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Von W. Druey, Winterthur 538.56

Der Begriff Schwingung ist aus der Mechanik in
das Gebiet der elektrischen Stromkreise übernommen
worden. Man sagt von einem elektrischen Schwingungs -

kreis, es träten darin Schwingungen auf, oder kurz,
er schwinge, wenn die Stromstärke und die Spannung
sich in gleicher Weise zeitlich ändern wie die Koordinaten,

welche die Lage eines schwingenden Körpers
beschreiben. Mit Spannungen sind elektrische Felder,
mit Strömen magnetische Felder verknüpft, welche
die Schwingungen mitmachen. Schwingungen
kombinierter elektromagnetischer Felder treten ferner
aber auch losgelöst von elektrischen Leitern in Form
von elektromagnetischen Wellen auf. Dazu gehören
die Radiowellen, ferner das Licht und beispielsweise
die Röntgenstrahlen. Diese Gruppen unterscheiden
sich nur durch die Frequenz der Schwingung, mit
welcher die Wellenlänge im Zusammenhang steht.
Ein mechanisches Analogon zu den elektromagnetischen

Wellen sind die Schallwellen in Luft. Hier
führen die Luftteilchen Schwingungen um eine feste
Mittellage aus, wobei gleichzeitig auch der Luftdruck
an jeder Stelle um einen Mittelwert schwingt. Bei
den elektromagnetischen Wellen gibt es keine sich
bewegenden Teilchen, lediglich die elektrischen und
magnetischen Feldgrössen «schwingen».

Die harmonische Schwingung
Im Mittelpunkt aller Schwingungsformen steht die

sogenannte harmonische Schwingung. Es ist die
Schwingung, wie sie ein Pendel unter dem Einfluss
der Schwerkraft ausführt (streng genommen nur
bei sehr kleinen Amplituden in einer Ebene), oder
auch die Schwingung eines punktförmigen Körpers
mit einem Freiheitsgrad, der durch eine Feder
elastisch in seine Gleichgewichtslage zurückgezogen
wird. Elektrisch tritt eine harmonische Schwingung
in einem Schwingungskreis aus Spule und Kondensator,

wie er in Figur 1 dargestellt ist, auf. Der elek¬

trische Schwingungskreis kann mit einem mechanischen,

schwingungsfähigen Gebilde verglichen werden.
So wie bei einer Feder die Kraft proportional der
Längenänderung und die Beschleunigung des Körpers

proportional der Kraft ist, hat man beim
Schwingungskreis eine der Ladung proportionale Spannung,
ferner eine der Spannung proportionale
Änderungsgeschwindigkeit des Stromes. Spule und Kondensator

wollen wir uns zunächst verlustfrei denken.
Denkt man sich, bevor Spule und Kondensator

zusammengeschaltet werden, den Kondensator geladen

und den Strom naturgemäss noch Null, so beginnt
beim Zusammenschluss der Kondensator sich über
die Spule zu entladen. Der Strom steigt aber nur
allmählich; gemäss Induktionsgesetz ist durch die
Spannung eine bestimmte Wachstumsgeschwindigkeit

für den Strom festgelegt. Wenn der Strom seinen
Maximalwert erreicht hat, ist der Kondensator gerade
entladen. Der Strom kann nun aber aus den gleichen
Gründen, die für das nur allmähliche Anwachsen
verantwortlich sind, nicht plötzlich verschwinden, so

o
" §o

Fig. 1. Schwingungskreis

dass der Kondensator von jetzt an entgegengesetzt
aufgeladen wird. In dem Augenblick, in dem der
Strom auf Null gekommen ist, hat der Kondensator
gerade maximale Ladung und Spannung, jedoch
im umgekehrten Sinn wie bei Beginn des Vorganges.
In der Fortsetzung entlädt er sich rückwärts über
die Spule, wird aber anschliessend sofort wieder im
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ursprünglichen Sinne geladen. Schliesslich kann das
Spiel von neuem beginnen. Typisch für den Vorgang
ist, dass die Energie, die zu Beginn in Form von
elektrischer Energie im Kondensator steckte, im
Augenblick, in dem die Spannung durch Null geht
und der Strom maximal ist, ganz als magnetische
Energie in die Spule übergetreten ist. Der Energiebetrag,

