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Erzwungene elektromagnetische Schwingungen am Ellipsoid und an der Kugel
bei zonaler Anregung.

(Zweite Mitteilung.)
E. Metzler. 621.396.11

In einer ersten vorläufigen Mitteilung zu diesem
Thema (TM TT Nr. 6, 1941) wurde ausgehend von
den Feldgleichungen die Formulierung des Problems
in rotationssymmetrischen elliptischen Koordinaten
gegeben. Die entstehende unhomogene partielle
Di ff. Gl. in den Koordinaten u und y ist vom
Laméschen Typus. Es wurde gezeigt, wie die in der
Erregungszone auftretende Unhomogenität
physikalisch als Sprung des Scalarpotentials oder der
Ladungsdichte an der Leiteroberfläche zu erklären
ist; weiter wurde eine formal korrekte Lösung des
Problems für verschwindende Exzentrizität, d. h. für
die Kugel, angegeben.

Nachdem heute auch die Behandlung für beliebige
Exzentrizitäten zu einem Abschluss gelangt ist,
nicht ohne dass bezüglich der für die Reihenentwicklungen

in Frage kommenden Funktionen gegenüber
der ersten Mitteilung gewisse Aenderungen sich als

nötig erwiesen hätten, soll in dieser zweiten Mittei¬

lung eine abschliessende Uebersicht der Gedankengänge

und Resultate gegeben werden.
Durch Energiebetrachtungen können ausgehend

von den Lösungen der erzwungenen Schwingungen
für ein endliches Raumgebiet Schlüsse in bezug auf
die Art der für ein unendliches Gebiet benötigten
Lösungen gezogen werden. Dabei ist in beiden Fällen,
cl. h. des endlichen bzw. unendlichen Gebietes, die
homogene Randbedingung auf einer inneren begrenzenden

Fläche dieselbe.
Als Ergebnis der Weiterentwicklung des Problems

ist die Lösung der Diff.Gl. (1) der ersten Mitteilung
nicht mehr an eine endliche Tangentialkomponente
des Vektors Qs der Oberfläche des Ellipsoides
gebunden, mit andern Worten, der Uebergang zu
praktisch vollkommener Leitfähigkeit darf vollzogen
werden. Der Lösungsansatz wird dadurch vereinfacht.

Die Diff.Gl. der magnetischen Umlaufspannung
M (u,y) schreibt sich jetzt

(V (u2 - e2) M,m +(1- y2) Myy + z2 (u2 - e2 y2) M
j - (u2 - e2 tjs2) ps rot (Si<e>

c y v*

U rzé Ug

I.u und ey bedeuten die grosse bzw. kleine Halbachse
des Rot. Ellipsoides. Unsere Formulierung des Problems stützte sich

cü2
_

wesentlich auf die durch Hinzunahme einer inneren
*2 UjT 01 ist die Kreisfrequenz der einge- eingeprägten Kraft (S/eJ erweiterte 2. Maxwellsche

prägten EMK, die man durch einen Grenzübergang Feldgleichung rot ((£ —
aus dem Umlaufsintegral § (£/c)ds erhält. c dt

Dabei
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ist wohlverstanden, dass (Si(e) an den Leiter
gebunden ist, und für den angenommenen Fall sehr
grosser Leitfähigkeit im besonderen an die
Leiteroberfläche, wo in der Erregungszone y ys die aus
der Flächendivergenz des (S Vektors entspringende
Ladungsdichte den schon mehrfach erwähnten Sprung
aufweist. Unser (B/e) ist durch sein Auftreten in der
2. Feldgleichung dadurch charakterisiert, dass es

-rJ,"fcv

Bei einem zeitlich rein periodischen Vorgang ist das
Zeitmittel der im betrachteten Volumen auftretenden
Energieänderungen (Glied links) gleich Null. Der
durch Ausstrahlung auftretende Energieverlust
(erstes Glied rechts) wird durch die vom Generator
geleistete Arbeit kompensiert. Die im Volumen
enthaltene elektromagnetische Energie vermittelt über
die ruhenden und bewegten Ladungen der
Leiteroberfläche zwischen Generator und Strahlung, d. h.
zwischen Energielieferant und Verbraucher.1)

Das zweite Integral rechts beschränkt sich auf
den Ort des Auftretens von also auf die Zone
y 7)s, u u0 und ergibt direkt die vom Generator

zugeführte Leistung — J • E0. (2x0 «, ist
_ » 1w

identisch mit dem Gesamtstrom, der durch den
Generator fliesst; aus dem Integral über
entsteht durch Grenzübergang die Generatorspannung

E0).
Ist keine eingeprägte Kraft vorhanden, wohl aber

eine anfängliche, keinem elektrostatischen
Gleichgewichtszustand entsprechende Ladungsverteilung
auf u0, so wird von dem Moment an, wo diese
Ladungsverteilung nicht mehr durch künstliche Mittel
aufrechterhalten wird, ein Ausgleichsvorgang
einsetzen. Die Energiegleichung lehrt, dass dem
Strahlungsverlust eine äquivalente zeitliche Abnahme der
Feldenergie entspricht. Der Vorgang kommt zur
Ruhe, wenn die gesamte Energie als Strahlung die
unendlich ferne Hüllfläche passiert hat.

