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Erzwungene elektromagnetische Schwingungen am Ellipsoid und an der Kugel

bei zonaler Anregung.
(Zweite Mitteilung.)

E. Metzler. 621.396.11

In einer ersten vorlaufigen Mitteilung zu diesem
Thema (TM TT Nr. 6, 1941) wurde ausgehend von
den Feldgleichungen die Formulierung des Problems
in rotationssymmetrischen elliptischen Koordinaten
gegeben. Die entstehende unhomogene partielle
Diff. Gl. in den Koordinaten % und y ist vom
Laméschen Typus. Es wurde gezeigt, wie die in der
Erregungszone auftretende Unhomogenitit physi-
kalisch als Sprung des Skalarpotentials oder der
Ladungsdichte an der Leiteroberfliche zu erkliren
ist; weiter wurde eine formal korrekte Losung des
Problems fiir verschwindende Exzentrizitat, d. h. fir
die Kugel, angegeben.

Nachdem heute auch die Behandlung fiir beliebige
Exzentrizititen zu einem Abschluss gelangt ist,
nicht ohne dass beziiglich der fiir die Reihenentwick-
lungen in Frage kommenden Funktionen gegeniiber
der ersten Mitteilung gewisse Aenderungen sich als
notig erwiesen hétten, soll in dieser zweiten Mittei-

(1)

u und ey bedeuten die grosse bzw. kleine Halbachse
des Rot. Ellipsoides.

ot
K=
pragten EMK, die man durch einen Grenziibergang
aus dem Umlaufsintegral § €;®/ds erhilt.

o ist die Kreisfrequenz der einge-

(0 — ¢) Mo + (1 — y2) My + 2 (0 — ¢ y2) M —

lung eine abschliessende Uebersicht der Gedanken-
ginge und Resultate gegeben werden.

Durch Energiebetrachtungen konnen ausgehend
von den Losungen der erzwungenen Schwingungen
fiir ein endliches Raumgebiet Schliisse in bezug auf
die Art der fiir ein unendliches Gebiet benstigten
Losungen gezogen werden. Dabei ist in beiden Féllen,
d. h. des endlichen bzw. unendlichen Gebietes, die
homogene Randbedingung auf einer inneren begren-
zenden Flache dieselbe.

Als Ergebnis der Weiterentwicklung des Problems
ist die Losung der Diff.Gl. (1) der ersten Mitteilung
nicht mehr an eine endliche Tangentialkomponente
des Vektors € der Oberfliche des Ellipsoides ge-
bunden, mit andern Worten, der Uebergang zu
praktisch vollkommener Leitfahigkeit darf vollzogen
werden. Der Losungsansatz wird dadurch vereinfacht.

Die Diff.Gl. der magnetischen Umlaufspannung
M (u,y) schreibt sich jetzt '

l

) U=
§— (u? — e®s?) ps rot ;¢ g
JC( 7‘9)13 i Y 7s

0 U 7= U
1.
Unsere Formulierung des Problems stiitzte sich
wesentlich auf die durch Hinzunahme einer inneren
eingeprigten Kraft €@ erweiterte 2. Maxwellsche

Feldgleichung rot (€ — §;(®)) = 1 4% Dabei

C dt



162

Technische Mitteilungen T. T.

Nr. 5, 1942

ist wohlverstanden, dass €;/ an den Leiter ge-
bunden ist, und fir den angenommenen Fall sehr
grosser Leitfahigkeit im besonderen an die Leiter-
oberfliche, wo in der Erregungszone y = 7, die aus
der Flichendivergenz des € Vektors entspringende
Ladungsdichte den schon mehrfach erwihnten Sprung
aufweist. Unser €;® ist durch sein Auftreten in der
2. Feldgleichung dadurch charakterisiert, dass es

1 d , ,

Tgear,) (VT e dv=
v

Bei einem zeitlich rein periodischen Vorgang ist das
Zeitmittel der im betrachteten Volumen auftretenden
Energieanderungen (Glied links) gleich Null. Der
durch Ausstrahlung auftretende Energieverlust (er-
stes Glied rechts) wird durch die vom Generator
geleistete Arbeit kompensiert. Die im Volumen ent-
haltene elektromagnetische Energie vermittelt tiber
die ruhenden und bewegten Ladungen der Leiter-
oberfliche zwischen Generator und Strahlung, d. h.
zwischen Energielieferant und Verbraucher.?)

