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Schwingungslehre

Von W. Druey, Winterthur

Der Begriff Schwingung ist aus der Mechanik in
das Gebiet der elektrischen Stromkreise iibernommen
worden. Man sagt von einem elektrischen Schwingungs-
kreis, es triten darin Schwingungen auf, oder kurz,
er schwinge, wenn die Stromstérke und die Spannung
sich in gleicher Weise zeitlich &ndern wie die Koordi-
naten, welche die Lage eines schwingenden Korpers
beschreiben. Mit Spannungen sind elektrische Felder,
mit Stromen magnetische Felder verkniipft, welche
die Schwingungen mitmachen. Schwingungen kom-
binierter elektromagnetischer Felder treten ferner
aber auch losgelost von elektrischen Leitern in Form
von elektromagnetischen Wellen auf. Dazu gehéren
die Radiowellen, ferner das Licht und beispielsweise
die Rontgenstrahlen. Diese Gruppen unterscheiden
sich nur durch die Frequenz der Schwingung, mit
welcher die Wellenlinge im Zusammenhang steht.
Ein mechanisches Analogon zu den elektromagneti-
schen Wellen sind die Schallwellen in Luft. Hier
fithren die Luftteilchen Schwingungen um eine feste
Mittellage aus, wobei gleichzeitig auch der Luftdruck
an jeder Stelle um einen Mittelwert schwingt. Bei
den elektromagnetischen Wellen gibt es keine sich
bewegenden Teilchen, lediglich die elektrischen und
magnetischen Feldgrossen «schwingen».

Die harmonische Schwingung

Im Mittelpunkt aller Schwingungsformen steht die
sogenannte harmonische Schwingung. Es ist die
Schwingung, wie sie ein Pendel unter dem Einfluss
der Schwerkraft ausfiihrt (streng genommen nur
bei sehr kleinen Amplituden in einer Ebene), oder
auch die Schwingung eines punktférmigen Korpers
mit einem Freiheitsgrad, der durch eine Feder
elastisch in seine Gleichgewichtslage zuriickgezogen
wird. Elektrisch tritt eine harmonische Schwingung
in einem Schwingungskreis aus Spule und Konden-
sator, wie er in Figur 1 dargestellt ist, auf. Der elek-
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trische Schwingungskreis kann mit einem mechani-
schen, schwingungsfihigen Gebilde verglichen werden.
So wie bei einer Feder die Kraft proportional der
Liangenidnderung und die Beschleunigung des Kor-
pers proportional der Kraft ist, hat man beim Schwin-
gungskreis eine der Ladung proportionale Spannung,
ferner eine der Spannung proportionale Anderungs-
geschwindigkeit des Stromes. Spule und Konden-
sator wollen wir uns zunichst verlustfrei denken.

Denkt man sich, bevor Spule und Kondensator
zusammengeschaltet werden, den Kondensator gela-
den und den Strom naturgemiss noch Null, so beginnt
beim Zusammenschluss der Kondensator sich iiber
die Spule zu entladen. Der Strom steigt aber nur
allméhlich; gemiss Induktionsgesetz ist durch die
Spannung eine bestimmte Wachstumsgeschwindig-
keit fiir den Strom festgelegt. Wenn der Strom seinen
Maximalwert erreicht hat, ist der Kondensator gerade
entladen. Der Strom kann nun aber aus den gleichen
Griinden, die fiir das nur allméhliche Anwachsen
verantwortlich sind, nicht plotzlich verschwinden, so

C.':‘: u L

Fig. 1. Schwingungskreis

dass der Kondensator von jetzt an entgegengesetzt
aufgeladen wird. In dem Augenblick, in dem der
Strom auf Null gekommen ist, hat der Kondensator
gerade maximale Ladung und Spannung, jedoch
im umgekehrten Sinn wie bei Beginn des Vorganges.
In der Fortsetzung entliadt er sich riickwirts iiber
die Spule, wird aber anschliessend sofort wieder im
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urspriinglichen Sinne geladen. Schliesslich kann das
Spiel von neuem beginnen. Typisch fiir den Vorgang
ist, dass die Energie, die zu Beginn in Form von
elektrischer Energie im Kondensator steckte, im
Augenblick, in dem die Spannung durch Null geht
und der Strom maximal ist, ganz als magnetische
Energie in die Spule tibergetreten ist. Der Energie-
betrag, der im Schwingungskreis steckt, pendelt
periodisch zwischen Kondensator und Spule hin und
her; die Gesamtenergie bleibt, wenn die Schwing-
kreiselemente verlustfrei sind, unverindert.