II.
Es liegt ein durch zwei rotationssymmetrische kon-

fokale Ellipsoidschalen a und 2' von praktisch
vollkommener Leitfähigkeit begrenztes Raumgebiet G

vor. Wir untersuchen elektromagnetische Schwingungen

in diesem Gebiet, bei denen die elektrischen
Kraftlinien in Meridianebenen, die magnetischen
Kraftlinien in Kreisen um die Symmetrieachse
verlaufen. Von den in Betracht fallenden Lösungen der
Schwingungsgleichung wählen wir, mit Rücksicht
auf einen später zu vollziehenden Grenzübergang
(die Anregung zu diesem Grenzübergang verdanke
ich Herrn Prof. Tank), jene zwei, die für grosse
Parameter x (halbe grosse Ellipsoidachse) eine
divergierende bzw. eine konvergierende Welle darstellen.

1) In vielen modernen Arbeiten über das Antennenproblem
wird die Strahlungsleistung als Integral des Produktes aus Strom
und Tangentialkomponente von (5 über die Oberfläche des Leiters

berechnet. Diese Auffassung ist irrig; beim vollkommenen
Leiter verschwindet (Stang ; bei endlicher Leitfähigkeit ist dieses
Integral identisch mit dem Realteil der Poyntingschen
Energieströmung in den Leiter hinein, stellt also den Ohmschen Verlust
dar, nicht aber eine Strahlungsleistung im gewünschten Sinn.

nicht als Gradient eines Potentials erhalten wird,
wie dies z.B. in der erwähnten Arbeit (I.e.erste
Mitteilung) der amerikanischen Autoren Stratton und
Chu der Fall ist.

Wir bilden unter Berücksichtigung von Gh(r> das
Energieintegral der Maxwellschen Gleichungen, wobei

wegen der Voraussetzung über die Leitfähigkeit
die Leitungsstromdichte verschwindet.

f [(£©]» dJT- f £ rot dv
*j «v
F V

Diese Lösungen verhalten sich mit dem Zeitansatz
e ±iat jn cjer x Koordinate asymptotisch wie

e+jxx e~ixx
bezw.

x x
Auf a und 2' erfülle die Lösung U eine homogene

Randbedingung, z.B. U o. Sucht man nun durch
eine lineare Kombination V cx u + c2 v (wo u und v
die beiden Partikularlösungen bedeuten) dieser
Bedingung zu genügen, so zeigt sich, dass der in den

Funktionen u und v enthaltene Parameter x —
c

nicht frei gewählt werden kann. Es muss nämlich die
Determinante u (xx)„v (xx)s — v (xx)a u (x x) v
verschwinden. Diese Bedingungsgleichung besitzt, wie die
Theorie zeigt, eine unendliche Anzahl reeller Wurzeln

xn, die Eigenwerte des Problems, denen
ebensoviel Eigenfunktionen Un entsprechen. Aus dem
Greenschen Satz folgt unmittelbar die Orthogonalität
der entstehenden Eigenfunktionen, die so normiert
werden können (eine multiplikative Konstante ist
frei), dass

f [Im n
I Um U,;dG

y
a lp m ^ n

Physikalisch bedeuten die Eigenfunktionen nichts
anderes als die Eigenschwingungen unseres Gebietes,
und zwar können wir, da es sich um Lösungen der
Wellengleichung handelt, sie direkt identifizieren mit
der elektrischen oder der magnetischen Feldstärke.
Nach den Voraussetzungen über die
Symmetrieverhältnisse ist es zweckmässig, die magnetische
Feldstärke zu wählen. Ist also die magnetische
Umlaufspannung der n1"" Eigenschwingung Mn 2up !gn,
so gilt wegen der Orthogonalität und Normierung:

CMlMrn dG
CM,, Mm

dQ
(1 m n

'of 'of \o m yA n

Der Stern bedeutet die konjugiert komplexe Funktion.

Die wechselseitige magnetische Energie zwischen
zwei Eigenschwingungen des betrachteten Gebietes
verschwindet im Zeitmittel, die Eigenenergie der
nUn Schwingung ist endlich. Dasselbe gilt von der
elektrischen Energie, da im Vakuum Wmag — Wei-

Bei festgehaltenem a lassen wir jetzt den
Parameter der äussern Grenzfläche des Gebietes G wachsen;

die Randbedingungen bleiben dieselben. Die
Eigenwerte xn bleiben reell, indessen wird ihre
Aufeinanderfolge rascher. Die Eigenenergien nehmen zu,
aber das zeitliche Mittel ihrer Aenderungen bleibt
Null, da ja weder Energie vernichtet wird, noch
solche neu hinzukommt.
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Beim Grenzübergang 1' oo gehen die x.n in ein
kontinuierliches Spektrum über; an die Stelle der
homogenen Randbedingung auf 2', welcher durch das
Verschwinden der Lösung im Unendlichen wie x~1
ohnehin genügt wird, tritt die Sommerfeldsche Ausbzw.