der im Schwingungskreis steckt, pendelt
periodisch zwischen Kondensator und Spule hin und
her; die Gesamtenergie bleibt, wenn die
Schwingkreiselemente verlustfrei sind, unverändert.

Rechnet man bei der auf die geschilderte Weise
entstehenden Schwingung die Zeit vom Augenblick
der Vereinigung von Spule und Kondensator an, so
hat man für die Spannung u und den Strom i zu
schreiben :

u U cos cot i I sin cot

Der zeitliche Ablauf dieser Grössen ist in Figur 2

dargestellt; es sind harmonische Funktionen der Zeit.
Die Kurvenform ist für beide dieselbe; die zeitliche
Versetzung um eine Viertelsperiode entspricht einer
Phasenverschiebung von 90°. Ganz allgemein wird
eine harmonische Schwingung beliebiger Phasenlage
durch die Funktionen sin (cot + cp oder cos (cot + <p)

dargestellt. Die Werte u und i nennt man die Momen¬

tanwerte, U und I die Scheitelwerte oder Amplituden
von Spannung und Strom. Erwähnt sei auch, dass
sich der quadratische Mittelwert oder Effektivwert
bei einer harmonischen Schwingung als Quotient
Scheitelwert durch y'2 ergibt, co heisst die
Kreisfrequenz und hängt mit der eigentlichen Frequenz
oder Schwingungszahl f gemäss co 2 nï zusammen.
Zwischen der Periode T und der Frequenz f besteht
die Beziehung:

Überlässt man die Schwingung in einem
Schwingungskreis, so wie voranstehend dargestellt, sich
selbst, so entsteht die sogenannte Eigenschwingung
mit der Eigenfrequenz. Beim verlustfreien
Schwingungskreis ist die Eigenfrequenz gleich der Resonanz¬

frequenz. Letztere ist diejenige Frequenz, bei der
man, auch bei einem mitVerlusten behafteten
Schwingungskreis, maximalen Strom erhält, wenn man den
Kreis mit einer fremden Schwingung konstanter
Spannung in Serie zu Spule und Kondensator erregt.
Die Resonanzfrequenz ist durch die Induktivität der
Spule und die Kapazität des Kondensators bestimmt,
und es betragen:

\ LC
f"

2 rr \ L('
T° 2 ^ VLC

Zwei Zahlenbeispiele sollen die Grössenordnungen
veranschaulichen. Mit L 1 H und C 1 pi F (1 F
ist ein praktisch nicht vorkommender, sehr grosser
Kapazitätswert) beträgt T0 6,28 ms, f0 159 Hz.
Ins Gebiet der Hochfrequenz kommt man mit L
100 «H, C 100 pF: T0 0,628 ms, f0 1,59 MHz.

Lage der Zeitachse
im Augenblick

t =0

Den Ablauf einer harmonischen Schwingung kann
man graphisch dadurch erhalten, dass man einen
feststehenden Zeiger auf eine mit der
Winkelgeschwindigkeit co rotierende sogenannte Zeitachse
projiziert. In Figur 3 ist die Länge der Projektion des

Zeigers I gleich dem Momentanwert : i I • sin cot.

Die « Zeitachse» steht im Augenblick t 0 vertikal,
also in Richtung der Ordinatenachse. u U • cos cot
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erhält man gemäss Figur 4, indem man den Zeiger
der Länge U vertikal stellt, die Zeitachse im übrigen
gleich rotieren lässt, wie in Figur 3.

