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Pliaseiidrehende Netzwerke*)
Von Wolf S. Ehrenberg, Zurich

Zusammenfassung. Das Problem der Phasendrehung eines
relativ breiten Frequenzbandes, wie sie für eine Art der Ein-
seitenbandmodulation benötigt wird, ist in den letzten Jahren
wiederholt behandelt worden. Hier wird nach Besprechung einer
bekannten, allgemeinen Berechnungsmethode und ihrer praktischen

Anwendungsmöglichkeiten eine Fehlerrechnung
durchgeführt. Diese gibt Aufschluss über die Auswirkungen der Toleranz

wirklicher Komponenten auf Phasendrehung und Amplitude

und somit auf die Güte der Unterdrückung des einen
Seitenbandes.

Der Aufwand für eine allgemein durchgeführte Fehlerrechnung

würde viel zu gross werden; hingegen gewährt bereits eine
einfachere Betrachtung an Hand eines Beispieles einen ziemlich
guten Einblick in die Fehlerverhältnisse im allgemeinen.

Die Toleranz der Komponenten beeinflusst die Unterdrückung
auf mannigfache Weise, und zwar durch Phasen- und Amplitudenfehler,

die ihrerseits «symmetrisch» und «asymmetrisch» sind.
Es müssen somit vier Fehlerrechnungen durchgeführt werden.
Es zeigt sich dabei, dass die erforderlichen Toleranzen durchaus
realisierbare Werte annehmen.

Nach einem kritischen Vergleich der verschiedenen
Fehlerquellen wird noch die Abhängigkeit der Toleranzempfindlichkeit
vom Schaltungsgrad behandelt und damit die Untersuchung etwas
verallgemeinert.

1. Einleitung
Die für die übliche Einseitenbandmodulation

erforderlichen, hochwertigen Bandfilter stellen einen
wesentlich verteuernden Faktor dar. Auf der Suche
nach einer grundsätzlich anderen Lösung befasst
man sich seit einiger Zeit mit einem System, bei
dem Sprachband und Träger je einer 90°-Phasen-
drehung unterzogen werden [1, 4, 5, 6]**). Die Arbeitsweise

geht aus folgendem Blockschema hervor (Fig.l).
Während eine Phasendrehung für den Träger trivial

ist, bedarf die Drehung eines ganzen Bandes besonderer

Massnahmen. Die allgemeine Berechnung der
dazu erforderlichen Schaltung ist durch die Arbeit

*) Die vorliegende Arbeit entstand im Institut für
Fernmeldetechnik an der Eidgenössischen Technischen Hochschule
in Zürich.

**) Die in eckigen Klammern stehenden Ziffern beziehen sich
auf die Bibliographie am Ende des Beitrages.

621.302.2

Résumé. Le problème de la rotation de la phase dans une bande
de fréquences relativement large comme celle dont on a besoin

pour un genre de modulation à bande latérale unique a été souvent
traité ces dernières années. Après avoir discuté une méthode
générale de calcul connue et ses possibilités d'application
pratique, on a effectué un calcul d'erreur. Celui-ci renseigne sur les
effets de la tolérance des composantes actives sur la rotation de la
phase et sur Vamplitude, partant, sur le degré d'affaiblissement
d'une des bandes latérales.

Le travail qu'exigerait un calcul d'erreur général serait
beaucoup trop considérable; en revanche, des considérations
simples basées sur un exemple permettent de se faire une idée
des erreurs qui interviennent.

La tolérance admise pour les composantes influence de diverses
manières Vaffaiblissement d'une bande par des erreurs de phase
et d'amplitude symétriques et asymétriques. Il faut donc faire
quatre calculs d'erreurs. On constate alors que les tolérances
exigées prennent des valeurs parfaitement réalisables.

Après avoir fait une comparaison critique des diverses sources
d'erreurs, on étudie la sensibilité à la tolérance en fonction du
degré du réseau électrique afin de généraliser les résultats obtenus.

von H. J. Orchard [1] (siehe auch Darlington [4])
möglich geworden. Diese Schaltungen können sowohl
durch LC- als auch durch iüL-Glieder realisiert
werden; wir werden uns nur mit füC-Gliedern befas-

Î

Fig. 1. Prinzipschema der Einseitenbandmodulation durch 90°-
Phasendrehung.
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sen und Induktivitäten vermeiden. Hierfür bedienen
wir uns eines weiteren Artikels von Orchard [2]; die
beiden verwendeten Arbeiten sind in [8] gekürzt
wiedergegeben.

Nach einer Erklärung der Methoden von Orchard
wird hier über die Ergebnisse einer Untersuchung
berichtet, die in erster Linie die erforderlichen
Toleranzen für die Komponenten der phasendrehenden
Netzwerke feststellen sollten. Diese Untersuchung
wurde 1952 am Institut für Fernmeldetechnik der
ETH auf Anregung von Herrn Prof. Heinrich Weber

durchgeführt.

2. Allgemeine Realisierung einer 90°-Phasendifferenz
nach [1]

Das Sprachband soll in zwei um 90° gegeneinander
verschobenen Kanälen aufgespalten werden; hierzu
sind zwei Allpass-Netzwerke notwendig. Die Bezeichnungen

nach [1] sind:
/a untere Grenzfrequenz
/b obere Grenzfrequenz
<w0 Bezugskreisfrequenz \! (oa.wh,
R0 Wellenwiderstand Abschlusswiderstand

Bezugswiderstand,
ZT Transferimpedanz (/eiI1/Jaus,
<I> Abweichung der Phasendifferenz von 90°,
d>m Höchstwert von 0,
ojn Nullstellen von tg (0/2),
n Grad des Netzwerkes Zahl der Pole,
V j«-

Für die elliptischen Funktionen :

k
k'
K
K'
sn
cn
dn

Modul,
komplementärer Modul \Jl-k2
reelle ^-Periode
imaginäre %-Periode,
elliptischer Sinus,
elliptischer Cosinus

a/c^b>

Y l-&2sn2

Orchard bestimmt zunächst die Abweichung von
der 90°-Phasendifferenz. Allgemein wird:

tg 0/2
(T — 1

ma -

ma

tg0/2 yfcj cn 2n K
U ; kx

Wdn U\k

([!]—IIa)

