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Zur Darstellung physikalischer Grössen in Formeln,
Tabellen und auf Koordinatenachsen

Yon C. Glinz, Genf 53.081

Zusammenfassung. Diese Arbeit versucht, zur Darstellung
physikalischer Grössen einige einfache Regeln und Grundsätze

aufzustellen, welche, ganz auf den Boden der Praxis gestellt,

mithelfen könnten, den gegenwärtigen Unsicherheitszustand zu
beseitigen. Sie richtet sich in erster Linie an jene Verfasser von
technischen Artikeln, welche die höhere Mathematik nicht als

Hauptfach beherrschen.

Im ersten Hauptabschnitt, «Grundlagen», werden die Begriffe
Grösse, Masszahl und Einheit und ihre gegenseitigen Beziehungen
besprochen. Die beiden gegensätzlichen Parteien, wonach Symbole

als Grössen oder nur als Masszahlen aufzufassen seien, werden

nach Möglichkeit gleichberechtigt behandelt. Einige einfache
Beispiele werden für den Begriff der Dimension erwähnt. Ein
weiterer Abschnitt behandelt die Sondereinheiten, besonders

Prozent, Dezibel und Neper.
Der zweite Hauptabschnitt, «Normen und Regeln», behandelt

Einzelfragen der Schreibweise und des Druckes, wie kursive und
senkrechte Typen, Klammern verschiedener Formen und
Bedeutungen, das Zeichen G (entspricht), einige orthographische
Regeln für die Einheiten und die Potenzvorsilben.

Im dritten Hauptabschnitt, «Anwendungen», erfolgt die

Zusammensetzung aller Einzelteile zu den eigentlichen physikalischen

Gleichungen für Einheiten, Grössen und Masszahlen. Die
bis heute nicht sehr verbreiteten zugeschnittenen Grössengleichun-

gen werden ausführlich erklärt. Scharf verworfen werden die

sogenannten Mischgleichungen, und zwar mit Einwänden sowohl

von Seiten der Grössenauffassung als auch von Seiten der
Masszahlenauffassung der Symbole. Zahlreiche Originalbeispiele aus
der Literatur sind mit Abänderungsvorschlägen versehen worden.
Die Besonderheiten zur Darstellung in Tabellen und auf
Koordinatenachsen kommen ebenfalls zur Sprache.

Die drei wichtigsten Darstellungsarten werden zum Schluss
nochmals mit ihren Vor- und Nachteilen zusammengestellt. Es
wird betont, dass alle drei Arten ihre Berechtigung haben. Die
Wahl ist freigestellt, jedoch ist es unerlässlich, einen einmal

bezogenen Standpunkt nicht mehr zu verlassen und die drei Schreibweisen

sauber und konsequent auseinanderzuhalten.

1. Vorwort
Über die Darstellung physikalischer Grössen und

Einheiten in Formeln und Figuren wurde, von sehr

gegensätzlichen Standpunkten aus, bis heute bereits
so vieles geschrieben und gesprochen, dass es im ersten

Résumé. Dans ce travail, l'auteur tente d'établir quelques
règles et principes simples, fondés sur la pratique, et qui
pourraient aider à supprimer l'insécurité régnant actuellement dans la
représentation des grandeurs physiques. Il s'adresse en premier
lieu aux rédacteurs d'articles techniques qui ne se sont pas
particulièrement spécialisés dans les hautes mathématiques.

Le premier chapitre « Principes » traite des notions de grandeur,
mesure et unité et de leurs relations. Deux opinions contraires y
sont exposées avec le maximum d'objectivité, à savoir: les symboles

doivent-ils être considérés comme grandeurs ou seulement
comme mesures Quelques exemples simples rappellent la notion
de dimension. Un autre paragraphe mentionne les unités spéciales,
en particulier le pour-cent, le décibel et le néper.

Le deuxième chapitre «Normes et Règles» fait état des questions
d'écriture et d'impression, des caractères italiques et droits, des

différentes formes de parenthèses et de leurs significations, du
signe -A (correspond à), de quelques règles d'orthographe pour les
unités et les préfixes des multiples et sous-multiples d'unités.

Le troisième chapitre « Applications» montre la façon de
réunir ces différents éléments pour composer les équations physiques
elles-mêmes, c'est-à-dire celles aux grandeurs, aux unités et aux
mesures. Les équations aux grandeurs adaptées, assez peu
répandues jusqu'ici, sont expliquées en détail. Les équations mixtes
sont énergiquement critiquées, car on peut faire valoir des objections
aussi bien dans le cas des symboles considérés comme grandeurs
que dans le cas des symboles considérés comme mesures. De nom.-
breux exemples véridiques, extraits de publications, sont
accompagnés de propositions de modifications. Les particularités des

représentations sous forme de tableaux et de graphiques sont
également discutées.

Les trois principaux modes ae représentation: équations de

grandeurs, de grandeurs adaptées, de mesures, sont exposés
encore une fois à la fin de l'article, avec leurs avantages et leurs
inconvénients. L'auteur insiste sur le fait que tous trois ont leur
raison d'être. Le choix est libre, mais une fois fait, il est indispensable

de s'y tenir et de ne pas mélanger les trois modes de notation.

Moment müssig erscheinen mag, darüber einen
weiteren Beitrag zu veröffentlichen.

Die Erfahrung lehrt, dass sehr viele Leute sich schon
vom Titel einer solchen Publikation abschrecken lassen

und sie meistens ungelesen beiseite legen, besonders

in jenen Fällen, wenn die Arbeiten sehr abstrakt
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und « von hoher Warte aus » geschrieben worden
sind, um auch gegen grundsätzliche, theoretische
Angriffe hieb- und stichfest zu sein. Deshalb wird im
folgenden versucht, vom Standpunkt der Praxis aus
einige einfache Hauptsätze und Regeln zu besprechen
und an Hand von vielen Beispielen aufzuzeigen,
welche Darstellungsarten empfehlenswert und welche
abzulehnen sind. Dieser Aufsatz verlangt keine
besonderen mathematischen Vorkenntnisse, sondern
möchte im Sinne eines Ratgebers jenen Verfassern
technischer Arbeiten helfen, die bei der Schreibweise
physikalischer Gleichungen ein leises, vielleicht auch
nur unbewusstes Unbehagen empfinden.

Bereits an dieser Stelle soll auf die ausgezeichnete
Publikation Nr. 192, «Regeln und Leitsätze für
Buchstabensymbole und Zeichen» [4] des Schweizerischen
Elektrotechnischen Vereins (SEV) hingewiesen werden.

Darin werden die Ingenieure und Physiker
aufgerufen. für die gleiche Grösse und die gleiche Einheit
immer und überall die selben Buchstabensymbole zu
verwenden, die in den anschliessenden Listen
zusammengestellt und kommentiert sind. Auswahl und
Erklärung dieser Symbole bilden also das Schwergewicht

der Veröffentlichung [4], Gewissermassen als

Ergänzung dazu versucht die vorliegende Arbeit als

Hauptthema die Zusammensetzung dieser Symbole
zu ganzen Gleichungen und die Darstellung in
Formeln, Tabellen und auf Koordinatenachsen zu behandeln.

Diese Regeln und Hauptsätze gelten anderseits

ganz unabhängig vom gewählten Maßsystem. Aus
diesem Grunde wird hier weder auf die Rationalisierung

noch auf die Einführung des Giorgi-Systems
eingegangen.

Da die Auswahl und die Darstellung von Symbolen
und Zeichen eng miteinander verknüpft sind, sei es

uns gestattet, einige Gedanken aus dem Vorwort der
Publikation [4] zu wiederholen.

Die Forderung nach genormten Symbolen und
Zeichen ist in allen Ländern unbestritten. Leider
existiert dazu der Widerspruch, dass alle Anstrengungen.

beschlossene Normen auch wirklich überall
anzuwenden, allzuoft von den Fachleuten nicht ernst
genommen werden, ja dass alle, die sich damit
befassen, für Leute gehalten werden, die nichts Besseres

zu tun haben.

Wer aber am Versuch mithilft, etwas Ordnung in
ein Chaos zu bringen, tut dies bestimmt nicht aus
einem schulmeisterlichen Dünkel heraus in der
Meinung, er sei klüger als die andern. Er steht vielmehr
vor der schmerzlichen Feststellung, wieder einmal
stundenlang Zeit verschwendet zu haben, um irgendeine

Formel eines beliebigen Maßsystems in einer
ausgefallenen Schreibweise nachzurechnen, zu verstehen
oder sogar anwenden zu wollen. Der eigentliche Sinn
einer «Veröffentlichung» liegt doch wohl im Wunsche
des Verfassers, einer andern Person etwas Wesentliches

mitzuteilen. Geschieht dies aber in einer gemeinhin

unverständlichen Form und Ausdrucksweise, so

ist es sicher schade um die beiderseits aufgewendete
Mühe.

Gewiss, wer zeitlebens nur ein einziges Lehrbuch
konsultiert, kennt diese Sorgen nicht, denn er hat
sich schon längst an die Eigenheiten seines
Lieblingsschriftstellers gewöhnt. Alle andern aber, welche aus
mehr als einer Quelle schöpfen möchten, sind sich,
bei ehrlicher Stellungnahme, darin einig, dass durch
klare Sprache, Formeln und Abbildungen das
Verständnis des Textes gefördert wird, dass mehr Zeit
und Energie für wiebtigere Unternehmen übrigbleibt,
als wenn in langwierigen Diskussionen läppische
Missverständnisse zu beheben sind.

Heute beschäftigen sich verhältnismässig mehr
Menschen mit den exakten Naturwissenschaften als
in früheren Jahrhunderten. Damals galten diese
Kenntnisse als Geheimwissenschaften; die Ausdrucksweise

war denn auch nur Eingeweihten verständlich,
die anderseits über unbeschränkte Zeit zum Studium
verfügten. Die heute bereits vorhandene Literatur ist
nun aber so umfangreich, der Überblick über ein
einzelnes Wissensgebiet bereits so schwer, dass man
keine Zeit zur Entzifferung skurriler Texte ver-
(sch)wenden sollte. Heute geht es nämlich nicht mehr
darum, ägyptische Traumbücher in einer Geheimsprache

für einen kleinen Kreis zu publizieren!
Es ist unbestritten, dass jeder wissenschaftliche

Autor das Recht hat, seine eigene Schreibweise
anzuwenden und zu rechtfertigen. Niemand könnte ihm
dies verbieten, und niemand wollte deshalb über ihn
oder sein Werk ein Urteil fällen.

Die im folgenden ausgewählten Beispiele aus Texten
und Gleichungen deuten aber unmissverständlich darauf

hin, dass die Palette reichlich bunt ist. Da keinesfalls

die Absicht besteht, jemanden blosszustellen
oder gar zu beleidigen, sind die Beispiele ohne Quellenangabe

angeführt Zudem fehlt uns jede Kompetenz,
in juristischer Schärfe eine bestimmte Darstellung
als «richtig» oder «falsch» zu beurteilen. So will auch
nicht behauptet werden, die zugefügten Abänderungsvorschläge

seien die einzig richtigen.
Dass es aber in der heutigen Praxis so viele

Darstellungsarten gibt, lässt den Schluss zu, einige
einfache Regeln und Normen würden für manche Autoren
eine willkommene Hilfe sein. Jenen andern aber, den
Sattelfesten, bietet dieser Aufsatz nichts Neues.

2. Grundlagen

2.1 Mathematische Grössen

Die Bausteine, mit welchen die Mathematik arbeitet,

sind entweder genau bestimmte Werte aus der
Zahlenreihe :

1, 2, 100, -27, 3/4, 0,278, i, n, e

oder unbestimmte, allgemeine Buchstabensymbole,
die einen konstanten oder variablen Wert darstellen
können :

a, b, C, D, F, Q, x, y, z.

Die Verknüpfung aller dieser Werte in den mathe-
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matischen Gesetzen wird selten in ganzen Worten und
Sätzen, sondern meistens in Stenogrammform durch
Formeln ausgedrückt, und zwar mit Hilfe einer
weiteren Gruppe von Symbolen:

- -! :/
— • i d

\ sin, log, usw.
dx

Es ist selbstverständlich, dass zum voraus abgemacht
werden muss, welche Bedeutung alle dieseBuchstaben-
symbole und Zeichen haben sollen. Ist diese Bedingung

erfüllt, so lassen sich mit diesen Bausteinen
unzählige Kombinationen herstellen. Einfache
mathematische Ausdrücke sind:

2 + 2 - 4
100—27 73

a-h - c

F/Q - a
X3 27

y VP
Als höhere Operationen gelten :

log 24
sin 40°

In den meisten Fällen bedeuten alle diese mathematischen

Grössen abstrakte, reine Zahle?i. Sie besitzen, im
Gegensatz zu den physikalischen Grössen (vgl.
Abschnitt 2.2), keine Dimension und keine Einheit.

Ausnahmen kommen in der Geometrie vor, wo das

Symbol a2 eine Fläche, das Symbol a3 ein Volumen
darstellen kann, oder in der Vektoranalysis, wo die
mathematischen Grössen neben ihrem absoluten
Betrag noch zusätzliche Eigenschaften, wie Richtung,
Drehsinn usw., besitzen. Aber auch hier stösst man
nur selten auf andere Dimensionen als auf räumliche.

2.2 Physikalische Grössen

Auch die physikalischen Gesetze werden meistens
stenographisch durch Buchstabensymbole und
Zeichen ausgedrückt. Im Unterschied zur abstrakten
Arithmetik und Algebra sind aber die physikalischen
Grössen in den allermeisten Fällen keine reinen Zahlen,
sondern sie führen noch eine ganz bestimmte Einheit
mit sich. Physikalische Grössen sind benannte oder
dimensionsbehaftete Zahlen, schreibt Landolt [1].
Einfache physikalische Ausdrücke sind:

Be ispiel 2: s 100 m (2)
v 80 km/h
U 220 V
I 2 A

Die genauen theoretischen Grundlagen für das
Rechnen mit dimensionsbehafteten physikalischen
Grössen stammen aus der Gruppentheorie. Zum
praktischen Arbeiten mit den Symbolen braucht man
jedoch, ganz im Gegensatz zur landläufigen Auffassung,

keine Kenntnis der höheren Mathematik. Es
genügt, wenn man sich an einige elementare Regeln
hält, die im folgenden ausführlich besprochen werden
sollen.

2.3 Physikalische Messungen
Bei physikalischen Messungen lassen sich zwei

grosse Hauptarten unterscheiden, nämlich:
— die Abzählung einer Menge von Gegenständen

oder Ereignissen,
— der Vergleich einer Grösse mit einer normierten

Grösse derselben Gattung, einer sogenannten
Masseinheit.

Die Abzählung einer Menge, sei es in der Statistik,
der Wahrscheinlichkeitsrechnung, der Radioaktivität
usw., liefert als eindeutiges Ergebnis eine reine,dimensionslose

Zahl.

Beispiel 3: Beim Kern des Heliumatoms beträgt die (3)
Zahl der Protonen
»P 2,
die Zahl der Neutronen

2.

Auf der andern Seite hängt das Ergebnis des
Vergleichs notwendigerweise von der getroffenen Wahl
für die Norm, die Masseinheit, ab. Messen mehrere
Personen die Spannweite einer Brücke mit verschiedenen

Maßstäben, so ist das Ergebnis jeder einzelnen
Messung an und für sich erst richtig, wenn die
verwendete Norm, das heisst die zugehörige Einheit,
deutlich beigefügt wird.

Beispiel 4: Spannweite s 100 m (4)
10 000 cm
0,1 km
328,1 Fuss
0,054 Meilen
167 Ellen

Jedermann ist überzeugt, sein Resultat sei richtig, er
habe sicherlich ganz genau gemessen. Wir erkennen
beim Betrachten der verschiedenen Messergebnisse
für die gleiche Brückenspannweite, dass eine
physikalische Grösse ohne die Angabe ihrer bestimmten
zugehörigen Einheit gar nicht «fertig» und eindeutig
definiert ist, sondern etwas recht Halbbatziges und
Unvollständiges darstellt. Die Angabe der Einheit ist
genau so wichtig wie die Angabe der Zahl, des
Betrages. Schreibt man die Messergebnisse wie folgt:

Beispiel 4 (falsch) : s 100 (4 f)
10 000
0,1
328,1
0,054
167

so lässt sich mit einem solchen Resultat recht wenig
anfangen - mit der Ausnahme, man habe zum voraus,
im eingeweihten kleinen Kreis, die verwendete Mass-
einheit abgemacht. Beim Betrachten der Formeln
(4f) lässt sich, ohne Kenntnis einer solchen
Abmachung, die fehlende Einheit nicht erraten.

Der Grundsatz, die Einheit deutlich anzugeben,
wird auf andern Gebieten, etwa bei Geld, spielend
leicht befolgt. Offeriert nämlich ein Arbeitgeber eine
Stelle mit einem Gehalt («kaufmännische Grösse»)
von 200, so erkundigt sich jeder Interessent sofort
danach, ob es sich um Dollars oder Schweizer Fran-
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ken, für die Arbeit einer Woche oder eines Monats
handle.

