:
Der Vierpol werde gespeist aus einer Leitung mit dem

Py 9 P1 2

— . — —

- - - -
94 pp=0 9 Py=0

Fig. 8. Reziprozititsgesetz fiir Vierpole in Wellendarstellung

bei der Normierung verwendeten Wellenwiderstand
(vorwarts Z,,, rickwirts Z,,) und reflexionsfrei ab-
geschlossen mit dem entsprechenden, zur andern
Seite gehorenden Wellenwiderstand Zg,, bzw. Z,

7 Das Zeichen v iiber einer Grosse bedeutet hier immer, dass
diese sich auf den in umgekehrter Richtung betriebenen Vierpol
bezieht.
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(Fig. 8). Dann ist bei Reziprozitit des Vierpoles

qs/P1 = ;;/;1, und zwar gilt die Gleichung fiir das
komplexe Verhiltnis der Amplituden. (Da die Wel-
lengrossen normiert sind, treten in den Betriebsbe-
dingungen auch normiert gleiche und nicht absolut
gleiche Widerstdnde auf. Weil die Wahl der Normie-
rungswiderstinde beliebig ist, so ist der Satz in
dieser Form ebenso allgemein wie in der ersten Fas-
sung.)

Ob ein Vierpol reziprok ist oder nicht, lasst sich
mit Hilfe irgend einer seiner Matrizen bekanntlich
leicht feststellen. Die — ausser der letzten — bekann-
ten Bedingungen sind [1] [2]:

212 = — 2
Y2 = Y=

det A = 1 o)
dy = dy :
S12 = S»n

det T = 1

Alle diese Gleichungen sind dquivalent.

Um reziproke und nichtreziproke Vierpole im fol-
genden in der graphischen Darstellung auseinander-
halten zu konnen, seien hier folgende Schaltsymbole
eingefiihrt:

reziproker Vierpol nichtreziproker Vierpol

Fig. 9. Symbole fiir reziproke und nichtreziproke Vierpole

Falls irgendwelche Eigenschaften in dieses Symbol
eingeschrieben werden, so sollen sie in jenem Dreieck
eingetragen werden, dessen Spitze in der Richtung
weist, fiir die die Eigenschaft gilt.8

Neben dem reziproken Vierpol ist der antireziproke
der wichtigste, denn alle Vierpole konnen realisiert
werden, entweder durch Parallelschaltung oder durch
Kettenschaltung von reziproken und antireziproken
Vierpolen. Antireziproke Vierpole erkennt man an
einer der folgenden Eigenschaften der verschiedenen
Matrizen : '

212 = 221
Yie = Ym
det A = -1
dyy = —dyy (28)
S12 = ~ Sy
det T = -1

8 Vom Standpunkt der Systematik aus ist es vielleicht nicht
ganz richtig, diese zwei Symbole einander so gegeniiber zu stellen,
da der reziproke Vierpol ein Spezialfall des nichtreziproken ist,
der 2 Freiheitsgrade weniger hat als dieser. Man kénnte natiirlich
entsprechend weitere Symbole einfiihren fiir antireziproke und
fiir komplex reziproke Netzwerke. Da aber, wenigstens vorlaufig,
die reziproken Vierpole den weitaus grossten Teil der praktisch
verwendeten ausmachen und die nichtreziproken die Ausnahme
darstellen, wollen wir uns auf dieses Symbol beschrinken.

Als wichtigstes Beispiel der antireziproken Vier-
pole sei hier der ideale Gyrator genannt, der unter
den antireziproken Vierpolen eine dhnliche Stellung
einnimmt wie der ideale Ubertrager bei den rezi-
proken.

Seine Matrizen sind :

0 =z i 0 vy

S O IR S M
0 a

A = l/a 0 (29)
|-1 0 0 -1

o PR S

Die Reihen-Parallelmatrix D existiert nicht.

Nachdem wir reziproke und antireziproke Vierpole
betrachtet haben, machen wir eine Erweiterung des
Reziprozitiatsbegriffes, indem wir den komplex rezi-
proken oder, abgekiirzt, «reziplexen» Vierpol, fol-
gendermassen definieren: Ein Vierpol werde, wie in
Figur 7, bzw. Figur 8, aus einer Spannungsquelle mit
innerer Impedanz Z, bzw. von einer Leitung mit dem
normierten Wellenwiderstand Z,,, gespeist; er sei
ferner belastet mit der Impedanz Z, bzw. mit dem
normierten Wellenwiderstand Z,,. Ein komplex
reziproker Vierpol kann dann umgedreht werden,
ohne dass sich der Betrag des Verhéltnisses 7,/U,, bzw.
¢n/Pm Andern wiirde. (Die Phase dieses Verhiltnisses
ist hingegen beliebig, nur bei einem im engeren Sinne
oder reell reziproken Vierpol ist auch die Phase in
beiden Betriebsrichtungen gleich, wihrend im anti-
reziproken Falle die Phasendifferenz s ist.) Wenn wir
in (27) an Stelle aller Grossen deren absolute Werte
einsetzen, so ergeben sich die Beziehungen, die bei
reziplexen Vierpolen erfiillt sein miissen. Wenn auch
allgemeiner als der reell reziproke Vierpol, so ist der
reziplexe doch nicht der allgemeinste. Die gemeinsame
Eigenschaft aller komplex reziproken Vierpole liegt
in ihrer Ubertragungssymmetrie, wenn man von der
Phase des Ubertragungsmasses absieht. Die Betriige
der Ubertragungsmasse vorwérts und riickwirts sind
gleich. Dies gilt fiir das Welleniibertragungsmass,
sowie auch fiir das Betriebsiibertragungsmass, sofern
bei letzterem die innere Impedanz des Generators mit
der Belastungsimpedanz tibereinstimmt oder wenn
in der Wellendarstellung der Vierpol reflexionsfrei
abgeschlossen ist. Alle verlustlosen Vierpole sind dem-
nach reziplex. Zwischen den Winkeln der Ubertra-
gungsmasse und den Winkeln zwischen den Matrix-
elementen bestehen folgende Beziehungen (f; bzw.
B, sind die Winkel des Ubertragungsmasses vorwiirts,
bzw. rickwirts):

By — B, = arg (det A) = —arg (2,,/2,) = —arg (¥19/Y21)
= arg (dy,/d,,) = arg (s,,/8,;,) = arg(detT) (30)

Zur Unterscheidung wollen wir alle Vierpole, die
nicht komplex reziprok sind, areziprok nennen.
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Beziiglich der gewohnlichen oder reellen Rezipro-
zitdt sei hier noch ein weiterer Punkt erwihnt: Da
alle Vierpole, die aus Widerstinden, Kapazititen und
Induktivitdaten aufgebaut werden kénnen, reell rezi-
prok sind, kénnte man glauben, dass auch das Um-
gekehrte richtig sei. Dies ist aber nicht der Fall. Es
gibt reell reziproke Vierpole, die nicht aus diesen
Elementen realisiert werden konnen; ein Beispiel
hierfiir ist der reziproke Impedanzkonverter, auf den
wir spater zuriickkommen werden.

5. Konvertierende und invertierende Vierpole

Vierpole werden hiufig dazu verwendet, um ver-
schiedene Schaltelemente impedanzméissig einander
anzupassen, sei es zur Vermeidung stérender Mehr-
fachreflexionen oder zur Erzeugung eines bestimmten
impedanzmissigen Verhaltens einer Schaltung. Solche
Vierpole sind Impedanztransformatoren im allgemein-
sten Sinne. Besteht zum Beispiel reelle Proportionali-
tiat zwischen der Lastimpedanz und der Eingangs-
impedanz des Vierpoles, so liegt ein gewdshnlicher
Transformator im engeren Sinne des Wortes vor.

Eine besondere Gruppe des allgemeinen komplexen
Transformators bilden jene Vierpole, die wir kon-
vertterend nennen wollen. Jede Lastimpedanz er-
scheint am Eingang eines solchen Vierpoles mit einer
komplexen Zahl multipliziert. Hat diese Zahl den
Betrag eins und ist der Vierpol komplex reziprok, so
nennen wir den Vierpol ideal konvertierend. Ist die
Phasendifferenz der Impedanzen dann zum Beispiel
7, so liegt ein Vierpol vor, der einen reellen Last-
widerstand in einen negativen Widerstand gleichen
Betrages verwandelt. Konvertierende Vierpole dieser
Art beniitzt man neuerdings beispielsweise in der
Telephonie zur Entdimpfung von TUbertragungs-
leitungen. Ein konvertierender Vierpol sei nicht etwa
mit einem gewohnlichen Phasenschieber verwechselt:
ein Phasenschieber dreht die Phase einer durch-
tretenden Welle (Strom und Spannung gleichzeitig),
wihrend der konvertierende Vierpol die Phase der
Abschlussimpedanz dreht. Der allgemeine konvertie-
rende Vierpol hat folgende Matrizen:

| alei (p+w)
AK . “ 0 a.el (o) i’
‘ 2
\‘ alej(tp+w) 0
|
D — | 1 =ile-v)
* \ 0 —e
| a, (31)
" el || (a,elv+a,e’v) (aeiv—ayev) |
K = = . . : A
T2 || (agelv—a,eiv) (aelvta,eiv) ‘

a6V —a,elv)

2 a,a,6'?
2 e-lp

: o
S = 1/(aleJ'P+aze_W) ’} _(alejw_a,ze—j'l’) ‘

(V = '\/Zoa/Zm = 1)
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Dazu gehoren die Determinanten :
det A = a, a, e %9
det D = (a,/a,) e2v

Ja) 52

det T = a, a, e 2iv
det S = -1
@ und y sind dabei beliebige Winkel.
Das Verhalten des allgemeinen konvertierenden

Vierpoles kann besser iiberblickt werden, wenn man
ihn folgendermassen in eine Kettenschaltung zerlegt:

]77« 0 ‘ la 0] eilety) 0

KZI}O 1/a | . ‘0 “‘ 0 elle-w» = Ai Aq Ak
1| (% + 1fu) (@—1/a) a 0 . || cosy jsinzp’

Tx=_1,. S cc . L.ele ||| .
2 || (u—1/a) (@ + 1/u) 0aj jsiny cosy |
S _I__I(ﬁ“l/ﬁﬁ 2}#” 0 a| |ijtgy; el*/cosy
ST 1fu 2;-(a-1/a) | 1a 07 |1(elrcosy) ;-jtgy
g2 — a1/a2 a? — @y Gy (33)

+ bedeutet: «in Kette geschaltet mit»

Es ist ohne weiteres ersichtlich, dass diese drei Vier-
pole in beliebiger Reihenfolge in Kette geschaltet
werden konnen, da es sich um den speziellen Fall
kommutativer Matrizen handelt.