Rechnet man bei der auf die geschilderte Weise
entstehenden Schwingung die Zeit vom Augenblick
der Vereinigung von Spule und Kondensator an, so
hat man fiir die Spannung u und den Strom i zu
schreiben :

u="0U"-
Der zeitliche Ablauf dieser Grossen ist in Figur 2
dargestellt; es sind harmonische Funktionen der Zeit.
Die Kurvenform ist fiir beide dieselbe; die zeitliche
Versetzung um eine Viertelsperiode entspricht einer
Phasenverschiebung von 90°. Ganz allgemein wird
eine harmonische Schwingung beliebiger Phasenlage
durch die Funktionen sin (ot + ¢) oder cos (ot + ¢)
dargestellt. Die Werte u und i nennt man die Momen-

cos wt i=1"-sinwt

Fig. 2. Verlauf von Spannung u und Strom i beim verlustfreien
Schwingungskreis (harmonische Schwingungen)

tanwerte, U und I die Scheitelwerte oder Amplituden
von Spannung und Strom. Erwahnt sei auch, dass
sich der quadratische Mittelwert oder Effektivwert
bei einer harmonischen Schwingung als Quotient
Scheitelwert. durch \/E ergibt.  heisst die Kreis-
frequenz und hidngt mit der eigentlichen Frequenz
oder Schwingungszahl f geméiss w = 2 znf zusammen.
Zwischen der Periode T und der Frequenz f besteht
die Beziehung:

1
f =
T
Uberlisst man die Schwingung in einem Schwin-
gungskreis, so wie voranstehend dargestellt, sich
selbst, so entsteht die sogenannte Eigenschwingung
mit der Eigenfrequenz. Beim verlustfreien Schwin-
gungskreis ist die Eigenfrequenz gleich der Resonanz-

|
T=-
f

frequenz. Letztere ist diejenige Frequenz, bei der
man, auch bei einem mitVerlusten behafteten Schwin-
gungskreis, maximalen Strom erhélt, wenn man den
Kreis mit einer fremden Schwingung konstanter
Spannung in Serie zu Spule und Kondensator erregt.
Die Resonanzfrequenz ist durch die Induktivitit der
Spule und die Kapazitit des Kondensators bestimmt,
und es betragen:
1 1
wO = = fO = = . =
\ LC 274/LC
Zwei Zahlenbeispiele sollen die Grossenordnungen
veranschaulichen, Mit L = 1 Hund C =1y F (1 F
ist ein praktisch nicht vorkommender, sehr grosser
Kapazititswert) betrigt To = 6,28 ms, f, = 159 Hz.
Ins Gebiet der Hochfrequenz kommt man mit L =
100 uH, C = 100 pF: T, = 0,628 us, f, = 1,569 MHz.

T, = Zn'\/fé

Lage der Zeitachse
im Augenblick

t=0

\
N 5-\(\0’

\?

Fig. 3. Zeigerdarstellung fiir den Strom

Den Ablauf einer harmonischen Schwingung kann
man graphisch dadurch erhalten, dass man einen
feststehenden Zeiger auf eine mit der Winkelge-
schwindigkeit w rotierende sogenannte Zeitachse pro-
jiziert. In Figur 3 ist die Lange der Projektion des
Zeigers T gleich dem Momentanwert: i = I - sinwt.
Die « Zeitachse» steht im Augenblick t = 0 vertikal,

also in Richtung der Ordinatenachse. u = U cosot

o

Ju=l7coswl'

Fig. 4. Zeigerdarstellung fiir die Spannung
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erhilt man gemiss Figur 4, indem man den Zeiger

der Linge U vertikal stellt, die Zeitachse im iibrigen
gleich rotieren ldsst, wie in Figur 3.