Einstrahlungsbedingung. Dem Hin- und
Herpendeln der Wellen zwischen den beiden Flächen
a und 1 im endlichen Gebiet entspricht im Fall des
sich ins Unendliche erstreckenden Grundgebietes ein
ständiger Energieaustausch durch Ein- und
Ausstrahlung. Diese Vorgänge halten sich im Zeitmittel
die Waage.

Das wichtige Ergebnis ist die Feststellung, dass
trotz unendlichem Grundgebiet bei reellem x keine
Energie durch Strahlung verlorengeht, wenn gleichzeitig

die Randbedingung auf a erfüllt bleiben soll.
Das Ergebnis unserer Betrachtung lässt sich auf

Grund des Prinzips der raumzeitlichen Erhaltung
der Energie in den Satz verallgemeinern:

„Es gibt bei reellem * und unendlichem Grundgebiet

keine Eigenschwingungen, die auf einer im
Endlichen liegenden geschlossenen Fläche a
denselben homogenen Randbedingungen und im
Unendlichen der Ausstrahlungsbedingung genügen."

Dieser Satz wurde in der erwähnten Arbeit von A. Sommerfeld2)

auf andere Art hergeleitet und daraus für reelles x die
Existenz der Greenschen Funktion der Schwingungsgleichung für
den unendlichen Raum 'postuliert. In der ersten Mitteilung haben
wir auf die quellenmässige Darstellung der elektromagnetischen
Potentiale mittels des Ausdrucks ehR/R, der von Sommerfeld
als Greensche Funktion der Schwingungsgleichung für den
unendlichen Raum abgeleitet und bezeichnet wurde, aufmerksam
gemacht. Zur Lösung des Strahlungsproblems mittels der
elektromagnetischen Potentiale wäre dann zum Kern ei"R/R auf der
Strahleroberfläche eine Belegungsfunktion derart zu bestimmen,
dass einerseits die bekannten Stetigkeitsbedingungen des Feldes
an der Grenzfläche, anderseits die aus der 2. Feldgleichung sich
ergebende Sprungbedingung für das Skalarpotential erfüllt ist.

In diesem Zusammenhang verweisen wir auf eine neuere
Behandlung des Antennenproblems durch E. Hallén.3) (Vergl. zu
diesem Thema auch 0. Zinke „Grundlagen der Strom- und
Spannungsverteilung auf Antennen", Berliner Habilitationsschrift.)

Da es aus Gründen der Erhaltung der Energie
nicht möglich ist, durch Grenzübergang vom endlichen
zum unendlichen Gebiet zu zeitlich ungedämpften
Eigenschwingungen dieses unendlichen Gebietes zu
gelangen, die im Unendlichen der Atisstrahlungsbedingung

und auf einer im Endlichen liegenden
geschlossenen Fläche a einer homogenen Randbedingung

genügen, lassen wir jetzt komplexe Werte des
Parameters x zu. Nun sind Lösungen möglich; es
sind die bekannten eigentlichen, zeitlich gedämpften
Eigenschwingungen.

III.
Der unendlichen Zahl reeller Eigenwerte x.H und

zugehörigen Eigenfunktionen im endlichen Gebiet
entspricht eine ebenfalls unendliche Zahl komplexer
Eigenwerte x.v und zugehöriger Eigenfunktionen im
Ealle des sich ins Unendliche erstreckenden Raumes.

Berechnet sind diese Lösungen für die Kugel JJ. Thomson
1893), für das Ellipsoid (M. Abraham 1898) und für Leiter
beliebiger, gestreckter Form (E. Hallén 1931, vgl. auch: Oseen,
Ark. f. Mat. Astron. och Fys. 9 1913 Nr. 12, 1914 Nr. 30, als
Vorläufer der Hallénschen Rechnungen).

2) A. Sommerfeld „Die Greensche Funktion der Schwingungs-
gleicliung", Jahresbericht d. Deutsch, math. Ver. 21. 1912.

E. Hallén, „Theoretical investigations into the transmitting
and receiving Qualities of Antennae", Uppsala 1938.

Die Kugellösung wurde durch P. Debye (Ann. der Physik
IV. F. 1909 pag. 73) in die Betrachtung über den „Lichtdruck
auf Kugeln von beliebigem Material" einbezogen. Bei der bereits
erwähnten Ableitung der Greenschen Funktion führt A. Sommerfeld

ein Integral in der komplexen x Ebene über uneigentliche
Eigenschwingungen aus (loc. cit.).