([!]—IIb)

P Vk'

cn

sn

2 <7 ± 1

2n
K-k

2(7 + 1

2n
• K\k

([1]-22)

Wir wissen, dass 1) sn2 + cn2 1 und dass 2) die
Pole symmetrisch um m0 verteilt sind (im logarithmischen

Maßstab). Es folgt daraus, dass nur die
sn-Werte berechnet zu werden brauchen, und zwar

n-\
nur diejenigen für a<— Bei ungeradem n ist m0

2

(die Pole sind auf m0 bezogen bzw. m0 1 für die
allgemeine, normierte Rechnung) selbst ein Pol.
Zur Erzielung der erforderlichen Genauigkeit wird
der elliptische Sinus mit Hilfe der Landen-Transformation

[1] bestimmt.
Kurven für den maximalen Phasenfehler <Pn,vs.

der Bandbreite 1 jk' a>b/a>a, mit dem Schaltungsgrad

n als Parameter, sind in [1] berechnet worden
und hier wiedergegeben (Fig. 2).

wobei die Nullstellen das Negative ihrer Pole sind.
Die rationellste Annäherung an eine Konstante (in
diesem Falle Null) wird bei einer Tschebbyscheff-
schen Verteilung der Abweichungen erreicht. Folgende
parametrische Gleichungen für 0 und m führen
zu dem gewünschten Verlauf:

Ä'i

Schliesslich erhält man die Pole der Transferimpedanz

ZT:

12 5 10 20 50 100 200 500 1000

(k'r1
Fig. 2. Maximaler Phasenfehler in Funktion der Bandbreite,

mit n als Parameter (aus [1] entnommen)

Der zulässige Phasenfehler und die Bandbreite
bestimmen somit n\ n und k', die reziproke
Bandbreite, bestimmen zusammen die Pole, aus welchen
die Transferimpedanzen folgen :

z (P + Pl) (P + PS) (P + P-zm+j)

(P—Pl) (P—P3) (P—Pim-Y i)

^ (P + Pi) (P+ Pi) (P+ P'im)
ZjTo —

(P~Pî) iP—Pi) iV—Pv»)

3. Realisierung von allgemeinen RC-Kreuzgliedern
nach [2]

W. Gauer hat gezeigt, dass RG-Gebilde ebenso wie
AG-Gebilde als kanonische Zweipole aufgebaut werden

können [3], Eine darauf basierende Methode
zur Verwirklichung von Netzwerken vorgeschriebener
Frequenzabhängigkeit ist in [2] angegeben. Da diese
Methode auf Kreuzglieder hinausläuft, ist sie für
unseren Zweck (Allpässe!) sehr geeignet. Wir geben
hier die Ergebnisse von [2] wieder:

Aus der Transferimpedanz Zt erhält man die
Koeffizienten yvl y21 der Leitwertmatrix:

2/i2 1/Zt ([2]-4)
Indem man yvi in Partialbrüche zerlegt und alle

Anteile (Residua) positiv macht, erhält man yu.
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Wenn man einen symmetrischen Vierpol wählt,
folgt y22 ylv Die Leitwerte und Impedanzen
ergeben sich aus der Matrizenrechnung:

YA y [I + ?7l2 'S-*
A Zu + Z12

Yb yix yi2 Zb zn zv2

Den kleineren der Reihenwiderstände beider Zweige
spaltet man ab, bezeichnet ihn mit R0 und setzt ihn,

als Bezugswiderstand, gleich 1. Alle anderen Grössen
müssen entsprechend transformiert werden. R0
übernimmt nun die Rolle der Abschlusswiderstände laut
Fig. 3.

4. Einfluss von Phasen- und Amplitudenfehlern auf
die Unterdrückung des einen Seitenbandes

Wir sahen, dass eine 90°-Phasenverschiebung nur
angenähert erreicht werden kann. Da ausser einer
theoretischen Phasenabweichung noch mit den Phasen-

und Amplitudenfehlern gerechnet werden muss,
die durch die Toleranzen wirklicher Komponenten
bedingt sind, bestimmen wir im folgenden die
Unterdrückung in Funktion beider Fehler. Im Idealfall
sind beide Modulationsspannungen um 90°
gegeneinander versetzt und haben gleiche Amplitude:

1

(l+Asinod) sin Qt liefert—A cos (co-ü) t-cos (co+Q)t

cos (co-Q) t+cos (co+Q)l

2

1

(1 + K cos cot) cos Qt liefert —K

Addition : K cos (co-Q) t
Wir wählen die eine der Ausgangsspannungen als

Bezugsspannung und schreiben den ganzen Phasen-
und Amplitudenfehler dem zweiten Allpass zu.

Mit den Bezeichnungen:
A relativer Amplitudenfehler
(P tot Phasenfehler (absolut) Summe von theo¬

retischem und toleranzbedingtem Fehler,
erhalten wir für

Fig. 3. Abspaltung von Abschlusswiderständen aus einem Kreuz¬
glied

2. Allpass — A[l+ d] [cos (cot —
2

1

1. Allpass — A[cos(o)—Q) t—cos (co-
2

-Q) t]

<t>u Qt) + cos (cot — <Z>tot + Qt)\

Für das Verhältnis von Summen- und Differenzspannungen ergibt sich :

[(1 + d) cos0tot + 1] cos (co — Q)t 1 + d) sin (a) — Q) t sin<£tot
M

[(1 + J)CO8 0U

Daraus folgt der Ausdruck für das Amplitudenverhältnis

und somit für die Unterdrückung U in dB :

(1)

ü 20 log
2 [1 + cos 0tot](l +d) +J2
2 [1 — cos <Ptot](l + A) + d2

Mit cos &t,
*2tot

erhalten wir die Näherungsformel:

U — 20 log 2

Mit a 0 ; 1 und n

1] cos (co + Q) t + (1 + d) sin (co -+- Q) t sin 0tot

5. Berechnung eines phasenverschiebenden Netzwerkes
Die Ausgangsgrössen sind : ¥ — 1/7 reziproke

Bandbreite,
(2) n 4 Grad der Schal¬

tung.
Die Schaltung besteht also aus zwei Kreuzgliedern

2. Grades. Die Werte der Grenzfrequenzen bzw. von
ct)0 können am Schluss der Rechnung eingesetzt werden

; sie sind für den Gang der Berechnung unwesentlich.

