Zeitschrift: Technische Mitteilungen / Schweizerische Post-, Telefon- und

Telegrafenbetriebe = Bulletin technique / Entreprise des postes, téléphones et télégraphes suisses = Bollettino tecnico / Azienda delle

poste, dei telefoni e dei telegrafi svizzeri

Herausgeber: Schweizerische Post-, Telefon- und Telegrafenbetriebe

Band: 27 (1949)

Heft: 5

Artikel: Ergebnisse der Konferenz von Kopenhagen und Mexiko

Autor: Metzler, E.

DOI: https://doi.org/10.5169/seals-876400

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bemerkungen zu den Mess- und Beobachtungsresultaten

Mit diesem Antennentyp und horizontaler Polarisation ist die Feldstärke im allgemeinen überall dort, wo direkte Sicht zum Sender vorhanden ist, grösser als bei vertikaler Polarisation. An Punkten, die durch natürliche Hindernisse abgeschirmt sind, ist diese Verbesserung weniger ausgeprägt. Im Mittel beträgt der festgestellte Verbesserungsfaktor rund 2,54, wobei für die Punkte mit ungewissem Wert der ungünstigere Fall angenommen wurde.

Der Empfang war bei allen Punkten mit direkter Sicht zum Sender gut, mit Ausnahme der Beobachtungspunkte 20 und 27. Bei Punkt 20 ist die Ursache sehr wahrscheinlich in der Schattenwirkung des kupfergedeckten Hauptturmes von St-Pierre zu suchen. Der Empfang erwies sich bei der kleinen herrschenden Feldstärke als gestört; die Polarisation war nicht horizontal, sondern wies eine Neigung von ungefähr 45° auf.

Beim Punkt 27 zeigten sich, trotz grosser Feldstärke, Störgeräusche, deren Ursache nicht bekannt ist. Da der Punkt in der Nähe eines Reservoirs liegt, besteht die Möglichkeit, dass vielleicht eine Pumpanlage diese Störungen verursachte.

An Punkten ohne direkte Sicht sind im allgemeinen die gleichen Bemerkungen wie bei vertikaler Polarisation zu machen; besonders bei Punkt 31, wo der Empfang ganz leidlich war.

In Richtung Lausanne konnte bis gegen Nyon guter Empfang festgestellt werden. Punkt 45 (Rolle) zeigte das Feldstärkemaximum wohl bei horizontaler Lage des Empfangsdipols, jedoch gegenüber der Richtung Rolle—Genf um 45 bis 90° nach links gedreht (Reflexion an den Savoyer Bergen). Der Empfang erwies sich als leicht gestört.

Punkt 46 (Morges) wies für maximale Empfangsintensität ebenfalls eine Richtungsabweichung auf, und zwar wiederum Richtung Savoyer Berge. Der Empfang war schlecht und das gesprochene Wort unverständlich. Ouchy (Punkt 47) zeigte ebenfalls sehr kleine Feldstärke und schlechten Empfang. Hingegen wiesen Punkt 48 (Sauvablin, ob Lausanne) mit 600 $\mu V/m$ und Punkt 49 (Chalet-à-Gobet) mit nur 83 $\mu V/m$ ausgezeichneten Empfang auf. In 5 bis 10 Meter Entfernung vorbeifahrende Autos wirkten kaum störend.

Schlussbetrachtungen

Mit einem frequenzmodulierten Ultrakurzwellen-Sender von einigen Hundert Watt Antennenleistung und bei sorgfältiger Auswahl des Senderstandortes ist es durchaus möglich, einem ganzen, stark erweiterten Stadtgebiet mit relativ grossem Hörerkreis einwandfreien Empfang der Sendungen sicherzustellen. Schattenzonen in dichtbesiedelten Gebieten sind dabei — eben durch geeignete Wahl des Senderstandortes — zufolge der unsicheren Empfangsverhältnisse möglichst zu vermeiden.

Obschon sich ein strenger Vergleich der beiden Polarisationsarten mit den vorliegenden Messungen und Beobachtungen infolge der Verschiedenartigkeit der beiden Sendeantennensysteme nicht ohne weiteres durchführen lässt, zeigt sich doch eine deutliche Ueberlegenheit der horizontal polarisierten Turnstile-Antenne gegenüber dem einfachen Vertikaldipol. Bei annähernd gleicher Sendeleistung konnte durch Verwendung der Turnstile-Antenne eine durchschnittliche Feldstärkeerhöhung um den Faktor 2,54 festgestellt werden. Dies bedeutet aber, dass das von der — an und für sich ganz willkürlichen — 1-mV/m-Grenze umschlossene Gebiet bedeutend erweitert wurde, und dass im allgemeinen nur ausgesprochene «Schattengebiete» nicht einwandfrei versorgt werden können.

Die unter Umständen grossen Reichweiten solcher Lokal-UKW-Sender selbst kleinerer Leistung bedingen auch in diesem Frequenzgebiet eine äusserst sorgfältig abgewogene Frequenzzuteilung, da auch hier der verfügbare «Frequenzraum» nicht unbegrenzt zur Verfügung steht.