Bei den uns interessierenden, nach Sommerfeld
eigentlichen gedämpften Eigenschwingungen ist auf
eine allgemeine Besonderheit aufmerksam zu machen,
die sich als Folge der Separierung in Raum- und
Zeitfunktion notwendigerweise ergibt.

Die Ellipsoidlösung geht, wie man aus der Diff.Gl.
(2) (erste Mitteilung) ersieht, für grosse Abstände
vom Erregungszentrum in dieselbe asymptotische
Form über wie die Kugellösung und stellt dann einen
zu entfernteren Kugelflächen forteilenden Wellenzug

dar. Der Ausdruck für das magnetische bzw.
elektrische Feld lautet in diesen Entfernungen
(anstatt u aus der ersten Mitteilung schreiben wir wieder
vorübergehend x), wenn man von einem unwesentlichen

Proportionalitätsfaktor absieht:

exp xv (x — et) £y (y)
x

'
yT—y2

Wegen der zeitlichen Dämpfung muss der Realteil
der komplexen Konstanten xv positiv ausfallen. Wie
sofort ersichtlich, würde nun, wenn für t (Zeit) ein
beliebiger, aber endlicher Wert eingesetzt wird,
der Ausdruck für x -> oo exponentiell über alle
Grenzen wachsen; er sollte aber verschwinden wie
x-1. Die Bedingung des Verschwindens ist erfüllt,
wenn x und t gleichzeitig dem Wert oo zustreben.

Diese mangelnde Bestimmtheit der durch
Separation in Raum und Zeitfunktion erhaltenen
mathematischen Lösung der Diff.Gl. wird durch die
Vorschrift beseitigt, dass die Schwingung zur (beliebigen)
Zeit t t0 auf a ihren Anfang nimmt. Nach Massgabe

ihrer „Weltlinie" wird sie auf entfernteren
Flächen verspätet eintreffen. Wir haben also, um
zu einer konkreten Lösung zu gelangen, der Anfangszeit

t0 jeweils die richtige Laufzeit zuzuzählen.
Insbesondere wird im Strahlungsgebiet für x -> oo

die Laufzeit t -, und das richtige Verschwinden
G

des Feldes im Unendlichen ist gewährleistet. Wir
verfügen einfach in einer uns bekannten Weise
entweder über die Zeit oder über den Ort.

Mit den partikulären Integralen, welche uns die
Eigenschwingungen für den unendlichen Raum
liefern, ist scheinbar noch nicht viel im Sinne unserer
gestellten Aufgabe gewonnen. Ein gewisser
physikalischer Zusammenhang muss aber offenbar
bestehen. Wenn man den Ausgleichsvorgang, wie wir
ihn in I in Betracht zogen, durch Aufladung stets
so rasch und phasenrichtig wiederholt, dass ein
neuer Anstoss erfolgt, bevor die vorausgegangene
Schwingung abgeklungen ist, haben wir bereits eine
gewisse Angleichung an die zeitlich ungedämpfte
erzwungene Schwingung. Wir machen einen
Grenzübergang und lassen sowohl das Intervall zwischen
zwei Stössen als auch die Amplitude des Stosses
derart zu Null gehen, dass der Scheitelwert der
resultierenden Schwingung konstant bleibt.

Bei diesem Grenzübergang werden vermutlich die
charakteristischen Grössen der Eigenschwingungen,
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d. s. Dämpfung und Eigenwellenlänge, physikalisch
auch im neuen Zustand der erzwungenen reinen
Periodizität eine Bedeutung behalten.4)

IV.
Darf der Greensche Satz auf das System der

gedämpften Eigenfunktionen angewendet werden 1

Der magnetische Feldvektor der v'en Eigenschwingung

genügt der Schwingungsgleichung
A Ipr + ï>i' o

Es gilt also

A M»

AÄ + *r
Mv

o
P

Mfi „ MfiA —- + V —- o
P P

MSchreibt man H an Stelle von —. multipliziert man

die erste Gl. mit Hu, die zweite mit Hv und
subtrahiert man, so kommt:

Ha A Hv - Hv A Ha (V - xv2) H,i Hv

Bei endlichem Grundgebiet (a, -) und homogenen
Randbedingungen auf a, F wäre nach dem Green-
schen Satz

(Hm A Hn — H„ A Hm)dG f TT 0 Hn jj11 m (v ß non

ri H
on

dF

Daraus leitete sich die Orthogonalität der
Eigenschwingungen des endlichen Raumgebietes G ab.
Die Funktionen 11 v des unendlichen Raumes an
Stelle der Hn eingesetzt, ergeben folgendes Bild:
Das Integral rechts ist über die innere Begrenzungsfläche

a einerseits, anderseits über die Hüllfläche im
oo zu erstrecken. Wegen der homogenen Randbedingung

verschwindet aber der Integrand auf o.
Im Unendlichen geht, wenn man die Laufzeit be-

1
zu Null. Dasrücksichtigt, Hv wie -, ——- wieö x d n x

Flächenelement dF geht wie x2 zu oo, der Integrand
also (wobei sich die Integration nurmehr über ein

endliches Gebiet erstreckt) wie - zu Null. Die ge-
oc

dämpften Eigenschwingungen im unendlichen Raum
bilden ein orthogonales Funlctionensystem.