Für 0m folgt aus Fig. 2 der Wert von etwa 30'.
(3) Die zur Ermittlung der Pole notwendigen elliptischen

Funktionen werden wie folgt bestimmt:
4 sind die gesuchten n-Funktionen von der Form:

2(7+1
sn

Mit a )kn

2n
1 —V,

r i 3 1

A) sn —K;k
8

B) sn —K;k
8

p) sin 0,1951 e) sin

1 + k't
3

K ; k

— b) k'n vi — k\ c) sn (kn)
(1 +kn+i) sn (kn+i)

l+kn+r sn2(kn+1)

0,5556 kann die folgende Tabelle aufgestellt werden:
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k k' sn(iK;k) sn (§*;*)

0,1429 0,3955 0,8518
0,7501 0,6613 0,2354 0,6330
0,2038 0,9791 0,1970 0,5595
0,0106 0,9999 0,1951 0,5556

0,5239
P3=V7 •

o;8518
0,9185

Vi =V7

1,628; px

,145; p2

Vi
1

0,1628

0,6145
0,3955 * " p3

Somit ergeben sich als normierte Transferimpedanzen:

Zti

Zt2

(P + Pi) (P+Ps) (p + 0,1628) (p+1,628)
(P—Vi) (P—Vs)

(P+P2) (P+Pi)
(p—0,1628) (p—1,628)
(23 + 0,6145) (p+ 6,145)

(4a)

(4b)
{P—Vi) {P—Vi) (P—0,6145) {p—6,145)

Für die allgemeine Berechnung des Kreuzgliedes
aus einer Transferimpedanz 2. Ordnung benutzen
wir folgende Bezeichnungen (px, p3 sind dem 1.,

p2, p4 sind dem 2. Allpass zugeordnet) :

p& - steht für p1 oder p,,

pb - steht für p3 oder pi
Gemäss ([2]—4) : y12~l/ZT
Partialbruchzerlegung :

2(Pb + Pa) P 2(pb + Pa)
Vu — 1 +

V
(5)

{V\>—Pa) {V+ Va)
'

{Pb—Pa) (p + pb)

Dadurch, dass die Residua positiv gemacht werden,
folgt für yu:

2 {ph + Pa) p 2(2?b + Pa)
2/u

p
(6)

{Pb—Pa) (P + Pa) (Pb—Pa) (P + Pb)

Die Zweigimpedanzen sind:

1/ZP î/n + 2/12 ; l/Z, 2/11—2/12 (P parallel ; 5 serie)

Nach einer Partialbruchzerlegung, Abspaltung von
Abschlusswiderständen und einer Normierung bezüglich

i?0 1 folgen die Elemente der normierten
Zweigimpedanzen :

F
+ • -ffo(ß)Parallelkreis: Rv

Gv=-
F + 2

F-ph-co0-R0
(Farad)

Reihenkreis : Rs — R0 (ß)F

Cs
F

wobei: F 4

(F+ 2) • Pa-Wo-Po

Pb + Pa

Pb —Pa

(Farad)

Indem wir für und JR0 ihre Werte setzen und mit
/a anstatt mit co0 rechnen, erhalten wir die Elemente
(k' 1/7, R0 600 Ohm) (Fig. 4).

Nach früherem folgen daraus die cn-Ausdrücke
und sodann die Pole:

22,99/fjuF

115,8/fçjuF

Fig. 4. Ergebnis des berechneten Beispiels mit F 1/7 und
»i 4

6. Allgemeines zur Wahl der Schaltung

Das soeben berechnete Beispiel ist relativ einfach.
Theoretisch lassen sich beliebige Bandbreiten und
Genauigkeiten herstellen, indem man die Zahl der
Schaltelemente vergrössert. Mit dem Grad der
Schaltungen wächst aber nicht nur die Kompliziertheit der
Berechnungen, sondern auch die Zahl der
Fehlerquellen, bedingt durch die endliche Toleranz der
Elemente. Es erscheint daher vernünftiger, vor
allem die tiefen Frequenzen zu berücksichtigen, die
höheren dagegen einem Bandfilter zu überlassen,
das nunmehr nur bescheidenen Ansprüchen bezüg-

(7a)

(7b)

(7c)

(7d)
positiver Frequenzbereich

rx
Fig. 5. Prinzipieller Verlauf des theoretischen Phasenfehlers

in Funktion der Kreisfrequenz (aus [1] entnommen)
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lieh Flankensteilheit zu entsprechen hat. Oberhalb
/b (obere Grenzfrequenz) nimmt der Phasenfehler
stetig zu und geht asymptotisch gegen 90° (die Phase
somit gegen 0°), wie man aus Fig. 5 ersieht.

Durch Messung der Phasenfehler in Funktion der
Frequenz lässt sich die minimale Steilheit für das die
oberen Frequenzen übernehmende Bandfilter bestimmen,

ebenso dessen untere Grenzfrequenz. Eine
geeignete Verbindung beider Prinzipien könnte sich als
wirtschaftlicher erweisen, sowohl gegenüber der reinen
Bandfilter-, als auch gegenüber der reinen
Phasenverschiebungs-Unterdrückung.

Das symmetrische Kreuzglied kann grundsätzlich
zwei Arten von Fehlern aufweisen: 1. symmetrische
Fehler (bei Annahme vollkommener Symmetrie,
das heisst bei Identität der äquivalenten Zweige
sowie deren Fehler), und 2. asymmetrische Fehler
(bei der Annahme, dass ein Zweig korrekt sei und der
ihm äquivalente einen Fehler ihm gegenüber
aufweist).