Die harmonische Schwingung verdankt ihre zentrale
Bedeutung der Tatsache, dass sie die Schwingungsform

ist, mit der ein verlustfreier Schwingungskreis,
bestehend aus nur einer Spule und einemKondensator,
schwingt. Ein Schwingungskreis ist nur mit einer
einzigen harmonischen Schwingung ganz bestimmter
Frequenz in Resonanz. Dazu ist die harmonische
Schwingung durch eine besondere geometrische und
mathematische Eigenschaft gekennzeichnet : die Steilheit

der Kurve, für alle Kurvenpunkte über der jeweiligen

Abszissenstelle aufgetragen, ergibt wiederum
einen harmonischen Kurvenverlauf. Mathematisch
ausgedrückt ist der Differentialquotient der harmonischen

Funktion ebenfalls eine harmonische Funktion.
Das Analoge gilt naturgemäss für das Integral. Dieser
Umstand hat zur Folge, dass beim Anlegen einer
harmonisch verlaufenden Spannung an eine beliebige
Kombination linearer Schaltelemente (Widerstände,
Spulen und Kondensatoren) im eingeschwungenen
Zustand immer ein harmonischer Strom entsteht
und, umgekehrt, bei harmonischem Strom die Spannung

ebenfalls harmonische Kurvenform besitzt.

Frequenz und Wellenlänge
Bei den elektromagnetischen Schwingungen in

Form von Wellen ist der Zusammenhang zwischen
Frequenz bzw. Schwingungsdauer, Wellenlänge und
Aushreitungsgeschwindigkeit festzuhalten. Besonders
einfach ist das Bild bei der ungedämpften ebenen
Welle harmonischer Form. Eine ebene Welle ist eine
solche, bei welcher im selben Zeitmoment für alle
Punkte von Ebenen senkrecht zur Ausbreitungsrichtung

jeweilen der gleiche Feldzustand besteht.
Variiert an jedem Ort die Feldgrösse, zum Beispiel
die elektrische Feldstärke E, in Funktion der Zeit
harmonisch, so ergibt sich unter der Wirkung der
konstanten Wellenfortpflanzungsgeschwindigkeit eine
harmonische örtliche Verteilung der betreffenden
Feldgrösse. Figur 5 stellt eine solche örtliche Verteilung

für einen bestimmten Zeitmoment dar. Die Welle
laufe mit der Geschwindigkeit c in Richtung der
wachsenden Koordinate x. An jedem Ort ist jeweilen

Fig. 5. Harmonische Welle
c Wellengeschwindigkeit
A Wellenlänge

gerade eine Periode abgelaufen, wenn das Wellenbild
um die Strecke A, die Wellenlänge, weitergewandert
ist. Daraus erhält man den Zusammenhang:

c • T A oder A f f • A — c
f A

Man kann aid' Grund der letzten Formel auch so

überlegen: pro Zeiteinheit, pro Sekunde, gehen f
Wellenlängen an einer bestimmten Stelle hindurch,
wobei die Welle gerade die Strecke entsprechend der
Zahl c zurückgelegt hat.

Für die meisten praktischen Zwecke setzt man für
die Lichtgeschwindigkeit mit genügender Genauigkeit

c 300 000 km/s. Einer Frequenz von 1 MHz
entspricht daher eine Wellenlänge von 300 m, und
bei 1000 MHz errechnet man 0,3 m. Eine
elektromagnetische Strahlung mit einer Wellenlänge von
600 nm 000- 10~9 m ist orangefarbiges Licht, die
entsprechende Frequenz beträgt 500 • 1012 Hz
Fünfhundertmillionen MHz.

Der erläuterte Zusammenhang zwischen Frequenz
und Wellenlänge gilt für jede Art Wellen, insbesondere
also auch für Schallwellen. Die Ausbreitungsgeschwindigkeit

von Schallwellen beträgt in Luft bei 20° C

rund 340 m/s, so dass zu einer Frequenz von 1000 Hz
eine Wellenlänge von 0,34 m gehört.