Hv Hu dG o y
Das Raumintegral über die wechselseitige Energiedichte

ist Null. Für die Normierung dieser Funktionen
kann man so überlegen: Beim endlichen Gebiet
bedeutete die Vergrösserung dieses Gebietes ein
Anwachsen der Feldenergie, im Limes I oo würde
diese gar unendlich gross, was physikalisch plausibel
erscheint, benötigte doch ein Generator zum „Auf-

4) Die Konstanten, welche den Ablauf der gedämpften Schwingungen

charakterisieren, lassen sich auf folgende Weise
physikalisch einfach deuten: der Zeitfaktor exp (—xvct) der vten

9.7,

gedämpften Eigenschwingung mit xv j r— ist die

Wellenlänge der freien Schwingung, av das Dekrement) genügt
einer linearen homogenen Diff.Gl. mit konstanten Koeffizienten,
die wir mit denen der gleichlautenden Diff.Gl. eines geschlossenen
elektrischen Schwingungskreises identifizieren. Also aus

+ 7=;—— Jn — 0
d2 J v R„ d Jv

folgt :

dt2 L*i dt 0„ L„

r 1? —K^ 2LV vW-Ä
Dieser Vergleich gestattet e.g. den Ersatz des Strahlers

durch eine Kombination von unendlich vielen mit Widerstand
behafteten, jeder einer Eigenschwingung des Strahlers zugeordneten

Schwingkreisen. Ferner ergibt sich wegen der Dämpfung
eine Verkürzung der Wellenlänge gegenüber der nach der Thom-
sonschen Formel berechneten; diese Verkürzung nimmt mit
wachsender Ordnungszahl der Eigenschwingung ständig ab, usw.

füllen" des unendlichen Raumes mit Energie eine
unendlich lange Zeit; die geleistete Arbeit selbst
würde ins Unendliche wachsen. Glücklicherweise ist
aber der Energieinhalt unserer gedämpften Eigen-
funktionell beschränkt; er lässt sich, was einer festen
Wahl der Anfangsamplitude gleichkommt, normieren.

Eine gedämpfte Eigenschwingung des unendlichen
Raumes würde nach der phenomenologischen
Feldtheorie immerhin erst nach unendlich langer Zeit
von ihrem Anfang an gerechnet zur Ruhe kommen.
Praktisch jedoch ist die Schwingung bereits nach
Bruchteilen einer Sekunde vollständig verklungen.
Wir können vorübergehend die Dauer der Schwingung

so festlegen, dass die Endamplitude in einem
bestimmten Verhältnis zum Anfangswert steht. Ist
also beispielsweise die Dauer der vten Schwingung
Tv, so ergeben sich folgende Möglichkeiten, ihren
Energieinhalt zu berechnen:
a) Als Zeit und Oberflächenintegral auf a.

b) Als Volumenintegral über den von der Schwingung

zwischen den Zeitpunkten ihres Beginns und
ihres Aufhörens erfüllten Raum. In unserem
Beispiel liegt dieser Raum zwischen zwei kon-
fokalen Ellipsoidschalen, deren Parameter
entsprechend Tv voneinander verschieden sind und
die sich mit Lichtgeschwindigkeit vergrössern.

c) Als Poyntingsche Energieströmung über die
unendlich ferne Kugelfläche während der Zeit

00-7-00 -)- Tv oder 0 -f- Tv

Als gegeben scheint uns c) der einfacheren
asymptotischen Form der Schwingung wegen. (Es
erweist sich übrigens, wo über die Zeit zu integrieren
ist, wegen des exponentiellen Abklingens einfacher,
vom Anfang t0 bis t 00 zu integrieren.)

Ist also die iA Eigenfunktion zu normieren, so

hat man, wenn wieder die normalen Bezeichnungen
aus der ersten Mitteilung verwendet werden:
Mv(u,y) ct _ 8v(y)J(v(u)

'

_av .2*
— e xj> et — e xv ci} Xv — v / 1

p p Av Av

der Ausdruck geht in 1. Abrahamscher Näherung in

y und für u —> 00 über in
sin vir

e — xvct cos ~~2 cos für ungerade v

D'fNTiyi s für gerade vu
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Und die Norm der Punktion folgt aus

lim fJyi1 dIit f f
«y t/v t o

2 ~ et

u*

SIU TL

v —
cos 2

1 - y* dl dt

Das Flächenelement ist aber dl 2k u2 dy; wir integrieren und erhalten für die normierte Ve

Eigenfunktion

Mv (u, y)
Ov
— c

<\/(u2—e2) (i—y2) yy(^vy)2
y

dy

Das im Nenner stehende Integral lässt sich leicht berechnen; man findet mit den Bezeichnungen von
Jahnke-Emde :