Die harmonische Schwingung verdankt ihre zentrale
Bedeutung der Tatsache, dass sie die Schwingungs-
form ist, mit der ein verlustfreier Schwingungskreis,
bestehend aus nur einer Spule und einemKondensator,
schwingt. Ein Schwingungskreis ist nur mit einer
einzigen harmonischen Schwingung ganz bestimmter
Frequenz in Resonanz. Dazu ist die harmonische
Schwingung durch eine besondere geometrische und
mathematische Eigenschaft gekennzeichnet: die Steil-
heit der Kurve, fiir alle Kurvenpunkte iiber der jewei-
ligen Abszissenstelle aufgetragen, ergibt wiederum
einen harmonischen Kurvenverlauf. Mathematisch
ausgedriickt ist der Differentialquotient der harmoni-
schen Funktion ebenfalls eine harmonische Funktion.
Das Analoge gilt naturgemiiss fiir das Integral. Dieser
Umstand hat zur Folge, dass beim Anlegen einer
harmonisch verlaufenden Spannung an eine beliebige
Kombination linearer Schaltelemente (Widerstinde,
Spulen und Kondensatoren) im eingeschwungenen
Zustand immer ein harmonischer Strom entsteht
und, umgekehrt, bei harmonischem Strom die Span-
nung ebenfalls harmonische Kurvenform besitzt.

Frequenz und Wellenlinge

Bei den elektromagnetischen Schwingungen in
Form von Wellen ist der Zusammenhang zwischen
Frequenz bzw. Schwingungsdauer, Wellenléinge und
Ausbreitungsgeschwindigkeit festzuhalten. Besonders
einfach ist das Bild bei der ungedimpften ebenen
Welle harmonischer Form. Eine ebene Welle ist eine
solche, bei welcher im selben Zeitmoment fiir alle
Punkte von Ebenen senkrecht zur Ausbreitungsrich-
tung jeweilen der gleiche Feldzustand besteht.
Variiert an jedem Ort die Feldgrosse, zum Beispiel
die elektrische Feldstirke E, in Funktion der Zeit
harmonisch, so ergibt sich unter der Wirkung der
konstanten Wellenfortpflanzungsgeschwindigkeit eine
harmonische &rtliche Verteilung der betreffenden
Feldgrosse. Figur 5 stellt eine solche ortliche Vertei-
lung fiir einen bestimmten Zeitmoment dar. Die Welle
laufe mit der Geschwindigkeit ¢ in Richtung der
wachsenden Koordinate x. An jedem Ort ist jeweilen

E
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Fig. 5. Harmonische Welle
¢ = Wellengeschwindigkeit
4 = Wellenlénge

gerade eine Periode abgelaufen, wenn das Wellenbild
um die Strecke 1, die Wellenlinge, weitergewandert
ist. Daraus erhidlt man den Zusammenhang:
c c
A= _, fe=s o5,
f A
Man kann auf Grund der letzten Formel auch so
iiberlegen: pro Zeiteinheit, pro Sekunde, gehen f
Wellenlingen an einer bestimmten Stelle hindurch,
wobei die Welle gerade die Strecke entsprechend der
Zahl ¢ zuriickgelegt hat.

Fiir die meisten praktischen Zwecke setzt man fiir
die Lichtgeschwindigkeit mit geniigender Genauig-
keit ¢ = 300 000 km/s. Einer Frequenz von 1 MHz
entspricht daher eine Wellenldinge von 300 m, und
bei 1000 MHz errechnet man 0,3 m. Eine elektro-
magnetische Strahlung mit einer Wellenlinge von
600 nm = 600-10"° m ist orangefarbiges Licht, die
entsprechende Frequenz betrigt 500 . 10" Hz =
Finfhundertmillionen MHz. .