Gedämpfte harmonische Schwingung

Die Verluste bei den Schaltelementen eines

Schwingungskreises bewirken, dass die Eigenschwingung

mehr oder weniger rasch abklingt; es entsteht
in Wirklichkeit also keine rein harmonische, sondern

eine gedämpfte harmonische Schwingung. Ein
Beispiel ist in Figur 6 dargestellt. Der mathematische
Ausdruck für die abklingende Schwingung ist :

u U • e
1-4

• cos wet

Die Dämpfungskonstante a ist um so grösser, je
grösser die Verluste des Schwingungskreises sind.

Die Schwingung ist nicht mehr periodisch, weil ja
die Amplitude dauernd abnimmt. Wegen der jedoch
nach wie vor periodischen Nulldurchgänge ist trotzdem

eine Eigenfrequenz fe definiert. Die Verluste
bewirken, dass die Eigenfrequenz etwas niedriger als
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die Resonanzfrequenz ist, bei geringen Verlusten aber
nur verschwindend wenig. Sind die Verluste
allerdings sehr gross, so entsteht überhaupt keine Schwingung

mehr; eine einmal eingetretene Störung hat im
Stromkreis einen sogenannten aperiodischen
Ausgleichsvorgang zur Folge.

Fourier-Zerlegung nichtharmonischer Schwingungen
Neben den harmonischen Schwingungen sind

periodische Schwingungen beliebiger anderer Form denkbar.

Eine harmonische Schwingung kann z. B. in
einem Verstärker verzerrt werden und gegenüber
ihrer ursprünglichen Form mehr oder weniger deformiert

sein. Es ist praktisch übrigens gar nicht möglich,

eine absolut reine harmonische Schwingung
herzustellen. Von grosser Bedeutung sind einige besondere

geometrische Formen, deren Idealverlauf praktisch

allerdings ebenfalls nicht realisierbar ist. Die
beiden wichtigsten sind die in Figur 7 dargestellte
Sägezahnform und die Impulsform in Figur 8.

So

H

Fig. 7. Sägezahnschwingung

Das Hauptanwendungsgebiet sägezahnförmiger
Signale ist die zeitlineare Ablenkung und
Wiederrückführung von Elektronenstrahlen in
Kathodenstrahlröhren (Oszillographen, Fernsehbildröhren usw.
Impulse werden bei der Impulsmodulation verwendet
wovon das Radar eine Anwendung ist, ferner als

Synchronisiersignale, zum Beispiel beim Fernsehen.
Beide Signalformen können, wie erwähnt, nicht in

reiner Form erzeugt werden. Bei den Rechteckimpulsen
sind die Flanken nicht unendlich steil zu erhalten,

die Ecken sind in Wirklichkeit abgerundet. Bei der
Sägezahnschwingung wird der Anstieg nicht- linear
erhalten, wie er häufig sein sollte. Dass keine unendlich

steilen Flanken auftreten können, wird sofort
klar, wenn man bedenkt, dass bei einer plötzlich
springenden Spannung die immer vorhandenen Streu-
kapazit-äten unendlich schnell aufgeladen werden

Ti

Fig. 8 Rechteckimpulsschwingung
T Periode
Tj Impulsdauer

müssten, was einen unendlich grossen Strom
erforderte. Müsste andererseits ein Strom plötzlich von
einem Wert auf einen anderen wechseln, so würde
das infolge der unvermeidbaren Kreisinduktivitäten
eine unendlich grosse Spannung bedingen. Die
Unmöglichkeit, die Idealform herzustellen, geht aber
auch aus den folgenden eminent wichtigen Betrachtungen

hervor.
Der Mathematiker Fourier 1768... 1830)hat gezeigt,

dass man jede periodische Funktion, sofern sie

eindeutig und stetig ist, in eine Reihe von harmonischen
Komponenten zerlegen kann, oder dass man umgekehrt

eine periodische nicht harmonische Funktion
als Summe von harmonischen Komponenten erhalten

kann. Die Frequenzen dieser Komponenten sind
eine Grundfrequenz und deren ganzzahlige Vielfache.
Die Grundfrequenz entspricht der Periode des zu
analysierenden Vorganges :