2.4 Die Verbindung von Masszahl und Einheit

Die vollständige Schreibweise mit der zugehörigen
Einheit, gemäss Beispiel 4, ist auf dem guten Weg
zur allgemeinen Anerkennung. Dagegen bestehen in
der Auffassung der Symbole zwei entgegengesetzte
Parteien. Landolt [1] schreibt darüber:

«Nach der einen Auffassung stellt der ganze
Ausdruck

s =100 m (4)

eine Gleichung dar. Was auf der linken Seite des

Gleichheitszeichens steht, ist der rechten Seite gleich.
Diese enthält die Masszahl oder den Zahlenwert 100

und die Einheit m (Meter). Das aus diesen beiden
Teilen zusammengesetzte Ganze nennt man
physikalische Grösse oder benannte Zahl.

Nach der andern Auffassung stellt im Ausdruck (4)

lediglich der Teil
s _ 10Q

die Gleichung dar; der restliche Teil «m» ist nur eine
neben die Gleichung geschriebene Bemerkung

Beide Parteien sind sich aber darin einig, dass man
so rechnen kann, als ob eine Grösse das Produkt aus
ihrer Masszahl und ihrer Einheit wäre.»

Vom Standpunkt der zweiten Auffassung aus ist
folgende Schreibweise als richtig anzusehen:

Beispiel 5: Es fliesst eine Stromstärke I A, (5 M)
es herrscht eine Temperatur T °C

Denn diese Partei betrachtet die Einheiten «A» und
«°C» nur als beigefügte Bemerkungen. Da in dieser

Gleichung die kursiv geschriebenen Symbole I und T
als Masszahlen anzusehen sind, enthält die Gleichungsnummer

den Zusatz «M» (vgl. auch Abschnitt 4.4).
Die von beiden Parteien anerkannte Hauptsache

besteht darin, dass man Grössen- und Einheiten-
symbole wie die allgemeinen Zeichen der Algebra
behandeln darf. Man darf sie beliebig miteinander
multiplizieren und durcheinander dividieren.
Selbstverständlich darf man nur Grössen addieren und
subtrahieren, deren Einheiten übereinstimmen. Anderseits

sind als Exponenten nur reine Zahlen
zugelassen: -S2, \' V, 12, \ P
Ausdrücke wie

NJ, log s, sin v

sind sinnlos, sofern diese Buchstaben dimensionsbehaftete

Grössen darstellen.
Als Grundlage und wichtigstes Gesetz für die

folgenden Ausführungen gilt für uns

Hauptsatz 1:

Physikalische Grösse Masszahl mal Einheit.

2.5 Die Rangfolge der beiden Partner

Es ist müssig, zu diskutieren, ob die Masszahl oder
die Einheit an und für sich das wichtigere Element
sei. Ein Beispiel aus einem ganz anderen Lebensgebiet
passt, überraschend gut zur Beschreibung der Rangfolge

: In einer rechten Ehe ist die Diskussion sinnlos,
ob Mann oder Frau die wichtigere Person sei. Der
Sinn der Ehe ergibt sich erst durch die Verbindung
zweier verschiedener Wesen cjleichen Ranges, aber mit
verschiedenen Aufgaben. In gleicherweise haben Mass-
zahl und Einheit verschiedene Aufgaben zur vollständigen

Beschreibung einer physikalischen Grösse.
Gleichung (4) gibt den Tatbestand nicht vollständig
wieder, wenn man setzt :

.9 - 100

selbst dann nicht, wenn man weiss, dass der kursive
Buchstabe s das Symbol der Brückenspannweite
(Weglänge) ist. Die Einheit lässt sich nicht erraten.
Erst das beigefügte Symbol «m» verhilft der Aussage
(4) zu ihrer vollen Geltung. Die beiden Elemente sind
so stark miteinander verkoppelt dass zur eindeutigen
Bestimmung einer physikalischen Grösse unbedingt
und ausnahmslos beide Partner anwesend sein müssen.

Hauptsatz 2: Beide Faktoren des Produkts «Masszahl

mal Einheit» sind gleichwertig, gleichrangig und
von gleichem Gewicht.

Über die Schreibweise des Partners «Masszahl»
braucht man kaum lange zu sprechen. Anders steht
es mit der Darstellung des Partners «Einheit», dem
so oft nicht eine Partnerrolle, sondern nur eine
Stiefkindrolle zukommt. Da die Einheit im gleichen Rang
steht wie die Masszahl, setze man sie auf gleiche Höhe,
daneben. Man soll sie weder tiefer stellen, erniedrigen
(wie etwa einen unbedeutenden Index, einen Zusatz,
eine Bemerkung), noch soll man sie höher stellen,
überbetonen (im Sinne einer Potenz).
Beispiel 0: j 764 kHz (6)

Beispiel 6 (falsch) :

/ 764 kHz
l> 150 kW

,kc./s/
P

764

150.

(6f)

kW

In deutschen Quellen, z. B. [2], wird an Stelle des

Ausdruckes Masszahl der Begriff Zahlenwert benützt;
an andern Orten nennt man die Verbindung von
Masszahl und Einheit auch ein symbolisches Produkt.

Eine allseits anerkannte Ausnahme, aber nicht im
Sinne einer Potenz, bildet das Symbol der Einheit
«Grad» als Bogen- oder Temperaturmass in Form
eines hochgesetzten °:

a 30", T 273 °K
Ebenfalls nicht unter diese Regel fallen Symbole der
Differentialrechnung (y"), der Tensorrechnung, der

Atomphysik (Na^) usw.

2.6 Zum Begriff der Dimension

Es ist wohl nur mit Hilfe der höheren Mathematik
möglich, den Begriff der Dimension erschöpfend zu
deuten, so dass die meisten Publikationen darüber für
Aussenstehende sehr schwer «verdaulich» sind. Aber
auch hier genügt in den meisten praktischen Fällen
die Kenntnis einiger einfacher Regeln und Ausdrucksweisen.
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Man sagt, im Zusammenhang mit Beispiel (4), die
Spannweite s habe die Dimension einer Länge. Dafür
wird folgende symbolische Schreibweise empfohlen :

Beispiel 7: dim s -• L (7)

In Worten: Die Dimension der Spannweite s ist eine Länge.

Es bestehen keine Normen, ob für das Symbol L eine

grosse oder kleine Type, in senkrechter oder schräger
Schrift, vorzuziehen sei.

Wie wir an Beispiel (4) sehen, existieren für die
Messung einer Länge eine ganze Anzahl Längeneinheiten.,

nämlich Meter, Zentimeter, Kilometer, Fuss,
Meilen, Ellen usw. Im allgemeinen Fall kann man frei
unter diesen Einheiten wählen. Im Einzelfall muss
man eine bestimmte Einheit wählen, um die
zugehörige Masszahl eindeutig angeben zu können. Zur
symbolischen Darstellung dieser Auswahl von
Einheiten, welche alle zur gleichen Dimension «Länge»
gehören, wird die Schreibweise empfohlen (vgl.
Abschnitt 3.2):

Beispiel S:

im allgemeinen Fall

[s] m
oder [s] cm
oder [•?] Meile

usw.

In Worten:
Eine Einheit der Spannweite
ist der Meter, eine andere der
Zentimeter, eine dritte die
Meile.

(8)

im Einzelfall

[S] :: hl
oder [s] 1 cm
oder [s] 1 Meile

usw.

Die (ausgewählte) Einheit der
Spannweite ist ein Meter,
oder:
Die Einheit der Spannweite ist
1 Zentimeter.

Aus diesen Betrachtungen geht hervor, dass der
Begriff der Dimension, als Sammelbegriff einer Mehrzahl

von Einheiten, auf höherer und allgemeinerer
Ebene liegt als der Einheitenbegriff. Die meisten
physikalischen Grössen besitzen eine Dimension, die
oft auch aus einfacheren Dimensionen zusammengesetzt

sein kann. Innerhalb einer bestimmten Dimension
bestehen aber viele Möglichkeiten für Einheiten und
Einheitenkombinationen.

Anderseits ist eine physikalische Grösse nur durch
ihre Dimensionsangabe noch nicht eindeutig definiert.
Man kann aus den Dimensionen der Grössen nicht
immer genau auf ihr Wesen schliessen. So besitzen
die beiden ganz verschiedenartigen Grössen «Arbeit
A » (in der Elementarphysik als Produkt aus «Kraft
mal Weg»bekannt) und «Drehmoment D» (als «Hebelarm

mal Kraft») im technisch-mechanischen
Masssystem gleichlautende Dimensionen und Einheiten :

Beispiel 9:
dim A — K L (K Grunddimension «Kraft») (9)
dim D L K (I - - Grunddimension «Länge»)

und [A] m • kg*
[DJ — m • kg*

Es würde auch nicht viel nützen, die beiden gleich
aussehenden Einheiten durch die Umstellung mkg*

und kg*m unterscheiden zu wollen. Die oft recht
nützliche Dimensionsbetrachtung liefert zeitweise nur
eine beschränkte Auskunft. Wir lernen ebenfalls daraus,

dass der Begriff der Grösse offenbar noch
allgemeiner ist als der Dimensionsbegriff.

Die verschiedenen in der Physik gebräuchlichen
Maßsysteme sind auf einer kleinen Zahl von
Grunddimensionen aufgebaut. Wie wir oben gesehen haben,
können wir aber innerhalb derselben Grunddimension
verschiedene Grundeinheiten festsetzen.

Die Mechanik lässt sich beispielsweise durch die
drei Grunddimensionen

Länge L, Masse M, Zeit T
beschreiben. (Diese drei Symbole sind gleichzeitig
Grössen und Dimensionen.) Das CGS-System hat.
innerhalb dieser drei Grunddimensionen folgende
Grundeinheiten ausgewählt :

[L] 1 cm [M] lg [T] 1 s

Das Giorgi-System besitzt dieselben Grunddimensionen,

wählt aber die drei Grundeinheiten:
[/,] - 1 m [M\ 1 kg [7'] 1 s

Demgegenüber besitzt das technische Maßsystem
andere Grunddimensionen, nämlich

Länge L, Kraft K. Zeit T.

Aus den Grunddimensionen lassen sich andere
Dimensionen zusammensetzen. So besitzt die
physikalische Grösse «Geschwindigkeit» (Symbol v) als
Dimension den Quotienten von Länge zu Zeit:

Beispiel 10: dim v
^ jJ- jr-l „y,

Zeit T
V '

Als Einheiten für die Geschwindigkeit sind unter
anderen die folgenden frei wählbar:

[»] - 1 cm/s
[r] - 1 km/h
[v] 1 mile per hour — 1 m. p. h.

Beispiel 11: Die physikalische Grösse «Frequenz»
(Symbol /) hat die Dimension einer reziproken Zeit:

dim/
'

T'x (ll)Zeit
Einheiten der Frequenz / sind :

[/] --- s'1
S

oder mit Hilfe einer neuen Bezeichnung, einer
sogenannten Sondereinheit (vgl. Abschnitt 2.7):

[/] 1 s"1 - 1 Hz (Hertz)
oder [/] I03 s'1 103 Hz 1 kHz
oder [/] 106 s'1 10« Hz 1 MHz

Da die Begriffe Dimension und Einheit zwar
verwandt, aber keineswegs identisch sind, wird
empfohlen, diese Erkenntnis auch in der Schreibweise
hervorzuheben (vgl. auch Abschnitt 3.2):

Hauptsatz 3: Zur Beschreibung der Dimension einer
Grösse verwende man das Symbol «dim». Zur
Beschreibung von Einheiten einer Grösse setze man diese
Grösse in eckige Klammern.
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Beispiel 12: Zur Beschreibung der elektrischen
Ladung Q im elektrostatischen CGS-System setze man
für die Dimension:

für die Einheit:
dim Q L3'2 M1'2 T~

[Q]cgs -"= 1 cm5'2 g1/2s 1

stat

Man vermeide Darstellungen wie :

dim [g] L312 M11'2!''1

oder dim Q [i 3/2 if1/2 Ï7"1]

(12)

(12f)

oder g =[cm3/2 1/2 _-l ]

und ersetze sie durch folgende Fassung:

dass die elektrische Feldstärke die Dimension

besitzt.

Beispiel 15: Man vergleiche die Stromstärke I2 -
0,6 mA mit einer Normalstromstärke /, 4 mA.
Man findet das lineare Verhältnis R in Form eines
gewöhnlichen oder eines Dezimalbruches :

Ii 0,6 mA
0,15

3 15
(15.1)

Zj 4 mA 20 100

Mit Hilfe der Sondereinheiten Prozent und Promille
lässt sich eine dritte Aussageart bilden:

15

(15.2)

Beispiel 13: Man vermeide Wendungen wie: (13f)
dass die Dimension der elektr. Feldstärke igt

m

Spannung

Länge
(13)

oder: dass die elektrische Feldstärke die Dimension einer
Spannung pro Längeneinheit hat.

Da aber vermutlich die Absicht besteht, die Einheit
von E anzugeben, wird ebenfalls empfohlen:

dass die Einheit der elektr. Feldstärke jst
m

Beispiel 14: Man vermeide Wendungen wie:
Selbstinduktivität und Kapazität beziehen wir auf die

Längeneinheit, so dass L und C die Dimensionen [ —
1

Lm.l

und f — | erhalten. (14f)
I m |

und ersetze sie, da auch dieser Verfasser eigentlich
die Einheiten meint, durch:

H F
so dass L und C die Einheiten — und — erhalten. (14)mm

Dass die eckigen Klammern hier nicht richtig
verwendet wurden, wird im Abschnitt 3.2 begründet.

2.7 Sondereinheiten

Um Grössen verschiedenerArt, aber gleicher Dimension

besser unterscheiden zu können, führt man oft
neue Einheitenbezeichnungen ein. Landolt [1] nennt
sie Sondereinheiten und behandelt das Beispiel einer
Walze mit einer Drehzahl n 300 U/min. Die Einheit

U bedeutet eine Umdrehung. Es gilt:
U 1

U ist lediglich eine Umschreibung für 1.

Ein anderes geläufiges Beispiel ist die Sondereinheit
Hertz (Beispiel 11):

1 s~J 1 Hz
Es ist üblich, bei Frequenzen / die Einheit Hz und
ihre Vielfachen zu verwenden, während für die
Kreisfrequenzen co 2 n f die ursprüngliche Einheit s~1

beibehalten wird.
Oft wünscht man einen oder mehrere Werte in

Beziehung zu einem Normalwert derselben Grösse zu
setzen, das heisst, man bildet das Verhältnis der
beiden Werte und ist imstande, die relative Abweichung
vom Normalwert anzugeben.

R 0,15-^— — 15% (in Worten: 15 Prozent)
100
150

R 0,15 — 1500/(IO (in Worten: 150 Promille)
1000

Aus den beiden Gleichungen (15.2) sehen wir deutlich,
dass die beiden Sondereinheiten nichts anderes als

Umschreibungen von 0,01 und 0,001 sind:

% 0,01 — und °/00 0,001
1

(15.3)
100 1000

*

Beim Berechnen des Verhältnisses ist es
selbstverständlich, dass beide Grössen in derselben Einheit
eingesetzt werden müssen, da R eine reine,
dimensionslose Zahl ist, auch nach der Beifügung der
Sondereinheiten % oder 7o„.

Nehmen wir umgekehrt an, die Stromstärke /2 sei

zu berechnen, während das Verhältnis R der beiden
Ströme bekannt sei und 15% betrage. Solange aber
der Normalwert der Stromstärke /, nicht ebenfalls
bekannt ist oder nicht schon früher mitgeteilt wurde,
lässt sich mit der Angabe der Prozentzahl allein:

«die gesuchte Stromstärke beträgt 15%»

nichts anfangen. Erst mit der vollständigen Angabe:
«die gesuchte Stromstärke beträgt 15% von 4 mA»

lässt sich die gesuchte Grösse /2 berechnen:

15% von 4 mA 15 • 0,01 • 4 mA 15 • —— • 4mA — 0,6 mA
100

(15.4)

Etwas grössere Vorsicht ist bei den logarithmischen
Verhältnissen und den zugehörigen Sondereinheiten
Dezibel (dB) und Neper (N) geboten.

Beispiel 16: Bildet man das logarithmische Verhältnis

zweier Leistungen P2 und Pl auf der Basis des

Zehnerlogarithmus, so will man durch die
Hinzufügung der Sondereinheit dB darauf hinweisen, dass

man die Formel
R 10 log—2 (16.1)

^1

verwendet hat. Benützt man anderseits die Basis des
natürlichen Logarithmus, so stützt man sich auf die
Formel :

R — ln^
2 P,

(16.2)

und das Ergebnis wird durch die Sondereinheit N
ergänzt. Vergleicht man P2 2 kW mit der Normalleistung

P1 1 kW, so findet man:

R 10 log 2 10 • 0,3 3 dB

und R — In 2
1

0.691 - 0,345 X

(16.3)

(16.4)
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Die beiden Sondereinheiten sind durch die Umrech-
nungsformeln verknüpft :

1 dB 0,1151 N IN 8,686 dB (16.5)

Selbstverständlich müssen auch hier die beiden
Leistungen in denselben Einheiten eingesetzt werden,
da R eine reine dimensionslose Zahl ist, auch nach
der Beifügung von dB oder N. Die Symbole dB und
N sind also nur Umschreibungen von 1, mit dem
impliziten Zusatz, dass die Masszahlen 3 bzw. 0,345 von
(16.3) und (16.4) zwei nach bestimmten Gesetzen
berechnete logarithmische Verhältnisse bedeuten.