Ein zusammenfassender Bericht über die Ergebnisse der in Genf durchgeführten Erhebungen bei «FM-Hörern» wird später an dieser Stelle erfolgen.

Ergebnisse der Konferenzen von Kopenhagen und Mexiko*

Von E. Metzler, Bern

061.3:621.396(489+72)

Damit die drahtlosen Dienste der Nationen unter sich und nebeneinander ungestört arbeiten können, ist eine planvolle, internationale Regelung der Frequenzbenützung unerlässlich. Diesen Zwecken dient eine seit Kriegsende ununterbrochene Konferenztätigkeit im Rahmen der Union Internationale des Télécommunications. Im vorliegenden Referat orientiert der Chef der schweizerischen Delegationen an den internationalen Konferenzen von Kopenhagen (für die Neuordnung im europäischen Rundspruch) und Mexiko (für den internationalen Rundspruch auf kurzen Wellen) über die Ergebnisse dieser Tagungen. Die BeSeule une réglementation internationale de l'utilisation des fréquences, basée sur un plan systématique, peut permettre aux services radio des nations de remplir leur mission sans se gêner les uns les autres. Les conférences organisées par l'Union Internationale des Télécommunications et qui se succèdent sans interruption depuis la fin de la guerre poursuivent l'étude de cette question. Dans l'article ci-dessus, le chef des délégations suisses aux conférences internationales de Copenhague (pour la réorganisation de la radiodiffusion européenne) et de Mexico (pour la radiodiffusion internationale sur ondes courtes) com-

^{*} Vortrag, gehalten an der 8. Schweizerischen Tagung für elektrische Nachrichtentechnik am 24. Juni 1949 in Bern

deutung des an keine geographischen Grenzen gebundenen Radiorundspruchs als Hilfsmittel der nationalen und internationalen Politik hat die Lösung der gestellten Aufgaben bedeutend erschwert.

Wenn die letzten Kriegsjahre einerseits den drahtlosen Diensten einen gewaltigen Auftrieb gaben und neue Anwendungsgebiete der Hertzschen Wellen entstehen liessen, so muss man sich anderseits nicht wundern, wenn gleichzeitig in der Benützung der Wellenbänder zum Teil chaotische Zustände überhand nahmen. Die straffe internationale Regelung und Zusammenarbeit ist aber gerade auf diesem Gebiet eine unbedingte Notwendigkeit.

So kam es, dass bereits 1947 in Atlantic City eine von fast allen Nationen der Erde beschickte Konferenz zusammentrat, um die Ordnung in den Wellenbändern durch eine neue Verteilung unter die 23 drahtlosen Dienste wieder herzustellen bzw. vorzubereiten. Aus Zweckmässigkeitsgründen teilte man die Welt in drei Regionen ein (Fig. 1). Innerhalb der Region 1 bemerkt man besonders abgegrenzt die sogenannte «Zone européenne», die schon seit langem besteht und seinerzeit mit besonderer Rücksicht auf den wichtigen europäischen Rundspruch geschaffen wurde.

Das in Atlantic City bearbeitete Frequenzspektrum erstreckt sich von 10 kHz (30 000 m) bis hinauf zu 30 000 MHz (0,01 m). Das ganze Frequenzband ist entsprechend den drei Weltregionen eingeteilt, und man unterscheidet zwischen regionaler und weltweiter Zuteilung, wobei einzelne regionale Bänder unter sich noch verschiedenen Diensten angehören können.

mente les résultats de ces deux réunions. La portée de la radiodiffusion n'étant pas limitée par les frontières géographiques, l'importance de son rôle politique national et international a rendu très difficile la recherche d'une solution des problèmes posés.

Zur rationelleren Ausnützung des Frequenzraumes wurde das bisherige System der Frequenznotifizierung beim Bureau der Union Internationale des Télécommunications (UIT) aufgegeben und der Begriff der Frequenzstunden-Zuteilung eingeführt. Auf diese Weise soll fortan eine Radiostation nur während ihrer eigentlichen Betriebszeit über eine bestimmte Frequenz verfügen, während diese zu anderen Zeiten andern Stationen zugewiesen werden kann. Neben diesem Prinzip der konsekutiven Frequenzbenützung wurde das der simultanen Benützung einer Frequenz durch mehrere Stationen, das in der Praxis bereits angewendet wurde, weiter ausgebaut.

Die Organisation der einzelnen Dienste in den ihnen durch Atlantic City zugewiesenen Bändern wurde weiteren regionalen bzw. weltumfassenden Konferenzen übertragen. So erklärt es sich, dass seit 1947 die Konferenztätigkeit im Rahmen der UIT ein grosses Ausmass erreicht hat.

I.

Auf der Grundlage von Atlantic City konnte 1948 u. a., als Ersatz des den Verhältnissen längst nicht mehr angepassten Luzerner Plans von 1933, eine neue Frequenzverteilung unter den europäischen Rundspruchsendern in Angriff genommen werden.