1

fl t
Die oberen Harmonischen oder Oberwellen haben die
Frequenzen 2fj, 3f1;...nf1;... Um die letzten
Feinheiten wiederzugeben, würde es in der Regel unendlich

viele Oberwellen brauchen, deren Frequenzen
also bis f OC gehen müssten. Das ist die andere
Formulierung für den Grund, warum die geometrische
Idealform der Rechteckimpuls- und Sägezahnschwingungen

praktisch nicht erreichbar ist. Neben den
harmonischen Komponenten ist noch der Mittelwert
anzuführen, dessen Grösse von der Lage des Signalbildes

in bezug auf die Abszissenachse abhängt.
Die Analyse der beiden Signalformen in den Figuren

7 und 8 führt zu den folgenden Fourier-Reihen.

rp j 2 /
Für die Impulsform wird mit a

1

ß>i 2 n fi, p : s(t) S„ a + sin n a cos coit
T T ti \ 2

1 1

-j- sin 2.7« cos 2 (0{ t -j- sin 3.7« cos 3 <eL t -f-
2 3

Für die Sägezahnschwingung, und zwar im Spezialfall mit T, 0, gilt:

s (t)
' 0 / — 4- sin out —— sin2coit 4- sin 3ont —
71 \ 2 2 3 4

sin 4 coi t -j-
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Pig. 9. Amplitudenspektrum der Rechteckimpulsschwingung nach
T 1

Figur 8 mit a ~ 0,3 bis 20 f,, wobei fj ^

Die Fourier-Zerlegung zeigt, dass ein nicht harmonisches

Signal aus einem ganzen Spektrum harmonischer

Schwingungen zusammengesetzt ist. In Figur
9 ist ein solches Amplitudenspektrum, analog den
Linienspektren in der Optik, für das
Rechteckimpulssignal mit a 0,3 bis zur 20. Harmonischen
aufgetragen. Die Höhe der vertikalen Striche
entspricht der Amplitude der betreffenden Komponenten.

Man folgert aus der Fourieranalyse auch,
dass bei der Übertragung, Verstärkung, Wiedergabe
usw. eines solchen Signals alle die zugehörigen
Komponenten amplituden- und phasengetreu verarbeitet
werden müssen, wenn das Signal keine Verformung
erleiden soll. Das ganze Spektrum kann ein sehr
weites Frequenzgebiet umfassen; durch die
Übertragung wird daher unter Umständen ein sehr breites
Frequenzband belegt.

Figur 10 zeigt, wie das Signal aussieht, wenn von
der Reihe der Fourierkomponenten bei der
Rechteckimpulsschwingung mit T, T/2 bloss diejenigen
bis f 5f, berücksichtigt werden. In diesem Fall
von a 0,5 werden übrigens alle Komponenten mit
geradzahligen Vielfachen der Grundfrequenz Null,
es verbleiben also nur die ungeraden Harmonischen.

Fig. 10. Ausschau der Rechteckimpulsschwingung mit a
Tx

0,5, wenn von den Fourier-Komponenten nur diejenigen
bis fn 5 h berücksichtigt werden

Auch die Schwingungen, die in der Musik als Klänge
bezeichnet werden, lassen sich nach Fourier zerlegen.
Die oberen Harmonischen heissen hier Obertöne ; ihr
Vorkommen und ihre Stärke machten die Klangfarbe
aus. Ebenso unterscheiden sich die Vokale der
Sprache durch ihren relativen Gehalt an Grundton
und Obertönen.