Der erste Vierpol dieser Zerlegung ist ein gewohn-
licher reeller Ubertrager mit dem Ubersetzungsver-
hiltnis 4 : 1; der zweite ist ein impedanztreuer
Leistungswandler, das ist vorwirts ein Verstidrker
mit der Spannungsverstirkung a, wihrend er rick-
wirts als Dampfungsglied mit dem Abschwichungs-
verhéltnis @ wirkt. Er ist areziprok und beidseitig
impedanztreu?, das heisst, eine am einen Ende ange-
schaltete Lastimpedanz erscheint unveréindert an den
andern Klemmen. Der dritte Vierpol ist nun ein ide-
aler Konverter. Er ist reziplex und kann im allge-
meinen nicht passiv realisiert werden, ausser wenn
v = 0 oder p = m. Zwischen der Eingangsimpedanz
7, und der Lastimpedanz Z, bestehen beim idealen
Konverter folgende Beziehungen:

Z, = e%v Z, (Vorwirtsrichtung)

Z, = e 2)2 (Riickwirtsrichtung) @y

Beim allgemeinen Konverter muss noch der zuge-
schaltete Ubertrager beriicksichtigt werden, indem
wir in (34) e?iv durch 4 e?/? ersetzen (der zweite,
noch zugeschaltete Vierpol ist ja impedanztreu und
hat daher auf die Konversion keinen Einfluss). Wih-
rend die zwei ersten Vierpole der Zerlegung (33) auf
einen einzigen Freiheitsgrad reduziert sind, das heisst
deren Verhalten ist durch einen einzigen Wert voll-
standig definiert, hat der ideale Konverter noch zwei
Bestimmungsgrossen oder Freiheitsgrade (der allge-
meinste Vierpol hat deren 8 oder 4 komplexe Werte).

¢ Ein einseitig impedanztreuer Vierpol ist immer auch in der
umgekehrten Richtung impedanztreu, was sofort aus den bekann-
ten Formeln der Vierpoltheorie [1] hervorgeht.
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Wir kénnen auch diesen Vierpol noch in zwei Elemen-
tarvierpole mit je einem einzigen Freiheitsgrad auf-
spalten, und zwar auf unendlich viele Arten, von
denen einige interessante hier angegeben seien:

Tabelle I. Zerlegungen des idealen Konverters.

Kettenmatrizen Transfermatrizen
ellety) 0 || cosyp jsiny |
= T=el?| . .
0 eile-w ]siny  cosy
lele 0 ‘ elv. 0 || H‘ el? 0 icosy) jsinzpi
| 0 eie| |0 edv||||0 elo|| |jsiny cosy|

impedanztreuer Richtphasenschieber (verlustlos, reziplex) 4=
reziproker Konverter (aktiv) (35)

ele. 0| [ev O l [0 ele \ jsiny cosy \
0 -—el? ‘ o —ev |l ele 0| |cosy jsiny|
Negativ-Konverter (aktiv)+
antireziproker Konverter (aktiv) (36)
0 Zgele| [|0 Zfelw| |||-ele 0] [—cosy —jsing
. e ..
ele/Z, 0 : elv/Z, 0 0 elo g‘ jsiny  cosy
Positiv-Inverter (verlustlos, reziplex) -
antireziproker Inverter (aktiv) (37)
0 Zgele| [|0-Zyelv||||0 e [jsing cosy "
-ei2/Z, 0| |ev/Z, 0 ‘ -el? 0| ‘ —cosy —jsiny||
Negativ-Inverter (aktiv) +
reziproker Inverter (aktiv) (38)

In der ersten Zerlegung tritt der interessante Richt-
phasenschieber auf. Dieser ist verlustlos, seine Phasen-
mafle vorwirts und rickwirts sind entgegengesetzt
gleich. Im Gegensatz zu einem gewohnlichen Phasen-
schieber ist er beidseitig impedanztreu, was insbe-
sondere bedeutet, dass ein solches Phasenglied bei
Fehlanpassung keine von der Phase abhingige Ein-
gangsimpedanz aufweist. Diese Eigenschaft diirfte
in gewissen Fiéllen noch wichtiger sein als seine Nicht-
reziprozitdt. Ein derartiges Phasenglied ist in gewis-
sen Frequenzbereichen mit passiven Elementen
realisierbar.

Der impedanztreue Vierpol ist ein Spezialfall des
konvertierenden. Alle impedanztreuen Vierpole las-
sen sich aufspalten in eine Kettenschaltung eines
impedanztreuen Leistungswandlers, der phasenfrei,
areziprok und aktiv ist und in einen Richtphasen-
schieber, der verlustlos und reziplex ist.

Beachtenswert ist auch der Negativ-Konverter in
der zweiten Zerlegung der T'abelle 1. Man kann damit
durch eine reelle Last negative Widerstinde erzeugen,
ferner ergeben sich damit negative Kapazititen und
Induktivitdten mit deren Hilfe man zum Beispiel
unvermeidliche positive Kapazititen und Induktivi-
titen breitbandig kompensieren kann. Eine negative
und eine gewdhnliche Reaktanz bilden dann gewisser-
massen einen Schwingkreis, der bei jeder Frequenz in
Resonanz ist. Netzwerke aus solchen Elementen
gehorchen dem Fosterschen Reaktanztheorem nicht.

Macht man ¢ = n/4, so entsteht ein Vierpol, der
aus einer reellen Last eine frequenzunabhdngige
Reaktanz erzeugt, was beispielsweise zur Realisierung
frequenzunabhiéngiger Phasenschieber von Bedeutung
sein kann. Dies sind einige wenige Hinweise darauf,
welche Rolle diese Vierpole in der Netzwerksynthese
in allen Frequenzbereichen spielen konnen. Die bei-
den letzten Zerlegungen zeigen, dass konvertierende
Vierpole auch aus zwei invertierenden erzeugt werden
kénnen.

Ein Vierpol ist invertierend, wenn zwischen Ein-
gangsimpedanz Z; und Last Z, die folgende Beziehung
besteht :

Zl - Cz/Zz

¢ ist dabei die Inversionsimpedanz. (Bei den Wellen-
matrizen werden die Impedanzen Z; und Z, vorteil-
haft durch die relativen Impedanzen z, und z, ersetzt;
an Stelle der Inversionsimpedanz ¢ tritt dann die
Inversionskonstante ¢ = {/Z,;). Die Matrizen eines all-
gemeinen invertierenden Vierpoles ergeben sich aus
der Forderung (39) zu:

(39)

Rlej(n+e)
A = .
(1/ Byeiro 0
[ 0 Rl o)
ZI = || .
| Ryeitro 0 (40)
T ele| —(rielntednfry) (riel—enfr,) w
L= 2 —(ryen—evnlr,) (ren+e’nfr,) |
g — 1 (cein—eTnfc)  —2bele
! celn+ elnfc 2bele (cein—ein/c)
mit: o= {[Zy; v =R,[Zy; vy=B,JZ5; 1, 7,—C*
b= \/R1/R2 :\/7'1/7'226/7”2:71/6; ZOZI\/ZM Zg,

und {? = R, R, = (Inversionsimpedanz)?

¢ und 7 sind beliebige Winkel; % bestimmt haupt-
sichlich die Inversionseigenschaften und damit auch
die Leistungsiibertragung, wihrend ¢ die Art der
Reziprozitit festlegt.

Fir die dazugehorigen Determinanten findet man
folgende Beziehungen:

det A;=—-"1e2ie det Z; = (2% = R, R,e%n
2
in_ el 2 2
dob Ty — — b2 o2ie det SI:(cen .e n/c)‘ +4b
(c ein + e7nfc)?
und fitr », =w,u det S; ‘ = 1 (41)
b='1

Der allgemeine Inverter ist vorwirts oder riick-
wirts oder vollstéindig passiv, wenn % = 0 und
R, = R, bzw. R, = R, bzw. B, = R,
(b =1bzw.b = 1 bzw. b = 1) ist.

Um diesen Vierpol besser zu verstehen, wollen wir
ihn ebenfalls in elementare Kettenglieder zerlegen.
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Man kann sich durch Ausmultiplizieren itiberzeugen,
dass folgende Kettenzerlegungen richtig sind:

Ar=Ay- A - A=

HO R, eltnte) “c 0‘ b o 10 Ze et
Ar= |e /R, O 0 lc| |0 b \eW D[Zy 0
|l e+1fe) (e=1fe) ‘b o) . H—cosn Jsmn‘(m)

e | (c—1[c) (c+1]c) ‘ |—jsing cosy
i (e—=1/c) 2 0 b |1siny; —ele ||
[ = { fe) lfF.t #__\3.77.. ‘
2 (c—1/c) | 1/6 0 cos# | edep;jsing ||

Wie bei der Zerlegung des konvertierenden Vier-
poles ist der erste Teilvierpol ein idealer Ubertrager
und der zweite ein impedanztreuer Leistungswandler.
Der dritte Teil hingegen ist der ideale Inverter. Dieser
ist reziplex und sein Inversionsfaktor ist 1. Auch diesen
Vierpol kénnen wir noch in zwei Vierpole mit je
einem einzigen Freiheitsgrad zerlegen, zum Beispiel
in die folgenden Kombinationen:

idealer Inverter =

Richtphasenschieber # antireziproker Inverter =
Negativ-Konverter # reziproker Inverter =
Positiv-Inverter 4 reziproker Konverter =
negativer Inverter # antireziproker Konverter

Die dabei vorkommenden Elementarvierpole sind
dieselben, wie die bei der Zerlegung des idealen Kon-
verters aufgefiithrten Beispiele, nur in anderen Kom-
binationen.

Von besonderem Interesse sind immer die passiven
Vierpole, das heisst, unter den hier «ideal» genannten,
die verlustlosen. Beim Konverter ist der Richtphasen-
schieber der einzige nicht triviale verlustlose Fall (die
“andern sind die Ubertrager mit @ = +1). Von den
idealen Invertern sind jene mit # = 0, die Positiv-
Inverter, verlustlos. Dazu gehért vor allem der ideale
Gyrator mit ¢ = 0,7. Dieser ist antireziprok (ein
gewohnlicher Gyrator kann zerlegt werden in einen
Ubertrager und einen idealen Gyrator). Die Matrizen
des idealen Gyrators sind

A 0o 7 1oz

=z o =z, o
(43)

| —1 0 }O -1

Te=lo =11 o

Der ideale Gyrator hat, wie alle in T'abelle 11 auf-
gefiihrten Vierpole, den Freiheitsgrad 0.

Er entsteht in der Mikrowellentechnik aus der Ket-
tenschaltung eines Richtphasenschiebers und eines
gewohnlichen Phasenschiebers, beide mit der Phase
7/2.