Nach dreimonatiger vorbereitender Arbeit einer

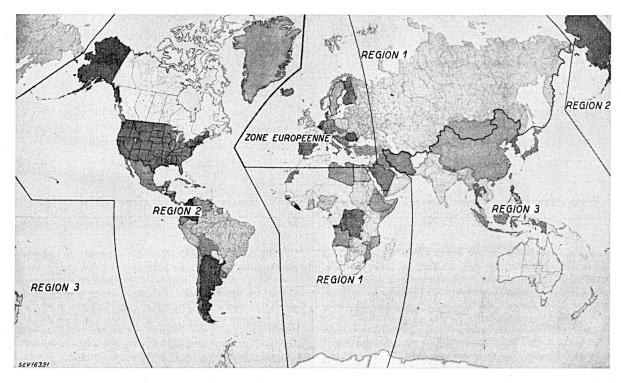


Fig. 1. Die drei Hauptzonen, in welche der Erdball zum Zwecke der internationalen Verteilung der Frequenzbänder eingeteilt wurde

von acht europäischen Ländern gebildeten Kommission trat am 22. Juni 1948 die

europäische Rundspruchkonferenz in Kopenhagen zusammen.

Die von 33 europäischen Ländern beschickte Konferenz stand von Anfang an im Zeichen der heutigen politischen Verhältnisse in Europa, was sich auch deutlich in dem am 15. September 1948 von 25 Ländern unterzeichneten Vertrag und Plan von Kopenhagen erkennen lässt. Auf diese Schwierigkeit werden wir noch zurückkommen.

An Frequenzraum stehen heute dem europäischen Rundspruch folgende Bänder zur Verfügung:

Band 150...285 kHz,

Band 525...1605 kHz,

ausserdem noch drei Einzelkanäle in den Bändern 415...485 kHz und 395...405 kHz.

Die dem Plan zugrunde zu legenden

technischen Normen

gaben zu fast endlosen Debatten Anlass, konnten schliesslich aber doch in folgender Weise festgesetzt werden:

A. Sendeleistung

a) Lange Wellen (mit Ausnahmen) .	200	kW
b) Mittelwellen	150	kW
c) Internationale Gemeinschaftswelle	n	
T _{vm} T	9	1-117

d) Internationale Gemeinschaftswellen

$B.\ Gleichwellensysteme$

Die globale Leistung eines Systems darf das 1,5-fache der Leistung bei Benützung des Kanals durch eine einzige Station betragen [bei Mittelwellen also gemäss $A:1,5\cdot150=225~\mathrm{kW}$].

C. Frequenztoleranzen

Exklusive und mehrfach benützte Wellen			
(fréquences partagées)	\pm	10	Hz
Internationale Gemeinschaftswellen bis			
1. 1. 52	\pm	20	Hz

D. Feldstärkenverhältnis der gewünschten zur nicht gewünschten Station

(Rapport de protection pour fréquences partagées) Für einwandfreien Empfang 34...40 db

E. Minimales Feldstärkenverhältnis zwischen einer gewünschten und der ihr im Frequenzband benachbarten Station

(Protection entre les canaux adjacents)

- a) Kanalbreite 9 kHz 2,5
- b) Kanalbreite 10 kHz 1

F. Als Unterlagen für die Feldstärkenberechnungen dienen die von der Radiokonferenz in Kairo 1938 ausgearbeiteten Propagationskurven, wobei für Distanzen, die 2000 km überschreiten, eine Korrektur von minus 6 db anzubringen ist.

G. Zu schützende Minimalfeldstärken

Tag Nacht

- a) Mittelwellen, exklusive 0.5 mV/m 1 mV/m mehrfach benützt . . . 0.5 mV/m 2.5 mV/m

H. Das resultierende Feld mehrerer auf der gleichen Frequenz arbeitender Stationen

wird aus der Summe der Quadrate der Einzelfelder bestimmt.

Zu keiner Einigung in der technischen Grundlagenkommission kam man in bezug auf die im Plan zu verwendende Kanalbreite. Diese wurde erst später durch die Plankommission unter dem Druck der Notwendigkeit und entgegen einem Ostblockvorschlag für 10 kHz auf 9 kHz, für die Zuteilungen über 1538 kHz auf 8 kHz festgesetzt.

Der

endgültige Plan

sieht 139 Kanäle vor, in denen 340 Einzelstationen und Gleichwellensysteme untergebracht sind. Die Neuordnung soll am 15. März 1950 in Kraft treten.

Etwas bedenklich scheint die sehr weitgehende Anwendung des Prinzips der Simultanbenützung. Rechnet man Einzelfälle nach, so zeigt es sich, dass die Verhältnisse den Normen, besonders hinsichtlich der sogenannten «rapports de protection», oft nicht entsprechen. Die Simultanbenützung ist im Plan vielfach mit der Vorschrift der Anwendung von Richtantennen verbunden. Solche sind aber mit grossem Kostenaufwand verbunden, und deren Ausführung dürfte aus diesem Grund im einen und anderen Fall trotz Planvorschrift noch zurückgestellt werden.