Im folgenden werden, anhand des berechneten
Beispieles 4. Grades, die Phasen- und Amplituden-
fehler beider Arten in Funktion der normierten
Frequenz ///a (/a untere Grenzfrequenz) bestimmt.
Es ist noch zu bemerken, dass die asymmetrischen
Fehler fortfallen, sobald eine Sparschaltung
verwendet wird - siehe zum Beispiel Feldtkeller,
Vierpoltheorie.

7. Fehlerrechnung zu phasenverschiebenden Netzwer¬
ken 4. Grades

Die wirklichen Komponenten der aufgebauten
Kreuzglieder sind stets mit einer Toleranz behaftet.
Die Elemente weichen von den berechneten etwas ab ;

dadurch werden die Ausgangsspannungen in Phase
und Amplitude von den theoretischen Werten etwas
abweichen.

(F0-\-Rv) — a)2 C,Op Rv R0(7?0 A~Rs) + jco (Cs R~0-\-Cs Rs R0-\-Cv Rp R0-\-Cs Rp R0-\- Cs Rs Rp)

a) Der symmetrische Phasenfehler
Für das Kreuzglied 2. Grades lautet der Ausdruck

für die Betriebsdämpfung:

f/r. In
Ro o? Cs Cp Rp R0 Rs —i0J (— cs R> Ro—Cp Rp Ro +Cs Rp R0)

([8]—4)

Unter der Annahme konstanter Dämpfung (All-
pass!) folgt schliesslich aus dem Nenner:

2 B
d q> B\2 1

A 1 A U/ J

["dB dAl
[b a\ (Radian)

mit

cLB

B
Cs(Rp-Rs)

dCs

Cs
Cp Rp

(8)

dCp

Cr,

A 1-
B w

Ferner sind

d A 0)2CsCpRsR

A

co2 Cs Cp Rs Rp
Ca Rs — Cp Rp -f- Cs Rp)

1 -e/2 Cs Cp Rs Rv

dCs dC„
Cs

- +
Cp

di?s

Rs

dRr

RP

(9)

- Cs Rs
dRs

Rs
A Rp (Cg—Cp)

dRp

Rv (10)

— Cg Rs — Cp Rp + CsRp)

In diesem Stadium setzen wir die numerischen Werte unseres Beispieles ein und erhalten als Phasenfehler
eines Kreuzgliedes:

B

ir=A
wobei 1

B f\ÄJ
- x A : x

[
\dCs~+ U31 —

-x Cs 1—x
0,31

\dCp / x \aits / x
7ä?+ Î=;-°'")Â+ tau

ARs \dRp'2°k
ft)2 Cs Cr, Rs Rpp Jls -llp

A ist eine Grösse der Form (1 - k f2/fl) und besitzt
Nullstellen. Der Ausdruck vor der Klammer in (8)
verschwindet für A gegen 0:

2 B 2 AB lim / 2 A B \

J
(H)

Der Anteil von dB/B ist von / unabhängig, und sein
Produkt mit dem eben genannten Ausdruck
verschwindet daher ebenfalls. Es bleibt:

A 1 A-(-f A2 -h B2

UJ J

A^ 0 \A2+B2) 0 2AB dA
A2+B2' A

AJL
A2^B2

dA :

lim (AB \
A->Q\A2+B2J

• dA
B

• dA

Für dA erhalten wir

1. Kreuzglied: dA3 0,538-/2//2

2. Kreuzglied: IdA2\ 0,038-/2//2

r'dcsl dCpl dRsl
A

dRpp
J Cn

+
Cpi

H-
i?sj Rpi

"|dCs2 dCp2 df?s2 di?p2
l cS2

~T~

Cp2
~r

Rs2
1

Rpi

Bei A gegen 0 werden die Ausdrücke vor den Klammern gleich 1. Die beiden singulären Frequenzen sind:

r r J
0,038

j jh/U - y 1,365 (12a) /2//a 5,13 (12b)
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Für diese Frequenzen erhalten wir Bx sowie B2
gleich 3,48, und somit werden die Phasenfehler gleich :

(13a)

(13b)

d 9?i /1>2 — 0,575
dGsl dGpl

+
d Rn diüpj

GS1
+

CP1 Rn RPi

dç?2 /1)2 0,575
"

dGs2 d Cp2 d Rs2
+

d Rp2

gs2
+

Cp2
-f

K$2 Kp'i

oß

oß

0,

oß

0/3
0

.02
1

CP1

%

1,36
2 3

47
4 5 6 7

513

%

^S7

Fig. 6. Symmetrischer Phasenfehler: Beiträge der Elemente zum
Gesamtfehler, bezogen auf +1% Fehler je Element. Kurven,

die zueinander mittelpunktsymmetrisch sind, werden
durch eine gemeinsame Strichart gekennzeichnet; dies
gilt auch für folgende, ähnliche Abbildungen

Der maximale Fehler, als Summe der Absolutwerte,
sowie der wahrscheinliche Fehler, als Wurzel aus der
Summe der Quadrate nach Gauss, zeigen einen
von ///a praktisch unabhängigen Verlauf (Fig. 7).

Die Nullstellen von A sind somit ungefährlich.
Die Beziehungen (8) bis (11) wurden tabellarisch

punktweise ausgewertet. Wir erhalten schliesslich
eine Kurvenschar, welche die Beiträge der einzelnen
Elemente zum gesamten Phasenfehler der Schaltung
darstellt. Die Werte sind auf einen Fehler von 1%
für alle Komponenten bezogen. Der Beitrag eines
Elementes darf nur einfach bewertet werden und
nicht doppelt, wie man irrtümlicherweise aus dem
doppelten Auftreten jedes Zweiges schliessen könnte
(Fig. 6).