” -Tr/2 ° oder —
| 2 =
/ +T /2 T ><

Fig. 10. Synthese des Gyrators

Anderseits entsteht aus dem idealen Konverter
durch Kettenschaltung mit einem Gyrator ein idealer
Inverter:

|0 Zyehn ‘\ H ein 10 Zy
ez, 0 0 el ﬁ ‘ 1/Z, 0 |
(44)
—_ \‘\ cosy jsing :‘ cosy ]s1n17 ~1 OH
L ‘! —jsiny cosn‘ | jsiny cosn O
Inverter Konverter Gyrator

Der Bereich der invertierenden Vierpole ist tiber-
sichtshalber in Figur 11 zusammengestellt. Man kann
von irgend einem der angegebenen Vierpole in
e-Richtung weiterschreiten, wenn man zum betref-
fenden Vierpol einen Richtphasenschieber in Kette
schaltet. Da dieser impedanztreu ist, wird damit an

) % E=m €
X T PN
N\ // \\
G RNI; G
> <
%,
&
< ANI RVl >y
. S F «
e s S
G R .
RNI, (Gyretor) N —eg=-7)
& it
I’//QIQ6 ’ \\.A’O,,
‘(\4/ '\Q‘( \-\04
B RVI, ANI O
f \@ ¢
,\@(" y
G RNI, G
Q, W (o, . .
23 /’é,(\o Q‘/AA //b\_\.

& A N %
%L S @ o
N0 ¥ & 8 &
& - & 5 h%)

N Q'\ S
& &

Fig. 11. Familie der invertierenden Vierpole

der Inversionskonstante nichts geéindert, und weil er
verlustlos ist, bleibt auch die Leistungssituation
dieselbe. Schaltet man dagegen einen reziproken
Konverter in Kette mit einem der Elementarvier-
pole, so bewegt man sich in #-Richtung. Dabei wird
am Reziprozititszustand, der durch ¢ gegeben ist,
nichts gedndert, hingegen die Inversionskonstante
in der Phase gedreht.

Hier sei der Vollstindigkeit halber ein weiterer
Begriff erwihnt, der gelegentlich verwendet wird. Es
ist dies die bilaterale Anpassung (bilaterally matched
twoports) [5]. Ein Vierpol ist bilateral angepasst,
wenn fiir jede Betriebsrichtung am Kingang der
Wellenwiderstand erscheint, sobald auch der Aus-
gang mit dem Wellenwiderstand abgeschlossen ist.
Dazu gehoren die impedanztreuen Vierpole (p = 0),
also Leistungswandler, Richtphasenschieber sowie
die idealen verlustlosen Inverter ({ = Z, ¢ = 1), also
zum Beispiel der Gyrator. Diese Eigenschaft zeigt
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sich sofort in den Wellenmatrizen. Es sind bei der
S-Matrix die Elemente der Hauptdiagonale und bei
der T-Matrix jene der Nebendiagonale gleich Null.
Dies sind iibrigens jene Vierpole, bei denen sich die
S-Matrix einer Kettenschaltung als Matrizenprodukt
der S-Matrizen der Teil-Vierpole ergibt, eine Regel, die
sonst nur fiir die Transfermatrix T und die Kettenma-
trix A gilt. Man konnte auch einen Zustand der uni-
lateralen Anpassung definieren, bei dem die «Anpas-
sungstreue» nur in einer Richtung gilt. Dabei miiss-
ten dann nur die Koeffizienten #,, oder s;;, bzw. t,,
oder s,, (vorwérts bzw. rickwirts) verschwinden.
Bilateral angepasste Vierpole sind unter sich kom-
mutativ, man kann sie also in beliebiger Reihenfolge
in Kette schalten, ohne dass sich die Eigen-
schaften des resultierenden Vierpoles dndern wiirden,
was natiirlich fiir die analytische Behandlung ein
grosser Vorteil ist. Alle Vierpolmatrizen haben wir
ja definitionsgeméss auf eine einzige Bezugsebene
reduziert; diese reduzierten Matrizen enthalten das
wesentliche der Vierpoleigenschaften. Im prakti-
schen Falle besteht der Vierpol dann aus dem redu-
zierten Teil und einem reziproken Phasenschieber,
der von der physikalischen Linge der Struktur ab-

héingt, ebenso wird die auf Ein- und Ausgangsebene
bezogene Matrix aus der reduzierten Matrix «in Kette»
mit der Phasenmatrix gewonnen. Liegt nun eine Zer-
legung in kommutative Vierpole oder Matrizen vor,
so kann man beim Zusammenschalten zunéichst alle
reduzierten Matrizen «in Kette schalteny (multipli-
zieren bei den T-Matrizen) und dann die Kette aller
einzelnen Phasenglieder zufiigen.

Von den in den Tabellen II und I11 angegebenen
(reduzierten) Elementarvierpolen sind ausser Uber-
trager, Reflektoren, Konvertern und Negativ-Inver-
tern alle bilateral angepasst und daher unter sich
kommutativ. Mit den Negativ-Invertern sind nur die
impedanztreuen Vierpole kommutativ. Hingegen ist
z. B. die Kettenschaltung von Negativ-Inverter und
Phasenglied nicht kommutativ ; kehrt man die Reihen-
folge der Schaltung um, so muss man das Vorzeichen
der Phase im Phasenschieber ebenfalls wechseln, wie
in Figur 12 dargestellt,

1 1
2425~ 2,25
172 —_— 1777
— P 2 —— = —_ _P

Fig. 12. Kommutationsregel von Negativ-Inverter und
Phasenschieber

Tabelle 1I. Elementare Vierpole mit null Freiheitsgraden (Anmerkungen siehe S. 183)

Bezeichnung Matrix Scheinbare Schaltung Symbolische
In Fig. 11 A T vorwarls riickwarts Darstellung
1) 1) 2)
Idealer 0 Zo 1 0 — =
o Gyrator ] -
1/. Zy 0 0 1 o————— o ><
H Py .jP1
- Antireziproker 0 iZo 0 J — s_;p]
Negativ-Inverter 1iz 0 . 0 ] 4. [
- - — =)
/iZo J q, -, q2
Z Zy 3)
Reziproker Negativ-Inverter o *Zo 0 1 z I .‘_Zn_z |
RN . = ° T
1/. Zo o] 1 0 -
-ZO —Zo
Al ze;i:roker Negativ-Inverter 0 ~Zo 0 -1 Z . -%': L
: 1/2o 0 1 0 . 2
wl=Zy
Reziproker verlustloser 0 iZo =J 0
RVIy ; ) o . Zo — * |
Inverter (Tiefpass) iz o o wC
J/4o J o o
1/wC=Zo
i I— o
Reziproker verlustloser 0 -iZo J 0 it ~
RVI2 | nverter (Hochpass) 1/izo 0 0 w wL=Z, ~
[es O
12 Z,/2 0 ) o A=0
Ideale Richileitung [] Zs [] _— L
122, 1/2 0 1 o o ° oo
.
Reziproker Negativ- j 0 0 j
RNK 1 Konverter . . I=2], — Z4=-1; |—
0 -J J 0
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Tabelle 111. Elementare Vierpole mit einem einzigen Freiheitsgrad

Matrix Scheinbare Schaltung ;
Bezeichnung A . —— ciitkwiirts Symbolische Darstellung
e g

] 1) 1)
Richtphasenschieber ¥ 0 el? 0 *P
(impedanztreu) o e'j [ 0 e-j " -p

Shali cos¥ jZysinp el? o]
Gewdhnlicher Phasen- J \ 1 ® |
schieber (reziprok) -sinf/jZy cosP 0 el¥ |
4)

-k -A
Impedanz- und reflexions- e 0 € 0 ek
treuer Leistungswandler 0 e 0 % ] +oh

Zo tgh(#/2)

Alerualor (s > U)“ coshah Zysinhdh e 0
beidrichtiger Verstarker . & Zysinhat A —
(x<0) % coshd 0 e

0

I, I,

1 z 0 o} I
Einrichtiger (angepasster) KN 9 m @ D Zo E]z,J Zo[:] — v
Verstirker 2Vl 4/z, 1 0 v [z=2v1,
Leistungslos gesteuerte 0 1/g ; -1 q L
Stromquelle (hochohmiger R U,+ @ I=qUq (9 )
Eingang) 0 0 9% -1 1 o
Leistungslos gesteuerte I 0 1 1 ° +
Spannungsquelle (hoch- 2’_ U * Q Uy=[vU, —+ v E | —
ohmiger Eingang) 0 0 v 1 1 " -

5) 1:0

Ubertrager, 6 i 0 t 1
Sprung asym. Reflektor é é Q h — +Tr=-
(verlustlos) 0 1/6 t%-1 t

. . =

Symmelrischer reaktiver 7 t jZg\te-4 t -1 o—it ——o .

Reflektor (verlustlos) _\/_ . ) T @ +jrt+ f—
t31/izo .

Widerstandschicht

Symmetrischer reeller 9 1 0 (- -t
Refleklor 1 DR DN N E— — ot
5 1 t (1+t) ® ®
A/ Zor Richtkoppler
- =9 2 = i pp
Einseitiger passiver 8 AR B Visirl eRf1-irl q ad
Reflektor 0 mE 5 AT f =>=< . -/ r —
i Kopplung =\[T
oY 0 cos ¥ jsiny ) ] ‘_ g, ) .
Reziproker Konverter ) Uy = EJ'PUZ 1 QEUJ IfeﬂVI, | Z'EeszZz |
0 -el? jsiny cos¥ ] = L
el? 0 jsin¥ cos¥ S -
Antireziproker Konverter _i _ Uy= e’ U, Zy=e o Z,
0 -e’) cos¥  jsin¥

Negativ-Konverter U,’ej”UZ
_if ¥

@
=4 | e

|

|

u2+ 1171, — 7, =-2, —

a %
-
o

L. o

o %
6

=

[

0 z,el¥ -el? 0 o o e - 7, =
Positiv-Inverter ) Uy;=25ed7T, @ @ 2 Up=Z,e7 7T, ] 0 702
&', 0 0 ei? s . eZJ'P%_g
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Unter Beriicksichtigung dieser Regel und der Vor-
schrift, den Negativ-Inverter nur mit impedanztreuen
Vierpolen in der Reihenfolge zu vertauschen, kann
auch der Phasenanteil des Negativ-Inverters mit den
Phasen anderer Teilvierpole zusammengefasst werden.

6. Richtdimpfungen, Quellenvierpole

Wihrend wir im letzten Kapitel hauptsichlich
solche Vierpole betrachtet haben, die auf die Phase
der Strome, Spannungen, Wellen und Impedanzen
wirkten, so wollen wir hier die ddmpfungsunsym-
metrischen Vierpole etwas genauer untersuchen. Dazu
sei zuerst der Begriff des Ubertragungsmasses etwas
diskutiert. Das Welleniibertragungsmass ist definiert
[1] als Verhéltnis von Eingangs- zu Ausgangsleistung
(gemessen in einem logarithmischen Mafistab), wenn
der Ausgang mit dem Wellenwiderstand abgeschlos-
sen ist. Diese Definition hat den Vorteil, dass dieses
Dampfungsmass einen nur vom Vierpol abhingigen
Wert hat, also durch die Vierpolkonstanten eindeutig
festgelegt ist. Es haftet ihr der Nachteil an, dass sie
im allgemeinen nicht mit den praktisch gemessenen
Ubertragungswerten in einer bestimmten Schaltung
iibereinstimmt. Aus diesem Grunde hat man das Be-
triebsiibertragungsmass eingefiihrt, das viel allge-
meiner ist und fiir beliebige Quellen- und Abschluss-
widerstdnde dem wirklich vorhandenen Leistungsver-
héltnis entspricht; selbstverstdndlich muss fir jeden
einzelnen Fall Quellenwiderstand und Abschluss-
widerstand angegeben werden. Wir méchten nun hier
ein Ubertragungsmass einfiihren, das der Koaxial-
und Hohlleitertechnik besonders gut angepasst ist und
das sich ganz in die Theorie der Wellenmatrizen ein-

Legende zu den Tabellen 11 und I11:

1) Negative Laufzeiten sind natiirlich nicht mdéglich, deshalb
sind die hier angegebenen Elementarvierpole in der physikali-
schen Realisierung immer noch mit einem reziproken Phasen-
schieber (einem Leitungsstiick mit Z;) in Kette geschaltet.