Der erliuterte Zusammenhang zwischen Frequenz
und Wellenlinge gilt fiir jede Art Wellen, insbesondere
also auch fiir Schallwellen. Die Ausbreitungsgeschwin-
digkeit von Schallwellen betrigt in Luft bei 200 C
rund 340 m/s, so dass zu einer Frequenz von 1000 Hz
eine Wellenléinge von 0,34 m gehort.

¢c-T=171 oder f-2=c¢

Gedimpfte harmonische Schwingung

Die Verluste bei den Schaltelementen eines
Schwingungskreises bewirken, dass die Eigenschwin-
gung mehr oder weniger rasch abklingt; es entsteht
in Wirklichkeit also keine rein harmonische, sondern

u

Fig. 6. Gedampfte harmonische Schwingung

eine geddmpfte harmonische Schwingung. Ein Bei-
spiel ist in Figur 6 dargestellt. Der mathematische
Ausdruck fir die abklingende Schwingung ist:

u="~U. efat
Die Dampfungskonstante « ist um so grosser, je
grosser die Verluste des Schwingungskreises sind.

- COS web

Die Schwingung ist nicht mehr periodisch, weil ja
die Amplitude dauernd abnimmt. Wegen der jedoch
nach wie vor periodischen Nulldurchginge ist trotz-
dem eine Eigenfrequenz f, definiert. Die Verluste
bewirken, dass die Eigenfrequenz etwas niedriger als
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die Resonanzfrequenz ist, bei geringen Verlusten aber
nur verschwindend wenig. Sind die Verluste aller-
dings sehr gross, so entsteht iiberhaupt keine Schwin-
gung mehr; eine einmal eingetretene Storung hat im
Stromkreis einen sogenannten aperiodischen Aus-
gleichsvorgang zur Folge.

Fourier-Zerlegung nichtharmonischer Sehwingungen

Neben den harmonischen Schwingungen sind peri-
odische Schwingungen beliebiger anderer Form denk-
bar. Eine harmonische Schwingung kann z. B. in
einem Verstidrker verzerrt werden und gegeniiber
ihrer urspriinglichen Form mehr oder weniger defor-
miert sein. KEs ist praktisch iibrigens gar nicht még-
lich, eine absolut reine harmonische Schwingung her-
zustellen. Von grosser Bedeutung sind einige beson-
dere geometrische Formen, deren Idealverlauf prak-
tisch allerdings ebenfalls nicht realisierbar ist. Die
beiden wichtigsten sind die in Figur 7 dargestellte
Sagezahnform und die Impulsform in Figur 8.

s
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Fig. 7. Sigezahnschwingung

Das Hauptanwendungsgebiet sdgezahnférmiger
Signale ist die zeitlineare Ablenkung und Wieder-
riickfithrung von Elektronenstrahlen in Kathoden-
strahlrohren (Oszillographen, Fernsehbildrohren usw. ).
Impulse werden bei der Impulsmodulation verwendet,
wovon das Radar eine Anwendung ist, ferner als
Synchronisiersignale, zum Beispiel beim Fernsehen.

Beide Signalformen konnen, wie erwéhnt, nicht in
reiner Form erzeugt werden. Bei den Rechteckimpul-
sen sind die Flanken nicht unendlich steil zu erhalten,
die Ecken sind in Wirklichkeit abgerundet. Bei der
Sagezahnschwingung wird der Anstieg nicht linear
erhalten, wie er héufig sein sollte. Dass keine unend-
lich steilen Flanken auftreten konnen, wird sofort
klar, wenn man bedenkt, dass bei einer plotzlich
springenden Spannung die immer vorhandenen Streu-
kapazititen unendlich schnell aufgeladen werden

Nr. 1, 1955
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Fig. 8 Rechteckimpulsschwingung
T = Periode

T, = Impulsdauer

1
rF:a

miissten, was einen unendlich grossen Strom erfor-
derte. Miisste andererseits ein Strom plétzlich von
einem Wert auf einen anderen wechseln, so wiirde
das infolge der unvermeidbaren Kreisinduktivititen
eine unendlich grosse Spannung bedingen. Die Un-
moglichkeit, die Idealform herzustellen, geht aber
auch aus den folgenden eminent wichtigen Betrach-
tungen hervor.