Nehmen wir umgekehrt wieder an, die Leistung P2
sei zu berechnen. Solange man nichts über denNormal-
wert der Leistung Px mitteilt, sondern nur sagt:

«die gesuchte Leistung beträgt 3 dB»
oder besser «die gesuchte Leistung ist um 3 dB höher»,

lässt sich P2 zahlenmässig nicht ausrechnen. Die
vollständige Aussage muss daher lauten:
« die gesuchte Leistung ist 3 dB höher als der Bezugswert P1 — 1 kW ».

Damit findet man:
P2 10R/1° • P, io3dB/10 px io3/1° • l>,

10°'3 • 1kW 2 kW (1(i-°)

Für den natürlichen Logarithmus lauten die Formeln :

«die gesuchte Leistung ist 0,345 N höher als der Normalpegel
P, 1 kW».

P, e2ii • Px e2 ' °'345 N
• P, e°'('!l • P,

e0'69 • 1 kW 2 kW (16-7)

Die Normalleistung oder der Bezugspegel (in Beispiel
16: 1 kW) legt den Nullpunkt der Dezibel- oder Neper -

skala fest. Wie in einem Dokument [3] der Commission

Electrotechnique Internationale (CEI)
vorgeschlagen wird, kann man diesen Bezugspegel durch
einen Zusatz zur Sondereinheit dB wie folgt angeben :

Ii 3 dB (kW) (16.8)

Der Vollständigkeit halber seien die Formeln zum
Vergleich zweier Stromstärken, Spannungen oder
Feldstärken auch angeführt :

P 201og—- (Sondereinheit dB) (16.9)
U1

R In -2
11

(Sondereinheit N) (16.10)

Oft findet man in der Praxis folgende anfechtbare
Darstellung des linearen Verhältnisses:

Beispiel 17 :
R -2 %

L
(17f)

Setzen wir zur Probe dieser Schreibweise die Zahlen
von Beispiel 15 und die Identität (15.3) korrekt ein,
so ergibt sich:

0,6 mA
P

4 mA
0,01 - 0,15 • 0,01 0,0015

Wie der Vergleich mit (15.1) zeigt, ist dieses Ergebnis
für R aber eindeutig falsch, da es hundertmal zu klein
ist. Das Argument, die Einheit % sei nur eine Bemerkung,

im Sinne der zweiten Partei, steht hier auf
schwachen Füssen. Hier liegt zweifellos eine Fehlerquelle

vor. Hält man an der Beifügung der (Sonder-)
Einheit % fest, so lautet die richtige Formel:

R 100 •
2 %,

h
denn 100 • 0,01 1

Die allgemeine Darstellung lautet jedoch :

R h
h

Für das logarithmische Verhältnis findet man in der
Praxis oft:

Beispiel IS:
R 10 log —21 dB

1\ (18)

Im Gegensatz zum vorhergehenden Beispiel der
Prozentberechnung bedeuten die Sondereinheiten dB
und N Umschreibungen von Eins, allerdings mit
impliziten Zusätzen. Aus diesem Grunde ist diese
Darstellung nicht ausgesprochen als falsch zu beurteilen.
Dass die Einheit dB keinen weiteren Einfluss auf den
Rechengang hat, zeigt Formel (16.6), wo sich im
Exponent nichts ändert, ob man dB mitführt oder
streicht.

Dagegen sind folgende Schreibweisen nicht
empfehlenswert (siehe Hauptsatz 7):

P lOlog — (dB) Pub 20log
U*-

P, U,

R =-- lOlog ^ [dB] P(dB) ~ 20log —- (18f)
P i Ux

P[dB] — 20 log

oder an Stelle von Formel (16.7):

P2 1 e2R (kW) Runde Klammer weglassen,
da e2R dimensionslos ist!

oder

P2 1 kW • e2R (kW) Die rund eingeklammerte
Einheit ist überzählig

3. Normen und Kegeln

3.1 Schräge und senkrechte Schrift

Die folgenden Ausführungen halten sich im
allgemeinen an die Richtlinien der Publikation Nr. 192
des SEV [4],

Eine Hauptschwierigkeit bei der Auswahl der
Buchstabensymbole, also bei der Abkürzung ganzer Worte
durch Zeichen, ist die beschränkte Zahl der Lettern
in den beiden gebräuchlichen Alphabeten, dem
lateinischen und dem griechischen, die man möglichst
eindeutig auf eine riesige Menge von Grössen und
Einheiten verteilen sollte. Eine erste grosse
Unterscheidung wird glücklicherweise fast überall
durchgeführt. nämlich

Hauptsatz 4: Symbole für physikalische Grössen in
schräger (kursiver) Schrift, Symbole für Ziffern und
Einheiten in senkrechter (romanischer) Schrift zu setzen.

Beispiel 19: s — Weg
m Masse
F --- Kraft

s — Sekunde
m Meter
F Farad

(19)
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Damit können alle Bnchstabensymbole zweimal, das
heisst sowohl als Grössensymbole als anch als
Einheitensymbole, gebraucht werden. Man sieht es dem
Druck an, ob es sich um eine Grösse oder um eine
Einheit handelt. Die Frage, wie Buchstabenindizes
und Buchstabenexponenten zu setzen seien, scheint
uns eher nebensächlich.

Während sich die Trennung nach Typenarten
(Hauptsatz 4) in jedem gedruckten Text leicht
durchführen lässt, sind in dieser Beziehung Handschrift
und Schreibmaschinentext erheblich benachteiligt.
Nur in selteneren Fällen, zum Beispiel in einem Manuskript

zu einem Drucktext, kann man die Regel
befolgen, wonach kursiv zu druckende Symbole zu
unterstreichen sind. Es wäre sehr wertvoll, wenn auch für die
Handschrift, beispielsweise an der Wandtafel, und
für die Schreibmaschine eines Tages eine einfache
Lösung gefunden werden könnte.

Es berührt seltsam, dass in gewissen Kreisen die
Unterscheidung von kursiven und senkrechten
Symbolen mit der Einrede abgelehnt wird, die verwendeten
Buchstaben würden sich im Text nicht wiederholen
und es bestehe deshalb keine Verwechslungsgefahr -
oder man spreche die Buchstaben ihren Lauten nach
aus, ob so oder so geschrieben. Demgegenüber muss
festgehalten werden, dass wir hier nicht die
Aussprache, sondern die Schreibweise von Gleichungen
behandeln und dass wir es als sehr wertvoll beurteilen,
dem Lernenden von allem Anfang an, vielleicht auch
zuerst unbewusst, durch die Hervorhebung in kursiver
Schrift den grundsätzlichen Unterschied zwischen
einer Grösse und einer Einheit aufzuzeigen. Er wird
es bestimmt später, beim genauen Studium dieses

Fragenkreises, einmal leichter haben! Überdies standen

die Schweizer Druckereien mit ihren wohlausgerüsteten

Setzkästen wohl in den wenigsten Fällen vor
den gleichen prekären Sorgen wie etwa die Druckereien

im Ausland der unmittelbaren Nachkriegszeit.
Wollen wir das Ohmsche Gesetz prüfen, so können

wir beispielsweise folgende Grössen mit Hilfe einer
Versuchsanordnung messen.

Beispiel 20:
in voll ausgeschriebenen Worten: Spannung 220 Volt

Widerstand =110 Ohm
Stromstärke 2 Ampère

Diese drei Aussagen lassen sich formelmässig kürzer
darstellen, indem wir die Symbole des SEV [4]
verwenden :

U 220 V (20)
R 110 Q

I 2 A

Im Sinne unseres Hauptsatzes 4 setzen wir die
Grössensymbole kursiv, die Einheitensymbole senkrecht.
Während sich die Symbole des Widerstandes und der
Stromstärke auf lateinische Wurzeln oder auf die
Ausdrücke «Résistance» und «Intensité» zurückführen

lassen und fast ohne Ausnahme und Schwierigkeiten

gebraucht werden, bildet die Frage nach dem
«besten» Symbol für die elektrische Spannung ein

Streitobjekt ersten Ranges. Die am häufigsten
anzutreffenden Symbole sind

V, E, V.

Das Symbolverzeichnis [4] des SEV enthält für viele
Grössen zwei Empfehlungen, nämlich das in erster
Linie zu verwendende Hauptsymbol und das bei
Verwechslungsgefahr mit einer anderen wichtigen Grösse

zu benützende Nebensymbol. In der ersten Auflage
(1950) der Publikation Nr. 192 figuriert
dementsprechend das Symbol U als Hauptsymbol, der Buchstabe

E als Nebensymbol der Spannung. In der
Zwischenzeit erschienen aber neue Empfehlungen der
Commission Electrotechnique Internationale (CEI),
welche als Dachorganisation gleichlaufende
Bestrebungen aller Länder zu koordinieren versucht. In der
CEI scheint die Wahl zugunsten des Nebensymbols
anders ausgegangen zu sein, denn die zweite Auflage
(1953) der Publikation Nr. 192 des SEV nennt den
Buchstaben V an Stelle von E als Nebensymbol der
Spannung.

So sehr im allgemeinen die Bestrebungen der CEI
die volle Unterstützung verdienen, so bedauerlich
scheint uns in diesem besonderen Falle die
Bevorzugung des Buchstabens F. Die folgenden Gleichungen

(20.1) bis (20.7) erläutern unseren ablehnenden
Standpunkt. Da nun, ausser in der Thermodynamik,
das Energiesymbol W dem bisherigen Buchstaben U

vorgezogen wird, ist die Verwechslung zwischen U
Energie und U Spannung dahingefallen. Es würde
folglich auch genügen, den Buchstaben U als einziges
Symbol der Spannung zu wählen und das Nebensymbol
V oder E ganz zu streichen.

Entsprechend den Empfehlungen der CEI ist es

also auch erlaubt, zu schreiben :

V 220 V (20.1 f)
Wir fürchten, dass diese Schreibweise zu Verwirrungen
führen kann. Diese Gleichung würde noch problematischer

für den Fall, dass man sich nicht des kursiven
Grössensymbols bedienen will oder bedienen kann
(Hand- und Maschinenschrift!):

V 220 V (20.2 f)
Bis jetzt sind wir stillschweigend davon ausgegangen,

dass lediglich Grössen und Einheiten durch Buch-
stabensymbole darzustellen sind, während die Mass-
zahlen stets als «richtige arithmetische» Zahlen
auftreten. Wenn man sich streng an den Hauptsatz 4

hält, lassen sich für diese normalen Fälle bereits viele
Missverständnisse und Gefahrenquellen vermeiden.
Wünscht man aber auch noch die Masszahlen durch
Buchstabensymbole auszudrücken, so verwandelt sich
die soeben glücklich hergestellte Ordnung schlagartig
in ein ziemliches Chaos. Soll man für Masszahlen
kursive oder senkrechte Symbole benützen, oder gibt
es einen andern Ausweg?

Da für die drei verschiedenartigen Dinge (Grössen,
Einheiten, Masszahlen) nur zwei Schreibmöglichkeiten,

kursiv und senkrecht, bestehen, sind wir wohl
oder übel zu Kompromissen gezwungen. Eine dritte.
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auch nicht ideale Lösung wird am Schlüsse von
Abschnitt 4.4 besprochen.

Die Tendenz geht im allgemeinen dahin, jene
Buchstaben, welche Masszahlen bedeuten sollen, auch
kursiv zu setzen. Man muss dann aus dem Zusammenhang

schliessen, ob das Symbol als Masszahl oder als
Grösse aufzufassen ist. Der Gegenvorschlag,
allgemeine Buchstabensymbole für Masszahlen senkrecht

zu setzen, führt uns höchstens vom Regen in die
Traufe: an Stelle des nur durch nähere Prüfung trennbaren

Gemisches von Symbolen mit Grössen- und
Masszahlenbedeutung in kursiver Schrift hätte man
dann die ebenso unzweckmässige Vermengung von
Symbolen mit Einheiten- und Masszahlenbedeutung
in senkrechter Schrift.

Wie unbefriedigend und wie gefährlich beide

Kompromisslösungen werden können, zeigt unser ins
Extreme getriebene Beispiel 20. Man kann in der
Literatur etwa auf folgende Formulierung stossen:
«Bei einer Spannung von V Volt und einem Widerstand von R
Ohm fliesst ein Strom von I Ampère», (20.3 M)

oder formelmässig : I R
(20.4 M)

Wenn wir in diesem Satz nur schon die abkürzenden
Einheitensymbole V, Q, A einführen, erhält er bereits
ein etwas fragwürdiges Aussehen:

Bei einer Spannung von V V und einem Widerstand von R Q
fliesst ein Strom von I A.» (20.5 M)

Versuchen wir, den Satz teilweise in die Formelsprache

zu übertragen, so würden folgende absurde
Gebilde entstehen:
mit kursiven Masszahlensymbolen

V V V oder E V V

mit senkrechten Masszahlensymbolen (20.6 M)

U V V oder E V V

Ganz unglücklich scheint uns hier das Nebensymbol
V für die Grösse «Spannung»:

r - fv
oder F V V <20'7 M>

Auch die Wahl eines ganz fremden Buchstabens für
die unbestimmte Masszahl bildet keinen rechten
Ausweg:

U a V (20.8 M)

(in Worten : bei einer Spannung von a Volt...

Wir stossen auch hier wieder auf den Gegensatz
der beiden Parteien, ob die in den Formeln auftretenden

Buchstabensymbole als Grössen oder als Mass-
zahlen aufzufassen seien. Die Auffassung «M»
betrachtet die Einheiten im Satz (20.3 M) nur als
beigefügte Bemerkung. Da wir aber die extremen Formeln
(20.5 M), (20.6 M) und (20.7 M) als Gefahren im Auge
behalten müssen, erachten wir die Grössenauffassung
zum Satzbeispiel 20 als vorteilhafter. Zudem ist diese

Fassung knapper:
«Bei einer Spannung U und einem Widerstand R fliesst ein
Strom I, nach der Formel

U
1

R (20.9)

Da das Ohmsche Gesetz nämlich auch für andere
Einheiten als gerade V, Lï. A gültig ist, ist die
Einschränkung von (20.3 M) auf diese drei Einheiten gar
nicht nötig.

Durch den Zusatz des Wörtchens «in» lassen sich
auch folgende korrekte Aussagen bilden:

«Misst man die Spannung U in V, den Widerstand R in fl...»
«Man findet die Leistung N in PS, wenn man das
Drehmoment M in cmkg* einsetzt »...
«B soll in Wb/m2 ausgedrückt werden... »

^ 0.10)

Wir müssen uns also (vorläufig) damit abfinden,
dass kursive Symbole sowohl Grössen als auch
Masszahlen bedeuten können. Im gleichen Sinne enthält
die Publikation Nr. 192 des SEV [4] den Hinweis:

«Symbole für physikalische Grössen, auch wenn sie
als Masszahlen verwendet werden, setze man in
gedruckten Texten in schräger (kursiver) Schrift.

Diese Regel ist wohl als Kompromiss zwischen den
beiden Parteien, vor allem im Hinblick auf die
Masszahlengleichungen (Abschnitt 4.4), aufgestellt worden.
Aber gerade diese Doppelverwendung der kursiven
Symbole bringt so viele Verwechslungen, Fehler und
Missverständnisse mit sich, wie es nicht nur unser
extremes Beispiel 20, sondern auch die gegenwärtige
Praxis beweisen kann. Vielleicht kommt man doch
eines Tages zu einer neuen Regelung oder zu einem
neuen Masszahlensymbol, so dass man den fett
gedruckten Nebensatz «auch wenn sie als Masszahlen
verwendet werden» streichen darf.

Aber schon heute sollten wir alles daransetzen,
durch zusätzliche Angaben die Bedeutung der Symbole,
ob sie als Grösse oder als Masszahl aufzufassen sind,
klar und eindeutig festzuhalten. Für uns gilt

Hauptsatz 5: Man hüte sich davor, in derselben
Formelzeile Symbole zu verwenden, die einerseits
Grössen, anderseits — auf der andern Seite des
Gleichheitszeichens — Masszahlen bedeuten sollen
(sogenannte Mischgleichungen).

3.2 Die Klammern

Um mehrgliedrige mathematische Ausdrücke klarer
darzustellen, verwendet man oft mit Vorteil Klammern.

In der reinen Mathematik ist die Form dieser
Klammern ziemlich gleichgültig :

runde
eckige
geschweifte [

Bei physikalischen Gleichungen bestehen im Gegensatz

dazu gewisse Einschränkungen, indem man ebenfalls

auf die Form der Klammern zu achten hat. Mit
Hilfe der Klammem lässt sich nämlich der Bereich
der Symbole ausdehnen. Indem wir ein und dasselbe

Buchstabensymbol zwischen Klammern verschiedener
Formen setzen, können wir neue Symbole mit neuen
Bedeutungen definieren. Sei G eine beliebige (stets
kursiv zu setzende) physikalische Grösse. Dann gilt
für uns
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Hauptsatz 6:
Runde Klammern dienen für beliebige Zwecke.
Der Buchstabe G zwischen eckigen Klammern

bedeutet eine beliebige, nicht näher beschriebene Einheit
von G.

Der Buchstabe G zwischen geschweiften Klammern
bedeutet eine beliebige, nicht näher beschriebene Masszahl

von G.