2'

f
0°

136
2 3

47
4 5 6 7

513

Fig. 7. Symmetrischer Phasenfehler: Maximaler (volle Linie) und
wahrscheinlicher (gestrichelte Linie) Fehler, bei +1%
Fehler je Element

b) Der symmetrische Amplitudenfehler

Wir bezeichnen mit

Ii die Eingangsspannung (gemeinsam)
K1 die Ausgangsspannung des 1. Vierpols
Ii2 die Ausgangsspannung des 2. Vierpols
IifK1 den exp (bB1)

K\K2 den exp (bD2)

de''"1 d (À'/A,) d/fj debB2 dK2
ehHl

~~
K/K1 Ki Kg

Somit ist der relative Fehler der Ausgangsamplitude

gleich dem der Dämpfung.

Wir gehen nun wieder von dem Ausdruck für das

Betriebsübertragungsmass aus und erhalten für die
Dämpfung

'{[l + i2p/i?0J — co2 Cs Cp RP(R0 -j- Rs) }2 + eu2 • { Gs R0 + Gs Rs + Gp Rp + Cs Rv -f- Cs Rs Rpj -R0}2

1 — cßCsCvR,RPY +

Die Ableitung dieses Ausdrucks :

co' — Gr Rs — Gp Rp Gs i?p}2

de** 1 I{[l—ft)2GsGp-Rs-Rp]2 +ft)2[—Gsf?s — GpRp + G8-Rp]2}- (Innere Ableitung)

e** ~ 2
|[»S| — co2GsGp RV(R0+ -Rs)jM[g. Ro + Gr Rs + Gp Rp -)- Gr Rp + Gr RS -Fp/Äoj

Die innere Ableitung ist:
d (Nenner) x Zähler-d (Zähler) x Nenner

d (Innen)
(Nenner)2 (16)

«Nenner» und «Zähler» beziehen sich auf den
Ausdruck unter der Wurzel.

Jetzt bestimmen wir die Ableitungen von «Nenner»
und «Zähler» und setzen unsere normierten, numerischen

Werte ein.
Nachdem diese Ausdrücke und die aus ihnen

zusammengesetzten Ausdrücke punktweise berechnet

(14)

(15)

wurden, erhalten wir eine Kurvenschar, welche die
Beiträge der einzelnen Elemente zum gesamten
Amplitudenfehler des Netzwerkes darstellt. Im übrigen

gilt wieder das für den symmetrischen Phasenfehler

Gesagte (Fig. 8 und 9).

c) Der asymmetrische Phasenfehler

Das asymmetrische Kreuzglied kann man aus
folgender Parallelschaltung erhalten (Fig. 10).

(man beachte die Pfeilrichtungen!)
Die Leitwertmatrizen der ersten zwei Vierpole:
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Fig. 9. Symmetrischer Amplitudenfehler : Maximaler (volle Linie)
und wahrscheinlicher (gestrichelte Linie) Fehler, bei +1%
Fehler je Element.

136
3 4 5 6 7

5,13

Fig. 8. Symmetrischer Amplitudenfehler: Beiträge der Elemente
zum Gesamtfehler, bezogen auf +1% Fehler je Element

Y,

Y,

1

^p +

z:+z'

+1
+1
+1
—i

— i
— i
+1
— i

(17a)

(17b)

Durch Addition erhalten wir die Leitwertmatrix des Kreuzgliedes, aus der schliesslich die A-Matrix folgt :

Zp(2+ A)+Zt[2 + S) ZvZa(2 + A)(2 + Ô)

431
1

— Zv (2 -f- Zl -\- Za (2 + ô)

Dabei wurden folgende Bezeichnungen eingeführt:

A — dZp/Zp ; Zp -f" Zp Zv (2 -j- A
ô — dZs/Zs ; Zs -\-ZK Zs 2 —j— ô)

Folgt:
1

(18)

Mit : e"B -

B„
a„ Bp 4~ Ci o

agB __
ZpZa

2[—Zp (2 -j- Zl + Zs (2 -j- (5)]

Unsere zwei Zweigimpedanzen sind allgemein:

2[ZP(2 + A) 4~ Zs (2 -J- (5)] -j- _ (2 + ZI) (2 + ^) + 4R0
1Iq

(19)

Z„
Rn

1 + jcoDp Bp
; Zs

1 4" j**) Ds Bs

jco Cs

und somit folgt das Betriebsübertragungsmass des

asymmetrischen Kreuzgliedes 2. Ordnung:

(2 4h «5) 2+ (2 H
EP

"
B0

— a>2 • 2CsCpRp (2 4 <5) Bs 4- 2 B„ j
(2 Hh d) 2 — eu2 • 2CsCpRpRs(2 f 5)

+ jw 2 (2 4" AJ Ds Bp 4-2(2- - à) (Ds Bs - - Dp Bp) -j- (2 - - Zl (2 + <5) • Dg Bs Bp 4- 4B0 Ds
B0

— j(W 2 (2 -f Zl Ds Bp — 2(2-)- à) (Ds Bs - - Dp Bp)] (20)

Unter der Annahme, dass Zl, à<2 sind, erhalten wir schliesslich:

2 B
dç? B*

A

/dB d A}
B ~ A

B

wobei A (2 + ö) (1—co2CsCpRsRp),

(2 + ZI) Cs -ßp — (2 + ô) (Ds Rs + Dp Bp)

(21)

sind.

Die Ableitungen davon sind :

dA _1

A
-o)2DsDp Bs Rp

(2 + ô)(l—a>2CsCpRsRp)
dB Ds Rp A — (Ds Bs + Dp Bp) • <5

B

• ô

und mit unseren numerischen Werten :

dB, (LAa 0,64 • Ai — 0,23 • dp

Bp
~~

Ap
^

1,28 — 0,46
d B2 d A2 0,17 • Ai — 0)06• <52

Ds Bp(2 + A) — (Ds Bs 4- DpBp) (2 -j- ü)

Ax\+ <5,
(31

—
1

0,78
2

(22a)

(22b)

(23a)
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Fig. 11. Asymmetrischer Phasenfehler: Beiträge der Elemente
zum Gesamtfehler, bezogen auf +1% Fehler je Element.
(Die Beiträge der C-Komponenten werden textgemäss
denjenigen der f?-Komponenten gleichgesetzt, die Kurven

jedoch nicht doppelt bewertet, da, lt. (25) : dZjZ
dR/R dC/C, nicht aber dZ/Z — dR/B + dC/C)

Fig. 10. Das asymmetrische Kreuzglied als Parallelschaltung
zweier Vierpole

Es bleibt noch übrig, den Zusammenhang zwischen
den Zweigfehlern und den Elementfehlern zu bestimmen.