Der Plan von Kopenhagen ist leider stark politisch inspiriert. Schon der Umstand, dass zwei bedeutende europäische Rundspruchländer (Deutschland und Spanien) nicht an der Konferenz teilnahmen, ist zu bedauern. Die in beiden Fällen getroffenen Zuteilungen sind technisch gesehen absolut ungenügend. So ist kaum zu erwarten, dass das in seinen Entschlüssen nicht gebundene Spanien sich genau an Kopenhagen halten wird. In bezug auf Deutschland wurde offiziell vom Vertreter der amerikanisch besetzten Zone die Nichtannahme des Planes erklärt. Wie sich die in Kopenhagen vertretenen Nichtunterzeichner verhalten werden, ist ungewiss. Schweden wird sich vermutlich an den Plan in seiner gegenwärtigen Form halten können.

Fig. 2 zeigt die geographische Lage der dem Plan nicht angeschlossenen Länder.

Wenn das Vertragswerk von Kopenhagen wirklich eine bessere Ordnung in den europäischen Rundspruch bringen soll, so sind weitere direkte Verhandlungen mit dem Ziel eines modus vivendi in vielen Fällen unumgänglich. Das Fehlen einer durch alle

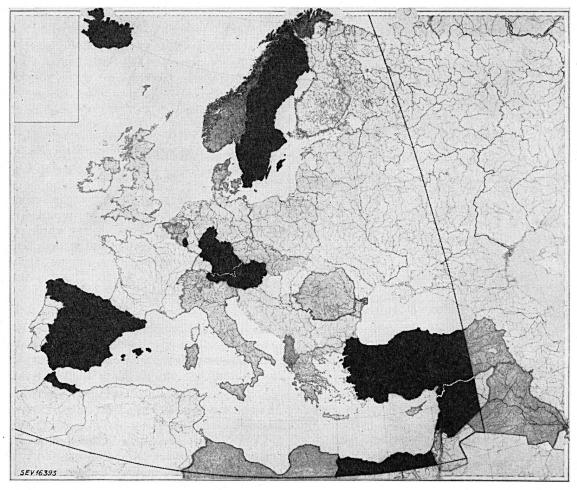


Fig. 2. Situation in der europäischen Zone. Die Länder, die den Vertrag und Plan von Kopenhagen nicht unterzeichnet haben, sind schwarz dargestellt

europäischen Staaten anerkannten Expertenorganisation zur Regelung unklarer Situationen ist heute doppelt zu bedauern. Die undurchsichtige, oft auch zweideutige Haltung der Grossmächte in Kopenhagen hat dazu nicht wenig beigetragen.

Die Positionen unserer Landessender im neuen Plan sind der Oeffentlichkeit bereits bekannt. Indessen dürfte es interessant sein, im Hinblick auf allfällige Schwierigkeiten, die sich aus der Nichtbefolgung der neuen Ordnung durch einzelne Länder ergeben können, die alten und neuen Verhältnisse um die Frequenzen der Schweizer Sender zu untersuchen. Dazu mögen die Tabellen I und II dienen.

Der Verlust unserer bisherigen Gemeinschaftswelle von 1375 kHz ist durch die Planbestimmung aufgewogen, wonach es der Schweiz gestattet ist, auf beliebigen, mehrfach benutzten Frequenzen kleine Relaissender zu betreiben mit der Bedingung, dass andere Stationen nicht gestört werden.

Zwei weitere Positionen, welche nach Kopenhagen für die Schweiz im Gebiet über 1500 kHz vorgesehen sind, erwähnen wir der Vollständigkeit wegen. Sie sind technisch ungenügend und kommen deshalb zur praktischen Ausnützung kaum in Betracht.

Gegenwärtige Situation um die Frequenzen, die durch den Plan von Kopenhagen den schweizerischen Rundspruchsendern zugewiesen werden

Tabelle I

Neue Frequenz kHz	Gegen- wärtige Frequenz kHz	Station	Land	Leistung kW
529		Beromünster		150
	527	Kuopio	Finnland	20
	7	Ljubliana)		0,8
		Adjouscina	Jugoslawien	1,2
	,, «	Kranj		4
	530	Cagliari	Italien	5
557		Monte Ceneri		50
	556	Beromünster	Schweiz	100
		Rostov	Ukraine	10
764		Sottens	- 4	150
	758	Warschau	Polen	50
	767	Burghead)		60
		Westerglen	England	60
	* 8	Redmoss	, , , , ,	2,5
		Sofia	Bulgarien	15
		Rijeka	Jugoslawien	1,5