Mit Hilfe der soeben definierten Klammersymbole
lässt sich die Aussage von Hauptsatz 1, wonach eine
physikalische Grösse das Produkt aus einer Masszahl
und einer Einheit ist, in allgemeinster Form wie folgt
darstellen :

Beispiel 21: (}

phys. Grösse
{0} [G]

Masszahl Einheit
(21)

1 N 1
kg • m |(r2 Joule

105dyn T 0.102 kg* »>

Wie die Erfahrung lehrt, kann nicht ausdrücklich
genug auf den Charakter des eingeklammerten Symbols
hingewiesen werden. Gerade in diesem Punkte herrscht
heutzutage leider die grösste Verwirrung. Um auf
ganz einfache Weise einen grossen Teil der Fehler
auszuschalten, gilt für uns

Hauptsatz 7: Es wird dringend empfohlen, in die

Klammern, seien sie eckig oder geschweift, immer
nur Symbole von physikalischen Grössen, in kursiven
Lettern, zu setzen, niemals aber Symbole von
Masszahlen oder Einheiten.

Dieser Gedanke ist keineswegs neu, sondern bereits
in der Publikation Nr. 192 des SEV [4] enthalten,
jedoch anscheinend recht oft falsch verstanden worden :

«Wünscht man die Einheit einer Grösse mit Hilfe eines

Symbols der Grösse auszudrücken, so setze man diese

(d. h. die Grösse und nicht die Einheit!) in eckige
Klammer.»

In ähnlichem Sinn äussert sich der Aufruf «Zur
Einführung des Giorgi-Systems» [5]: «Für die
Einheiten verwenden wir das in eckige Klammern
gesetzte Symbol der betreffenden Grösse. So schreiben
wir [m] und [Z] für die gesuchte Einheit der Masse m
und der Länge l.
Es gilt die Einheitengleichung

i j i Mv!]-
s2

Für die Krafteinheit [F] wurden der Name
Newton und das Symbol N eingeführt:

[F] IN
Zur Umrechnung dient die Einheitengleichung:

3.3 Richtige und falsche Verwendung der Klammern

Beispiel 22: Wünscht man die Einheit der Spannung
auf ganz allgemeine, nicht näher umschriebene Art
darzustellen, so schreibe man :

[ UJ Spannungseinheit (22)

Wählt man anderseits ein bestimmtes Maßsystem

aus, so kann ein Index zur näheren Bezeichnung
dienen. Für das Giorgi-System gilt beispielsweise:

[U](. — IV — Giorgi-Einheit der Spannung.

Für das elektromagnetische CGS-System gilt:
[PJcgsm 1 cm3'2 g1'2 s~2 el.-mag. CGS-Einheit der Spannung.

Folgende Einheitendarstellungen sind zu vermeiden:
Uq - 1 [V]

/r f 3'2 1/2 -2] (22 f)
cgsin

-= 1 Lern -g s J

Beispiel 23: Wünscht man die Einheit der Frequenz
darzustellen, so schreibe man:

[/] 1 Hz oder auch [/] Hz (23)

Man vermeide Darstellungen wie

/ - 1 [Hz]
/ 1 {Hz) (23 f)
/ 1 (Hz)

Die folgenden Beispiele sind wortgetreue Ausschnitte
aus Originalarbeiten. Wie bereits im Vorwort gesagt
wurde, besteht keineswegs die Absicht, etwa als Richter

die Darstellungsart anderer Autoren beurteilen zu
wollen. Es sei lediglich gestattet, im Sinne unserer
Hauptsätze einige Verbesserungsvorschläge zu nennen,
welche mithelfen sollen, die Texte verständlicher zu
machen.

Beispiel 24: Ausschnitt aus einer Tabelle: (24)

r 6,367 623 • 10,s (cm) — Erdradius
go - 980,665 cm/s2 Erdbeschleunigung
T - 288 °K mittlere Temperatur auf Meeres¬

höhe

V - 1,6600 • 10~"4 (g) Atommasseneinheit
Ha nicht recht einleuchtet, was der Verfasser mit dieser «gemischten»

Anwendung der runden Klammer ausdrücken will, lautet
unser Verbesserungsvorschlag: Die runden Klammern überall
weglassen

Beispiel 25 (Zusammenstellung einiger Originale) : (25)

Lichtgeschwindigkeit c 3 108[—] 3 • 10lü[cm/s]
1 s I

Elektronenladung e 1,6- 10~10[A-s]
Leitfähigkeit a 30[A/Vm]
Die Nachbarsender haben die Trägerfrequenzen /h + 9 [kHz]

und /h i: 18 [kHz],
Kinetische Energie A einer Lokomotive:

771 ' 23
A —- 10800 • -L - 298 000 [kg*-m]

Vorschlag: Die eckigen Klammern überall weglassen!

Beispiel 26:
Der Wellenwiderstand für d :nMastbeträgtZa 310 Q. (26)
Der Strahlungskopplungswiderstand wird B2¥ 38 +j • 8 [Gl.

Vorschlug: Da sich auch komplexe Widerstände durch Masszahl
und Einheit ausdrücken lassen, ist die folgende Darstellung
der zweiten Zeile vorzuziehen :

R2¥ (38+j-8) ü

Beispiel 27: Die Grösse Z ist der Wellenwiderstand und hat die
Dimension eines Widerstandes:

w c
Vs

Am
Vra

As

V2

A2 - [ü] (27)

Es ist durchaus richtig, dass Z die Dimension eines Widerstandes
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hat, und zwar gilt dies in sämtlichen Maßsystemen! Da die
Gleichung aber eine Einheitengleichung eines bestimmten Maßsystems
ist, wäre es besser, die eckigen Klammern nur an der ersten und
zweiten Stelle beizubehalten, wo sie zu Recht hingehören.

Vorschlag:

[Z] VLy G

Vh

Am
Vm\H
As /

V2\%

A2/
V
A

a

Beispiel 28: Die Entfernungen messen wir grundsätzlich in [m].
Vorschlag: a) Die Entfernungen messen wir grundsätzlich in m.

b) Die Entfernungen messen wir grundsätzlich in
Metern.

Beispiel 29: Setzt man U0 und UY0 in [kVj, R in [£!] ein, so

Vorschlag: Setzt man U0 und Uvo in kV, R in fl ein, so

Beispiel 30: In der Thomsonschen Gleichung sind L und C in den
Masseinheiten des praktischen-elektrotechnischen Maßsystems

H] und G in Farad [F]; cor ergibt sicheinzusetzen, also L in Henry

und / indann in | | ' 'i' bzw. in Hertz [Hz] :

mit Zahlen: [il5 10 und / 796 kHz.

Es ist möglich, dass dieser Verfasser bei den eingeklammerten
Abkürzungen für die ganz ausgeschriebenen Begriffe Henry, Farad
und Hertz gar nicht die Absicht hatte, die allgemeinen Einheitensymbole

[A], [C1], [top] und [/r] zu verwenden. Er liess sich aber in
seinem Zahlenbeispiel zur Inkonsequenz verleiten, die Einheit
1/s in eckige Klammern zu setzen,
heit kHz klammerfrei steht.
Vorschlag: es sind einzusetzen:

G in Farad (abgekürzt F);

cor ergibt sich dann in — und /r

während daneben die Ein-

L in Henry (abgekürzt H),

- bzw. in Hertz (Hz) :

5 • 10'
1

5 • 10° s
1 und /r 796 kHz.

Schlussbemerkung: In Abschnitt 3.1 wurde der Nachteil der
Hand- und Schreibmaschinenschrift aufgezeigt, wo es sehr
schwierig ist, physikalische Grössen und Einheiten, durch
dasselbe Symbol ausgedrückt, zu unterscheiden. Aus diesem Grunde
setzen manche Autoren in ihren Manuskripten die Einheiten in
eckige Klammern. Leider bleiben diese eckigen Klammern dann
oft auch im gedruckten Text stehen, was durch Verwendung
senkrechter und kursiver Symbole ja gar nicht nötig wäre. Abgesehen
davon, dass nur bei wenigen Schreibmaschinen diese eckigen
Klammern vorhanden sind, scheint uns dieses Vorgehen nicht
der Nachahmung wert.

Im übrigen haben die hier besprochenen Klammern mit den
Symbolen der Vektoranalysis nichts gemeinsam.

3.4 Das Zeichen o..

Das relativ noch wenig bekannte Zeichen (in
Worten: «entspricht») bildet für den Praktiker einen
willkommenen Ausweg, wenn er zwei Ergebnisse zu
verknüpfen hat, die miteinander «verwandt»sind, aber
nicht dieselbe Dimension haben.

Beispiel 31: Die Kapazitätseinheit im (dreidimensionalen)

elektrostatischen CGS-System ist bekanntlich

der Zentimeter:
[C]cgss - 1 «n (31.1)

Die Kapazitätseinheit im (vierdimensionalen) Giorgi-
System heisst:

[C]G 1F (31.2)

Durch Messungen an ein und demselben Konden¬

sator hat man zwischen den beiden Einheiten folgende
Beziehung festgestellt :

1 F entspricht 9 • 1011 cm
1 cm entspricht 1,113 pF 1,113 10~12 F

Streng genommen ist es nicht erlaubt, diese Beziehung
durch das Gleichheitszeichen auszudrücken:

1F 9 • 1011 cm (31.3 f)
1 cm 1,113 pF,

da es sich links und rechts um Grössen verschiedener
Dimension handelt. Diese Schwierigkeit wird durch
das neue Zeichen mindestens für den Praktiker,
umgangen. Man darf setzen:

1 F 7 9. 1011 om (31.3)
1 cm 1,113 pF

oder mit Hilfe der allgemeinen Symbole :

[C']s - 1,113. 10-12 [C]G

In Worten: Ein Zentimeter (als Kapazitätseinheit)
entspricht 1,113 Picofarad.

Diese Schreibweise mit dem Zeichen bewahrt
die lineare Verknüpfung der beiden Grössen, so dass

man gefahrlos diese Gleichung erweitern oder kürzen
darf. Ob es praktisch sei, das Zeichen auch für
nichtlineare Beziehungen einzuführen (z. B. 1000 W

222 mV/m, oder E 300 mV/m 109,5 dB über
1 frV/m), bleibt noch näher zu prüfen.

Zur Angabe des Maßstabes auf Karten und Plänen
ist das Zeichen 2 ebenfalls vorteilhaft, z. B.: 1 cm

2 km.

3.5 Einige Schreibregeln für Einheiten

Entsprechend der Publikation Nr. 192 des SEV [4]
und anderen, ausländischen Normen sind die
Einheitensymbole als unveränderlich und nicht als
Abkürzungen aufzufassen. Man versehe sie deshalb nicht
mit einem Punkt. Ebensowenig setze man sie in die
Mehrzahl. Diese Regel gilt dann nicht, wenn die
Einheiten als volle Worte im laufenden Text ausgeschrieben

werden.

Beispiel 32:

Man vermeide:

40 g

40 g.
40 gr
40 gr.
40 gs

25 m

25 m.
25 ms
25 ms.

(32)

(32 f)

25 ms bedeutet streng genommen nicht die französische Form
für «25 mètres», sondern 25 Millisekunden!

Bei Dezimalbrüchen werden die Einheiten ganz
rechts hinter die letzte Ziffer gesetzt und nicht irgendwo

zwischenhinein :

Beispiel 33:

Man vermeide :

10,8 m
1,4 kW

5,2 dB
9,64 Mc./s

(33)

(33 f)10 m 8 5 dB, 2
1 kW 4 9 Mc./s, 64

Man vermeide Umformungen von Einheiten, wie
man sie etwa in Zeitungen zu lesen bekommt, wo an
Stelle des richtigen «Kilometer pro Stunde» (abgekürzt

km/h) von Stundenkilometern (abgekürzt etwa



52 Technische Mitteilungen PTT Nr. 2, 1955

kmh.) geschrieben wird oder wo bei Brieftauben-
wettflügen die Ergebnisse in Minutenmetern
verkündet- werden.

Die Einheit «Stundenkilometer» (abgekürzt km.h
oder h.km) ist an und für sich nicht falsch; sie bat
jedoch mit der physikalischen Grösse «Geschwindigkeit»

nichts zu tun.

3.6 Die: Potenzprüfixe

Um die Schreibweise sehr grosser und sehr kleiner
Masszahlen zu vereinfachen, wurde eine Reihe von
Präfixen oder Vorsilben für die Einheiten geschaffen.

Beispiel 34: s 0,001 m 10~3 m 1 mm (Millimeter) (34)

R 1000 n 103 n l kü (Kiloohm)
/ 1 000 000 Hz 10° Hz 1 MHz (Megahertz)

Es ist in den meisten Fällen überflüssig, für jede
Zehnerpotenz eine neue Vorsilbe zu verwenden. Zwar
war es während einiger Jahre möglich, als «letzte
Neuheit» Glühlampen mit dem Stempel «75
Dekalumen» zu kaufen. Glücklicherweise wurde der für
viele Leute unverständliche Präfix Deka 101 wieder
aufgegeben, so dass man heute dieselbe Glühlampe
mit der Aufschrift 750 Lumen erhält.

Es wird empfohlen, grosse Masszahlen so
auszudrücken, dass Dreiergruppen von Zehnerpotenzen als
Vorsilben zu den Einheiten gezogen werden.

Beispiel 35: 1 000 000 Wh 10« Wh
1 000 000 Fr.

1 000 000 000 Wh - 109 wi,
1 000 000 000 Fr.

1 MWh (35)
1 Mio. Fr.

I GWh
1 Mrd. Fr.

Vieljache:

Tera 1012 T

Giga =- 109 - G

Mega 106 M

Kilo 10s k

Bruchteile :

Pico 10~12 p
Nano 10~9 n

Mikro 10"° [J.

Milli 10-3 m

Leider wurde durch internationale Abmachung die
Tradition bestätigt, dass das kleingeschriebene Symbol

«k» für Kilo stehen soll. Mit einem grossen K hätte
man folgende Merkregel aufstellen können, dass gross-
geschriebene Symbole ausschliesslich auf Vielfache
von Eins hinweisen, kleingeschriebene Symbole
ausschliesslich auf Bruchteile von Eins.

Wegen der Verwechslungsgefahr ist der Gebrauch
folgender Ausdrücke nicht angezeigt :

Deka 101

Hekto 10-

Myria 104

Dezimilli - 10~4 -

Centimilli 10~J

D oder da (kein einheitliches Symbol)
h (im Weinhandel gebräuchlich)
ma
dm (das Zeichen dm bedeutet ebenfalls De¬

zimeter 10_1 m)

cm (das Zeichen cm bedeutet ebenfalls Zen¬

timeter 10~2 m)

Ferner soll darauf hingewiesen werden, dass der
Begriff «Billion» in kontinentaleuropäischen und
angelsächsischen Texten nicht dasselbe bedeutet.
Ebenso kann unter «Mill.» sowohl «Million» als auch
«Milliarde» verstanden werden. Die Vorsilben Mega
und Giga sind vorzuziehen, oder in Texten mehr
kaufmännischer Richtung die Abkürzungen «Mio.»
und «Mrd.».

4. Anwendungen

4.1 Physikalische: Gleichungen

Bereits in den Abschnitten 2.1 und 2.2 wurde
gesagt, dass die Gleichungen kurze Stenogramme von
mathematischen und physikalischen Gesetzen sind.
Es versteht sich von selbst, dass diese Stenogramme
nur dann verständlich sein können, wenn irgendwo
ein «Schlüssel» zur Entzifferung der Symbole
vorhanden ist. Aus diesem Grunde sind alle
Einigungsbestrebungen zu unterstützen, dass die Symbole
international anerkannte Bedeutungen haben sollen, und
zwar nicht nur für die Einheiten, wo dies glücklicherweise

schon weitgehend der Fall ist (m für Meter, kg
für Kilogramm, V für Volt usw.), sondern auch für
die physikalischen Grössen. Natürlich lassen sich auch
mit ausführlichen Buchstabenverzeichnissen immer
noch nicht alle Fälle festhalten, so dass besonders die
Autoren in Spezialgebieten dem Verständnis ihrer
Leser nachhelfen können, wenn sie die Entzifferung
ihrer Symbole deutlich angeben.

An einem einfachen Beispiel seien einige Formen
dieses Schlüssels zitiert

Beispiel 36: P V I (36.1)
Schlüssel: P — Leistung

U Spannung
1 Stromstärke

Dieser Schlüssel entspricht der reinen Grössenauf-
fassung, da er keine Angaben über die zu verwendenden

Einheiten enthält.
Eine noch kürzer gefasste Form ist:

P U I (36.2)

(P Leistung, U Spannung, I Stromstärke)

Nach der reinen Masszahlenauffassung kann man
setzen :

P=U-I (36.3 M)
P Leistung in Watt oder Leistung in W
V Spannung in Volt Spannung in V
I Stromstärke in Ampère Stromstärke in A

Folgende Verwendung der Klammern ist nach Hauptsatz
7 nicht empfehlenswert:

P U -I (36.4f)
P -- Leistung (W) oder Leistung [W]
U Spannung (V) Spannung [V]
/ Stromstärke (A) Stromstärke [A]

Nachdem wir sämtliche Einzelteile und ihre
Darstellungsarten besprochen haben, gehen wir über zum
Hauptthema, zur Zusammensetzung der Symbole
zu physikalischen Gleichungen. In Übereinstimmung
mit den in Hauptsatz 1 genannten drei Begriffen
Grösse, Masszahl und Einheit lassen sich die
Gleichungen in folgende drei Klassen einteilen:
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— Grössengleichungen, worin die Symbole Grössen
bedeuten,

— Masszahlengleichungen, worin die Symbole reine
Zahlen bedeuten und wo beim Einsetzen keine
Einheiten auftreten,

— Einheitengleichungen.
Die Klasse mit den geringsten Schwierigkeiten ist
ohne Zweifel jene der Einheitengleichungen, so dass
deren Behandlung vorausgehen soll.