Der Mathematiker Fourier (1768...1830)hat gezeigt,
dass man jede periodische Funktion, sofern sie ein-
deutig und stetig ist, in eine Reihe von harmonischen
Komponenten zerlegen kann, oder dass man umge-
kehrt eine periodische nicht harmonische Funktion
als Summe von harmonischen Komponenten erhal-
ten kann. Die Frequenzen dieser Komponenten sind
eine Grundfrequenz und deren ganzzahlige Vielfache.
Die Grundfrequenz entspricht der Periode des zu
analysierenden Vorganges:

1
fi=

Die oberen Harmonischen oder Oberwellen haben die
Frequenzen 2f;, 3f,,...nf,,... Um die letzten Fein-
heiten wiederzugeben, wiirde es in der Regel unend-
lich viele Oberwellen brauchen, deren Frequenzen
also bis f = ~ gehen miissten. Das ist die andere
Formulierung fiir den Grund, warum die geometrische
Idealform der Rechteckimpuls- und Sigezahnschwin-
gungen praktisch nicht erreichbar ist. Neben den
harmonischen Komponenten ist noch der Mittelwert
anzufiihren, dessen Grosse von der Lage des Signal-
bildes in bezug auf die Abszissenachse abhéngt.

Die Analyse der beiden Signalformen in den Figu-
ren 7 und 8 fithrt zu den folgenden Fourier-Reihen.

T 1 2 ‘7 .
Fiir die Impulsform wird mit a = 'l‘l ,wp=2xf, f; = TV: s(t) = = S, ( 5 ° +sinma - cosw b
, 7
L o |- \
4+ sm2Zaa- cos2Zot + sin3ma-cos 3wt | )
2 3
Fiir die Sédgezahnschwingung, und zwar im Spezialfall mit T, = 0, gilt:

SU

T

s (t) =

; | | 1 .
<Z + sinw; t — 2~s1n 2wt + 3 sin 3w t _~,4, sin 4w t 4 )
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Fig. 9. Amplitudenspektrum der Rechteckimpulsschwingung nach

Figur 8 mit a = 'l% = 0,3 bis 20 f;, wobei f; =

-

Die Fourier-Zerlegung zeigt, dass ein nicht harmo-
nisches Signal aus einem ganzen Spektrum harmo-
nischer Schwingungen zusammengesetzt ist. In Figur
9 ist ein solches Amplitudenspektrum, analog den
Linienspektren in der Optik, fiir das Rechteck-
impulssignal mit a = 0,3 bis zur 20. Harmonischen
aufgetragen. Die Hohe der vertikalen Striche ent-
spricht der Amplitude der betreffenden Kompo-
nenten. Man folgert aus der Fourieranalyse auch,
dass bei der Ubertragung, Verstirkung, Wiedergabe
usw, eines solchen Signals alle die zugehérigen Kom-
ponenten amplituden- und phasengetreu verarbeitet
werden miissen, wenn das Signal keine Verformung
erleiden soll. Das ganze Spektrum kann ein sehr
weites Frequenzgebiet umfassen; durch die Uber-
tragung wird daher unter Umstinden ein sehr breites
Frequenzband belegt.

Figur 10 zeigt, wie das Signal aussieht, wenn von
der Reihe der Fourierkomponenten bei der Rechteck-
impulsschwingung mit T, = T/2 bloss diejenigen
bis f = 5f, beriicksichtigt werden. In diesem Fall
von a = 0,5 werden iibrigens alle Komponenten mit
geradzahligen Vielfachen der Grundfrequenz Null,
es verbleiben also nur die ungeraden Harmonischen.

cosx

c sx-%cosaxlo-%coss.t
1
C360s 3x

AL O e

= 7
=AYV YA VIAY,
: ; : ; T,

Fig. 10. Ausschau der Rechteckimpulsschwingung mit a = T =

0,5, wenn von den Fourier-Komponenten nur diejenigen
bis fn = 51, beriicksichtigt werden

Auch die Schwingungen, die in der Musik als Kléinge
bezeichnet werden, lassen sich nach Fourier zerlegen.
Die oberen Harmonischen heissen hier Obertone; ihr
Vorkommen und ihre Stérke machten die Klangfarbe
aus. Ebenso unterscheiden sich die Vokale der
Sprache durch ihren relativen Gehalt an Grundton
und Obertonen.