2) Feldtkeller und Normenmacher [6] verwenden fiur den
Gyrator das sehr prignante Symbol nach Fig. A, das wir nur
im Interesse einer allgemeinen, einheitlichen Symbolisierung
der nichtreziproken Vierpole nicht {ibernommen haben;

-1 = T = —
| &= T - B —]
Fig. A Fig. B Fig. C

Hogan [12] beniitzt das Symbol nach Fig. B. Die Darstellung
nach Fig. C stammt von Tellegen [11], sie hat den Nachteil,
dass die Nichtumkehrbarkeit nicht zum Ausdruck kommt.

3) Z, = Eingangsimpedanz Z, = Lastimpedanz
4) a > 0 bedeutet hier Dampfung, a < 0 Verstirkung.
5) it =t 4+ Vt2 -1 Reflexionr =Vt2-1/t t = 1/{/1 — 12
) r = V82— 1/t = reell
7) Reflexion = jr = j V2 — 1/t — imaginir (reaktiv)
)

Die Reflexion r wurde hier reell angenommen. Ist sie komplex,
so handelt es sich um einen Vierpol mit 2 Freiheitsgraden; die
Matrizen sind in diesem Falle dieselben.

9) r = ZJ@R+Zy) b —Z2R S = \ Prplit

fiigt. s hat die gleiche Definition wie das Betriebs-
iibertragungsmass, wobei zusitzlich festgelegt wird,
dass der Quellenwiderstand gleich dem Bezugswider-
stand Z;, des Einganges und die Last gleich dem Be-
zugswiderstand Z,, des Ausganges sein soll. Der Aus-
gang ist also reflexionsfrei (p, = 0) abgeschlossen.
Damit trigt man dem Umstand Rechnung, dass die
Wellenmatrizen eigentlich auch Betriebsmatrizen
sind, mit denen man genau jene Grosse erfasst, die
im praktischen Falle bei der Leitungstechnik an die-
sen Elementen gemessen werden. Das so definierte
normierte Ubertragungsmass wird also gemessen als
das Verhiltnis der maximalen Leistung, die eine
Quelle mit dem inneren Widerstand Z; nach aussen
abgeben kann, zu der Leistung, die sie iiber den Vier-
pol an den Widerstand Z,, abgeben kann. Das Lei-
stungsverhiltnis wird in einem logarithmischen Maf3-
stabe ausgedriickt und die Widerstinde Z, und
Zys sind die Bezugswiderstinde des Vierpoles. Falls
Ziyy = Ziys, 80 ist die normaierte Dimpfung (der Realanteil
des normierten Ubertragungsmasses) gleich der Ein-
fiigungsdimpfung, wenn diese ebenfalls auf Z,, be-
zogen wird. Wir sehen hier erneut, welch wichtige
Rolle die Bezugswiderstinde (meistens der Bezugs-
widerstand) eines Systemes in der Leitungstechnik
spielen. Dies kommt daher, dass man im allgemeinen
bei dieser Technik bestrebt ist, jedes Schaltelement
moglichst gut an den nominellen Bezugswiderstand
anzupassen und seltener etwa an den wirklichen Ein-
gangswiderstand des darauffolgenden Elementes; die
Griinde dazu sind erstens messtechnischer, zweitens
fabrikatorischer Art, da ja oft bei der Fabrikation von
Einzelteilen nicht bekannt ist, in welchem Zusammen-
hang das betreffende Element spiter verwendet wird.
So sind zum Beispiel handelsiibliche koaxiale Damp-
fungen selten reflexionslos, das heisst, ihr Wellen-
widerstand weicht vom Bezugswiderstand, der bei-
spielsweise mit 50 Ohm angegeben wird, mehr oder
weniger ab. Die angegebene Dampfung ist jedoch die
normierte, das heisst, jene, die man mit Messinstru-
menten misst, deren Wellenwiderstand genau gleich
dem Bezugswiderstand ist.

Zwischen dem normierten Ubertragungsmass
(ax-+jPx) und den Matrixelementen bestehen fol-
gende Beziehungen (vorwérts):

e((le-!~jﬂ17\l' — (all \/-*“4'“12 /\/Z

J—

— z
+ Gy '\/Zm Zgy + gy \/?m> =ty = 18y

02
Vo)
Z 02

(45)

1
Zoz

det Z

1( +\/Z Dy
229 Zo o \/Z01Z02

und rickwirts:

e (e2N +jBow) _ fyo/detT =1/, = e (“INTIFIN) /det A
(46)
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Auffallend sind vor allem die einfachen Beziehun-
gen, die sich zu den Elementen der Wellenmatrizen
ergeben.

Vierpole mit imaginiirem Ubertragungsmass haben
wir im letzten Kapitel behandelt. Hier wollen wir uns
solchen mit reellem Ubertragungsmass zuwenden,
also den Dampfungsgliedern und Verstarkern. All-
gemeine Dampfungsglieder und Verstirker werden
natiirlich immer auch einen Phasengang haben; man
kann aber fiir die Berechnung immer einen Vierpol
abspalten, der nur die Phasenbeziehungen enthéalt.

Der bekannteste Vierpol mit reellem Ubertragungs-
mass ist das gewdhnliche angepasste Dampfungsglied
mit U,/U, = p;/q, = @ = e®. Seine Matrizen schrei-
ben sich:

cosha Zjsinha 1

(a+1la) Zya—1/a)
(a-1/a)/Z, (a+1/a) ]

' sinh«/Z, cosha

" Zy |[(a+1]a) =2 |
P
e © (47)
L= 0 ai‘
0 1la
= '1/a 0

Falls @ = 1 ist, handelt es sich um ein passives
Dampfungsglied, ist @ < 1, so liegt ein aktiver Vier-
pol vor, der in beiden Richtungen verstirkt. Beim
Betrachten der Matrizen fillt einem sofort die Ana-
logie zum Ubertrager auf, wobei formal die Rollen
der A- und Z-Matrizen mit den Wellenmatrizen ver-
tauscht sind. Entsprechend kann man auch diesen
Vierpol als Wandler betrachten, und zwar als rezi-
proken Reflexionswandler oder Leistungswandler. Die
Reflexion einer Last wird durch Kettenschaltung
eines Dampfungsgliedes um a2 geéindert. Neben den
Vorteilen eines beidrichtigen Verstirkers ist durch
diese Betrachtungsweise auch ein Nachteil ersicht-
lich: storende Reflexionen werden vergrossert.

Einen weiteren Vierpol mit phasenfreiem Uber-
tragungsmass haben wir im letzten Abschnitt kennen
gelernt, den tmpedanz- und reflexionstreuen Leistungs-
wandler. Seine Matrizen waren:

1/a Oi‘ .
A= 0 1a| (a = €9
1/a 01
T'= 0 1la (48)
l/a‘
B = a 0

Dieser Vierpol ist areziprok, er wirkt in der einen
Richtung als Verstidrker (vorwirts, wenn ¢ > 1) und
in der andern als Dimpfungsglied. Die Kettenschal-

tung eines reziproken und eines impedanztreuen
Wandlers ergibt einen allgemeinen démpfungsun-
symmetrischen Vierpol.

-dh\ “2"‘1
— Ay — = =7
+A 4 dzi' Ay
Fig. 13. Zerlegung des allgemeinen dampfungsunsymmetrischen
Vierpols

Ist dabei a, = «; = 0, so ist der Vierpol passiv
und wir nennen ihn Richidimpfung oder, in der Lei-
tungstechnik, Richéleitung. Im Idealfall wire dabei
®y— g = 0; ay + a; = oo, das heisst, die ideale
Richtleitung ist verlustlos fir die eine Durchlass-
richtung und dampft vollstindig fiir die andere
Richtung; sie hat demnach folgende Matrizen:

l}}l Zy ||
A:25:1/Z01H
. |1 0 ~ -1 —2)1
L:ZO"Q 1 Z—ZO‘O 1\‘
T iO 0l 'I; 1 0l (49)
= o 1 T= 1o
" ||O O\ E o 1/
= o] T Jlo o]

Der so definierte Vierpol ist-eine sogenannte ab-
sorbierende Richtleitung, in der die rickwirts in den
Vierpol fliessende Leistung vollsténdig oder teilweise
absorbiert wird. Daneben gibt es auch eine reflek-
tterende Richtleitung, bei der die Leistung in einer
Richtung durchgelassen, in der andern reflektiert
wird. Diese letztere kann durch folgende Matrizen'®
dargestellt werden:

A— ol sinh (¢/2)  Z, cosh (¢/2) :1
~ O (1/Zy)sin (¢f2) cosh (¢/2) |
0 0
T= ’ —eie 1| (50)
O 0 ~ ‘ equ 1 ’
b 1 ele ‘ S = 0 0

Ein solcher Vierpol ist, wie wir schon im 3. Ab-
schnitt gesehen haben, aktiv. Es ist hingegen méglich,
passive Vierpole zu realisieren, die eine gewisse Nihe-
rung zur idealen reflektierenden Richtleitung dar-
stellen, indem sie in einer Richtung die Energie teil-
weise durchlassen, withrend sie in der andern Rich-
tung teilweise reflektieren, teilweise absorbieren. Die
in diesem Sinne optimale passive reflektierende Richt-
leitung ldsst in einer Richtung die Hilfte der Leistung
durch, wihrend sie in umgekehrter Richtung die
Hiilfte reflektiert. Der Rest der beiden einfallenden
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Leistungen wird absorbiert. Die Vierpolmatrizen'®
sind also:

0 0
—ele V?

0 0

51
1 éle (51)

-|

1

8=—

Ve

Etwas allgemeinere passive, teilweise reflektierende

Richtleitungen erhilt man, wenn man beachtet, dass
fur Passivitit

| 81 |2+ 802 =1 (52)

sein muss, falls man s;; = s;, = 0 annimmt.