Für die Parallelimpedanz Zp:

1.36 17
5 6 7
513

Fig. 12. Asymmetrischer Phasenfehler: Maximaler (volle Linie)
und wahrscheinlicher (gestrichelte Linie) Fehler, bei
+ 1% Fehler je Element

Rn
A

1 F Cp Rp

jeu Cp Rp J • 1 Rp*jeuOp

dZ±

A
dZp

A Rp +

i H- Cp RP

Rn

1

(1 + jcoCp Rp)2

1 d~Cp Rp) 0 Rp jm Cp ACp

A
A Rp/Rp—jwCpRp- A Cp/Cp

(24)
1 F j"1 Cp Rp

Einfachheitshalber nehmen wir nun an, die Fehler achten, dass die Fehler der Elemente eines Zweiges
beider Elemente seien gleich: nicht addiert werden dürfen; der Zweigfehler ist

A Rp/Rp — A Cp/Cp ; (25) gleich einem der beiden - als gleich angenommenen -
1 —jo Cp Rp >

1 + j<w Cp Rp

A RP

Rn

A RP A Cp

Rn Cp

Dasselbe Resultat erhalten wir auch für den Reihenkreis.

Bei der graphischen Darstellung ist darauf zu

Rr

Elementfehler (Fig. 11 und 12).

d) Der asymmetrische Amplitudenfehler

Eine Umordnung von (20) liefert:

egB - 1 + _ —ft>2 Cp Cs Rp (R0 + Rs)
tto

Rp

R0
— co2 Cs Cp Ra Rp

Rp

R0
A

2 [1 - co2 Cs Cp Rs Rp] + [l — co2 Cs Cp Rs Rp] • <5

-f- jeu j 2 [Ds Rp + Cs Rs + Cp Rp + 2 Cs R0] + [Cs Rs + Cp Rp + Cs R0] • ô -f- [Cs Rp + Cs R0] • A}
— jeu {2 [Cs Rp — Cs Rs — Cp Rp] - IC5 Rs + CpRv] ô + Cs Rp • ~Ä} (26)

Der Absolutwert dieses Ausdrucks hat folgende Form (unter Vernachlässigung kleiner Grössen 2. Ordnung) :

eJ>B _ (A2 + D2) + 2 (AB + DE),5 + 2 (AC + DF A
(A* + A2) + 2 (Ap A + D1EÏ)Ô + 2 (A, C, + A I'\) A

(27)
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wobei

B

R
1 -j- —- — a)2 Cs Cp RV{R0 -j- Rs)

1 +

R0

R
' Ca Cn JL Rv,

R0

C — RpjR0

D — f [Cs Rp + Cs Rs -j- Cp Rp —(— 2 Cs i?0]

E 27zf[GsRs + CvRv + CaR0]

F — 2 7i f [Cs Rp -j- Cs i?0]

A1 2 [I — co2GaCpRsRp]

Bp [1—ft)2CsCpi?si?p]
C1= 0

Dp 4nf [Cs ifp—GSRS—Cpiüp]
Ep — 2 7i f [Cs Rs + Cpiüp]

_Fi 2 71 f [Cs iüp]

Wir suchen

d ebBjebB
abB (Zl,<5 0)

— 1

abB (A, <5 0)

wobei [ Dämpfung ohne Fehler ebB (A, <5 0)

[ Dämpfung mit Asymmetriefehlern ebB

D2

Apt+Dp2

Da das Rechnen mit der Wurzel sehr unbequem ist,
machen wir folgenden Ansatz:

mit (ebB)2 x2 ; (ebB)2(A,ô 0) — y2

Somit können wir schliesslich einsetzen:

ApBpde6 AB A DE
A2 + D2

DpEp

A i2 + Dp2

Ofi

°y'o

_ •— — .— — —

—

^ —

^ - '

•

1 2 3 4 5 6 7
136 >17

*s2

Ts;

*P1

}P2

513

Fig. 13. Asymmetrischer Amplitudenfehler: Beiträge der Ele¬
mente zum Gesamtfehler, bezogen auf +1% Fehler
je Element

136 I?
5 6
5#

Fig. 14. Asymmetrischer Amplitudenfehler: Maximaler (volle
Linie) und Wahrscheinlicher (gestrichelte Linie) Fehler,
bei +1% Fehler je Element

schreiben wir x2

r -y
2 y2

-v-
x2

2y2'

(x -

1

y)(x—y)
1

2
1

2y(x-
x -

-y)

-y

AG + EF ApCp + EpFp
A2 + D2 Ap2+Dp2

A (28)

Der relative Amplitudenfehler ist nach früherem
gleich dem relativen Dämpfungsfehler ; der Übergang
zu den Elementfehlern geht wie unter (c) vor sich.
Für die Kurven gilt das unter (c) Gesagte (Fig. 13

und 14).

8. Deutung der Ergebnisse der Fehlerrechnung

a) Kritischer Vergleich der verschiedenen Fehlerarten
Die wahrscheinlichen Fehler der vier Fehlerrechnungen

(Mittelwerte über ///a) sind in einer Tabelle
zusammengestellt :

Phasenfehler Amplitudenfehler

Symm. Asymm. Symm. Asymm.
1,31° 0,63° 1,03% 0,70%

Wir ersehen daraus folgendes:
Der asymmetrische Phasenfehler ist etwa halb so

gross wie der symmetrische ; definitionsgemäss wurde
bei dem asymmetrischen Fehler angenommen, dass
der eine Zweig den Fehler Null hat, der andere
hingegen mit einem Fehler behaftet sei ; bei dem
symmetrischen Fehler handelt es sich um gleiche Abweichungen

in beiden äquivalenten Zweigen. Wir folgern
daraus, dass die Asymmetrie auf den Phasenfehler
keinen selbständigen Einfluss hat.