Geriusche sind keine periodischen Schwingungen
mehr. Man kann sie zwar ebenfalls noch in ein Spek-
trum von harmonischen Teilschwingungen zerlegen.
Es zeigt sich jedoch, dass man unendlich viele Kompo-
nenten unendlich kleiner Amplituden braucht, wobei
alle Frequenzen eines gewissen Bereiches mehr oder
weniger gleichméssig beansprucht werden. Man erhélt
mit anderen Worten ein kontinuierliches Spektrum,
an Stelle eines solchen von diskreten Schwingungen,
ganz analog dem kontinuierlichen Spektrum zum
Beispiel des weissen Lichtes in der Optik. Die Phéno-
mene sind eben auch, vom Standpunkt der Schwin-
gungen aus betrachtet, die gleichen.

Die Verzerrung von harmonischen Signalen bei
der Ubertragung durch nichtlineare Schaltelemente,
wie etwa die Elektronenrohren in den Verstidrkern,
bewirkt das Entstehen von Oberwellen. Man kann
die Stdrke ihres Auftretens als Mass fiir die Ver-
zerrung benutzen. Das Verhiltnis des Effektivwertes
der Gesamtheit aller entstehenden Oberwellen zum
Effektivwert des tibertragenen Signales selbst heisst
Klirrfaktor. Dieser Klirrfaktor darf bei Ubertra-
gungsanlagen fiir Sprache und Musik nicht zu gross
sein, wenn die Wiedergabe als gut gelten soll. Er ist
allerdings nicht das einzige Kriterium fiir die Giite.

Modulierte Schwingungen

Von einer modulierten Schwingung spricht man,
wenn einem Trédgersignal, einer urspriinglich harmo-
nischen Schwingung, eine Nachricht aufgedriickt
wird. Das kann auf zwei grundsétzlich verschiedene
Arten erfolgen. Bei der Amplitudenmodulation wird
die Amplitude der Schwingung in der gewiinschten
Weise variiert, im einfachsten Fall so, dass die Ampli-
tudendnderung proportional dem Ablauf des nieder-
frequenten Nachrichtensignals ist. Bei der Frequenz-
bzw. Phasenmodulation beeinflusst man die Frequenz
oder die Phase der Trégerschwingung in analoger
Weise, wobei die Amplitude konstant bleibt.

Figur 11 stellt ein mit einer harmonischen Schwin-
gung amplitudenmoduliertes Signal dar. Der mathe-
matische Ausdruck dafir ist:

s =S (1 + m - sin ut) sin wt
Es bedeuten darin: w = 2nf f = Tragerfrequenz

u=2nv v = Modulationsfrequenz
m = Modulationsgrad

Der Modulationsgrad kann naturgeméss nur Werte
zwischen 0 und 1 besitzen.

Um zu zeigen, dass ein so moduliertes Signal in
drei harmonische Komponenten aufgelost werden
kann, fithren wir folgende trigonometrische Umfor-
mung durch:
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s=8 (1 +m - sin ut) sinwt = S sinot
+ mS . sin ut - sinwt

- m$
=8 - sinwt + i [cos (—pu)t - cos (0 + u) t]

i<l
=S

Fig. 11. Harmonisch amplitudenmodulierte Schwingung

Die drei Komponenten sind die Trigerschwingung

)
mit der Trigerfrequenz f — o und die beiden Seiten-
7

w—u
schwingungen mit den Seitenfrequenzen f — v = —2——/
7

o+ p ; A
und f + v = 5 In Figur 12 sind sie als Spektrum
7

aufgetragen. Die Frequenzen der Seitenschwingungen
liegen symmetrisch unterhalb und oberhalb der
Trigerfrequenz, von dieser um die Modulations-
frequenz v entfernt.