Ahnlicher Art wie die Richtleitungen sind die
gewoOhnlichen Verstérker, einzig dass die Leistung in
Durchlassrichtung nicht gleich bleibt oder abnimmt,
sondern vergrossert wird. Die Matrizen eines beid-
seitig angepassten idealen Verstéirkers sind:

1 /v Zyv]| 7 —7 L0 ‘
2 l 1/ Zgw 1/”1 e -1 f '
(53)
0 0 0 o0
Ll P -1s 4l

mit v* = Leistungsverstirkung = P,,/Pe,

Man erkennt aus der Ahnlichkeit mit den Richt-
leitungen auch, warum letztere so wichtig sind: sie
ersetzen in vielen Fillen einen Verstidrker, besonders
da, wo die Aufgabe des Verstirkers nicht in erster
Linie die Leistungsverstiarkung, sondern die Trennung
ist, also zum Beispiel das Verhindern von Riickwir-
kungen aus einem vielleicht unstabilen Teil einer
Schaltung in einen lastempfindlichen Teil. Eine solche
Trennung wird oft durch reziproke Dampfungsglieder
erreicht. Mit Richtleitungen erspart man in diesem
Falle Leistungsverluste und dabei unter Umsténden
Verstiarker. In Frequenzgebieten, wo zur Realisierung
einer passiven Richtleitung aktive Elemente not-
wendig sind, fallen diese Vorteile natiirlich dahin.

Wenn wir von Verstirkern sprechen, so miissen
wir auch allgemein etwas iiber die Quellen sagen. In
der klassischen Netzwerktheorie unterscheidet man
Strom- und Spannungsquellen. Diese Unterschei-
dung ist in der Leitungstechnik nicht sehr zweck-
missig und wir arbeiten hier besser mit dem Begriffe
der Leistungsquellen. Eine ideale Spannungsquelle
stellt impedanzmissig einen Kurzschluss dar, das
heisst, ein der Spannungsquelle von aussen aufge-
driickter Strom erzeugt in der Quelle keinen Span-
nungsabfall. Sinngemiss definieren wir eine ideale
Leistungsquelle so, dass eine in die Quelle laufende
Welle nicht reflektiert wird, sie muss deshalb eine
innere Impedanz gleich dem normierten Wellenwider-
stand haben. Im praktischen Falle haben Strom- und
Spannungsquellen immer einen inneren Widerstand,

10 Bei diesen Matrizen sind die Phasenbeziehungen schon so
weit vereinfacht, als sich dies durch Abspalten eines reinen rezi-
proken Phasengliedes machen lasst, und zwar so, dass die durch-
tretende Welle phasenfrei ist.

dank dem zu jeder Stromquelle eine #dquivalente
Spannungsquelle und umgekehrt gefunden werden
kann. Im Frequenzbereich der Leitungstechnik sind
die idealisierten Bedingungen von Strom- und Span-
nungsquelle ohnehin fast immer schlecht erfiillt, so
dass es eine Vereinfachung bedeutet, hier mit einem
einzigen Quellentyp zu arbeiten. Quellen sind Zwei-
pole und kénnen mit nachfolgenden Symbolen dar-
gestellt werden.

R
+ R P
U

a) b) c)
Fig. 14. Symbole fiir Strom- und Spannungsquellen
a) Spannungsquelle

b) Stromquelle in konventioneller Darstellung
¢) Leistungsquelle in Wellendarstellung

Da es immerhin auch vorkommen kann, dass Lei-
stungsquellen, von aussen gesehen, mit guter Nihe-
rung einen Kurzschluss oder eine offene Leitung dar-
stellen, ist es angebracht, diese Eigenschaft im Schalt-
symbol ausdriicken zu kénnen. Den idealen Strom-
und Spannungsquellen entsprechen dann folgende
Darstellungen fiir die Leistungsquelle:

+
P
Spannungsquelle v @ -—

P offene
Stromquelle 1 é} -— @_p_ Leistungsquelle

Fig. 15. Spannungs- und Stromquelle und ihre Aquivalente in der
Wellendarstellung

kurzschliessende
Leistungsquelle

Wichtiger als diese Zweipole sind in der Vierpol-
theorie die gesteuerten Quellen. Auch hier kennt man
wieder die Unterscheidung in spannungsgesteuert und
stromgesteuert. Wellenmissig ausgedriickt heisst dies,
dass die Steuerwelle total reflektiert wird; im ersten
Falle mit » = 1, im zweiten mit » = —1. In der Lei-
tungstechnik besteht kein Grund, zwischen diesen
Steuerarten einen Wesensunterschied zu machen, da
der Reflexionsfaktor durch Verschieben der Bezugs-
ebene beliebig gedreht werden kann. Die leistungslose
Steuerung ist in der Leitungstechnik indessen kaum
zu verwirklichen, es scheint daher zweckmissiger, eine
reflexionslose Steuerung als Grundtyp anzusehen.
Einer teilweisen Reflexion kann dann zum Beispiel
durch Kettenschaltung eines idealen Ubertragers
Rechnung getragen werden. Aus der gesteuerten
Quelle wird damit ein einrichtig wirkender, ange-
passter Verstdrker mit den Matrizen nach (53). Als
graphisches Symbol ergibt sich dafiir sinngemiss
Figur 16 a; nach Figur 16 b und ¢ kénnten gegebenen-
falls Quellenvierpole dargestellt werden, die auf der
Steuerseite nahezu vollstindig reflektieren. Fiir die
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oder

)—K B — 9

Fig. 16. Symbole fiir auf der Ausgangsseite angepasste Verstérker

a) einrichtiger angepasster Verstirker
b) | leistungslos (spannungs- bzw. strom-)
c) [ gesteuerte Quellen oder Verstéirker

Analyse kann ein praktischer, mit Anpassungsfehlern
behafteter einrichtiger Verstidrker in eine Ketten-
schaltung aus idealem Quellenvierpol mit Ein- und
Ausgangsiibertrager und zwei Phasengliedern zerlegt
werden, wie in Figur 17 und Matrixzerlegung (54)
gezeigt1!:

Py 92

—_— e
- -
9 P2
— v H 4 W AW 2 4 P —

Fig. 17. Zerlegung des allgemeinen Verstirkers

ab/c‘ -
a/be ll N

1 !‘e—j (p1+@2) ‘ /t%__l \/tg_]_ : e~ (g1—g2) \/t%.—l . t2

| v 1 ele el (‘Pl—!}?z)tl \/—tg_—l H

t1\/t§j H\O 0[‘ ty \/I%Tl|

(54)

ellote) ¢ ¢,

lede: O

| |

e O’ !
I

0 eie

R=rAR ISR =0

In der ersten Matrix ist zum Ausdruck gebracht,
dass es sich um eine spezielle Matrix mit 6 Freiheits-
graden handelt (@, b, ¢ sind komplex, ebenso v, da-
gegen sind 1, £, ¢;, @, skalar), wobei hier det T = 0
ist. An Stelle der Ubertrager hiatte man bei der Zer-
legung auch Blenden (symmetrische Reflektoren)
oder einseitige Reflektoren verwenden konnen. Dieser
Fall (54) gibt genau den praktischen Fall zum Beispiel
eines Klystronverstirkers wieder: Die mittlere Matrix
entspricht den eigentlichen Verstirkereigenschaften,
die anschliessenden Ubertrager der Ein- und Aus-
kopplung, und die Phasenglieder ergeben sich je
nach Bezugsebene fiir Ein- und Ausgang, sie sagen
im iibrigen nichts Wesentliches aus iiber den Ver-
starker.

:Ii() el ¢

11 Der Ubertrager als reflektierender Vierpol wird in Kapitel 7
behandelt.

7. Synthese allgemeiner Vierpole

Nachdem wir nun die dimpfenden Vierpole be-
trachtet haben, fillt es uns leicht, eine wichtige
Gruppe von Vierpolen, nidmlich alle beidseitig ange-
passten, aus einer Kettenschaltung von Elementar-
vierpolen zusammenzusetzen. Weil bei den angepass-
ten Vierpolen die beiden komplexen Reflexionen ¢,
und ¢, Null sind, kann man sofort folgern, dass die
urspriinglich 8 Freiheitsgrade des allgemeinen Vier-
pols sich hier auf 4 reduzieren miissen. Als Bestim-
mungsgrossen eines beidseitig angepassten Vierpoles
kann man zum Beispiel folgende Eigenschaften
wahlen:

1. symmetrische (beidrichtig gleiche) Diémpfung
(oder Verstarkung).

2. asymmetrische (vor- und riickwiirts entgegenge-
setzt gleiche) Dampfung.

3. symmetrisches Phasenmass.

4. asymmetrisches Phasenmass.

Fir jede dieser Kigenschaften haben wir einen
bilateral angepassten Vierpol gefunden, die alle unter
sich kommutativ sind und daher in beliebiger Reihen-
folge in Kette geschaltet werden konnen. Diese Syn-
these ist in Figur 18 und in der Matrizengleichung (55)
dargestellt.

oo +¥s
— — = & e H

Fig. 18. Zerlegung des allgemeinen, beidseitig angepassten

Vierpols
e (a1 t+a2) = (@1t @2) O
T = 0 ela—a) +i(p1—gs) - (55)
e 0 e ( e ( e 0
0 e 0 e 0 en 0 e

In dieser Zerlegung, neben der natiirlich viele an-
dere moglich sind, treten die wesentlichen reell rezi-
proken, komplex reziproken und areziproken Eigen-
schaften besonders gut in Erscheinung. Es ist auch
leicht zu {iibersehen, was beispielsweise mit einer
Reflexion (oder Impedanz) geschieht, wenn sie nach
Zwischenschaltung dieses Vierpoles gemessen wird:
Die ersten beiden Teil-Vierpole sind phasenfrei.
(a;) ist ein reeller Wandler fiir die Reflexion (s. Ab-
schnitt 6), wihrend der zweite reflexionstreu ist. Das
reziproke Phasenglied (¢,) dreht die Phase der Re-
flexion um 2 ¢,, wihrend der letzte Vierpol, der
Richtphasenschieber, wieder reflexionstreu ist.