Situation im Plan von Kopenhagen um die von den schweizerischen Rundspruchsendern gegenwärtig benützten Frequenzen

m ·		1	TT
Tal	ne.	le	-11

Gegen- wärtige Frequenz kHz	Neue Frequenz kHz	Station	Land	Sende- Leistung kW
556		Beromünster		100
	557	Monte Ceneri	Schweiz	50
		Helsinki	Finnland	100 ≱
		Cairo II	Aegypten	20
677	=,	Sottens		100
	674	Marseille	Frankreich	100
		Rostov/Don	Ukraine	100
	683	Beograd	Jugoslawien	150
1167		Monte Ceneri	4 3 4	15
	1160	Strasbourg I	Frankreich	150
	1169	Odessa	Ukraine	150
1375		Gemeinschaftswelle		-
	1376	Strasbourg II	Frankreich	150

Die Auswirkung des Kopenhagener Abkommens in seiner Gesamtheit bleibt abzuwarten. Der Ausbau der schweizerischen Landessender mit den bis zum Inkrafttreten des Planes verfügbar werdenden Umstellmöglichkeiten erlauben uns aber, die weitere Entwicklung ruhig abzuwarten.

Π

Noch während man in Kopenhagen über die europäische Verteilung der Mittel- und Langwellen verhandelte, wurden in Mexiko die Vorbereitungen für eine weltumfassende Ordnung im Bereich des Hochfrequenz-, oder wie die geläufigere Bezeichnung heisst, des Kurzwellenrundspruchs getroffen.

Die Vorgeschichte dieser Kurzwellenkonferenz geht bis ins Jahr 1938 zurück. Damals fassten die in Kairo zur Revision des Radioreglementes versammelten Mitglieder der Union Internationale des Télécommunications Beschluss zu einer Regelung des internationalen Rundspruchs auf hohen Frequenzen. Der zweite Weltkrieg vereitelte diese Absicht, während sich anderseits dieser Dienst in fast allen technisch fortgeschrittenen Ländern der Erde gerade während der Kriegsjahre zu einem erstklassigen Instrument nationaler Aussenpolitik und Propaganda entwickelte.

Wegen der Dringlichkeit der technischen Neuordnung im Kurzwellenrundspruch liess man dann 1947 in Atlantic City der Bänderverteilung unmittelbar eine Konferenz für die Zuweisung der Einzelkanäle folgen. Indessen reichten die in Aussicht genommenen sechs Wochen knapp zur Durchführung gewisser Vorarbeiten aus. Die Konferenz vertagte sich, nachdem vorher noch eine kleine Arbeitsgruppe mit der Fortsetzung der Studien zu Handen der UIT- Mitglieder beauftragt worden war. Die zweite Session der Kurzwellenkonferenz wurde am 22. Oktober letzten Jahres in Mexiko eröffnet. Die Arbeit der kleinen, in Atlantic City gebildeten Gruppe, die inzwischen während rund zwei Monaten in Genf und Mexiko zusammengetreten war, erschien nur insofern nicht als nutzlos, als sie doch wenigstens etwas zur besseren Erkenntnis des technischen Kurzwellenproblems beitrug.

Die

Konferenz von Mexiko

sah die Delegationen der 69 vertretenen Länder vor eine schwere Aufgabe gestellt. Es scheint uns wünschenswert, im Rahmen dieser Ausführungen die Bandzuteilung für den Kurzwellen-Rundspruch zahlenmässig zu rekapitulieren.

$Band\ kHz$	Zuteilung Region	$kHz\ verf\"{u}gbar$
$5\ 950\ 6\ 200$	1, 2, 3	250
7 100 7 150	1, 3	50
7 150 7 300		150
9 500 9 775		275
11 70011 975	1, 2, 3	275
15 10015 450	1, 2, 5	350
17 70017 900		200
$21\ 45021\ 750$		300

Total verfügbar 1850

Zu diesen Zuteilungen kommt eine weitere von 500 kHz im Band 25 600...26 100. Praktisch fällt dieses Band seiner ungeeigneten Ausbreitungseigenschaften wegen allerdings kaum in Betracht.

Den insgesamt 185 mal 24 = 4440 Frequenzstunden, die sich bei einer angenommenen Kanalbreite von 10 kHz ergeben, standen Ansprüche der Länder von rund 15 000 Frequenzstunden gegenüber. Nur eine massive Reduktion dieser Forderungen und die Ausnützung aller Möglichkeiten für Simultanzuteilungen konnte hier den nötigen Ausgleich bringen.

Zur Lösung der grossen Aufgabe wurde die Arbeit der Konferenz nach zwei Hauptrichtungen orientiert:

- 1. Aufstellen der technischen Plangrundlagen;
- 2. Festlegen allgemeiner Prinzipien für die Frequenzstundenzuteilung.

Befassen wir uns zuerst etwas mit dem technischen Problem. Wohl die wichtigste Frage im Zusammenhang mit der Kurzwellenübertragungstechnik betrifft die

Ausbreitungsbedingungen

der verwendeten Frequenzen. Im freien Raum erfolgt die Ausbreitung der elektrischen Wellen kugelförmig vom Sendezentrum aus. Setzt man eine homogene, elektrisch neutrale Erdatmosphäre voraus, so würden sich die von einer Sendeantenne ausgestrahlten Wellen durch die Lufthülle in den Weltraum hinaus verlieren und von einer Uebertragung nach Orten jenseits des Horizontes könnte, abgesehen von einem kleinen Beugungseffekt, keine Rede sein.