Bei dem Amplitudenfehler liegt der Fall anders,
insofern, als der asymmetrische Fehler bis zu 70%
des symmetrischen Fehlers beträgt. Die Asymmetrie
hat hier einen - allerdings nicht übermässig grossen -
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Einfluss auf den Fehler. Wie wir aber sehen werden,
spielt der Amplitudenfehler an sich eine untergeordnete

Rolle.
Zusammenfassend können wir behaupten, dass bei

dem Aufbau von phasendrehenden Netzwerken keine
spezielle Sorgfalt bezüglich der Symmetrie verwendet
zu werden braucht.

b) Einfluss von Phasen- und, Amplitudenfehlern auf
die Unterdrückung

Anhand der symmetrischen Fehlerrechnung ist die
Unterdrückung für einige Toleranzwerte der Komponenten

berechnet worden. Da der maximale sowie der
wahrscheinliche Fehler nur wenig von der Frequenz
abhängen, sind Mittelwerte angenommen worden.
Der Phasenfehler setzt sich zusammen aus dem
theoretischen Fehler 0m und dem toleranzbedingten
Fehler. Aus den folgenden Tabellen ist ersichtlich,
dass besonders für gut abgeglichene Komponenten
und beim Rechnen mit dem wahrscheinlichen Fehler,
der Einfluss des Amplitudenfehlers gering ist. Es
wurde für alle Komponenten dieselbe Toleranz
angenommen; da anderenfalls die maximalen bzw.
wahrscheinlichen Fehler frequenzabhängig sind, gilt
das gleiche auch für die Unterdrückung. Die
Frequenzabhängigkeit kann dann von Fall zu Fall sehr
verschieden sein. Die Tabellen wurden anhand der
Gleichung (3) berechnet.

(Rechnen mit dem maximalen Fehler)

Elementfehler Phasen -

fehler
Amplitudenfehler

Unterdrückung

10°/oo

8

5

2

1

(Ree

0,0635 Rad
0,0525
0,0361

0,0197
0,0142

inen mit dem

0,0293%
0,0234
0,0146
0,0059
0,0029

wahrscheinlichen

29.1 dB
30,8

34.2
39,8

42,8

Fehler)

Elementfehler Phasenfehler Amplitudenfehler

Unterdrückung°

10°/oo

8

5

2

1

0
(Toleranz 0

0,0320 Rad
0,0272
0,0203
0,0134,
0,0110
0,0087

0,0107%
0,0085
0,0053
0,0021

0,0011

35,5 dB
36,9
39,5
43,3
45.1

47.2

9. Abhängigkeit des Gesamtfehlers vom Schaltungs¬
grad

Bis jetzt haben wir uns ausschliesslich mit
Netzwerken 4. Grades befasst. Mit zunehmendem
Schaltungsgrad wächst die Zahl der Elemente; ob damit
auch der Gesamtfehler wächst oder ob die einzelnen
Beiträge sich dem Schaltungsgrad soweit anpassen,
dass der Gesamtfehler vom Schaltungsgrad
unabhängig wird - hierüber etwas zu erfahren war der
Zweck der folgenden Berechnungen. Es wurde
ausschliesslich der symmetrische Phasenfehler untersucht

- anhand von vier Beispielen.
a) Netzwerk 4. Grades, k' 111

Dieses ist das früher berechnete Beispiel.
b) Netzwerk 3. Grades, lc' 1/7

Die drei Pole werden wie früher bestimmt, wobei
jetzt p2 m0 1 ist (normierte Rechnung). Für das

Kreuzglied 1. Grades erhalten wir mit :

cp 2arctg (wC R) ([8]-2)
und

([8] -37)
pa>0R0

folgende Elementbeiträge zum Phasenfehler:

dC/C + dRjR
l;(R=R0) (29)dç:

V v\/r/ + î'2\A'/.
In unserem Fall wird der Phasenfehler des Kreuz

gliedes 1. Grades:

dC/C + d RjR
d<P Vi /a 1 /U

+ I
/ ^ 2p 7

(30)

/a

Das zweite Kreuzglied (2. Grades) und dessen

Fehlerbeitrag berechnet sich wie früher. Die graphischen
Darstellungen sind in Fig. 15 und 16 veranschaulicht.

c) Symmetrien
Zum Schluss soll noch kurz auf das hohe Mass an

Symmetrie in allen erhaltenen Kurven hingewiesen
werden (bei logarithmischem Frequenzmaßstab).
Die zwei singulären Frequenzen (s. Gl. 12a, b),
///a 1,365 und 5,13 hegen symmetrisch zur mittleren
Frequenz /0, bzw. co0 -\/ 7 ; Schnittpunkte und
Extrema fallen häufig mit diesen drei Frequenzen
zusammen.

Fig. 15. Netzwerk 3. Grades, Je' 1/7: Beiträge der Elemente
zum symmetrischen Phasenfehler, bezogen auf +1%
Fehler je Element

c) Netzwerk 3. Grades, k' 1/3

Der Berechnungsgang ist wie unter (b). Hier die
Ergebnisse in graphischer Darstellung (Fig. 17 und 18).



1954, N° 2 Bulletin Technique PTT 51

1.36
2 r~3yj7

5 6 7
513

Fig. 17. Netzwerk 3. Grades, k' 1/3: Beiträge der Elemente
zum symmetrischen Phasenfehler, bezogen auf +1%
Fehler je Element

i

1 _ 2

0° -
2 3

Fig. 16. Netzwerk 3. Grades, k' 1/7 : Maximaler (volle Linie)
und wahrscheinlicher (gestrichelte Linie) Fehler, bei
+ 1% Fehler je Element

Fig. 20. Netzwerk 2. Grades, k' 1/3: Maximaler (volle Linie)
und wahrscheinlicher (gestrichelte Linie) Fehler, bei
+ 1% Fehler je Element

e) Schlussfolgerungen

Grad Max. F. Wahrsch.F. Verhältnis der

der k' (Mittel¬
Max. F.

Wahrsch.
Schaltg. wert) fwert) F.