4.2 Einheitengleichungen

Unser Hauptsatz 1 lässt sich selbstverständlich auch
so schreiben:

Einheit
Grösse

Masszahl

Da Masszahlen reine, dimensionslose Zahlen sind,
erkennen wir aufs neue, dass Einheiten besonders
ausgewählte oder normierte Grössen sind. Demnach sind
Einheitengleichungen nur Spezialfälle von
Grössengleichungen.

Eine erste Gruppe dieser Klasse besteht aus den
reinen Potenzgleichungen oder Maßstabänderungen.
Beispiel 37: 1 m 100 cm 1 cm 1(T2 m (37)

1 Zoll - 2,54 cm 1 cm
2,54

Zoll 0.394 Zoll

Eine weitere Gruppe bilden die Namensänderungen.
Besonders in der klassischen Elektrizitätslehre hatte
man sehr unhandliche Einheiten mit gebrochenen
Exponenten eingeführt, so dass man als Ersatz für
diese langen Ausdrücke kürzere Namen suchte.

Beispiel 38: 1 cm"1'2 g1'2 s"1 1 Gauss

1 cm1'2 g1'2 s
1

1 Gilbert
(38)

Daneben gibt es aber auch geläufigere Namensänderungen.

Beispiel 39: 1 cmg s~- 1 dyn (39)
105 dyn 1 N (Newton)
0,102 kg* 1 N
1 s^1 =1 Hz (Hertz)
1 V/A - 1 11 (Ohm)
1 As/V 1 F (Farad)
1 Vs/A 1 H (Henry)

Diese Namensänderungen oder Übersetzungen leisten
in manchen Fällen gute Dienste, wie etwa bei den
Formeln der Kondensatorentladung, wo ein Produkt

t HC (39.1)

auftritt. Die Einheit dieser Grösse r sieht im ersten
Augenblick etwas geheimnisvoll aus:

[r] Ohm - Farad (39.2)

Setzen wir jedoch dafür die Grundeinheiten nach (39)
ein, so lautet das Ergebnis ganz einfach :

^ V A s
[t] U F — s (39.3)

A V

Die Grosse EG stellt eine Zeit, die sogenannte Eigenzeit

der Kondensatorentladung, dar und besitzt die
Einheit Sekunde.

Eine besondere Gruppe bilden die Einheitenbe¬

ziehungen oder Einheitenverknüjifungen, die aus streng
genommenen Dimensionsgründen das Zeichen nicht
enthalten dürfen, sondern nur das Zeichen Man
sollte sie deshalb nicht als Einheitengleichungen
ansprechen.

Beispiel 40: (40)
1 el.-stat. Potentialeinheit - 1 cm1/2g1/2s~1 ~ 300 V
1 Farad 1 As/V 71 9 10u cm

4.3 Grössengleichungen

Ein eifriger Vorkämpfer für die konsequente
Anwendung von Grössengleichungen ist J. Wallot. aus
dessen zahlreichen Arbeiten wir ein ganz einfaches
Beispiel zitieren [6] :

Beispiel 41: Das Ergebnis einer Messung, als Grössen -

gleichung formuliert, lautet:
I 3 A (41)

Wallot sagt dazu : Das Symbol «7 » bedeutet die Grösse
«elektrische Stromstärke». «3» bedeutet ihre Masszahl

(ihren Zahlenwert), bezogen auf die Einheit
«Ampere». Der Ausdruck «3 A» ist ein symbolisches
Produkt, das heisst, die gemessene Stromstärke beträgt
das Dreifache einer Bezugsstromstärke (Einheit), die
man mit dem Namen «Ampère» versehen hat.

Ein weiteres einfaches Beispiel aus der Mechanik
ist die durchschnittliche Geschwindigkeit eines
Eisenbahnzuges.

Beispiel 42: Zug ö der Schweizerischen Bundesbahnen

verlässt Bern um 0824 und erreicht ohne
Zwischenhalt Zürich um 1004. Der Einfachheit halber

messen wir die zurückgelegte Strecke in
Tarifkilometern. Die gegebenen Grössen sind:

Weg s 130 km (42.1)
Zeit t 1 h 40 min 1,67 h

Suchen wir die durchschnittliche Geschwindigkeit v
des Zuges, so lautet die Formel

«" - ~ (42.2)

Wir setzen ohne weiteres die gegebenen Grössen ein
und finden mit Rechenschiebergenauigkeit:

(42.3)
s 130 km km

v - 77,8
t 1,67 h h

Aus irgendeinem Grunde kann der Wunsch bestehen,
die Geschwindigkeit nicht in der Einheit km/h,
sondern in m/s auszudrücken. Dieses Ziel lässt sich auf
zwei Wegen leicht erreichen.

Weg A : Man rechnet zuerst die gegebenen Grössen s

und t mit Hilfe zweier Einheitengleichungen
1 km 1000 m (42.4)
1 h 60 min 3600 s

auf die neuen Einheiten um:
.v 130 km 130 • 1000 m 130 000 m 1,3 105 ra (42.5)
t 1,67 h - 1,67 • 3600 s 6000 s

Diese gegebenen, umgerechneten Grössen werden in
(42.2) eingesetzt:

^
s

__
130000 m m

t 6 000 s s
(42.6)
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Weg B: Man rechnet direkt das Schlussergebnis von
(42.3) mit Hilfe der gleichen Einheitenformeln (42.4)
auf die neuen, gewünschten Einheiten um:

km „ 1000 m 77 800 m m
v 77,8 77,8 • 21,7 - (42.7)

h 3600 s 3600 s s

Selbstverständlich führen beide Wege zum selben
Resultat.

Vergleichenwir die beiden Formeln (42.3)und (42.6),
so entdecken wir, dass wir in beiden Fällen, ohne
eine Änderung, von der allgemeinen Grössengleichung
v sjt ausgehen konnten, ganz unabhängig von der
Wahl der Einheiten. Wallot [6] formuliert das so:

Hauptsatz 8: Beziehungen zwischen Grössen, in
Form von Gleichungen dargestellt, haben definitions-
gemäss nichts mit der Festsetzung bestimmter
Einheiten zu tun. Sie haben diese Festsetzung weder zur
Voraussetzung noch zur Folge.

Aus diesem Grunde scheinen uns die beiden folgenden

Ausschnitte aus Originalarbeiten nicht nachahmenswert.

Beispiel 43:

Bezeichnet A in [m] die Wellenlänge, / die Frequenz in — j
bzw. [Hz], T die Periodendauer in [s] und v die

Ausbreitungsgeschwindigkeit in I — I, so gelten die Formeln :

I « J

T
y

A - J
V A • / (43)

Vorschlag:

Die drei Gleichungen (43) gelten allgemein, auch wenn man
andere Einheiten als die angeführten wählt. Die Einschränkungen

auf diese bestimmten Einheiten sind also gar nicht
nötig! Wenn sie der Verfasser dennoch stehen lassen will, so
wäre es gemäss Hauptsatz 7 ratsam, die eckigen Klammern
wegzulassen :

Bezeichnet A die Wellenlänge in m, / die Frequenz in —
s

bzw. Hz,

Beispiel 44:

Jeder Strom erzeugt ein magnetisches Feld, dessen Stärke
A

H — proportional I ist.
cmj

Vorschlag:
Dieser Satz bespricht ein Naturgesetz, das für alle erdenklichen

Einheiten der magnetischen Feldstärke gilt. Es wird
deshalb empfohlen, die besonders erwähnte Einheit A/cm
mitsamt ihrer eckigen Klammer wegzulassen, da auf der
andern Seite die Einheit der Stromstärke auch nicht zitiert
wird, und zu schreiben :

Jeder Strom erregt ein magnetisches Feld, dessen Stärke H
proportional zu I ist.

Entsprechend Hauptsatz 8 lassen sich in der Formel
(42.2) für die Zugsgeschwindigkeit beliebige
Phantasieeinheiten einführen, wie etwa

v 63 800 Fuss pro Viertelstunde.

Die Einheiten brauchen nicht aufeinander abgestimmt
(nicht kohärent) zu sein. Die einzige Vorschrift, welche
beachtet werden muss, ist

Hauptsatz 9: Beim Einsetzen gegebener Werte in
allgemeine Grössengleichungen sollen niemals nur die
Masszalilen, sondern stets auch die zugehörigen
Einheiten mitgeschrieben werden. Dadurch lassen sich
auch allfällige Umrechnungen auf beliebige andere
Einheiten sehr erleichtern.

4.4 Masszahlengleichungen

Wie wir im Abschnitt 2.4 bemerkt haben, existieren
zwei verschiedene Auffassungen, eine physikalische
Gleichung zu deuten. Die eine Partei anerkennt die
Schreibweise T „I 3 A (41)

nicht als Grössengleichung oder (symbolisches)
Produkt, sondern vertritt den Standpunkt, nur der Teil

I - 3 (41 M)

stelle die Gleichung dar, und das Einheitensymbol A
sei nur eine beigefügte Bemerkung.

Daraus folgt aber zwangsläufig, dass diese Partei
das kursiv gesetzte Symbol I nicht als Grösse, sondern
als Masszahl auffasst.

Für diese Partei gilt unser Hauptsatz 1 nicht, und
ebensowenig seine Umformung:

Grösse
Masszahl

Einheit
Diese Quotientenbildung ist nicht möglich, da die
Einheit und ihr Symbol nur als «Bemerkung» und
nicht als richtiger, voll gültiger Divisor anerkannt
wird. Um die beiden Auffassungen unterscheiden zu
können, gilt für uns die vorläufige Regel:

Werden in den Gleichungen die Buchstabcnsymbole
als Masszahlen verwendet, so enthält die rechts stehende
Gleichungsnummer den Zusatz «M» (Masszahlengleichung)

Die Formel (42.2) für die durchschnittliche
Zugsgeschwindigkeit verwandelt sich, ohne äusserliche
Änderung, in eine Masszahlengleichung, wenn man
die drei Symbole v, s, t als Masszahlen auffasst:

e | (42.2 M)

Setzt man die in (42.1) gegebenen Masszahlen 130
und 1,67 in die Gleichung (42.2 M) ein, so findet man:

130
(42.3 M)v — 77,8

t 1,67

Wenn es beliebt, kann man aber auch die in (42.5)
gegebenen Masszahlen 130 000 und 6000 in die Formel
(42.2 M) einsetzen und zum Ergebnis kommen:

» 130000
v - 21,7 (42.6 M)

t 6000

Die Gleichung (42.2 M) ist aber nicht die einzig mögliche

Gleichung für die Masszahl der Zugsgeschwindigkeit.

Setzt man nämlich die beiden Masszahlen
130 und 1,67 von (42.1) in folgende Masszahlengleichung

ein :

".27s - (42.8 M)
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so findet man im Ergebnis dieselbe Masszahl 21,7 wie
bei Formel (42.6 M) :

130
v ; 0,278

1,67
0,278 77,8 21.7

Eine dritte Rechenmöglichkeit besteht darin, die
beiden Masszahlen 130 000 und 6000 von (42.5) in
folgende Masszahlengleichung einzusetzen :

3,600

v 3,600
6000

3,600 21,7 77,8

Das Nebeneinander dreier ähnlicher Masszahlengleichungen

v s/t (42.2 M)

v — 0,278 • s/t (42.8 M)

v 3,600 • s/t (42.9 M)

mit den Zahlfaktoren 1,000, 0,278 und 3,600 führt,
bescheiden gesagt, nicht dazu, Übersicht und
Ordnung zu erleichtern. Diese einheitenfreien Rechenrezepte

sehen wohl sehr einfach aus, sie sind aber
eben doch unvollständig, da man aus anderer Quelle
erfahren muss, dass mit der Masszahl 77,8 die in km/h
gemessene, mit 21,7 jedoch die in m/s ausgedrückte
Geschwindigkeit gemeint ist. Der wichtigste Nachteil

der Masszahlengleichungen besteht gerade darin,
dass die verwendeten oder zu verwendenden
Einheiten nicht auf den ersten Blick erkennbar sind. Um
mit solchen Formeln überhaupt rechnen zu können.
muss man die gewählten Einheiten entweder in einem

ganzen Begleitsatz oder in einer Stenogrammform
(in Klammern) beifügen, ausser man habe schon zum
voraus, etwa zu Beginn eines Kapitels oder des ganzen

Buches, eindeutig und klar abgemacht, welche
Einheiten man zu verwenden gedenke.

Dagegen sind die allgemeinen Grössengleichungen
dieser Zusatzbedingung nicht unterworfen. Gemäss

Hauptsatz 9 werden hier beim richtigen Einsetzen
die Einheiten «mitgeliefert». Eine allfällige Umrechnung

des Ergebnisses auf andere Einheiten erfolgt in
einem zweiten Schritt oder nach der im Abschnitt 4.5
behandelten Methode der zugeschnittenen
Grössengleichungen.

Hauptsatz 10: Bei Masszahlengleichungon ist es

obligatorisch, irgendwo im Text oder neben den
Formeln die gewählten oder zu wählenden Einheiten
durch einen Zusatz anzugeben.

Die vollständigen Masszahlengleichungen für die
Zugsgeschwindigkeit lauten :

(42.2 M): v

oder

Zusatz im Text:
- Man erhält die Masszahl der Geschwindigkeit

v in km/h, indem man die Masszahl

der Entfernung s in km durch die
Masszahl der Fahrzeit t in h teilt;

- Die Entfernung s ist in Kilometern
einzusetzen, die Fahrzeit t in Stunden.
Dann ergibt die Gleichung die Ge-

oder

(42.6 M) : v

oder

(42.9 M)

(42.8 M) : v 0,278

oder

schwindigkeit v in Kilometern
pro Stunde.

Zusatz: (s in m, t in s, v in m/s)

Zusatz: s Entfernung in km
t Fahrzeit in h
v Geschwindigkeit in m/s

wobei im Ergebnis dieselbe Masszahl 77,8 erscheint
wie bei Formel (42.3 M):

130 000

(42.9 M) : v - 3.600 — Zusatz: [s] 1 km
t [Z] 1 h

[t>] 1 km/h
Die Verwendung dieser eckigen Klammern ist weniger
gebräuchlich, aber im Sinne der Abschnitte 2.6 und
3.2 absolut korrekt.

Die äussere Form der Masszahlengleichung (42.2 M)
ist genau dieselbe wie die der allgemeinen Grössen-
gleichung (42.2). Das ist deshalb so, weil (42.2 M) auf
abgestimmte Einheiten bezogen ist. Darunter versteht
man Einheiten, in deren Beziehungen keine von Eins
verschiedenen Zahlfaktoren vorkommen. Tatsächlich
bilden die Einheiten für (42.2 M) die zahlfaktorlose
Identität :

„ 1 km
1 km/h (42.10)

1 h

Für die Formel (42.6 M) gilt eine ähnliche zahlfaktorlose

Identität:
; t m

1 m/s (42.11)
1 s

Für die beiden andern Formeln ist das nicht mehr
der Fall. So gehört zur Masszahlengleichung

V --- 0,278 -

t

die Einheitengleichung

1 m/s 3.600
km I

3600 m \

\ 3600 s /

(42.8 M)

(42.12)
h \ 3600 s

Die Masszahlengleichung (42.8 M) enthält also den
reziproken Wert des Zahlfaktors, der in der Einheitengleichung

(42.12) auftritt:

0,278 — (42.13)
3,600 '

Für (42.9 M) gilt dasselbe mit vertauschten Rollen,
indem die Masszahlengleichung den Zahlfaktor 3,600
enthält, während der dazu reziproke Wert 1/3j60o

0,278 in der Einheitengleichung (42.14) steht:
1000 m \

(42.14)1 km/h 0,278
3600 s

Noch einmal sei darauf hingewiesen, dass in den
Gleichungen mit dem Zusatz «M» die kursiv gesetzten
Symbole Masszahlen bedeuten sollen. J. Wallot
bemerkt dazu (im Zusammenhang mit Beispiel 41):
«Leider bezeichnet man die Masszahl der Stromstärke
häufig mit demselben Symbol wie die Grösse Stromstärke'

(also mit einem kursiv gesetzten /).»
Doch ist es gar nicht leicht, einen vernünftigen

Ausweg zu finden. Schon im Abschnitt 3.1 wurden
die Nachteile besprochen, die bei senkrecht gedruck-
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ten Masszahlensymbolen auftreten würden. Ein
weiterer Lösungsversuch liesse sich mit geschweiften
Klammern ausführen:

3 Zusatz: Stromstärke in A (41 M)

s 1

oder /jA 0,278 )- ' (42.8 M)
X* S

Zusatz: /?>! Geschwindigkeit in m/s

J «) Entfernung in km
— Fahrzeit in h

Denn nach Hauptsatz 6 stellen Grössensymbole in
geschweiften Klammern Masszahlen dar. Der erklärende

Zusatz für die verwendeten Einheiten ist aber
nach wie vor obligatorisch, und so würde man mit
Hilfe dieser geschweiften Klammern nicht viel
gewinnen, anderseits durch ihre wiederholte Verwendung
ein etwas unruhiges Schriftbild schaffen.