+ /
COS*

2 1 I \
dy ~2 | Y + In 2 m — ci 2vt: j v ungerade

sin"

+1

J 1 — y2
- I

1 \
dy g | In y + In 2vn — ci 2m j v gerade

Das so normierte Orthogonalsystem der Eigenfunktionen
für ein Gebiet, das sich von einer inneren geschlossenen
Begrenzungsfläche aus ins Unendliche erstreckt,
besitzt einen natürlich definierten Anwendungsbereich.
Die Funktionen beschreiben jede einen
Normalvorgang, der als elektromagnetische Störung zu einer
gegebenen Zeit auf der Oberfläche des sehr gut
leitenden Ellipsoïdes seinen Anfang nimmt.

Eine beliebige erzwungene statische Ladungsverteilung
an der Leiteroberfläche, die plötzlich durch den

Wegfall der äusseren Kräfte sich selbst überlassen
wird, lässt sich nach dem vorliegenden Orthogonalsystem

in eine Reihe von „Normalvorgängen"
entwickeln, wobei jeder Vorgang einen eigenen zeitlichen
Verlauf besitzt.

Der Raumteil der definierten Eigenfunktionen
erfüllt unabhängig die Wellengleichung; schreiben wir
deshalb auf der Quellfläche, d. i. die Leiteroberfläche,

sei es eine bestimmte erzwungene Bewegung
der Ladungen, sei es die Gegenwart der EMK eines
Generators vor, so muss es möglich sein, den
entstehenden Schwingungszustand aus Normalvorgängen

aufzubauen (die Wirkung der EMK konnte ja
als Sprung der Ladungsdichte erklärt werden).

Gelingt es, aus den unendlich vielen Lösungen der

Gleichung A —' + xv2 o eine konvergente

Reihe zu bilden, die unserer erzwungenen
Quellenverteilung an der Leiteroberfläche entspricht, so ist
die uns gestellte Aufgabe gelöst. Mit der Ortho-
gonalisierung und Normierung unseres Funktionensystems

(wobei die Tatsache des unendlichen Grund-
gebietes nicht mehr direkt in Erscheinung tritt) und
der grundsätzlichen Beschränkung der Quellverteilung

auf die Leiteroberfläche ist das Problem der
Reihenentwicklung durch nichts mehr von dem ein

endliches Gebiet betreffenden unterschieden; die
bekannten Entwicklungssätze können deshalb
angewendet werden.

V.
Die Diff. Gl. (1)' ist mit Ausnahme der Erregungszone

überall homogen, d. h. man erhält in der
Greenschen Funktion des Differentialsausdrucks links
(x ist reell und deshalb kein Eigenwert) unmittelbar
die Lösung des Problems selbst. Diese Lösung heisst

Re M (u, y) e—= Re p He^0>t

Zu diesem Zweck bilden wir die Zackenfunktion, d. h.
die Reihendarstellung der Unhomogenität durch die
Eigenfunktionen. Dann lässt sich die von Prof.
Sommerfeld (loc. cit. pag. 33) gegebene Ableitung
anwenden.

Abkürzend schreiben wir wieder
Mv
P

— Hv, dazu

j - E0 S (u0, t]s), dann lautet die Diff. Gl. (1)'
c

A H x2 H S (u0, rjs)
Die Eigenfunktionen genügen der Diff. Gl.

A Hv + xv2 H o

Weiter soll S 1 a.. Hv H 1 b„ Hv
somit ist AH 1 bv xv2 HXv**

A H + x2 H Ibv (x2 -

av

xv2) Hv

a)

b)
c)
d)
e)

Wegen a) folgt somit bv

Für die Entwicklungskoeffizienten der ausgearteten
Zacke (der Grenzübergang wird in der in Vorbereitung

befindlichen Arbeit gebracht) erhält man

av Hv (u0, tjs) daraus bv
^U<" ^s).

und die Lösung von a), wenn man auf die ursprünglichen

Bezeichnungen zurückgeht:
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M (u, y) --- jx
En Y* Mv (u, y) Mv (u0, rjg)

V(V - eV (1 - Xv

Die Lösung genügt
1. der Wellengleichung,
2. der homogenen Randbedingung auf u0, da

Glieder der Reihe ihr einzeln genügen,
3. der Ausstrahlungsbedingung wenn, wie das für

die Raumfaktoren der Eigenschwingungen der
Fall sein muss, die Laufzeit berücksichtigt wird,

4. wegen des Anwachsens des Nenners der
Konvergenzbedingung wie analoge Entwicklungen für
ein endliches Gebiet.