Trdgeramplitude

1 Amplitude der
Seitenschwingungen

N3
|3

1 I f

I\ ~- Jl\ Jl
P Y
fF-v f f+v

Fig. 12. Spektrum der harmonisch amplitudenmodulierten
Schwingung

Das Zusammenspiel der drei Teilschwingungen zur
modulierten Schwingung erkennt man sehr anschau-
lich mit Hilfe eines Zeigerdiagramms. In Figur 13

stellt S den Zeiger fiir die Tragerschwingung dar.
Die Zeitachse rotiere entsprechend der Tragerfrequenz
f mit der Winkelgeschwindigkeit . Zum Trigerzeiger
sind vektoriell die Zeiger fiir die Seitenschwingungen
zu addieren. Da diese letzteren jedoch nicht die
gleiche Frequenz wie der Tréiger besitzen, lisst man
ihre Zeiger relativ zum Triagerzeiger mit der Winkel-
geschwindigkeit ¢ = 2 v umdrehen, den einen im

Uhrzeiger-,denandern im Gegenuhrzeigersinn. Gegen-
itber der Zeitachse entstehen so die Winkelgeschwin-
digkeiten w —u und w + u. Die Lage der Seiten-
schwingungszeiger fiir den Augenblick t = 0 ergibt
sich aus den entsprechenden Gliedern der Schwin-
gungssumme; sie ist in Figur 13 eingezeichnet. Die
beiden heben sich in diesem Moment gegenseitig auf.
Im Ablauf der Zeit bilden sie jedocheinen veréinder-
lichen Zusatzzeiger gleicher Richtung zum Triger-
zeiger. Der resultierende Zeiger variiert seine Lénge
dadurch in harmonischer Weise im Rhythmus der
Modulation, und auf der mit Trigerfrequenz ent-
sprechend rasch rotierenden Zeitachse entsteht durch
Projektion in tiblicher Weise der Momentanwert.
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Fig. 13. Zeigerdiagramm der harmonisch amplitudenmodulierten
Schwingung

Ist das Modulationssignal kein reiner Ton, sondern
wird mit Sprache, Musik oder Schwingungen, wie
sie beim Abtasten von Bildern beim Fernsehen
entstehen, moduliert, so liegt die Gesamtheit aller
Seitenschwingungen, entsprechend den Komponen-
ten im Modulationsfrequenzbereich, in den Seiten-
béndern unterhalb und oberhalb der Trigerfrequenz.
Figur 14 vermittelt davon ein Bild. Die Amplitude
der Komponenten in den Seitenbéndern ist natiir-
lich von Fall zu Fall sehr verschieden, in der Figur
ist die Hohe willkiirlich gezeichnet. Das amplituden-
modulierte Signal beansprucht eine totale Frequenz-
bandbreite, die das Doppelte der hochsten Modu-
lationsfrequenz betragt.
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Fig. 14. Spektrum der mit einem Tongemisch amplitudenmodu-
lierten Schwingung
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Der Nachrichteninhalt ist im Grunde schon durch
ein Seitenband und die Kenntnis der Triagerfrequenz
gegeben. Beim Einseitenbandverfahren, das haupt-
sichlich bei der Trigerfrequenztelephonie und der
drahtlosen Telephonie Verwendung findet, wird
dementsprechend nur ein isoliertes Seitenband iiber-
tragen. Der Triger wird am Empfangsort wieder
zugesetzt, und spezielle Schaltungen gestatten es,
die Nachricht vollig unverzerrt zuriickzugewinnen.
Durch dieses Verfahren spart man die Hélfte der fir
normale Modulation benotigten Frequenzkanalbreite
ein. Ausserdem wird weniger Sendeleistung bendotigt.
Auch beim Fernsehen wendet man nach den CCIR-
Normen, obwohl weniger rigoros, dieses Verfahren
an, indem zur Einsparung von Bandbreite ein Seiten-
band wenigstens teilweise unterdriickt wird. Trotz-
dem ist die erforderliche Bandbreite noch sehr gross,
und man versteht, dass man solche Nachrichten-
schwingungen nur entsprechend hohen Trigerfre-
quenzen aufmodulieren kann.