4.5 Zugeschnittene Grössengleichungen

Beim Arbeiten mit allgemeinen Grössengleichungen
besteht oft der Wunsch, das Ergebnis auf andere als
die vorhandenen Einheiten umzurechnen oder umgekehrt

einzelne Grössen, die in unpassenden Einheiten
angegeben sind, in den Rechengang aufzunehmen.
Handelt es sich um einzelne Umrechnungsfälle, so
genügen die Methoden der beiden Wege A und B von
Abschnitt 4.3 vollauf. Hat man jedoch eine ganze
Reihe ähnlicher Rechnungen zu lösen, so ist das
Verfahren auf beide Arten umständlich. Rascher zum Ziel
führt uns der

Weg G: Wir formen unser Werkzeug, die allgemeine
Grössengleichung, zur 'praktischen Anwendung um,
anders gesagt, wir «schneiden sie auf die vorgeschriebenen

oder geivünschten Einheiten zu».

Beispiel 42: Für die durchschnittliche Zugsgeschwindigkeit

sei die Entfernung s in km, die Fahrzeit t in h

gemessen worden, während die Geschwindigkeit v in
m/s gesucht sei. (Hier sollen kursiv gesetzte Symbole
wieder Grössen bedeuten!)
Wir erweitern die allgemeine Grössengleichung (42.2) :

mit folgenden aus den Einheitengleichungen (42.4)
gewonnenen Identitäten :

1000 m ,1h1

1 km
und 1

3600 s

und finden das Zwischenergebnis:

_
s 1000 m 1 h

t 1 km 3600 s

Wir stellen die einzelnen Faktoren dieser Formel
etwas anders zusammen, so dass die verlangte Einheit

der Unbekannten v den Schluss bildet:

1000

3600

km
0,278

«/km m

tj\\ s
(42.8 Z)

Masszahl.

Bei dieser Operation sind die beiden recht seltsamen
Gebilde s/km und t/h entstanden. Es sind Quotienten,
deren Zähler eine physikalische Grösse, deren Nenner
eine Einheit darstellt. Unser Hauptsatz 1 lässt sich
aber ebenfalls in Quotientenform schreiben:

Grösse

Einheit
So erkennen wir, dass diese seltsamen Gebilde nichts
anderes als (unbestimmte) Masszahlen sind! Formel
(42.8 Z) ist eine richtige Grössengleichung, denn links
vom Gleichheitszeichen steht die physikalische Grösse
v ; rechts davon stellt der über der waagrechtenWellenlinie

stehende Ausdruck eine reine Zahl dar, als
Zusammensetzung der Masszahlen 0,278, s/km und tfh,
und bildet mit dem Einheitssymbol m/s ebenfalls eine
physikalische Grösse. Im Gegensatz zur allgemeinen
Grössengleichung (42.2) enthält die Formel (42.8 Z)
genaue Vorschriften darüber, welche drei Einheiten
verwendet werden müssen. Da sie auf die drei in der
Gleichung genannten Einheiten zugeschnitten worden
ist, gilt sie nicht mehr allgemein, sondern in dieserForm
nur für diese drei Einheiten Die Gleichungsnummer
enthält deshalb als Kennzeichen den Zusatz «Z»
(zugeschnittene Grössengleichung).

Die Umformung von Gleichung (42.2) zu Gleichung
(42.8 Z) bedeutet, dass die Einheitengleichungen (42.4)
ein für allemal fest eingebaut werden, um das Ergebnis
in einem Rechengang in der gewünschten Einheit
liefern zu können. Die zugeschnittenen Grössengleichungen

sind also nichts anderes als identische
Erweiterungen der ursprünglichen allgemeinen
Grössengleichungen.

Wir können die ungewohnten Gebilde s/km und
tfh prüfen, indem wir im Zähler die Werte von (42.1)
einsetzen :

«/km
130 km

130 //h 1,67 h
1,67 (42.15)

km h

Die Symbole s und t gelten dabei selbstverständlich
als Grössen, so dass, gemäss Hauptsatz 9, im Zähler
auch die Einheit anzuschreiben ist, die sich anschliessend

mit dem Nenner weghebt. Hat man s oder t nicht
in den vorgeschriebenen Einheiten gemessen, so muss
man entweder das Messergebnis dahin abändern,
bevor man es einsetzt, oder aber man schneidet die
Gleichung auf andere Einheiten zu. Setzt man die
soeben errechneten Masszahlen (42.15) in (42.8 Z) ein,
so findet man selbstverständlich dasselbe Resultat
wie in (42.6) und (42.7) :

m
0,278 -130-

t/h s 1,67

Beim Betrachten der Gleichungen (42.8 Z) und (42.15)
erinnern wir uns vielleicht an eine Rechenstunde der
Primarschule, wo es einem nicht einleuchten wollte,
warum der Lehrer auf dem Unterschied zwischen
«Teilen» und «Messen» beharrte:

Beispiel 43: 35 geteilt durch 7 gibt 5, (43.1)
35 gemessen mit 7 geht 5mal.

Benützt man statt reiner Zahlen eine physikalische

V 0,278 21,7:
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Grösse, so wird der Unterschied der beiden Begriffe
mit einem Schlag viel deutlicher:

m -,
35 m

Jenen: — — 5m
7

(43.2)

in Worten : 35 m geteilt in 7 Stücke ergibt Einzelstücke von
5 m Länge.

Messen:3^ =5
7 m

in Worten: 35 m, gemessen (verglichen) mit einer Norm von
7 m, ist das Fünffache, «geht 5 mal»; d. h. die gesuchte Maßzahl

ist 5.

Unsere Gebilde s/km und t/h sind demnach typische
Beispiele für die Operation «Messen», da beim
Einsetzen von Werten als Ergebnis eine Masszahl stehenbleibt.

Als zweites Beispiel einer zugeschnittenen Grössen-
gleichung behandeln wir die Thomsonsche Formel,
indem wir sie auf die in der Radiotechnik gebräuchlichen

Einheiten umformen.

Beispiel 44: Die allgemeine Grössengleichung für einen
Schwingungskreis lautet

I 2 TIC
œ inj __ - - (44.1

\ LC A

Wir lösen diese Gleichung nach L auf:
1

L (44.2)
4 712 /2 C

Der Übergang von den ursprünglichen Einheiten
Henry, Farad und Hertz zu pH. pF und kHz geschieht
wie folgt :

1
H

1
10° pH

4 712
/2 C

4 712
/2

Hz2 F

10® • 1(T6 • H>12

4 7l2

Aufgelöst nach C:

Aufgelöst nach /:

(ICH kHz)2 1012pF

1

/2

25,3 • 10J
— pH
f- F (44.3 Z)

kHz2 pF kHz2 pF

2,53 10lü

J/
kHz2 pH

pF
(44.4 Z)

/
/2,53 • 101U

L C

pH
'

pF

Aufgelöst nach A :

kHz
1,59 HP

v' L
pH

'
pF

3 • 10s m/s

/

1

1,59 105 • 10:i Hz

iL C~

L C

pH pF

•s8VP

- der Ausdruck Grösse/Einheit sei gelesen als «Grösse gemessen
in der und der Einheit», also 1/A Stromstärke gemessen in
Ampère; s/km Weg gemessen in km;

- der Ausdruck ist nicht als Bruch, sondern als Masszahl zu sehen :

s/kin Masszahl von s in km 130.

- man lese
^ als «L in pH» oder «Selbstinduktivität in Mikro-

pH
henry» und beispielsweise die ganze Formel (44.5 Z) : Man
tindet die Frequenz / in kHz, indem man die Zahl 1,59.105
durch die Wurzel des Produktes aus L in pH und 0 in pF
dividiert.

Obschon aus theoretischen Gründen die Quotientenform

allein korrekt ist, liesse sich allenfalls
prüfen, ob man ein neues, mit dem Bruchstrich eng
verwandtes Zeichen entwickeln könne, beispielsweise
eine punktierte Linie :

oder s/kra
km

Die ganze Gleichung hätte dann folgende Form:

Beispiel Jö:
V 0,127 v' R B

kn kHz
pV (45 Z)

G
kHz

(44.5 Z)

(44.6 Z)

pH pF

Es sei zugegeben, dass die Ausdrücke s/km, t/h,
L/gH, CIpF usw. wegen ihrer eigenartigen Gestalt
noch recht ungebräuchlich und wenig verbreitet sind.
Dazu kommt die Unsicherheit, wie diese Ausdrücke
zu lesen und auszusprechen seien. Da dafür noch keine
Normen bestehen, seien einige Vorschläge verschiedener

Herkunft zitiert :

Wenn man es wünscht, kann man auch in Gleichung
(42.8 Z) die Einheit m/s auf die linke Seite bringen:

-
0,278 • (42.16 Z)

m/s </h

Diese Formel enthält auf beiden Seiten nur noch
Masszahlen, so dass man sie eigentlich als Masszahlengleichung

ansprechen sollte. Sie ist lediglich eine
andere Darstellung von (42.8 M), indem dort die
Symbole v, s, t Masszahlen bedeuten, hier jedoch
Grössen. Diese Grössen werden durch die im Nenner
stehenden Einheiten wieder in Masszahlen
umgewandelt.

Beide Gleichungsarten «M» und «Z» haben ein
gemeinsames Obligatorium, nämlich die Angabe der drei
Einheiten, mit welchen gerechnet werden muss. Da
für Masszahlengleichungen der Zusatz neben der Formel

oder ein entsprechender Textsatz nicht zu
umgeben ist, bringt die zugeschnittene Grössengleichung
vom Standpunkt des Buchdruckers bzw. Setzers aus den
Vorteil mit sich, weniger Platz zu beanspruchen. Die
Darstellung «Z» ist konzentrierter und enthält doch
alles Nötige zum Arbeiten. Auf der andern Seite wird,
nicht zuletzt wegen der engen Darstellung im Schriftsatz,

der wesentliche Unterschied zwischen kursiven
und senkrechten Symbolen gerne übersehen; er ist
nicht augenfällig. Die Doppelbruchdarstellung ist
schwerfällig. Obschon im Nenner der Teilbrüche
grundsätzlich die Einheiten stehen müssen, können
durch Unaufmerksamkeit leicht Verwirrungen
entstehen. Besonders schwierig ist es, auf der
Schreibmaschine oder von Hand den Quotienten Grösse/Einheit

sauber darzustellen.
Gegenüber der Masszahlengleichung mit dem Ein-

heitenzusatz neben der Formel hat die saubere
Quotientenschreibweise «Z» den handwerklichen Vorteil,
dass man beim Übergang auf andere, bisher nicht
vorkommende Einheiten weniger lange zu überlegen
braucht, ob der entsprechende Zahlfaktor in den Zäh-
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1er oder in den Nenner einzusetzen ist. Hat man für die
Formel (42.8 M) :

v 0,278 (s in km, t in h, v in m/s)

die Zeit nicht in Stunden, sondern in Minuten
gemessen, so wünscht man eine Masszahlengleichung
für diese neue Einheit. Die Umformung führt
bekanntlich zu vielen Fehlern. Man weiss, dass 1 h

60 min gilt und dass ein Faktor 60 in die Formel
eingebaut werden muss. Man findet die Lösung aber
erst auf dem kleinen Überlegungsumweg, dass das

ursprüngliche Ergebnis für v unverändert bleiben
muss. Folglich gehört der Faktor 60 in den Zähler
zum Faktor 0,278, da die Masszahl der in Minuten
ausgedrückten Zeit im Nenner sechzigmal grösser
geworden ist als vorher.

Für die zugeschnittene Grössengleichung (42.8 Z)
geht dieser Einheitenwechsel reibungsloser:

1 h 60 min

» 0,278
S/km m

0,278
®

0,278 - * km -m-
' ' t 1 st/h s

s/km m

//60 min s

s/km m

min 60

(42.17 Z)

v 0,278 — m/s
t

(4-2.18 f)

Solche Gleichungsformen sind leider weit verbreitet,
sie sind aber unbedingt abzulehnen, da sie einer ernsten
Prüfung nicht standhalten und weder die Bedingungen
der einen Auffassung noch jene der andern ganz
erfüllen.

Einwände vom Standpunkt der Grössengleichungen aus :

- Gleichung (42.18 f) ist keine allgemeine
Grössengleichung, denn eine solche enthält niemals
Einheiten (Hauptsatz 8).

- Gleichung (42.18 f) ist auch keine richtige
zugeschnittene Grössengleichung, denn bei einer solchen
treten auf der rechten Seite die Symbole s und t

nur in Verbindung mit ihren Einheiten auf: sjkm
und t/h.

- Soll der Einheitenzusatz m/s in (42.18 f) als Faktor
aufgefasst werden, so können s und t keine Grössen
sein, da man dann beim korrekten Einsetzen nach
Hauptsatz 9 überzählige Einheiten erhält (s und t

bringen ihre Einheiten bereits mit!). Bedeuten s

und t aber Masszahlen, dann stellen beide Seiten
der Gleichung Grössen dar, nämlich links das Sym¬

bol v der Geschwindigkeit, rechts das Produkt aus
Masszahl und Einheit. Diese «gemischte» Schreibweise

ist nach Hauptsatz 5 zu vermeiden.

Einwände vom Standpunkt der Masszahlengleichungen
aus:

- Auch wenn der Zusatz m/s als Bemerkung aufgefasst

wird, in welcher Einheit die Geschwindigkeit
v ausgedrückt wird, weiss man immer noch gar
nichts über die Einheiten für s und t. Diese beiden
Angaben müssen also in einer zusätzlichen Klammer
erscheinen :

(s in km, t in h).
Dann ist es aber auch ästhetisch einwandfreier,
gerade alle drei Einheiten in sauberer Masszahlendarstellung

im Klammerzusatz anzugeben.
Andere Autoren scheinen mit ihren Mischgleichungen

doch ein leises Unbehagen zu spüren und
versuchen sich mit folgenden abgeschwächten Formulierungen

aus der Affäre zu ziehen:

V 0,278 - in —
t s

60 • 0,278 16,7
t/min s //min s

Die Quotientenschreibweise erleichtert ferner auch
die Bestimmung ungeläufiger Einheiten, wie etwa
jene der elektrischen Leitfähigkeit a im elektromagnetischen

CGS-System.

4.6 Mischgleichungen
Manche Autoren möchten dem Verständnis ihrer

Leser nachhelfen, indem sie bei ihren Gleichungen
jene Einheit am Schlüsse hinzusetzen, welche für die
gerade auszurechnende Grösse gültig ist, zum Beispiel :

oder v 0,278

oder v 0,278 - / —
t \ s

(42.19 f)

(42.20 f)

(42.21 f)

Während diese Darstellungsarten kaum mehr als
vermeintliche Grössengleichungen angesprochen werden
können, so dass die erste Gruppe Einwände nicht am
Platze ist, bleiben die Mängel vom Masszahlenstandpunkt

aus in voller Strenge bestehen: Man erhält
keine Auskunft über die Einheiten für s und t.

Es berührt einigermassen seltsam, dass sich die
saubere Quotientendarstellung «Z» nur mit Mühe
verbreiten kann, während anderseits das Nebeneinander

von kursiven und senkrechten Symbolen in
den Mischgleichungen von den zahlreichen Anhängern
nicht als störend empfunden wird. Es ist bedauerlich,
dass diese Gleichungssorte ein so zähes Leben hat,
nachdem sie bereits 1931 durch die Publikation DIN
1313 [2] eindeutig verworfen wurde.

In einer Besprechung eines vor einigen Jahren
erschienenen Buches über Maßsysteme wird gesagt:
«Mit der Sprache verglichen, stellt eine Mischgleichung

ein Satzgefüge dar, bei dem jedes Wort in
einer andern Sprache und jedes Zeitwort in einer
andern Zeit geschrieben ist. Zu jedem derartigen Satz
wäre eine eigene Legende nötig, um ihn zu verstehen.
So ist es auch bei den Mischgleichungen. Ohne
zusätzliche Angabe der Einheiten, in denen die einzelnen
Grössen gemessen werden, ist eine Mischgleichung
schlechthin unbrauchbar, und darum muss sie
vermieden werden.»

4.7 Proportionalitätsfaktoren

In vielen physikalischen Gleichungen treten
konstante Faktoren auf, die oft reine Zahlen, oft aber
auch Grössen mit zugehörigen Einheiten sein können.
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Wir wollen, ohne näher auf ihre Herkunft einzugehen,
als Beispiel das Gesetz von Coulomb betrachten:
Beispiel 46: p _ Qt ' Qz

£ii 47i r2

Seinerzeit wurde im elektrostatischen CGS-System
die hier vorkommende Dielektrizitätskonstante (DK)
des Vakuums e0 gleich Eins gesetzt, wodurch sich
gezwungenerweise die gebrochenen Exponenten der
Einheiten für elektrische Grössen ergaben. Diese
Methode hat bekanntlich nicht dazu beigetragen, die
herrschende Verwirrung der verschiedenen
Maßsysteme zu vermindern. In vierdimensionalen
Maßsystemen hat e0 nicht mehr den Wert der dimensionslosen

Zahl Eins, sondern beträgt
i„ As pF

8,86-10"1" — 8,86 ~
u Vm 111

Diese Grösse ist eine Naturkonstante ; ihr Betrag kann
nur im Experiment gefunden werden. Führt man
jedoch das Experiment nicht in isolierender Luft,
sondern in einem andern Medium aus, so ändert sich der
Betrag der Kraft P. Man drückt das formelmässig
so aus, indem man zum Faktor e0 noch einen neuen
Faktor e setzt:

£ £q 4ji r2

Dieser neue Faktor e, mit der Bezeichnung relative
DK oder Dielektrizitätszahl, ist in jedem Falle
dimensionslos. Er gibt an, wie stark die DK des Mediums
von der DK e0 des leeren Raumes abweicht, also
etwa für Wasser:

£ 81 (46.2)

Wie auch DIN 1313 [2] hervorhebt, soll man im
allgemeinen diese empirischen Proportionalitätsfaktoren

als dimensionsbehaftet behandeln. Erst nach
eingehender Begründung und zur Vereinfachung
besonderer Fälle setze man sie allenfalls gleich Eins und
betrachte sie als dimensionslos.