Geräusche sind keine periodischen Schwingungen
mehr. Man kann sie zwar ebenfalls noch in ein Spektrum

von harmonischen Teilschwingungen zerlegen.
Es zeigt sich jedoch, dass man unendlich viele Komponenten

unendlich kleiner Amplituden braucht, wobei
alle Frequenzen eines gewissen Bereiches mehr oder
weniger gleichmässig beansprucht werden. Man erhält
mit anderen Worten ein kontinuierliches Spektrum,
an Stelle eines solchen von diskreten Schwingungen,
ganz analog dem kontinuierlichen Spektrum zum
Beispiel des weissen Lichtes in der Optik. Die Phänomene

sind eben auch, vom Standpunkt der Schwingungen

aus betrachtet, die gleichen.
Die Verzerrung von harmonischen Signalen bei

der Übertragung durch nichtlineare Schaltelemente,
wie etwa die Elektronenröhren in den Verstärkern,
bewirkt das Entstehen von Oberwellen. Man kann
die Stärke ihres Auftretens als Mass für die
Verzerrung benutzen. Das Verhältnis des Effektivwertes
der Gesamtheit aller entstehenden Oberwellen zum
Effektivwert des übertragenen Signales selbst heisst
Klirrfaktor. Dieser Klirrfaktor darf bei
Übertragungsanlagen für Sprache und Musik nicht zu gross
sein, wenn die Wiedergabe als gut gelten soll. Er ist
allerdings nicht das einzige Kriterium für die Güte.

Modulierte Schwingungen

Von einer modulierten Schwingung spricht man,
wenn einem Trägersignal, einer ursprünglich
harmonischen Schwingung, eine Nachricht aufgedrückt
wird. Das kann auf zwei grundsätzlich verschiedene
Arten erfolgen. Bei der Amplitudenmodulation wird
die Amplitude der Schwingung in der gewünschten
Weise variiert, im einfachsten Fall so, dass die
Amplitudenänderung proportional dem Ablauf des
niederfrequenten Nachrichtensignals ist. Bei der Frequenzbzw.

Phasenmodulation beeinflusst man die Frequenz
oder die Phase der Trägerschwingung in analoger
Weise, wobei die Amplitude konstant bleibt.

Figur 11 stellt ein mit einer harmonischen Schwingung

amplitudenmoduliertes Signal dar. Der
mathematische Ausdruck dafür ist:

s S 1 + m • sin /it) sin cot

Es bedeuten darin : co 2 jt f f Trägerfrequenz
fi 2 n v v Modulationsfrequenz

m Modulationsgrad
Der Modulationsgrad kann naturgemäss nur Werte

zwischen 0 und 1 besitzen.
Um zu zeigen, dass ein so moduliertes Signal in

drei harmonische Komponenten aufgelöst werden
kann, führen wir folgende trigonometrische Umformung

durch:

-g cos 3* + ^ cos 5*
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s S 1 + m • sin fit) sin cot S • sin cot

-f mS sin/et • sin cot

m S
S • sin cot -f- cos (co - /<) t - cos (co -|- fi) t

Fig. 11. Harmonisch amplitudenmodulierte Schwingung

Die drei Komponenten sind die Trägerschwingung
co

mit der Trägerfrequenz f --— und die beiden Seiten-
2 71

Schwingungen mit den Seitenfrequenzen f
co - fl

2 71

CO —|- flund f + v In Figur 12 sind sie als Spektrum
2 71

aufgetragen. Die Frequenzen der Seitenschwingungen
liegen symmetrisch unterhalb und oberhalb der
Trägerfrequenz, von dieser um die Modulationsfrequenz

v entfernt.