Ein impulsférmig moduliertes Signal beansprucht
naturgemiss ebenfalls eine grosse Bandbreite, beson-
ders wenn die Flanken der Impulse sehr steil sein
sollen. In gewissen Nachrichtensystemen wird mit
Hilfe der Impulsmodulation eine Art doppelte Modu-
lation durchgefiihrt. Der Triger wird mit Impulsen
moduliert, die ihrerseits bereits durch die Nachricht
moduliert sind, indem ihre Amplitude, ihre Breite,
ihre Lage oder ihre Haufigkeit (Impulswiederholungs-
frequenz) vom Momentanwert des niederfrequenten
Nachrichtensignals abhiingig ist.

Frequenz- und Phasenmodulation sind beide durch
die Frequenzabhingigkeit der Phase ¢ im Ausdruck

sin (wt + ¢)

s=8-
gekennzeichnet.

Die Nenn- oder Tréigerkreisfrequenz o ist auch bei
Frequenzmodulation konstant. Die Verhaltnisse und
insbesondere der Unterschied zwischen Frequenz-
und Phasenmodulation lassen sich wiederum am
einfachsten anhand eines Zeigerdiagramms erldu-

tern. In Figur 15 bleibt die Linge des Zeigers S
unverindert, er pendelt aber um seine Mittellage,
so dass ¢ eine Funktion der Zeit ist. Dadurch variiert
auch die relative Winkelgeschwindigkeit zur Zeit-
achse, die mit der Nennkreisfrequenz rotiert. Man
erkennt, dass Phasen- und Frequenzmodulation
immer miteinander verkniipft auftreten. Der Unter-
schied zwischen den beiden besteht darin, dass bei
der Phasenmodulation der Ablauf des Phasenwinkels
¢ direkt dem Modulationssignal proportional ist,
wihrend bei Frequenzmodulation die Abweichung
des Momentanwertes der Frequenz von ihrem Mittel-
wert (Nennwert) proportional dem Momentanwert
der Modulationsschwingung sein soll.Letzteresbedingt
eine entsprechende Winkelgeschwindigkeit des Zeigers
gegeniiber seiner Ruhelage. Betrachtet man nur
Modulation mit harmonischen Schwingungen, so ist
bei Phasenmodulation der Ausschlag des Zeigers, der

Fig. 15. Zeigerdiagramm fiir frequenz- und phasenmodulierte
Schwingungen

Phasenhub @, von der Modulationsfrequenz unab-
hingig. Bei Frequenzmodulation hingegen wiirde bei
konstantem Phasenhub der Zeiger mit hgherer
Modulationsfrequenz immer rascher schwingen, was
auch eine grossere Frequenzabweichung, einen pro-
portional hoheren Frequenzhub ergibe. Damit der
Frequenzhub der gleiche bleibt, muss also mit wach-
sender Modulationsfrequenz der Phasenhub ent-
sprechend kleiner sein.

Ein harmonisch frequenz- oder phasenmoduliertes
Signal ldsst sich auch wieder in eine Summe von
harmonischen Komponenten zerlegen. Die Analyse
ist aber nicht so einfach wie bei der amplituden-
modulierten Schwingung. Hs zeigt sich, dass unend-
lich viele Komponenten, deren gegenseitiger Abstand
gleich der Modulationsfrequenz ist, auf beiden Seiten
der Trigerfrequenz noétig sind. Thre Amplituden
besitzen in grosserem Abstand als etwa 1,3mal den
Frequenzhub jedoch nur noch sehr kleine Werte, so
dass man die weiter weg liegenden Teilschwingungen
praktisch vernachlissigen kann. Man kann also sagen,
dass ein frequenz- bzw. phasenmoduliertes Signal
einen Frequenzkanal beansprucht, dessen Breite
etwa um ein Drittel grosser ist als das Doppelte des
hochsten vorkommenden Frequenzhubes.
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