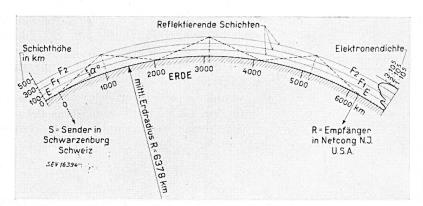


Fig. 3. Schematischer Aufbau der Ionosphäre für einen Sommertag

Nun wird aber durch die Einwirkung des Sonnenlichtes, hauptsächlich des ultravioletten, die Luft in Höhen von über etwa 80 km stark ionisiert, wobei man zu gewissen Zeiten mehrere Ionisationsmaxima in Funktion der Höhe feststellen kann. Die Ionosphäre ist elektrisch geschichtet. Die Schichten umgeben die Erde konzentrisch, treten in der Regel nicht überall in gleicher Stärke auf, wirken auf

sphärenregionen verantwortlichen Teils des Sonnenspektrums selbst erheblichen Schwankungen unterworfen, von denen die wichtigste parallel dem 11 jährigen Zyklus der Sonnenfleckenhäufigkeit verläuft. Diese wird mit der vom Zürcher Astronomen Rudolf Wolf um die Mitte des vorigen Jahrhunderts definierten Sonnenfleckenrelativzahl grössenmässig ausgedrückt (Fig. 4a und 4b).

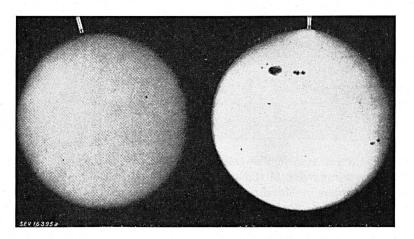


Fig. 4a.
Sonnen-Aufnahmen.
Links: am 14. 12. 1943 während einer
Periode geringer Sonnenflecken-Tätigkeit.
Rechts: am 4. 2. 1946 während einer
Periode hoher Sonnenflecken-Tätigkeit

elektrische Wellen mehr oder weniger wie Spiegelflächen und werden so eigentlich zur physikalischen Ursache der Wellenausbreitung um den Erdball herum (Fig. 3). Mit der Sonnenstrahlung als Ursache der Ionisation ergibt sich eine direkte Abhängigkeit des Reflexionsvermögens und damit der Ausbreitungsbedingungen vom täglichen Sonnenstand, aber auch die zu verschiedenen Jahreszeiten wechselnde Sonnenhöhe spielt eine grosse Rolle. Weiter ist die Intensität des für die Ionisation der oberen AtmoAuf Grund theoretischer Betrachtungen, mehr aber noch aus der Erfahrung, lässt sich die für eine bestimmte Radioverbindung unter Berücksichtigung des Ionosphärenzustandes bestgeeignete Frequenz ableiten. Bei grossen Uebertragungsdistanzen sind bei dieser Bestimmung mehrere Reflexionspunkte, oder, wie der gebräuchliche Ausdruck heisst, Kontrollpunkte in Berücksichtigung zu ziehen.

Da es ausgeschlossen ist, den sich stetig ändernden Ausbreitungsbedingungen durch eine stetige

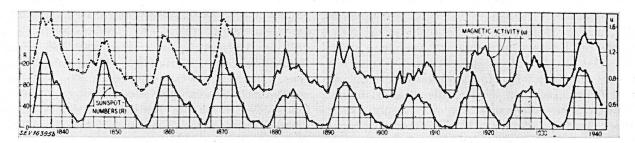


Fig. 4b. Diagramme über die erdmagnetischen Einflüsse U und die relative Sonnenflecken-Häufigkeit R (Jahresmittel 1835...1941)

Frequenzanpassung zu folgen, approximiert man nach den Beschlüssen von Mexiko diesen Wechsel durch Aufteilung in 3 jahreszeitliche und 3 der maximalen, mittleren und minimalen Sonnentätigkeit entsprechende Epochen. Dabei ergeben sich insgesamt 3 mal 3 = 9 verschiedene Epochen der Wellenausbreitung oder ebenso viele Frequenzverteilungspläne. Mit diesen werden wir uns noch befassen

Um die für eine gewünschte Verbindung benötigte Frequenz zu bestimmen, hat man in erster Linie die Verhältnisse in den Reflexionspunkten, die um die gewünschte Uebertragungszeit dort herrschen, zu untersuchen. Hiefür benützte die Konferenz von Mexiko amerikanische Unterlagen, die ihr in Form einer Normalkurvensammlung für die 9 Epochen zur Verfügung gestellt wurden. Vom Umfang des Kurvenwerkes kann man sich an Hand der Tatsache eine Vorstellung machen, dass die Erde in 67 Zonen eingeteilt ist, wobei für den Grossteil der möglichen Verbindungen unter sich die Kurven vorliegen (Fig. 5).