Zum allgemeinsten Vierpol fehlen uns bei der Syn-
these nach Figur 18 und (55) noch die Reflexions-
eigenschaften auf den beiden Seiten. Wir wollen daher
zuniichst noch einige Vierpole betrachten, die Refle-
xionen erzeugen und die reell reziprok sind. Schon
friiher sind wir auf den gewohnlichen Ubertrager
gestossen, der folgende Matrizendarstellung hat:
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Tabelle 1V. Vierpole mit zwei Freiheitsgraden
Matrizen ST
Bezeichnung i . Zerlegungsmaglichkeiten Symbol
Impedanz-und reflexions- o %+i¥) 0 ) o P A A+jy
reuer Vierpol g A4 b i) ] -9 -k I 1 ~ “-jp -
. : 'J(? +% ) 0 +
Allgemeiner Phasenschieber | j¢, sy jZosin¥) g i1 72 . | 9, ¥, | B+, N
sin%/jzy  cos¥ o e (A% -% $-Ps
heky Zpsin hek frdd g " pr]
Aligemeine Richtleitung g2 c?s b Tasinhé 3 e — A 2 — — % —
5'2%"‘1 coshdky 0 e - L
; el 0 . cosy¥  jsiny . +P .
Idealer Konverter el? ) ei? — z,=e2""zz I —1z 1.e21"‘zz —
0 ey jsiny  cosy -9
Idealer Inverter ejf ‘O ZoeJ") o j€ “cosm isinm — 21.e2j'1)zz = i - — Z1=e’i"'zz —
1z, 0 -jsinm  cosm >< -€
% 0 tor nennen. Die Figuren 4 b und 4 d sind Beispiele
Aq 0 1/ (56) von solchen Stufen in Hohlleitern. Die Kopplung
durch eine solche Sprungstelle ist durch ¢, die Refle-
1 H w+1/a) (4-1/a) H It; Vt2—1 H Hcoshz sinht| xion durch s bestimmt; die letztere ist, gesehen von
To=— =l der einen Seite, entgegengesetzt gleich jener gesehen
2 l(5-1 1 ‘ - 3 entgegeng g ] g
H (a-1/) (i+1/a) H vt2 v ‘ ” sinls goshy auf der andern Seite.
” (6-1/4); 2 H ‘ g «/rsz H ” T a— Ein Weitelter, Wif:htiger, ebenfall‘s verlustloser, ree'll
= = ) reziproker Vierpol ist der symmetrische Reflektor. Die
/g, %, 2;~(a-1/i) |‘ ‘ \/1—82;—3 H H C0sc —8Io' || Sprungstelle war beziiglich Reflexion antisymmetrisch,
wobei dieser Reflektor ist symmetrisch. Beispiele solcher
Vierpole in der Leitungstechnik sind Blenden, Zen-
i = t+A\P-1 = \/ i s st >1 |s|<1 trierscheiben und unkompensierte (impedanzkon-
—-s

£ (1-s?) = 1

Im Sonderfall des angepassten Ubertragers werden
die Wellenmatrizen, wie schon aus den Beispielen im
Kapitel 2 hervorgeht, trivial:

1 0
0 1

W=

0 1
1 0

o

Dies riithrt davon her, dass wir bei den Wellenmatri-
zen die Anpassung zum Prinzip erklirt haben und
dass damit ein Ubertrager bei der Verbindung ver-
schiedener Leitungen als selbstverstdndlich betrachtet
wird. Er triagt ja auch nichts bei zu den Eigenschaften
des ganzen Systems, erst beim Fehlen des Ubertragers
wird man auf die Verbindungsstelle der zwei Leitungs-
systeme aufmerksam. Hingegen ist der nicht ange-
passte Ubertrager ein wichtiges Element der Leitungs-
technik, und zwar realisiert man gewohnlich nicht,
dass es sich um das Aquivalent eines Ubertragers
handelt, sondern man bezeichnet einen solchen Vier-
pol meist als asymmetrische Stufe oder Sprungstelle.
Wir kénnten ihn hier auch antisymmetrischen Reflek-

stante) Spriinge, wie Figur 19 zeigt.

Fig. 19. Beispiele von symmetrischen Reflektoren

Die entsprechenden Matrizen sind:

A, — ]Zo\/'"2 1
T Vtz 1/]Zo t
T \/it2 1| cosht jsinhz
T —J\/t2 T &= | —jeinib oste|| 81210 (953
. js Vl—g2 sinh o CoS g
B = \/l—s js cos¢ sinho (ls|<1)

In diesen beiden Beispielen seien s und t reelle
Grossen. Es handelt sich in beiden Féllen um Vierpole
mit einem einzigen Freiheitsgrad, das heisst, ein ein-
ziger Wert beschreibt den Vierpol vollstindig.
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Ein weiterer passiver, reell reziproker Vierpol ist
der einseitige passive Reflektor: Sein Ubertragungs-
mass ist in beiden Richtungen dasselbe (<< 1), jedoch
reflektiert er nach der einen Seite, wihrend er — An-
passung vorausgesetzt — nach der andern Seite keine
Reflexion hat; er ist also ein Beispiel eines unilateral
angepassten Vierpoles. Der optimale Fall — grosste
einseitige Reflexion bei geringster Durchlassdamp-
fung — hat folgende Matrixdarstellung:

o sl

0 AT

7 AV 1-]r|
S = T . (58)
LIV ze T

0 ’\/l—\r!

Eine mdgliche Realisierung durch Richtkoppler ist
in Figur 20 angegeben (p; = A/r p):

i

Ps P3
] P
1 — e 2
r =
s V"‘_
94 q

Fig. 20. Mogliche Realisierung eines einseitigen passiven
Reflektors

Ein Vierpol mit einseitiger Reflexion aber ohne
Durchlassdémpfung konnte realisiert werden durch
Kettenschaltung des eben besprochenen mit einem
beidrichtigen Verstirker. ;

Beim Vierpol nach Figur 20 kann die Phase des
Reflexionsfaktors durch Verschieben des Kurzschlus-
ses im 3. Kopplerzweig verdndert werden. Man kann
die Reflexionsvierpole aber auch so definieren, dass
der Reflexionsfaktor reell ist. Ein in Kette geschal-
tetes Phasenglied kann der Reflexion eine beliebige

1?_hase erteilen, wobei natiirlich auch die Phase des
Ubertragungsfaktors beeinflusst wird.

Nun haben wir alle Elemente zur Hand, um den
allgemeinsten Vierpol mit 8 Freiheitsgraden aus einer
Kettenschaltung von 8 Vierpolen mit je einem einzi-
gen Freiheitsgrad zu erzeugen. Ein Beispiel einer der-
artigen Synthese gibt die Figur 21:

Fassen wir je zwei dieser Vierpole zusammen, so
ergibt sich die Synthese nach Figur 22:

Anstatt die Vierpole 3 und 4, 5 und 6 aus Figur 21
zusammenzufassen, kann man auch 4 und 5, 3 und 6
kombinieren. Dann enthilt der Vierpol (4 # 5) alle
nicht reziproken Kigenschaften des Gesamtvierpoles.
Da (4 # 5) ausserdem mit jedem Vierpol kommutativ
ist, (die Matrix ist ein skalarer Faktor) oder, anders
ausgedriickt, weil er impedanztreu ist, kann dieser
Vierpol an beliebiger Stelle, also auch am Ende der
Kette eingeschaltet werden. So entsteht die Zerlegung
in einen reziproken und einen nichtreziproken Vier-
pol [5].

Ersetzen wir in der Zerlegung nach Figur 21 die
Teile 2 und 7 zum Beispiel durch symmetrische Re-
flektoren, so sind, ausser dem Vierpol (3 # 4), alle Teile
verlustlos. Da diese beiden Vierpole in der Zerlegung
auch an ein Ende der Kette gelegt werden koénnen
(wobei sich dann natiirlich andere Werte ergeben fiir
die Vierpole, da 3 nicht allgemein kommutativ ist),
so hat man damit eine Zerlegung in einen verlustlosen
Teil und einen Vierpol, der Leistung aufnimmt oder
abgibt.

Der allgemeine Vierpol kann natiirlich auf manche
andere Art zerlegt werden, indem man geeignete
spezielle Vierpole, von denen wir im Verlaufe dieser
Diskussion eine grosse Zahl kennengelernt haben, in
Kette schaltet. Parallel- und Serieschaltungen und
Kombinationen aller drei Zusammenschaltarten geben
weitere Synthesemoglichkeiten, die in der Literatur,
besonders fiir Vierpole mit konzentrierten Elementen,
schon weitgehend analysiert wurden. Hier ging es
darum, jene Vierpole aufzuzeigen, die sich fir die

1 2 3 4 S 6 7 8
@ A *tAhs + 503 2 ©
] ; ry 1 / 7 4 T2 2 [
ar $
I :
itV lustlos I mit Verlust I verlustlos
verlustlos I mit Verlust evtl. aktiy : aktiv verlus .
passiv | passiv
reell reziprok areziprok komplex reziprok reell reziprok
bilateral I unilateral I bilateral I unilateral I bilateral
< angepasst .
dreht l erzeugt J_ multipliziert . dreht erzeugt L dreht
_________________ impedanz- und reflexionstreu S P T S B SS
Reflexion Reflexion

Fig. 21. Synthese des allgemeinsten Vierpols durch eine Kette von acht elementaren Vierpolen mit einem einzigen Freiheitsgrad
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oKyt [ 237
e % 34 e
Catliar] ~%

Einseitiger Reflektor

Einseitiger Reflektor

passiv aktiv'?) passiv

reell reziprok areziprok reziplex reell reziprok

unilateral
JEE——

unilateral bilateral

-+ angepas st

erzeugt multipliziert dreht erzeugt

Reflexion

Fig. 22. Synthese des allgemeinsten Vierpols aus vier Vierpolen
mit zwei Freiheitsgraden

wellenméssige Betrachtung und fiir die Synthese von
Vierpolen der Leitungstechnik speziell gut eignen. Je
nach der Art des zu behandelnden Problemes wird
man diese oder jene Elementarvierpole fiir die Syn-
these bevorzugen.

Zum Schlusse muss noch auf einen wichtigen Punkt
hingewiesen werden. Alle die Koeffizienten, die wir
als Matrixelemente zur Charakterisierung eines Vier-
poles beniitzt haben, kénnen natiirlich Funktionen
der Frequenz sein. Im allgemeinen wird ja einem Vier-
pol bei Anderung der Frequenz ein bestimmtes Ver-
halten vorgeschrieben. So kénnen sich natiirlich seine
Eigenschaften, wie Reziprozitit, Passivitit, Anpas-
sung usw., in Funktion der Frequenz éndern. In der
Breitbandtechnik strebt man an, die Eigenschaften
moglichst konstant zu halten, wihrend die Filter-
technik scharfe Anderungen verlangt. Einzelne Vier-
pole eignen sich naturgemsiss besser fiir diese, andere
fir jene Frequenzanforderungen. Kine grosse Rolle
spielt in diesem Zusammenhang auch das Problem
der Stabilitdt, das mit der Frequenzabhingigkeit der
Matrixelemente zusammenhiéngt. Es wiirde jedoch
iiber den Rahmen dieser Arbeit hinausgehen, auf diese
Aspekte niher einzutreten.

Schlusswort

Fiir wertvolle Anregungen und fiir die kritische
Durchsicht des Manuskriptes méchte ich den Herren
Prof. Dr. F. Tank und Prof. E. Baumann herzlich
danken.

ANHANG 1
Zusammenhiinge zwischen den verschiedenen Matrizen

Die Beziehungen zwischen den klassischen Matri-
zen finden sich in [1] und [10]. Aus den Gleichungen
(5) und (6) ergeben sich fiir T- und S-Matrix (Wellen-

matrizen):

1 || —detS 811 -

T Sy =85 1 (28)
1 |[t, detT

S = — (60)
los 1 _t21

12 Nur aktiv, wenn der Ubertra,gungsfaktor in mindestens einer
Richtung grosser als 1 ist.

Foo b
det T

t11 _t21 (61)

—tip  lgp

Sag So1

S = (62)

S12 Su
(? und T sind die Matrizen der umgekehrten Vierpole.)