Unser Ausdruck unterscheidet sich formal durch
nichts von der erzwungenen Schwingung eines end¬

lichen Raumgebietes. Und doch besteht ein grosser
Unterschied, kann doch beim endlichen Gebiet, wo

die die x~u reell waren, ein vollständiges Verschwinden
eines Nenners eintreten, dann nämlich, wenn die
erregende Frequenz mit einer der Eigenschwingungszahlen

übereinstimmt. Nicht so in unserem Fall, wo
neben dem reellen x2 die xv2 von Haus aus komplex
sind und somit bei endlicher Erregung die Amplitude
immer beschränkt bleibt. Dass Resonanzen
auftreten, bedingt die Uebereinstimmung der reellen
Teile von x2 und xv2. Eine Reihe wichtiger Schlüsse
lässt sich aus unserer Lösung ziehen. Auf die Rezi-

Fig. 1.
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-Fis- 2.

prozität zwischen Aufpunkt und Quellpunkt in u0
wurde in der ersten Mitteilung bereits hingewiesen.
Unsere Methode der gedämpften Eigenfunktionen
lässt sich auch auf zylindrische Leiter anwenden, für
welche E. Hallen (1. c.) die Eigenschwingungen mit
grosser Genauigkeit berechnet hat.

Wie belastete Leiter zu behandeln sind, wurde in
der ersten Mitteilung bereits angegeben.

Um ein Bild vom grundsätzlichen Verhalten der
Lösung zu gewinnen, haben wir für ein sehr
gestrecktes Ellipsoid von 430 m Länge und 1,5 mm
halber kleiner Achse den Scheineingangswiderstand
für ein breites Frequenzband in unbenannten
Einheiten berechnet (Fig. 1). In Fig. 2 ist die
Stromverteilung auf demselben Ellipsoid mit der Annahme
2e

0.62 dargestellt. In beiden Fällen ist der
A

auch in 1. Näherung zeitraubenden Rechnung wegen
die Erregungszone in y rjs o angenommen; die
geradzaldigen Eigenfunktionen fallen damit fort.

VI.
Das Studium der speziellen Aufgabe erzwungener

Schwingungen am Rotationsellipsoid führt uns in
seinen Ergebnissen über den Rahmen der ursprünglichen

Fragestellung hinaus zu einem Lösungsansatz
bei allgemeiner Problemstellung. Von besonderem
technischem Interesse dürfte u. a. die Behandlung
der erzwungenen Schwingungen an zylindrischen
Leitern sein.

Um zu allgemeinen Lösungsansätzen zu gelangen,
wobei auch die Rotationssymmetrie nicht unbedingt
gefordert wird, ist es notwendig, das Feld anstatt
aus den klassischen Feldgleichungen, aus dem
Hertzschen Vektor oder aus den zu diesem in ein¬

facher Beziehung stehenden elektromagnetischen
Potentialen zu berechnen.

Wir beschränken uns auf eine grundsätzliche
Formulierung in einem Cartesischen Koordinatensystem,
wo x, y, z die Koordinaten des Aufpunktes, £, y, Ç

diejenigen des Quellpunktes bedeuten. Man hat mit
üblichen Bezeichnungen 91 und <p für das
Vektorpotential bzw. das Skalarpotential im Gaußschen
Maßsystem :

l d29l 4z
A3t-^j2:=~7i (x,y,z) i i($,y,£)

A v ~hw ~4nq <p=<p(x>y>z) ci=o(lrhQ
Anstatt der Stromdichte i schreiben wir mit der
Annahme grosser Leitfähigkeit § ($, y, £), wobei

y, C einen auf der Leiteroberfläche a liegenden
Punkt festlegen. Die Ladungsdichte q ist als
Flächendivergenz des Vektors © an der Leiteroberfläche
definiert. Die Erregung sei wieder zonal, die
betreffende Zone S durch die Angaben S (ç, y, '10)
gegeben.
Dann gilt für die erzwungene Schwingung

_

A9I + *291 - <Q(ï,y,Ç)
und für die Ve Eigenschwingung

A 91, + xv2 91, - §, ($, y, C)
Wir können aber nach Vorausgegangenem die
erzwungene Quellverteilung in die Reihe entwickeln:

CO

6 ff,,, ;> « ,',s. yMkîAAffiiiAAj X* - Xv*
V J

Und die Lösung für das Vektorpotential der
erzwungenen Schwingung lautet:

9t (x, y, z, t, x) — j x

r ^(X-Yy<t+Tv-y)* +
er V=I

(JiäLÇIfi (JL v>J°) \ eix"*~'r> da
x — Xv

J r V] j J i COS —V + 0.858 rnç3Zv t 0-865 rr)$ u +Jl'J 1-I3.2+J0.I53 2 6.ß5+j0.663 2 46.4+j1.2S 2
V

I I I I I I I I I—

0.04

0.02

1__ 1
1

Stromverlauf an einem in der Mitte
erregten Rotationsellipsoid
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Das Vektorpotential kommt in Resonanz mit der
vttn E. Sch., wenn das aufgedrückte x2 mit dem
Realteil von xv2 übereinstimmt. Das Skalarpotential <p

setzt sich, wie bereits in der ersten Mitteilung
ausgeführt, aus zwei Teilpotentialen, herrührend von
der Ladungsverteilung auf a beidseitig der
Erregungszone zusammen und erfährt beim Durchgang
durch die Generatorzone einen Sprung von der
Grösse der EMK E0.