Wenn so die technischen Diskussionen der Konferenz weitgehend von Propagationsfragen beherrscht wurden, so hatte sie sich nichtsdestoweniger mit einer

Reihe anderer technischer Probleme ebenfalls zu befassen.

In bezug auf die wichtigsten

technischen Normungen

gelangt man zu Ergebnissen, von denen die wichtigsten hier aufgeführt seien:

A. Sendeleistung

· ·	
Maximale Leistung in der Antenne in der	
Regel	$120~\mathrm{kW}$
In Ausnahmefällen zugelassen	$240~\mathrm{kW}$
B. Kanalbreite	
Kanalbreite	10 kHz
$C.\ Frequenz toleranzen$	
für mehrfach benützte Frequenzen	\pm 50 Hz
nach dem 1. Januar 1953	\pm 20 Hz
$D.\ Feldst\"{a}rken verh\"{a}ltn is$	
der gewünschten zur nicht gewünschten Station (ondes partagées)	40 db

E. Höchste Modulationsfrequenz

Höchste Modulationsfrequenz 6400 Hz (Für Mittel- und Langwellenstationen hat man in Kopenhagen hiefür keine Normen aufgestellt.)

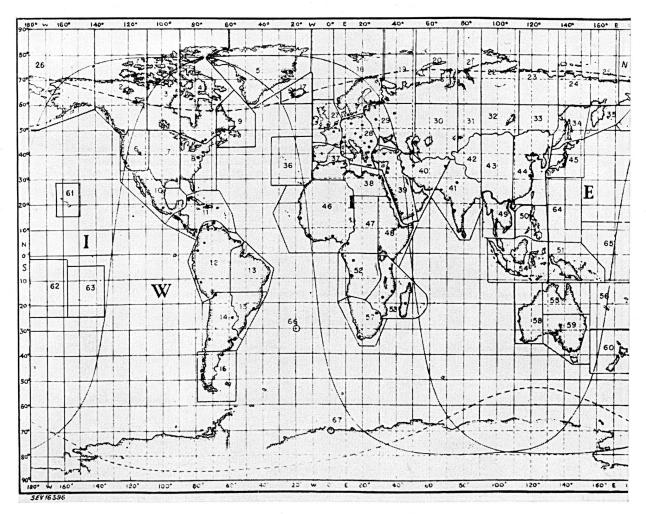


Fig. 5. Zoneneinteilung zum Uebertragungskurvenwerk

F. Zu schützende Minimalfeldstärke

Zu schützende Minimalfeldstärke 150 μ V/m

Eingehend untersucht wurden die verschiedenen Systeme für Richtantennen, wobei die Flächenantenne theoretisch und auch in bezug auf praktische Messungen besser dokumentiert scheint. Die wirksame Strahlungsunterdrückung in den nicht gewünschten Richtungen ist bei beiden Antennentypen noch nicht genügend abgeklärt.

Die Anstrengungen, für die Frequenzzuteilung

allgemeine Prinzipien

aufzustellen, führten zu keinem Erfolg. Der europäische Ostblock verfocht mit Nachdruck und unglaublicher Zähigkeit, aber ohne Erfolg, die These der drei Faktoren: Oberfläche, Bevölkerungszahl und Zahl der offiziellen Sprachen eines Landes als allein massgebende Grössen.

Die Gefahr einer Einigung unter den Grossmächten auf Kosten der kleinen Staaten, welche uns von Kopenhagen her allzugut in Erinnerung ist, konnte schliesslich abgewendet werden. Sie bestand in einer von der Sowjetdelegation vorgeschlagenen Definition des «service interne», für den die Priorität vor allen anderen Diensten, insbesondere auch dem von der Schweiz in den Vordergrund gestellten «Dienst der internationalen Verständigung» verlangt wurde. Der Sowjetvorschlag ging dahin, die Sendungen eines Mutterlandes nach den Kolonien als service interne zu definieren. Die Koalition Sowjetunion—Kolonialmächte scheiterte hauptsächlich am Widerstand der Südamerikaner.

Der Versuch, der Prinzipienfrage systematisch auf Grund eines Fragebogens beizukommen, endigte in einem Frage- und Antwortkomplex, der ein stattliches Dokument von rund 400 Seiten füllte. Die

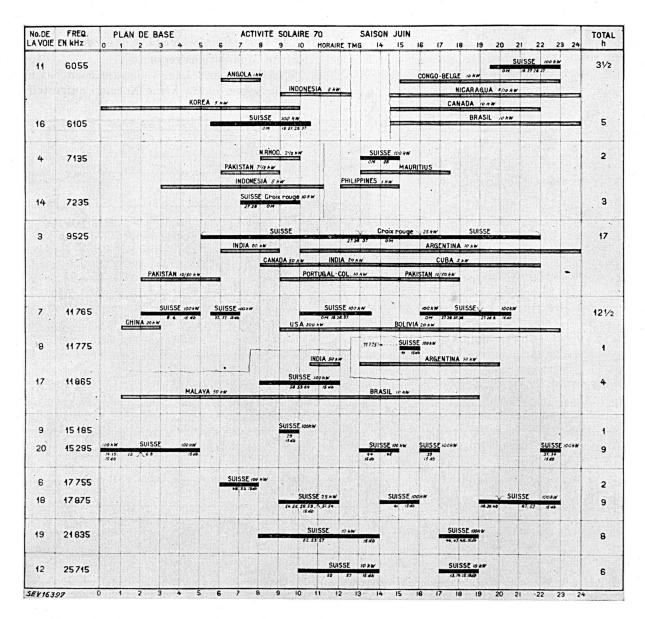


Fig. 6. Teil des Planes von Mexiko vom April 1949. Verteilung der Frequenzstunden für HF-Rundspruch