Eine besondere Rolle kommt den Faktoren
4 7t, 10', c Lichtgeschwindigkeit)

in den Grundgleichungen der Elektrizitätslehre zu.
Hier bestehen Ausnahmen zu unserem Hauptsatz 8,
indem für bestimmte Grössengleichungen nicht ohne
weiteres jede beliebige Einheit eingesetzt werden darf.
Bereits die Grössengleichungen sind davon abhängig,
welches Maßsystem verwendet werden soll, und
enthalten deshalb unterschiedliche Kombinationen der
drei zitierten Faktoren.

Die Frage, an welchem Platz der Faktor 47t in den
Grundgleichungen der Elektrizitätslehre stehen soll,
ist unter dem Namen Rationalisierung bekannt und
in der Literatur bereits sehr ausgiebig diskutiert worden.

Wir treten an dieser Stelle nicht näher darauf
ein. Die Rationalisierung hat an und für sich nichts
mit der Wahl eines bevorzugten Maßsystems zu tun,
da jedes System «rationalisiert» werden kann. Von
den Befürwortern des Giorgi-Systems wird aber
empfohlen, gleichzeitig mit der Einführung dieses neuen
Systems auch in anderer Richtung einen mutigen
Schritt zu tun und die Rationalisierung der
Grundgleichungen ebenfalls zu übernehmen.

4.8 Weitere Beispiele aus der Literatur und
Abänderungsvorschläge

Wie bereits im Vorwort und im Abschnitt 3.3
betont wurde, besteht keineswegs die Absicht, durch
die Auswahl der folgenden Beispiele über ihre Autoren
ein Werturteil fällen zu wollen. Mit Hilfe dieser Auszüge

soll lediglich die verwirrende unsichere Vielfalt
des heutigen Zustandes aufgezeigt werden. Die
Vorschläge wollen nicht als endgültig und «allein echt»
verstanden werden, sondern nur als Hinweise, in
welcher Richtung eine glücklichere Lösung zu suchen
wäre.

Gruppe A : Gleichungen, die zu wenige oder zu viele Angaben enthalten

Beispiel 47:

Formel für das Strahlungsgesetz Es oT* kcal/m2 h

Beispiel 48:
Gesetz von WIEN

2880.
m p.

T

49:
Gesetz von COULOMB

K 9 109 ^ Wattsec

Vorschlag: Durch das Weglassen der Einheiten kcal/m2h kann
diese typische Mischgleichung in eine allgemeine Grössengleichung
verwandelt werden.

Umformung in eine richtige Masszahlengleichung:

2880

T
(A in p., T in °K)

Diese typische Mischgleichung enthält nur die Krafteinheit,
schweigt sich aber völlig aus über die zu verwendenden
Einheiten für Q und r. Man schreibe dafür eine richtige Masszahlengleichung

:

K 9 • 10! Q-Q'
(K in Ws/m, Q in As, r in m)

Bemerkung: Da für diese Grundgleichung der Elektrizitätslehre
Dimensionsfragen eine grosse Rolle spielen, ist es nicht ohne
weiteres möglich, diese Formel in eine allgemeine
Grössengleichung umzuformen, ohne den Zahlfaktor 9.109 näher zu
diskutieren.
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Beispiel 50:

V volts 165 - k
dD
dt

D distance
t temps
k coefficient de

proportionalité

Die Symbole dieser Gleichung scheinen Masszahlen zu bedeuten.

Diese Formel ist aber ohne weiteres Studium des Textes
unbrauchbar, da keine Angaben über die Einheiten für k, D und
t vorhanden sind, welche doch bequem neben den Symbolerklärungen

Platz hätten.

Beispiel 51:

If the normalized voltage is fixed at V volts and if the
loudspeaker is to handle IF watts the matching impedance should be

y2
Z the impedance at 400 c/s

Z — Ohms V the output voltage
IF the power

Beispiel 52:
P U • I V • A

oder

Ui-Ii U2.I2

V • A oder kVA,

aufgelöst :

T _VAA -I] — —— Ampere

Diese Gleichung kann durch Streichen der Einheit Ohm in eine
allgemeine Grössengleichung umgewandelt werden, die sogar
auch für andere als die zitierten drei Einheiten gilt. Zieht man
andernfalls die Masszahlendarstellung vor, so setze man die
Einheiten zu den bereits vorhandenen Erklärungen rechts der Formel,

z. B. W the power (measured) in watts.

Hier scheint der übermässige Gebrauch von Faustformeln wie
«Watt gleich Volt mal Ampère»

(an und für sich eine durchaus korrekte Einheitengleichung!)
Unheil anzurichten. Die erste Zeile wäre, kursiv gesetzt, eine

richtige Grössengleichung, wenn man das aus Irrtum beigefügte
Einheitensymbol V A streichen würde. In der zweiten Zeile
staunt man ob der Fertigkeit, wie der Faktor 1000 (k kilo)
hineingeschmuggelt wird, während man sich in der dritten Zeile
fragen kann, wie man das doppelt erwähnte Symbol «Ampère»
auffassen soll.
Dass solche Formeln dem Praktiker auf kürzestem Weg zeigen,
mit welchen Einheiten zu rechnen ist, mag im optimistischen
Glauben dieses Verfassers verankert sein : wir teilen seinen Standpunkt

nicht!

Gruppe B: Gleichungen mit vollständiger Angabe der Einheiten

Beispiel 55 (aus einem und demselben Buch):

Gleichung des Resonanzwiderstandes

^lies —
1 318 000

2n A/ c0 n -JC-fo /„ (MHz) • A C (pF)

Wirksame Antennenhöhe

Er X

hw
Z I F

o a a

oder hr —
E (mV/m), r (km) • X (m)

(m)
377 • I (A) • Fv ' a

F Ausbreitungsfaktor

Strahlungsleistungsdichte
E2 (V/m)

w/m2
Zo 377 (Ohm)

Dämpfung Wë\f°'

Die links stehenden vier Gleichungen sind richtig formulierte
Grössengleichungen. Zur Anwendung versucht dieser Verfasser,
die Einheiten in runden Klammern gerade neben die kursiven
Grössensymbole zu setzen. Als Besonderheit ist zu erwähnen,
dass die Einheit der Unbekannten:

in der ersten Gleichung nicht genannt wird,
in der zweiten Gleichung in runden Klammern am Schluss

steht,
in der dritten Gleichung ohne Klammern am Schluss steht,
in der vierten Gleichung in runden Klammern links neben

dem Grössensymbol steht.
Da uns diese Mischung von kursiven Grössensymbolen und
eingeklammerten Einheiten nicht vorteilhaft scheint, verwende man
entweder die Quotientenschreibweise der zugeschnittenen
Grössengleichungen, die sich nach Hauptsatz 1 mathematisch
rechtfertigen lässt, oder dann eine saubere Darstellung als Masszahlengleichung,

zum Beispiel für Gleichung 3:

(z y
W/m/

377
W/m2

oder ß (Np/km) 1;99 10"4V/ a (IT1 m-1)-/(Hz)yjo
oder

8
E2

(S in W-m -, E in V/m Z0= 377)

Bemerkung : In der allgemeinen Grössengleichung ist für das Symbol

Z0 einzusetzen:
Z0 377 Ohm.
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nel 54:

A (too m) 0,188 C(100 pF)

oder Am 1,885 • 109 \JiH C¥~ i,HS5 yL[m CpF

Hier sind die Einheiten, teils mit, teils ohne Klammern, auf der
Stufe von Indices angeschrieben worden. Auch eine solche Lösung
ist nicht empfehlenswert. Man setze dafür entweder korrekte
zugeschnittene Grössengleichungen oder korrekte Masszahlenglci-
chungen:

A
0.188

100 m

oder A 1,885 \ L • G

C*

p.H 100 pF

(A in m, f in p.H, G in pF)

R
4000 UgV (V) 40 D2 Ug.2 (%). (V)

"max - 7k (mA) J
~ '

(rnA)

Z(ß) 103 V? WA1"
(fxH, PF)

Will man die Angabe von C in « 100 pF » beibehalten, so dürfte die
Darstellung «Z» praktischer sein. Die Angabe in der Klammer der
Masszahlendarstellung «0 in 100 pF» ist nicht ohne weiteres
verständlich. Für die Wellenlänge A liesse sich allenfalls die Einheit
Hektometer einführen. In der ersten Gleichung ergibt der
Quotient «C/100 pF» zum Beispiel für eine Kapazität von 300 pF :

C 300 pFC 300 pF

Vgl. auch Beispiel (44.6 Z).

100 pF 100 pF
3

Die Lösung, die Einheiten «freischwebend» anzugeben, sieht
originell aus, dürfte aber doch nicht allgemein verwendbar sein. Die
Umformung in reine Masszahlengleichungen mit dem erklärenden
Klammerzusatz, zum Beispiel (Z in £1, L in p.H, G in pF, / und fg
in MHz) drängt sich auf.

iel 56:

A i [A] C[pF] A"[V]
30000

Die Schreibweise mit eckigen Klammern bringt ebenfalls keine
definitive Besserung. Diese Gleichung muss in eine Masszahlengleichung

umgewandelt werden, da sonst eine Zeiteinheit
überzählig wäre.

Beispiel 57:
Handelt es sich um eine lotrechte Empfangsantenne mit der
wirksamen Antennenhöhe Awe [m], so beträgt [f/e] bei einer Emp-

[ V
fangsfeldstärke \E\

117.

Beispiel: Ue 120n

\E\ Ke [V]

60-5-40
400 • 200000

- 0,57 V

Im Text sind die Einheiten mitsamt den eckigen Klammern
überflüssig, denn die Formel der ersten Zeile gilt allgemein und auch
für andere als die zitierten Einheiten. In dieser Formel steht [V]
anscheinend deshalb, um zu vermeiden, dass man es auch als
Grössensymbol auffasse. Glücklicherweise ist die Klammer beim
Zahlenbeispiel verschwunden. Es ist allenfalls ratsam, Zeile 1

als Masszahlengleichung zu schreiben, mit dem Klammerzusatz:
(Ue in V, E in V/m, Awe in m).

Beispiel 58:
Formel von CHILD und LANGMUIR

3/2

I K -elS- [A/cm2]
x'

1

K 2,33 10~6

U [Volt]
xL [cm]

Durch Weglassen der Einheit A/cm2 mitsamt den eckigen Klammern

kann diese Formel in eine allgemeine Grössengleichung
verwandelt werden. Zur Anwendung muss K bekannt sein, z. B. in
folgenden Einheiten:

K =- 2,33 10'6 —
V3'-

Soll direkt eine Masszahlengleichung angeschrieben werden, so
wird empfohlen, die zweite Schreibmöglichkeit für die Einheiten
anzuwenden :

U3/2 [I] A/cm2
I 2,33 • 10~6 [C7] Volt

' [aq] cm

Beispiel 59:
Im Dezibelmaßstab findet man die Feldstärke

«> - »'«S

Diese Schreibweise hat einzig den kleinen Schönheitsfehler,
dass die eckigen Klammern vorhanden sind. Abgesehen davon
ist zum Glück deutlich hervorgehoben, dass der Logarithmus
nur von Masszahlen gebildet werden kann!
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Beispiel 60:

Fallgesetz der Mechanik

oder

v 9.81 [m/s2]«

9,81 •

[m • s"1] M

Unserer Auffassung nach stehen hier in beiden Formeln die eckigen

Klammern zu Unrecht. Die erste Gleichung stellt eine Grössen-

gleichung dar, mit der Ausnahme, dass die Grösse g
(Erdbeschleunigung) explizit angegeben ist. Deren Einheiten m/s2 bilden
aber einen vollgültigen Bestandteil der Formel, so dass man sie

nicht einklammern sollte. Ohne sie ergibt sich die Geschwindigkeit
v, beim Einsetzen der Zeit t in Sekunden, in einer falschen
Einheit!

Die zweite Gleichung ist anderseits eine zugeschnittene Grössenglei-
chung, oder, nach Beispiel (42.16 Z) eine besondere Form einer
Masszahlengleichung.

Beispiel 61:

Eindringtiefe

: v/^WIrt y I(r / ' 1,ur /

(q in Q m, / in Hz)

Meter

Die beigefügte Einheit «Meter» ist offenbar als «Bemerkung»
aufzufassen. Da bereits die beiden andern Grössen in Klammern
erklärt worden sind, wäre es zu empfehlen, in die Klammer auch
noch den Ausdruck «<5 in m» aufzunehmen, um eine reine
Masszahlengleichung zu gewinnen.

Beispiel 62:
Theoretische Leistungsziffer einer Wärmepumpe

T Q Q^- Wärmemenge in kcal/h

/\t P 860 P Leistung in kW
etheor

Gleichung und Zusatzkommentar entsprechen der reinen
Masszahlenauffassung und sind infolgedessen richtig dargestellt.

Beispiel 63:
T

11600 °K/V
Diese korrekt geschriebene Formel ist nahezu eine allgemeine
Grössengleichung, indem einzig die Beziehung e/k — 11600 °K/V
eingesetzt wurde. Beim Einsetzen einer Temperatur T in °K
bleibt, wie es richtig erwartet wird, die Einheit Volt oben stehen.

iel 64:

Q hü

(ifl-cm cm

7

cm2

R

N [j. ci

CW
5.3 KT'2 • A'a (-1 -)

R \kHz

a> tg <5C

Rcw ^ ^

H

85 10"

Ô. C I.

4 pF H \ kHz

C
N2

1 V-
/

pF \ kHz

\ 2

S_1

Diese Formeln sind korrekte zugeschnittene Grössengleichungen,
zu denen sich jeder Kommentar erübrigt.

Beispiel 65:
Die Freiraumfeldstärke einer kurzen Dipolantenne ist

3V5 ._ Volt
Eo _L_ yN —

a m

Hier bedeuten N — Leistung in Watt
d — Entfernung in m

Wenn schon zwei Symbole im Zusatz erklärt werden müssen,
wäre es auch vom ästhetischen Standpunkt au? empfehlenswert,
neben der Formel die Einheit wegzulassen, im Zusatz aber zu
wiederholen :

E Feldstärke in V/m

Beispiel 66:
300000

X - /
wobei /

X

Frequenz in kHz

Wellenlänge in m

Diese Formel ist eine korrekte Masszahlengleichung, da der
Kommentar die zu verwendenden Einheiten deutlich angibt.
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Gruppe C: Andere Fälle

Beispiel 67 :

S — Cv • log T + R log V Solche Formeln kommen besonders häufig in der Thermodyna¬
mik vor. Sie vertreten eindeutig die Auffassung «M», da man von
dimensionsbehafteten Grössen T und V den Logarithmus nicht
bilden kann.
Die strenge Schreibweise mit Grössensymbolen würde eine
umständlichere Formel ergeben :

{8} ={Ov}-log{T} + {ij}.log{F}
Es sei gerne zugegeben, dass in einem solchen Fall der ästhetische
Nachteil grösser ist als der orthodox-dogmatische Gewinn.
Für bestimmte Rechenoperationen mag auch die Umformung
nach (21) nützlich sein:

S C v T R V
• log f- — log —

[8] [Cv] [T] [R] [V]

Beispiel 68:

log microvolts Hier geht der Ruf nach Konzentrierung auf das Wesentliche
doch zu weit! Man sucht ja nicht den sinnlosen Logarithmus
der Einheit «microvolts», sondern jenen einer Masszahl, welche
zu einer in p.V gemessenen Grösse «Spannung U» gehört.
Man könnte schreiben :

log U — Zusatz : (Um p.V) oder
U Spannung in (J.V

oder nach der Grössenauffassung :

log {U} [U] 1 p.V

Zufällig deutet zwar die Einheit «microvolts» darauf hin, dass eine
elektrische Spannung U gemeint ist. Den Anhängern einer solchen

Auslegung sei die kleine Gegenfrage vorgelegt, was man wohl

genau unter «log cm ...» zu verstehen habe.

4.9 Zur Darstellung physikalischer Grössen in Tabellen

Da uns eigentliche Normen zur Darstellung
physikalischer Grössen in Tabellenform nicht bekannt sind,
können wir unsere Hauptsätze heranziehen und einige
einfache Regeln aufstellen.

Eine Tabelle ist nichts anderes als eine konzentrierte

Darstellungsform einer Mehrzahl von Ergebnissen,

die man beim Einsetzen von verschiedenen
Zahlenwerten in dieselbe physikalische Gleichung
gefunden hat. Da es sich stets um die gleichen
physikalischen Grössen handelt, wäre es Platzverschwendung,

beispielsweise die Verknüpfung von Frequenz
und Wellenlänge der Radiowellen wie folgt
darzustellen :

Beispiel 69 :

Einer Frequenz / von 4000 kHz entspricht
eine Wellenlänge X von 75 m,

einer Frequenz / von 5000 kHz entspricht
eine Wellenlänge A von 60 m,

einer Frequenz / von 6000 kHz entspricht (69.1
eine Wellenlänge X von 50 m,

einer Frequenz / von 7500 kHz entspricht
eine Wellenlänge X von 40 m,
usw.