Will man den Zusammenhang zwischen den klas-
sischen und den Wellenmatrizen finden, so muss man
zunéchst jeder Seite des Vierpoles einen Bezugswider-
stand zuordnen. Das Gleichungssystem (12) liefert
dann den Zusammenhang zwischen Spannungen und
Stromen einerseits und normierten Wellenamplituden
anderseits. Verwenden wir zudem (5) fiir die S-Matrix
und (3) fiir die A-Matrix, so kénnen wir diese Gleichun-
gen nach den Elementen der S-Matrix auflosen.

Dies ergibt:

’ ’ ’ ’
Ay T A= Qo — Qg

811 == ’ ’ ’ ’
Ayt @yt g Ty
2 det A
812 = 7 7 7 7
aptapptas,tay ;
(63)
2
821 - 7 7 ’ ’
Wyt @t @yt ay,
’ ’ : & ’
B o= 0t AW T Wy
22 ’ ’ ¥ 7
Wyttt @yt ay,
wobel
’
Ay = 0n VZoz/Z01
’ y
@12 = Q1o /\/Zm Zys
(64)

251 \/Z(u Zo
'35 = Qgy '\/Z01/Z02

Zy,, Zy, = Bezugswiderstande

’ ——
Qg =

Lost man umgekehrt nach den Elementen der A-
Matrix auf, so erhéilt man: .

a 1— g, det 8 —8p5 — 87,2 + 89y 810
n = 2 89y (1—syy)
o — 1 -8y, det S + 899 — 811% — 81585y
12 2 557 (1= 844)
65
. 1+ det 8 —s5,,— 5y (65)
a 21 — 2 821
. —1 4+ det S+ 87, — 8y,
@ = 2 851

Analog ergeben sich aus (3) (6) und (12) die Bezie-
hungen zwischen A- und T-Matrix:

typ = % (@'~ a'1p — @'y + a'yy)
ts = % (@1 +a'1p — @'y — @yy) -
tyy = % (@' —a'p+a'y—ay)
lag = % (@' +a;p+a'y + d'yy)
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an = % (g +typ + toy + t30)
Q12 = % (=t + b — oy + b)) .
Gy = % (=t = tip + toy + ta0) K
Aog = % ( tiy = tip — by + t20)

ANHANG 2

Kettenschaltung von Vierpolen in der Darstellung
durch Streumatrizen

Gegeben seien zwei Vierpole mit den Streumatrizen
S und 8”, also den Gleichungspaaren:

Y 4 ’  J 4 ’
91 =S8uP11T812P:

g o ’ ’ ’ (68)
§o =8 P11t 80D,
q’ll — 8’,11 p’ll + 8’/12 p/’2

n ”n 144 7 7 (69)
G 2=8 P 1TSS 22D

Diese Vierpole seien in Kette geschaltet, also:

1= ¢ (70)
und gesucht sei die Streumatrix der Kombination:

und  ¢”; = 9,

91 = 8up1+ 819"
q"2= S Pyt S
Aus den Gleichungen (69) (70) und (71) miissen

also die Grossen p,"”, ¢,', ¢,", p," eliminiert werden.
Durch Einsetzen von (70) und (71) in (69) erhilt man:

(71)

! _ ’ U ’ " 17 ’ " ,"
1=8uP11t8128 1P 1178128 120 2
’ ’ ’ " 4 ’ 4 ’ ’
=811P1 T 8128 120 2T 8128 11821 P1
’ ” 7 ’
18128 118291
. / r ’ ! " ’ ’ ! ’ 2
=p'1(8'yy + 812808 + 81285858+ 0)
4 ’ ’’ ’ 44 ’ r
+ P s (8108 19+ 8128 128228 1 + - 1)
o0
’ ’ ’ L e ’ n
=p[n+t8nssn n%" (8"228"11)"]
oo
’7 ’ rn ’ 44
+ 95 [8'128"12 "% (822 8" 11)"]
7 ’ rp ’ 44
_ [s' +3123215 11 p $128 19
- 1 11 ’ ’ P v e
I-5"5 811 I-8'y 8"

Die Mehrfachreflexionen bilden also eine konver-
gierende geometrische Reihe, deren Summe sich nach
der bekannten Summenformel berechnen ldsst. Ana-
log ergibt sich fiir ¢’’, der folgende Ausdruck:

2
’ rr
’ , _SaS a1 rr re

!
qd 2 = D1 ’ ’r 2| S 22
1-s'55 811

44 rr 4
$ o1 8 128 22]
’ rr
1-8"59 8"'11

Somit wird die Streumatrix S der Kettenschaltung:

7 4 r’ 144
g — $11 S #|311 $12 ||
- , , ’r rr - 79
So1 Sa2 S g1 S 22 (72)
¥ rr ’ F 4 rr
1 (8'11—8"1y det §) $128 12
1-6"55 811 8’218 (85— 8 5o det 8”)

ANHANG 3

Einrichtige und beidrichtige Passivititsbedingungen
fiir A-Matrix und T-Matrix

Ausgangspunkt fiir die Ableitung sind die Glei-
chungen (15a) und (15b). Im allgemeinen, komplexen
Fall ist

U=V+ijWw

I=J+jK

aix = ai + J Bir

Darin sind V, W, J, K, a, §§ reelle Grossen. Die Vier-
polgleichungen in Kettenform lauten also

Vit iWy = (Vyt W) (ag+ jB11) + (Jot+ JK,) (a1p+ 1B12)

JiH 1Ky = (Vat jWs) (a9 1a1) + (Jo+ 1K) (0t jB0)

(74)

(73)

Nach Real- und Imaginirteil geordnet ergibt sich:
Vi=auVo—BuW,y + ayaJy— P15 Ky
Wi=BuVetanWy+ iy —0y, Ky
J1 =0y Vot By Wat agJy— s Ko
Ky =B Vot ay Wyt oy + ag Ky

Die Wirkleistung ist das skalare Produkt der kom-

plexen Gréssen U und I, also

P1=V1J1+W1K1

(75) in (76) eingesetzt ergibt:

P, = (V24 WA)g+ (J.2 + K.2)r + (Vo d,+ Wy Ky) n

+ (Vo Ky +Wydy) m = |U,|?g + | I, 2r + Nyn + Bym

(77)

Dabei ist P, die Wirkleistung und B, die Blindlei-
stung auf der Lastseite und:

(75)

(76)

g = (ayy ag + P11 Bar) = (@11, @yy)

7= (a13 g9 + B2 Pan) = (@ya; Ags)

n = (ayy agp + Py Pos + @y dgy + 12 fo1)
= (@1, Qgo) + (@135 Ay)

m= (‘122 511 —an Boo— an /312 + /321 )
= (Ggy X Ayy) + (A1 X Ayy)

(78)

Ein bei 1 gespeister Vierpol ist in Richtung 1 —> 2
passiv, wenn P, = P, ist fiir alle Lastimpedanzen Z,
mit nicht negativem Realanteil E,. Mit (77) schreibt
sich diese Forderung:

(1—n)P, = |U,|2g + |I|*r + Bym
oder

(79)

2
A—m)sSRyg+tatg+t 2%, (80)

R, R, R,
wenn wir durch P, = [,2 R, dividieren und
B, = 1,2 X, setzen. Die Ungleichung (80) muss bei
einem vorwiirts passiven Vierpol erfiillt sein fiir alle
X, und fir R, = 0. Damit (80) fiir beliebige Werte
von X, und sehr grosse und sehr kleine Werte von R,
erfiillt sein kann, muss jedenfalls
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g=0 (81) Damit kann man zeigen, dass fiir n <<|det A|? die
rz0 (82)  Gleichung (90) sich durch (85) ersetzen lasst. Ist hin-
m = 0 (83) gegen n >|det A |2, so ist (90) immer erfiillt.

sein.

Diese Bedingungen geniigen aber noch nicht. Es
muss nun bestimmt werden, welches der Minimalwert
der rechten Seite von (80) ist, wenn R, die Werte
0 —> oo durchliuft. Dazu leitet man nach R, ab:

d r 7
—<R29+—>~g——2
d R, R, R

[X, haben wir dabei gleich 0 gesetzt, da dies den un-
giinstigsten Fall darstellt fiir (80)]. Das Minimum der
rechten Seite von (80) liegt somit an der Stelle

R2=\/1‘7§

und (80) reduziert sich zu

(I—n) = 24/gr (84)
oder

(@15 Agp) + (@40, Ayy) = 1—2 \/(“22 s o) (@2, @yy) (842)

Man kann zwei Fille unterscheiden: Ist n>1, so ist
(84) immer erfiillt, unabhiingig von g und 7, die ja
beide positiv sind. Ist dagegen n <1, so kann man
(84 a) umformen in

1
(@) 5 Og9) + (A19, Ayy) = 5 (1+ [det A[?) (85)
da man durch Ausmultiplizieren zeigen kann, dass

folgende Beziehung gilt:

m?+n?—4gr=|det A|2 (86)

Speist man den Vierpol von Seite 2 her, so hat er
bekanntlich die A-Matrix:

Qoo Q19

= (1/det A)

Az Q13

Analog der obenstehenden Ableitungen findet man
fiir die Passivitdt in Riickwirtsrichtung (2 —- 1):

(g2, az) = 0 (87)
(@19, @17) = (88)
(19X @gy) —(@ge X a1y) = (89)
(@115 @gy) + (a1, ag1) = | detA]z 2V Qaa» g) (@15 an;

(90

Man kann nach den Regeln der Vektorprodukte
zeigen, dass

dgr—m? = 4g'vr — m'? (91)
wobei
g = (a5, ay)
7= (ag, ay) (92)
m' = (@15 % Ay;) — (@gp X @yy)
Zu (86) gilt die analoge Beziehung:
m?2+n? — 497 = |det A|2 (93)

Aus der Kombination der abgeleiteten Bedingungen
ergibt sich, dass ein beidrichtig passiver Vierpol die
folgenden Forderungen gleichzeitig erfiillen muss:

(@y1,01) = 0

(@g1,a9) = 0

(@y,ay) = 0

(@13, @) = 0 (94)
(@ Xay) = 0

(@5 % Agy) 0

(

N

\/(an s Og1) (g5 Q)
= 1lund = |det A |2

(@115 @) + (@12, 05) +

Bei einem verlustlosen Vierpol gelten iiberall in
(94) die Gleichheitszeichen. Es ist ferner leicht einzu-
sehen, dass ein Vierpol, wenn er einrichtig verlustlos
ist, auch umgekehrt verlustlos sein muss und dass dann
|det A| = 1, der Vierpol also komplex reziprok ist.