Bedeutung dieses Dokumentes liegt hauptsächlich auch auf international-rechtlichem Gebiet, wie denn überhaupt im Zusammenhang mit dem internationalen Kurzwellenrundspruch eine ganze Reihe juristischer Fragen auftauchen.

Als Beispiel hiefür sei ein der Konferenz vorgelegter Vorschlag der Südafrikanischen Union erwähnt. Gemäss diesem Vorschlag wäre für jede internationale Programmsendung vor allem das Einverständnis des «Bestimmungslandes» einzuholen. Hier tritt die politische Seite deutlich in Erscheinung. Die Konferenz erklärte sich inkompetent in dieser Frage und wies sie über den Verwaltungsrat der UIT an die UNO.

Trotz des Fehlens allgemeiner Prinzipien (oder vielleicht gerade deswegen?) gelang schlussendlich die Aufstellung eines

Planes für Sommerbedingungen bei mittlerer Sonnentätigkeit.

Dem Plan beigegeben ist eine Vereinbarung, die hauptsächlich Ein- und Durchführungsbestimmungen enthält. Die Unterzeichnung erfolgte am 10. April 1949 durch 51 Staaten bei 18 Enthaltungen.

Dieser Einzelplan ist der «Plan de base», aus welchem rein schematisch die übrigen Saisonpläne abgeleitet werden sollen. Diese Arbeit wurde von der Konferenz einer technischen Arbeitsgruppe über-

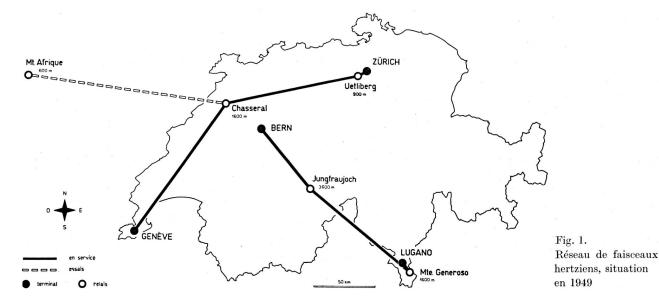
tragen, die gegenwärtig in Paris tagt. Das vollständige Planwerk unterliegt der Genehmigung durch eine neu einzuberufende Konferenz, die nächstes Jahr in Italien zusammentreten soll.

Die von der Schweiz an die Konferenz von Mexiko gestellten Forderungen entsprechen der Bedeutung dieses neuen, ausgezeichneten Hilfsmittels der Völkerannäherung und Völkerverständigung für unser kleines, auf seine Internationalität angewiesenes Land.

Obschon, wie leicht verständlich ist, auch die Schweiz im Interesse einer planvollen Ordnung im Kurzwellengebiet zu Abstrichen bereit sein musste, so kann man doch mit dem *Gesamtresultat* zufrieden sein. Die Verteilung der uns nach Inkrafttreten des Planwerkes von Mexiko zur Verfügung stehenden 71 Frequenzstunden geht aus Fig. 6 hervor.

Als erfreuliches Ergebnis darf auch die Zuweisung von 6 Frequenzstunden an das Internationale Komitee vom Roten Kreuz gewertet werden, dessen Ansprüche durch die schweizerische Delegation vertreten wurden.

Auch in bezug auf den Plan von Mexiko gilt die Bemerkung, dass seine Durchführbarkeit erst erwiesen werden muss. Die Befriedigung fast der Hälfte der ursprünglich gestellten Frequenzstundenansprüche konnte jedenfalls nur durch eine empfindliche Lockerung gewisser technischer Normen erfolgen.


Liaison transalpine par faisceaux hertziens

Rapport présenté au Congrès International de Télévision de Milan 1949, par W. Gerber, Berne

621.396.23

Les régions montagneuses offrent, comme on le sait, une série de possibilités spécifiques pour l'emploi des ondes ultra-courtes. C'est ce qui a conduit l'Administration des postes, télégraphes et téléphones suisses à établir depuis assez longtemps déjà ce que j'appellerai des «stations de montagnes» (en allemand

«Höhenstationen»). On peut considérer ces stations comme particulièrement propres à être utilisées tout d'abord pour les liaisons par faisceaux hertziens, ensuite pour la radiodiffusion de sons et d'images, enfin pour les communications avec postes mobiles au sol ou dans l'air, etc. Les développements que permettent