Eine viel rationellere Schreibweise dieser Beziehung
ist die Tabelle:

Frequenz/ Wellenlänge X

4000 kHz 75 m
5000 kHz 60 m
6000 kHz 50 m
7500 kHz 40 m

In den meisten Fällen bleiben die Einheiten
unverändert, so dass man auf deren Wiederholung
verzichten könnte. Ganz weglassen darf man die
Einheiten aber nicht, da sie aus den übrigen Angaben
der Tabelle nicht erraten werden können. Schreibt
man unvollständigerweise nur die Zahl 4000 in die
Kolonne «Frequenz /» und daneben die Zahl 75 in
die Kolonne «Wellenlänge h>, so könnte ebensogut die

Beziehung zwischen 4000 Hz und 75 km, oder die Beziehung

zwischen 4000 MHz und 75 mm gemeint sein.
Sind auf der andern Seite die Buchstabensymbole
genügend bekannt oder früher bereits beschrieben
worden, so genügt folgende Darstellung als Beispiel :

/ X

4000 kHz 75 m
5000 60
6000 50
7500 40
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Auch gegen die beiden folgenden Darstellungen ist
nichts einzuwenden:

Folgende Darstellungen werden nicht empfohlen:

/ X

kHz m
4000 75
5000 60

usw. usw.

(69.4)

Physikalische WellenGrösse

quenz länge

Symbol /

Einheiten kHz m

4000 75
5000 60

usw. usw.

(69.5)

Versuch Nr. 1 2 3 4 Einheit

Durchmesser Da 6 6 5 5 mm

Drehzahl n 300 400 300 400 U/min

Geschwindigkeit v\, 20 40 30 50 m/s

/ in kHz X in m Leistung P
in kW

Wirkungsgrad ?/

in %

4000 75 2,4 66

5000 60 2,0 59

usw.

oder

(69.6 M)

//kHz /m P/kW D/%

4000
5000

75
60

2,4
2,0

66
59

usw.

/
kHz

X

m
PkW V %

4000 75 2,4 66
5000 60 2,0 59

(69.6 f)

oder

/ [kHz] X [m]

(69.7 f)

oder

Man kann die Anordnung auch so treffen, dass die
Einheiten in einer eigenen Kolonne ganz rechts erscheinen.

Beispiel 70:

Grösse Frequenz Wellenlänge

Symbol / X

Einheit [kHz] [m]
(69.8 f)

Eine gewisse Vorsicht ist bei Potenzen angezeigt,
welche im selben Gehäuse wie die Grössensymbole
vorkommen.

(70) Beispiel 71 :

Wir halten fest, dass in diesen Beispielen die
Einheiten neben oder über den Masszahlen im selben
Gehäuse oder in einem eigenen Gehäuse (Zeile oder
Kolonne) stehen. Diese Darstellung entspricht durchaus
dem Sinne unseres Hauptsatzes 1.

Wünscht man auf der andern Seite die Grösse und
die Einheit im seihen Gehäuse unterzubringen (nicht
selten aus dem Wunsche heraus, Buchstaben und
Zahlen voneinander zu trennen), so wird empfohlen,
eine der beiden eindeutigen Darstellungen «M» und
«Z» zu gebrauchen:

Substanz spez.Widerstand g
Cl cm • 104

AMX 42

(71.1 f)

oder

10" g
11 • cm

42
(71.2 f)

Diese Darstellung erweckt sehr leicht Missverständnisse.

Zieht man nämlich, wie das erste Beispiel
vermuten lässt, die Potenz 104 zur Einheit Q • cm, dann
hat die Substanz AMX einen spezifischen Widerstand

Q 42 • 104 n cm

Das zweite Beispiel lässt anderseits den Schluss zu,
dass die Formel zu lesen ist:

104 g 42 fl cm oder g 42.10"4 fl cm

Um solche Zweideutigkeiten klar auszuschalten, wird
empfohlen, die Potenz zur Masszahl zu setzen:

(69.6 Z)

Substanz spez. Widerstand g

AMX
ß • cm
42 • 104

(71.3)
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4.10 Physikalische Grössere in graphischer Darstellung

Der im Abschnitt 2.4 besprochene Gegensatz der
beiden Auffassungen über die Rolle der Einheit in
einer physikalischen Gleichung tritt auch bei der
graphischen Darstellung zutage. Wird die physikalische
Grösse als symbolisches Produkt von Masszahl und
Einheit voll anerkannt, so ist es richtig, bei der koor-
dinatenmässigen Darstellung eines physikalischen
Gesetzes von Spannungs- und Stromstärkeachsen oder
von U- und /-Achsen zu sprechen.

Beispiel 72 :

getrennt vom Grössensymbol. Deshalb wird empfohlen,

die Einheit für die Ordinate neben oder unter der
obersten Masszahl beizufügen :

3 mA

2 -

oder

und für die Abszisse neben die
stehende Masszahl zu setzen:

3

mA

am meisten rechts

HF-Stromstärke

3 mA -

2 -

1 -

1 2 3 6 V

Spannung

oder

3

mA

2 -I

1 -

1 5
n—

6 V

Die Achsen werden (mit Vorteil bei den Pfeilspitzen)
mit der vollen Bezeichnung der Grössen oder mit
deren stellvertretenden Symbolen angeschrieben. Die
Einheiten gehören zu den einzelnen Marken auf der
Achse, also 1, 2, 3. mA, 1, 2, 3. V. wobei natürlich

niemand fordert, dass die Einheit jeder
einzelnen Masszahl beizufügen sei. Wenn auch der
Abstand zweier Marken den Einheiten 1 mA oder 1 V
entspricht, so ist es doch nicht ratsam, die Begriffe
«mA-Achse» und «V-Achse» zu verwenden. Wählte
man den Abstand der Marken nämlich tausendmal
grösser oder kleiner, so müsste man von «A-Achse»
und von «mV-Achse» sprechen, obschon dieser
Einheitenwechsel nicht den geringsten Einfluss auf die
dargestellte Kurve hat, das heisst diese weder ver-
grössert, noch verkleinert. Aus diesem Grunde ziehen
wir es vor, die Achsen mit den Grössenbegriffen zu
benennen. Wir halten uns auch hier an unsere Hauptsätze

1 und 2, wonach Masszahl und Einheit möglichst
nahe zusammen zu schreiben sind, dagegen deutlich

Nicht so :

sondern so :

oder

1

5

i

6 V U

i

5

i

6 V

—U
i

5 6 V

Das Grössensymbol der Abszisse soll nicht in derselben
Zeile (Höhe) stehen wie die Masszahlen und die
Einheiten, sondern in der Verlängerung der Achse, rechts
neben der Pfeilspitze, oder zusammen mit einem
kleinen Zusatzpfeil oberhalb der Achse.

Nach der zweiten Auffassung, wonach Einheiten
nur beigefügte Bemerkungen sind, lassen sich
physikalische Grössen mit Dimensionen gar nicht koordi-
natenmässig darstellen, sondern nur ihre Masszahlen.

Beispiel 7-3:

Feldstärke in ^V/m

30-

20-

10 -

200 300

Entfernung
in km

oder

E in /<V/m

30 -

20 -

10 -

D in km

100 200 300
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Auch hier ist es nicht angezeigt, von einer «km-Achse»
und einer «g,V/m-Achse» zu sprechen, da erstens das

Koordinatensystem hier Masszahlen und keine
Einheiten angeben soll und da zweitens für einen
Skalenwechsel die gleichen Argumente wie oben gelten würden.

Eine weitere durchaus richtige Darstellung ist jene
mit Symbolen der zugeschnittenen Grössengleichun-
gen:

Alle bisherigen Beispiele haben ihre Vorteile undNach-
teile, so dass es nicht angeht, eine Darstellung als
falsch zu bezeichnen. Jedoch muss auch bei diesen
graphischen Anwendungen deutlich hervortreten,
welche Auffassung gelten soll. Eine Mischung beider
Seiten als vermeintlicher Kompromiss ist unter allen
Umständen zu vermeiden!

Es sei gestattet, zu folgenden Originalbeispielen
einige Vorschläge anzugeben.

El Hl
' m

30 -

20

10 H

0/km
100 200 300

Anmerkung : Um die früher hergestellten Clichés ohne Änderung
benützen zu können, wurde hier die Regel nicht beachtet,
wonach im allgemeinen auch die beiden griechischen Buchstaben
u. und n senkrecht zu schreiben sind.

Gauss

200 d

Beispiel 74:

In den wenigsten Fällen ist es ratsam, die Grössensymbole ganz
wegzulassen, obschon man hier erraten kann, dass die Abszisse
ein Magnetfeld H, die Ordinate eine magnetische Induktion B
darstellen sollen.

100 -

-1 1

50 100 Oersted

300 -

Beispiel 75:

Die gewählten Einheiten ganz wegzulassen ist nur dann möglich,
wenn diese irgendwo anders im Text bereits eindeutig bekanntgegeben

worden sind.

7ö"

Distanz, km Beispiel 76:

Man setze die Einheit km in die Nähe der Masszahl 2000. Für die
Abszisse findet man nämlich auch nirgends den Brauch :

2000 •

1000 d
0 30 60 90

geographische Breite, grad

—i—
30°

-r~
90c0° 60°

geographische Breite
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Beispiel 77 :

Man verwende die gute Darstellung der Ordinate auch für die
Abszisse

~1 1

2 3 Anodenspannunp Vnlt

Beispiel 78:

Man bezeichne die Ordinate als E-Achse und setze die Einheit
|j.V/m zur obersten Masszahl. Setze die Einheit m zur Zahl 100
und das Symbol A zur Pfeilspitze der Abszisse

—I-
10 100 A m

4 nJ Gauss Beispiel 79:

Man setze die Einheit Gauss zur obersten Masszahl der Ordinate
und gehe die Einheit Oe für die Abszisse nicht in Indexform an
(Hauptsatz 2, Beispiel 6), sondern als gleichberechtigten Partner
neben der Masszahl 2000.

10-

1000 2000

4tiJ
Gauss

5000-

Beispiel 80:

Man setze die Einheit Gauss in die Nähe der Masszahl 5000. Man
setze die Einheit °C neben die Masszahl 400, das Grössensymbol T
neben die Pfeilspitze der Abszisse.

—r~
300 400 r°c

m

10-

1 -

Beispiel 81 :

Nach Hauptsatz 7 ist es unnötig, die Einheiten A und Oe in
eckige Klammern zu setzen. Ihr eigentlicher Platz, klammerfrei,
ist neben den Masszahlen 10 bzw. 100.

H [Oersted]

10 100



68 Technische Mitteilungen PTT Nr. 2, 1955

Et* ln

100 -

10 H

0,5 1,5 Entfernung [km]

Beispiel 82:

Man setze die erfreulicherweise klammerfreie Einheit p.V/m zur
Masszahl 100, die zu Unrecht in Klammern gesetzte Einheit km
zur Masszahl 1,5 und das Wort «Entfernung» zur Pfeilspitze.

.22. 0,4 ~

— f

10 100 (kHz)

Beispiel 8-3:

Man lasse die runden Klammern in beiden Fällen weg. Da die
dargestellte Grösse in % je °C gemessen wird, existiert kein allgemein
anerkanntes Symbol dafür.

Gütezahl Q

100 -

10-

Frequenz

Beispiel 84:

Das Symbol / gehört zum Wort Frequenz an die Pfeilspitze. Die
Einheit kHz soll nicht eingeklammert werden. Die Grösse «Kreisgüte

Q» ist dimensionslos, so dass bei den Ordinatenzahlen 10 und
100 zu Recht keine Einheiten stehen.

10 100 1000 f (kHz) 104

600
mA

300 -

"4/v

Beispiel 85:

Es entzieht sich unserer Kenntnis, was der Autor mit der index-

artigen Einheit mA/V, in der die Steilheit S gemessen wird,
ausdrücken wollte.

I

50 100 mV

(co. tg d)/s-i

600

400

200

Beispiel 86:

Diese Darstellung, in Quotientenform, bildet die Brücke zur
reinen Masszahlenauffassung; sie ist als richtig zu beurteilen.

T
1

"I I I

2 3 4 Frequenz F/kHz
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5. Welche Darstellungsîorm ist (lie beste?

Wir haben nun in aller Ausführlichkeit die Darstellung

der allgemeinen Grössengleichungen, der
zugeschnittenen Grössengleichungen und der Masszahlengleichungen

besprochen. Es geht uns nicht darum,
die eine davon als die beste oder als die allein richtige
hinzustellen. In jedem Anwendungsfall sind geteilte
Ansichten möglich.

Was aber unerlässlich ist, ist der Entscheid, ob man
sich zur Grössenauffassung oder zur Masszahlenauffassung

bekennen will, und was noch wichtiger ist,
ist die konsequente Einhaltung eines einmal bezogenen
Standpunktes.

Man vermeide jede Vermischung der drei
Darstellungsarten und helfe mit, durch eine eindeutige Schreibweise

den herrschenden Unsicherheitszustand zu
beseitigen.

Das letzte Beispiel entnehmen wir der Publikation
[5], um damit noch einmal die Vorteile und Nachteile
der drei Darstellungsarten zusammenzustellen.
Beispiel 87: Die Formel für die magnetische Spannung Um im
Luftspalt ö lautet wie folgt:

Als Muster einer allgemeinen Grössengleichung
B

U- ^ (87)

Vorteil: Die Grössengleichungen gelten allgemein, ohne beson¬

dere Einheitenwahl. Sie sind sicher, bequem und stiften
keine Verwirrung.

Nachteil: Sie geben das Resultat vielleicht nicht in der gewünsch¬
ten Einheit an, so dass man in einem zweiten Schritt
noch umrechnen muss.

Als Muster einer zugeschnittenen Grössengleichung

üm 796w-~A (87Z)
Wb/m2 mm

Vorteil: Die zugeschnittenen Grössengleichungen enthalten auf
knappem Raum alle nötigen Einheiten zur praktischen

Anwendung. Man erkennt ohne weitere
Angaben im Text, in welchen Einheiten einzusetzen ist
und welche Einheit herauskommt. Sie ergeben jede
gewünschte Einheit in einem Arbeitsgang, da man sie

dementsprechend zuschneiden kann.

Nachteil: Die Quotienten Grösse/Einheit sind recht ungewohnt.
Sie lassen sich mit der Schreibmaschine oder von Hand
nur schwer darstellen.

Als Muster einer Masszahlengleichung
Um 796 B ö

(B in Wb/m2, ô in mm, in A)

6. Schluss

In dieser Arbeit wurde versucht, durch möglichst
einfache Beispiele aufzuzeigen, wie die heutige
Vielfältigkeit in der Schreibweise physikalischer
Gleichungen mit Hilfe einiger Hauptsätze in einen einiger-
massen geordneten Zustand gebracht werden könnte.
Beide gegensätzlichen Standpunkte, die Grössen- und
die Masszahlenauffassung, werden gewürdigt. Jedoch
gilt unsere Sympathie ohne Zweifel dem Rechnen mit
Grössen, das heisst mit «benannten Zahlen».

Die Wahl des Standpunktes steht jedem einzelnen
frei. An einer möglichst rationellen Arbeitsweise sind
alle gleichermassen interessiert. Angesichts des
heutigen Durcheinanders versteht man die Vorliebe vieler
Leute für dimensionslose Gleichungen. Diese entbinden

einen auf elegante Weise, Einheiten und
Umrechnungsformeln anzugeben. Auf der andern Seite lassen
sich die reinen Theoretiker durch Darstellungssorgen
nicht stark bedrücken, da sie sich mit Leichtigkeit
ein «privates» Maßsystem für ihre Zwecke schaffen.

Darstellungsfragen sind nicht an ein bestimmtes
Maßsystem gebunden, und so handelte es sich in diesen

Zeilen auch nicht darum, alle andern Systeme zu
bekämpfen und eine weitere Werbeschrift für das
Giorgi-System herauszugeben (so sehr wir seine
Einführung begrüssen

Dieser Aufsatz wurde durch die Beobachtung
angeregt, dass zahlreiche Leute bei der Schreibweise
von Gleichungen nnd besonders im Grössenkalkül
auf Schwierigkeiten stossen. Seine vornehmste
Aufgabe ist es, als Anleitung zu möglichst einfachen,
klaren und eindeutigen Darstellungen der physikalischen

Gesetze dienen zu können. Bildet er eine kleine
Hilfe zur Beseitigung vieler Unsicherheiten, ohne die
strengen Mathematiker zu Kopfschütteln zu
veranlassen, so hat er sein Ziel erreicht.

(87 M)

Vorteil: Die Masszahlengleichungen sind sehr einfache, kurze
Rechenrezepte.

Nachteil: Sie gelten nicht allgemein, sondern nur für bestimmte
Einheiten, die in einem Zusatz angegeben werden müssen.
Sie brauchen mehr Platz als die zugeschnittenen
Grössengleichungen. Die Umrechnung auf andere Einheiten
bringt leicht Fehler mit sich.
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