Soll ein Vierpol beim reellen Abschlusswiderstand
R, (> 0) punktweise, einrichtig verlustlos sein, so
ergibt sich anstelle von (80)

1—n = R,g + r/R,, oder (95)
(@115 @g9) + (@12, @) = 1 — By (ayy, agy) — (a5, azz)/Rz
(95a)

Um die einrichtigen Pagsivitdtsbedingungen fiir
die T-Matrix abzuleiten, geht man aus von der For-
derung:

| g2 — [P = o2 —|@u |® (96)
die erfiillt sein muss fiir
| Po/ga| = |rele] =1 (97)
Mit (6) ergibt sich dann:
2 —1 + (relety + tyy) (re e g + if) —
(’I’ei@ 11 + tlz) (’)"e_je 1+ trz) =0 (98)

(indem man durch | ¢|? dividiert und die Quadrate
der Betrige als Produkte der Faktoren mit ihrem kon-
jugierten Wert schreibt.)

Beniitzt man nun folgende Abkiirzungen:

(tuth —ta ) = a
(boo 132 — tintis) = b (99)
(it —ta 85| = ¢

so lasst sich (98) in nachstehende Form bringen:

72 (L —a) —r[ele (t s — to1 t32) +

ede (i e — i t2)] +6—1 = 0
oder (100)
(1 —a) — 27 Re {ele (tuth — tnth)| +6—1 20

Der ungiinstigste Fall liegt dann vor, wenn der Aus-
druck in der geschweiften Klammer positiv reell wird,
was bei geeigneter Wahl von ¢ immer mdéglich ist. So-
mit ergibt sich folgende Bedingung, die fir 0=r =1
erfiillt sein muss:
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(l—a)—2rc +(b—1) 20

Setzt man # = 0 und » = 1, so ergeben sich sofort
die Bedingungen:

(101)

b =1
b—a =2¢

(102)
(103)

Die quadratische Funktion (101) kann ausserdem im
zuldissigen r-Bereiche ein Minimum aufweisen, falls
a<(l-c¢)ist, und zwar an der Stelle r = ¢/(1 - a).
Die Ungleichung (101) wird dann zu

(1—a) (0—1) = ¢

Durch Ausmultiplizieren kann man sich iiberzeugen,
dass folgende Beziehung richtig ist:

+ab — |detT|?

Es ergibt sich dann aus (104), wenn man fiir @, b und
¢ die urspriinglichen Werte wieder einsetzt :

‘t22l2+|t11|2_1t12‘2—}t21£2 = l+|det’T‘2 (106)

(104)

(105)

Nach dem vorangegangenen ist leicht einzusehen, dass
im verlustlosen Falle die Bedingungen lauten:

a =1
b =1 (107)
=0

damit die linke Seite von (101) identisch Null sein
kann.

Mit Hilfe von (62) kann man analog die Forderungen
fir den riickwérts passiven Vierpol aufstellen.

Fiir einen beidrichtig passiven Vierpol fillt die
einschrinkende Bestimmung (97) weg, weil der Vier-
pol unter allen Betriebsbedingungen mindestens so
viel Energie aufnehmen muss, wie er abgibt. Die
Ungleichung (106) muss dann immer erfillt sein,
wihrend im einrichtigen Fall dies nur erforderlich
ist fir

a<1l—c¢ oder
L-—t1y 811 + o1 831 > | bua tle — fo1 832

(108)

wihrend sonst die schwichere Forderung (103)
geniligt.

ANHANG 4
Zweiter Hauptsatz der Thermodynamik

Wir betrachten ein geschlossenes System aus einem
Vierpol, der beidseitig mit Abschlusswiderstinden
versehen ist. Diese sollen sich auf der gleichen Tem-
peratur und somit im thermodynamischen Gleich-
gewicht befinden. Der zweite Hauptsatz verbietet
nun, dass sich der eine Widerstand von selbst auf
Kosten des anderen erwidrmt. Der Vierpol als Ver-
bindungsglied sei streng passiv, er kann also von sich
aus keine Energie abgeben. In diesem Falle darf seine
Temperatur nicht héher sein als jene der Abschluss-
widerstinde, sie konnte hingegen tiefer liegen, so dass
der Vierpol Energie aus einem der beiden Abschliisse

aufnehmen kann, bis zu einem gewissen Endzustand,
bei dem jedoch die Temperatur an keiner Stelle héher
sein kann als am Anfang. Es gilt nun festzustellen,
ob diese Bedingung eine Einschrinkung der passiven
Vierpole ergibt. Man betrachte ein schmales Fre-
quenzband. Darin kann man das Rauschsignal an-
nihernd als Sinuswelle betrachten. Jeder Abschluss-
widerstand liefere ein gleich grosses Signal, entspre-
chend seiner verfiigbaren Leistung, die ja nur von der
Temperatur abhingt (k7 A f). Es sei also:

Py = elep, (109)

Damit der zweite Hauptsatz erfiillt ist, darf dann auf
keiner Seite des Vierpols die austretende Welle (g,
oder ¢,) grosser sein als p;,.

Wir setzen den gewiinschten Betriebszustand zu-
sammen aus der Uberlagerung folgender zwei Fille:
Im ersten Fall sei p’, = 0, p’; = p;. Die Vierpolglei-
chungen lauten dann

71 = td>
P’y = tas q's
oder
¢t = P1 (tiats) (110)
Qs = Piftas
Im zweiten Fall wihlen wir p,"" = 0; p,”" = py:
1 =tup s+t q"s
0 =ty p"s+ 12 q"s
oder
g7y = P (b — tia by [tn)
g’y = —p"5 (tn/te) (111)

Wir setzen nun p, = 1, dann miissen folgende Be-
dingungen erfiillt sein:

L' 12+ g |12 = P2+ p" 2 =1
| @212+ 7|2 = [pL]®+ [p"]2 =1 (112)
Etwas umgeformt ergibt dies
[ tea|? — [t12]|® = [det T |2
1t22|2—‘t21‘2 =1 (113)

Diese Bedingungen entsprechen genau der fritheren
Forderung (102) fiir beide Ubertragungsrichtungen.
Es entsteht also keine neue Einschrinkung fir die
moglichen Werte der Matrixelemente, ausser den
schon fiir den passiven Vierpol bekannten.
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Ein mechanisches Modell
zur Vorfiihrung gyromagnetischer Erscheinungen”

Von Reinhard Pottel, Gottingen

Zusammenfassung. Die praktische Ausfithrung eines Vor-
fihrungsmodells wird beschrieben. Es dient dazu, das Verhalten
eines gebundenen Elektrons mit nicht abgesdttigtem Spin wnter
dem Einfluss magnetischer Gleich- und Wechselfelder anschaulich
darzustellen und damit die gyromagnetischen Erscheinungen im
klassischen Bild zu verdeutlichen. Die hierfiir wesentlichen Eigen-
schaften Spin und magnetisches Moment des Elektrons sowie ver-
schiedene Magnetfelder sind im Modell mit mechanischen Mitteln
nachgebildet. Die grundlegenden Vorginge, die fir die Erschei-
nungen der para- und ferromagnetischen Resonanz, des Fara-
day-Effekts, des Einstein-de-Haas- und Barnett-Effekts ver-
antwortlich sind, finden in dem vorliegenden mechanischen Mo-
dell auf einfache Weise eine weitgehende Analogie.

Ferro- und paramagnetische Stoffe weisen im
Zusammenhang mit ihren magnetischen Eigenschaf-
ten eine Reihe von Erscheinungen auf, deren Eigen-
art dem Spin der magnetisch wirksamen Elektronen
zuzuschreiben ist. Alle diese Erscheinungen sollen
hier unter dem Begriff gyromagnetische Erscheinun-
gen verstanden werden. Am bekanntesten sind unter
diesem Namen wohl der Richardson-Einstein-de-Haas-
Effekt und der Barneti-Effekt bei ferromagnetischen
Stoffen. Ebenso gehort dazu aber auch das besondere
Verhalten para- oder ferromagnetischer Stoffe gegen-
iber elektromagnetischen Wellen, wenn in diesen

* Bemerkung der Redaktion: Die Idee, sogenannte gyro-
magnetische Erscheinungen, wie sie besonders bei Ferriten im
Gebiet der cm-Wellen beobachtet werden konnen, durch ein
mechanisches Modell zu veranschaulichen, ist an verschiedenen
Stellen unabhéngig voneinander fast gleichzeitig aufgetaucht. So
beschreibt zum Beispiel 4. G. Fox in den Bell Laboratories Record
33 (1955), 419...423, eine ganz &hnliche Apparatur. Ferner wurde
ein Modell dieser Art — ebenfalls im Jahre 1955 — an einer na-
tionalen Tagung der URSI in Ziirich von G. W. Epprecht (For-
schungs- und Versuchsanstalt PTT in Bern) anlisslich eines Vor-
trages iiber Ferrite vorgefiihrt. Obwohl solche Modelle ausser-
ordentlich wertvoll sind fiir das Verstdndnis und die Demon-
stration der etwas komplexen Vorginge in gyromagnetischen
Medien, muss man sich doch davor hiiten, vom klassischen
Modell ohne die notige Vorsicht auf die atomaren quantenme-
chanischen Vorginge zu schliessen.
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Résumé. L’auteur décrit ici Iexécution pratique d’un modéle
servant a montrer le comportement d’un électron non libéré avec
spin non saturé sous U'influence de champs magnétiques continus
et alternatifs et a expliquer ainsi les phénoménes gyromagnétiques
classiques. Les caractéristiques de U'électron entrant essentielle-
ment en considération, le spin et le moment magnétique, de méme
que différents champs magnétiques, sont représentés dans le
modéle par des moyens mécaniques. Les phénoménes fondamen-
taux, qui donnent naissance a la résonance paramagnétique et
ferromagnétique, aux effets de Faraday, d’Einstein-de-Haas et
de Barnett, sont rendus par le modéle de maniére simple et avec
une grande analogie.

Stoffen #ussere oder, im Falle ferromagnetischer
Materialien, auch innere statische Magnetfelder vor-
handen sind. Hier treten der Faraday-Effekt, der
Cotton- Mouton-Effekt und die para- und ferromagne-
tische Resonanz auf.

Die Beeinflussung der Wellenausbreitung durch
Vorgiange gyromagnetischer Natur in magnetisch
wirksamen Stoffen tritt in typischer Weise und be-
sonders stark bei der Ausbreitung elektromagneti-
scher cm-Wellen in Ferriten in Erscheinung, wenn
diese statischen Magnetfeldern ausgesetzt sind. Be-
trachten wir ein unendlich ausgedehntes Ferrit-
medium, das von einem magnetischen Gleichfeld
bestimmter Richtung durchsetzt wird und bis zur
Sattigung magnetisiert ist. Eine ebene, linear polari-
sierte Welle, deren magnetischer Feldstirkevektor
parallel zum Gleichfeld liegt, erzeugt keine Wechsel-
magnetisierung. Das Medium verhilt sich magnetisch
unwirksam, seine Hochfrequenzpermeabilitit ist eins.
Steht dagegen die Gleichfeldrichtung senkrecht auf
dem magnetischen Feldstirkevektor und der Aus-
breitungsrichtung der Welle, so tritt eine Wechsel-
magnetisierung auf, die bei festem Gleichfeld in
bestimmter Weise von der Frequenz der Welle ab-
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