3 1/7 2,06° 0,98°
4 1/7 2,65° 1,30° 0,78 0,77 (0,75)
2 1/3 1,59° 0,68°
3 1/3 2,22° 1,00° 0,72 0,68 (0,67)
3 1/7 2,06° 0,98°
3 1/3 2,22° 1,00° 0,93 0,98 (1,0)

\13

Fig. 18: Netzwerk 3. Grades, k' 1/3: Maximaler (volle Linie)
und wahrscheinlicher (gestrichelte Linie) Fehler, bei
+ 1% Fehler je Element

d) Netzwerk 2. Grades, k' — 1/3

Mit den zwei Polen werden zwei Kreuzglieder
1. Ordnung nach der in (b) gezeigten Methode
berechnet. Das Ergebnis ist graphisch dargestellt
(Fig. 19 und 20).

Fig. 19. Netzwerk 2. Grades, k' 1/3: Beiträge der Elemente
zum symmetrischen Phasenfehler, bezogen auf +1%
Fehler je Element

(Zum Vergleich sind die theoretischen Werte in
Klammern angeführt.)

Die Vergleichstabelle zeigt, dass mit wachsendem
Schaltungsgrad ein Anwachsen des symmetrischen
Phasenfehlers auftritt. Wir nehmen an, dass der
symmetrische Phasenfehler eine lineare Funktion
des Schaltungsgrades ist. Die Übereinstimmung
dieser Hypothese mit den berechneten Werten ist
völlig befriedigend. Der dritte Vergleich der Tabelle
betrifft zwei Schaltungen desselben Grades, aber
verschiedener k' ; es zeigt sich, dass die betreffenden
Fehler sich um 2% bzw. 7% unterscheiden, bei
k' 1/7 und 1/3. Dies entspricht theoretischen
Phasenfehlern von 30' bzw. 2° 30', innerhalb welcher
Grenzen sich vorkommende Fälle immer bewegen
dürften. Für praktische Zwecke dürfen wir daher
annehmen, dass der symmetrische Phasenfehler nur
vom Schaltungsgrad abhängt.

Wie wir sahen, sind die Phasenfehler die wichtigsten

; dem asymmetrischen Phasenfehler kommt keine
selbständige Bedeutung zu, so dass wir ganz allgemein
schliessen : die Beeinflussung der Unterdrückung
durch die Toleranz der Komponenten ist eine lineare
Funktion des Schaltungsgrades.

f) Symmetrien
Alle aufgeführten Fälle zeigen wiederum einen

hohen Grad von Symmetrie, wie dies bereits beim
ersten Beispiel der Fall war.

10. Messungen

Das berechnete Beispiel 4. Grades wurde für
/a 200 Hz aufgebaut, die Bandbreite war somit
200... 1400 Hz. Die Komponenten wurden nur mit
einem «Philoscope»-Gerät abgeglichen und sind da-
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her z. T. mit sehr beträchtlichen Fehlern behaftet.
Beide Ausgangsspannungen wurden an die zwei
Plattenpaare eines Kathodenstrahloszillographen
gelegt; sobald sie um 90° versetzt sind, erscheint auf
dem Schirm das Bild eines Kreises. Zwischen 250
und 600 Hz war praktisch keine Abweichung von der

Fig. 21. Messanordnung für das Beispiel mit k' 1/7, n — 4

der Komponenttoleranzen auf die Unterdrückung,
das heisst auf das dB-Verhältnis beider Seitenbänder
bestimmen.

Die Toleranzen beeinflussen die Amplituden sowie
die Phasen der Ausgangsspannungen, wobei zwischen
zwei Fehlerarten unterschieden wird: bei der ersten
bleibt die Symmetrie der Kreuzglieder unberührt,
während bei der zweiten durch die Komponentfehler
eine Asymmetrie entsteht. Der Einfluss der zweiten
Art erweist sich praktisch als unerheblich.

Bei gleichen Fehlern in allen Komponenten
ergibt sich für den maximalen und den wahrscheinlichen

Fehler von Amplitude und Phase immer ein
praktisch frequenzunabhängiger Verlauf. In diesem
Fall ist auch die Unterdrückung frequenzunabhängig
und kann in Funktion der Komponenttoleranz
bestimmt werden.

Schliesslich wird anhand einiger Beispiele gezeigt,
dass der Einfluss der Toleranzen mit wachsendem
Schaltungsgrad linear zunimmt.

*

Für die Durchsicht des Manuskriptes bin ich Herrn
Prof. H. Weber zu Dank verpflichtet. Die Zusammenfassung

des Artikels von H.J. Orchard [1] und die
Reproduktionen (Fig. 2 und 5), welche diesem
entnommen wurden, werden mit der freundlichen
Genehmigung der «Wireless Engineer» veröffentlicht.

Kreisform wahrnehmbar; zwischen 180 und 1800 Hz
waren die grössten Phasenfehler etwa 2...3°; bei
3000 Hz entsprach der Fehler einer Unterdrückung
von etwa 10 dB, bei 4000 Hz etwa 8 dB. Den
Versuchsaufbau zeigt die folgende Figur (Fig. 21).

11. Zusammenfassung

Die Breitband-Phasendrehung findet immer mehr
Interesse für eine verbesserte Einseitenbandmodula-
tion. Gestützt auf eine allgemeine Berechnungsmethode

von H. J. Orchard, die eine 90°-Phasenver-
schiebung durch zwei Kreuzglieder erreicht, wird ein
phasendrehendes Netzwerk berechnet und
ausgemessen.

Anhand des berechneten Beispieles wird eine
Fehlerrechnung durchgeführt. Diese soll den Einfluss
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Im Hang zur Technik offenbart sich aber nicht nur eine innere

schöpferische Kraft der Menschen, sondern auch ein Drang nach

Erlösung aus aller Unzulänglichkeit. Dieser Drang kennt keine

Ruhe und keine Rast. Er treibt nach Änderung und Verbesserung
der Dinge; er heisst den Menschen suchen und erfinden.

Prof. Dr. F. Tank
In: Technik und Kultur. Zürich 1946
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