Trägeramplitude

Amplitude der
Seitenschwingungen

m
2

m
2

V
/ I V

I

V

f-v hv

Uhrzeiger-, den andern im Gegenuhrzeigersinn. Gegenüber

der Zeitachse entstehen so die Winkelgeschwindigkeiten

co - /Li und co + p.. Die Lage der
Seitenschwingungszeiger für den Augenblick t 0 ergibt
sich aus den entsprechenden Gliedern der
Schwingungssumme; sie ist in Figur 13 eingezeichnet. Die
beiden heben sich in diesem Moment gegenseitig auf.
Im Ablauf der Zeit bilden sie jedoch einen veränderlichen

Zusatzzeiger gleicher Richtung zum Trägerzeiger.

Der resultierende Zeiger variiert seine Länge
dadurch in harmonischer Weise im Rhythmus der
Modulation, und auf der mit Trägerfrequenz
entsprechend rasch rotierenden Zeitachse entsteht durch
Projektion in üblicher Weise der Momentanwert.

Fig. 12. Spektrum der harmonisch amplitudenmodulierten
Schwingung

Das Zusammenspiel der drei Teilschwingungen zur
modulierten Schwingung erkennt man sehr anschaulich

mit Hilfe eines Zeigerdiagramms. In Figur 13

stellt S den Zeiger für die Trägerschwingung dar.
Die Zeitachse rotiere entsprechend der Trägerfrequenz
f mit der Winkelgeschwindigkeit co. Zum Trägerzeiger
sind vektoriell die Zeiger für die Seitenschwingungen
zu addieren. Da diese letzteren jedoch nicht die
gleiche Frequenz wie der Träger besitzen, lässt man
ihre Zeiger relativ zum Trägerzeiger mit der
Winkelgeschwindigkeit fi 2 7iv umdrehen, den einen im

Fig. 13. Zeigerdiagramm der harmonisch amplitudenmodulierten
Schwingung

Ist das Modulationssignal kein reiner Ton, sondern
wird mit Sprache, Musik oder Schwingungen, wie
sie beim Abtasten von Bildern beim Fernsehen
entstehen, moduliert, so liegt die Gesamtheit aller
Seitenschwingungen, entsprechend den Komponenten

im Modulationsfrequenzbereich, in den
Seitenbändern unterhalb und oberhalb der Trägerfrequenz.
Figur 14 vermittelt davon ein Bild. Die Amplitude
der Komponenten in den Seitenbändern ist natürlich

von Fall zu Fall sehr verschieden, in der Figur
ist die Höhe willkürlich gezeichnet. Das amplitudenmodulierte

Signal beansprucht eine totale
Frequenzbandbreite, die das Doppelte der höchsten
Modulationsfrequenz beträgt.

Hl

Träger

Seitenbänder

Fig. 14. Spektrum der mit einem Tongemisch amplitudenmodu¬
lierten Schwingung
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Der Nachrichteninhalt ist im Grunde schon durch
ein Seitenband und die Kenntnis der Trägerfrequenz
gegeben. Beim Einseitenbandverfahren, das
hauptsächlich bei der Trägerfrequenztelephonie und der
drahtlosen Telephonie Verwendung findet, wird
dementsprechend nur ein isoliertes Seitenband
übertragen. Der Träger wird am Empfangsort wieder
zugesetzt, und spezielle Schaltungen gestatten es,
die Nachricht völlig unverzerrt zurückzugewinnen.
Durch dieses Verfahren spart man die Hälfte der für
normale Modulation benötigten Frequenzkanalbreite
ein. Ausserdem wird weniger Sendeleistung benötigt.
Auch beim Fernsehen wendet man nach den CCIR-
Normen, obwohl weniger rigoros, dieses Verfahren
an, indem zur Einsparung von Bandbreite ein Seitenband

wenigstens teilweise unterdrückt wird. Trotzdem

ist die erforderliche Bandbreite noch sehr gross,
und man versteht, dass man solche
Nachrichtenschwingungen nur entsprechend hohen Trägerfrequenzen