Auch hier wie beim Beispiel des Rotationsellipsoi-
des wird die Quellverteilung auf a nach den
Eigenfunktionen des unendlichen Raumes entwickelt
(vgl. pag. 166).

Die Anwendung der hier entwickelten Theorie auf
zylindrische Leiter löst z. B. die seit langem strittige
Frage der Wellenlängenverkürzung auf Drahtantennen.

Das Mass der Verkürzung wird offenbar
bestimmt durch diejenige der nächstgelegenen
Eigenschwingung (vgl. die Fussnote Seite 164). Nach den
Rechnungen von Hallen sind diese Verkürzungen bei
den Zylindereigenschwingungen erheblich grösser als
beim gestreckten Ellipsoid.

Zusammenfassung.

Die Differentialgleichung durch innere eingeprägte
Kräfte erzwungener elektrischer Schwingungen am
verlängerten Rotationsellipsoid bei zonaler Anregung wird
für beliebige Exzentrizitäten exakt gelöst. Die in der

ersten vorläufigen Mitteilung (Techn. Mitteilungen
der Schweiz. Telegraphen- und Telephonverwaltung
Nr. 6, 1941) angegebenen Erweiterungen des
Ansatzes für die Wirkung konzentrierter Belastungen
(Induktivitäten, Kapazitäten, Widerstände) können
nach den jetzt vorliegenden Ergebnissen konkret
behandelt werden. Es wird gezeigt, dass die eigentlichen
gedämpften elektrischen Eigenschwingungen an
geschlossenen Flächen bei sich ins Unendliche erstreckendem

Grundgebiet ein orthogonales normierbares
Funktionensystem bilden. Diese Funktionen können zur
Darstellung eines Ausgleichsvorgangs bei beliebig
vorgeschriebener anfänglicher Ladungsverteilung auf der
betrachteten Fläche benützt werden. Wird die
Ladungsverteilung nach periodischem Gesetz durch eine
eingeprägte EMK unterhalten, so entsteht die Lösung
des Problems der erzwungenen Schwingungen.

Die Methode der Reihenentwicklung nach
Eigenfunktionen des unendlichen Raumes lässt sich auf
beliebig geformte Leiter verallgemeinern, insbesondere
auf solche von zylindrischer Form, für welche die
Lösung der gedämpften Schwingungen in der Literatur
vorhanden ist.

In praktischer Anwendung der Theorie werden die
berechnete Stromverteilung und der Scheineingangs-
widerstand an einem gestreckten Rotationsellipsoid in
1. Näherung graphisch veranschaulicht.

Bern, 4. September 1942.

Fehlerortsberechnung
bei Isolationsdefekten an Kabeln

Heute sind unsere Teilnehmerkabelanlagen vielfach

aus Kabellängen verschiedener Aderdurchmesser
zusammengespleisst. Für die Kabeladern wird noch
ausschliesslich Kupfer verwendet. Im folgenden soll
angegeben werden, wie der Fehlerort bei Isolationsdefekten

an solchen Leitungen verschiedener
Querschnitte berechnet werden kann.

Es ist nach den Methoden Murray oder Varley Rx
in Ohm zu bestimmen. Die Entfernung des Fehlerortes

von der Meßstelle in Meter kann dann folgen-
dermassen berechnet werden:

Da der spezifische Widerstand p der verschiedenen
Kabel gleich ist, lassen sich die Längen für jede Sektion

durch Multiplikation mit einem Faktor y auf

verschiedener Aderdurchmesser.
621.317.333.4

die Aequivalenz des in den Lokalkabelanlagen
vorherrschenden Aderdurchmessers 0,8 bringen. Es
besteht die Proportion

r -1 —l
d2

daraus

T
0,8 2

d2

Die Werte y der bei uns
gebräuchlichen Aderdurchmesser
können beistehender Tabelle
entnommen werden.

Fe/iferorf

r
Fig. 1.

£2/2
£2

Xj #6£3

Cfz c/j

1 F n
-o—J 0

w
O 0-

Scktior)

Es bedeuten:
Ti !i
ly 1

yx

k

Aequivalenzlänge der Kabelsektion 1

Aequivalenzlänge der Meßstrecke
Aequivalenzentfernung des Fehlerortes von

der Meßstelle
Widerstand von 1 m Ader 0,8 mm Durchmesser
Entfernung des Fehlerortes von Anfang

Sektion 3 in m.

3 a

Dann gelten die Beziehungen:

2r 1 Ti Ii + r2 + •

Ra
2 2' y \

Rx
~ IT

k

yx

d r
0,6 1,778
0,8 1

0,9 0,790
1,0 0,640
1,2 0,444
1,4 0,327
1,5 0,284
1,8 0,198
2,0 0,160

+ r» In
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