aufmodulieren kann.
Ein impulsförmig moduliertes Signal beansprucht

naturgemäss ebenfalls eine grosse Bandbreite, besonders

wenn die Flanken der Impulse sehr steil sein
sollen. In gewissen Nachrichtensystemen wird mit
Hilfe der Impulsmodulation eine Art doppelte Modulation

durchgeführt. Der Träger wird mit Impulsen
moduliert, die ihrerseits bereits durch die Nachricht
moduliert sind, indem ihre Amplitude, ihre Breite,
ihre Lage oder ihre Häufigkeit (Impulswiederholungs-
frequenz) vom Momentanwert des niederfrequenten
Nachrichtensignals abhängig ist.

Frequenz- und Phasenmodulation sind beide durch
die Frequenzabhängigkeit der Phase </ im Ausdruck

s S • sin (eu t -\- (p)

gekennzeichnet.
Die Nenn- oder Trägerkreisfrequenz o> ist auch bei

Frequenzmodulation konstant. Die Verhältnisse und
insbesondere der Unterschied zwischen Frequenz-
und Phasenmodulation lassen sich wiederum am
einfachsten anhand eines Zeigerdiagramms erläutern.

In Figur 15 bleibt die Länge des Zeigers S

unverändert, er pendelt aber um seine Mittellage,
so dass cp eine Funktion der Zeit ist. Dadurch variiert
auch die relative Winkelgeschwindigkeit zur
Zeitachse, die mit der Nennkreisfrequenz rotiert. Man
erkennt, dass Phasen- und Frequenzmodulation
immer miteinander verknüpft auftreten. Der Unterschied

zwischen den beiden besteht darin, dass bei
der Phasenmodulation der Ablauf des Phasenwinkels
<p direkt dem Modulationssignal proportional ist,
während bei Frequenzmodulation die Abweichung
des Momentanwertes der Frequenz von ihrem Mittelwert

(Nennwert) proportional dem Momentanwert
der Modulationsschwingung sein soll.Letzteresbedingt
eine entsprechende Winkelgeschwindigkeit des Zeigers
gegenüber seiner Ruhelage. Betrachtet man nur
Modulation mit harmonischen Schwingungen, so ist
bei Phasenmodulation der Ausschlag des Zeigers, der

Fig. 15. Zeigerdiagramm für frequenz- und phasenmodulierte
Schwingungen

Phasenhub 0, von der Modulationsfrequenz
unabhängig. Bei Frequenzmodulation hingegen würde bei
konstantem Phasenhub der Zeiger mit höherer
Modulationsfrequenz immer rascher schwingen, was
auch eine grössere Frequenzabweichung, einen
proportional höheren Frequenzhub ergäbe. Damit der
Frequenzhub der gleiche bleibt, muss also mit
wachsender Modulationsfrequenz der Phasenhub
entsprechend kleiner sein.

Ein harmonisch frequenz- oder phasenmoduliertes
Signal lässt sich auch wieder in eine Summe von
harmonischen Komponenten zerlegen. Die Analyse
ist aber nicht so einfach wie bei der amplitudenmodulierten

Schwingung. Es zeigt sich, dass unendlich

viele Komponenten, deren gegenseitiger Abstand
gleich der Modulationsfrequenz ist, auf beiden Seiten
der Trägerfrequenz nötig sind. Ihre Amplituden
besitzen in grösserem Abstand als etwa l,3mal den
Frequenzhub jedoch nur noch sehr kleine Werte, so
dass man die weiter weg liegenden Teilschwingungen
praktisch vernachlässigen kann. Man kann also sagen,
dass ein frequenz- bzw. phasenmoduliertes Signal
einen Frequenzkanal beansprucht, dessen Breite
etwa um ein Drittel grösser ist als das Doppelte des
höchsten vorkommenden Frequenzhubes.

Adresse des Verfassers: Prof. Dr. W.Druey, Büelweg 5, Winter-
thur.
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