Das zweite Integral rechts beschrinkt sich auf
den Ort des Auftretens von €;¢, also auf die Zone
Y = 75 4 = U, und ergibt direkt die vom Genera-
tor zugefiihrte Leistung — J . K, (27 p .i);i;c]o ist

identisch mit dem Gesamtstrom, der durch “den
Generator fliesst; aus dem Integral iiber €;*) ent-
steht durch Grenziibergang die Generatorspan-
nung F,).

Ist keine eingepragte Kraft vorhanden, wohl aber
eine anfingliche, keinem elektrostatischen Gleich-
gewichtszustand entsprechende Ladungsverteilung
auf u,, so wird von dem Moment an, wo diese La-
dungsverteilung nicht mehr durch kiinstliche Mittel
aufrechterhalten wird, ein Ausgleichsvorgang ein-
setzen. Die Energiegleichung lehrt, dass dem Strah-
lungsverlust eine dquivalente zeitliche Abnahme der
Feldenergie entspricht. Der Vorgang kommt zur
Ruhe, wenn die gesamte Energie als Strahlung die
unendlich ferne Hiillflache passiert hat.

1I.

Es liegt ein durch zwei rotationssymmetrische kon-
fokale Ellipsoidschalen ¢ und 3 von praktisch voll-
kommener Leitfahigkeit begrenztes Raumgebiet ¢/
vor. Wir untersuchen elektromagnetische Schwin-
gungen in diesem Gebiet, bei denen die elektrischen
Kraftlinien in Meridianebenen, die magnetischen
Kraftlinien in Kreisen um die Symmetrieachse ver-
laufen. Von den in Betracht fallenden Losungen der
Schwingungsgleichung wihlen wir, mit Riicksicht
auf einen spiter zu vollziehenden Grenziibergang
(die Anregung zu diesem Grenziibergang verdanke
ich Herrn Prof. Tank), jene zwei, die fiir grosse
Parameter x (halbe grosse Ellipsoidachse) eine diver-
gierende bzw. eine konvergierende Welle darstellen.

1) In vielen modernen Arbeiten iiber das Antennenproblem
wird die Strahlungsleistung als Integral des Produktes aus Strom
und Tangentialkomponente von € iiber die Oberfliche des Lei-
ters berechnet. Diese Auffassung ist irrig; beim vollkommenen
Leiter verschwindet Ctang; bei endlicher Leitfihigkeit ist dieses
Integral identisch mit dem Realteil der Poyntingschen Energie-
stromung in den Leiter hinein, stellt also den Ohmschen Verlust
dar, nicht aber eine Strahlungsleistung im gewiinschten Sinn.

nicht als Gradient eines Potentials erhalten wird,
wie dies z. B. in der erwihnten Arbeit (1.c.erste Mit-
teilung) der amerikanischen Autoren Stratton und
Chu der Fall ist.

Wir bilden unter Beriicksichtigung von €,/ das
Energieintegral der Maxwellschen Gleichungen, wo-
bei wegen der Voraussetzung iiber die Leitfahigkeit
die Leitungsstromdichte verschwindet.

[ (G, dF — [ 9 rot 60 do
7 v
Diese Losungen verhalten sich mit dem Zeitansatz
eti®t in der x Koordinate asymptotisch wie
e—%—sz‘ e—jxfc
bezw.  —

Auf ¢ und Y erfiille die Losung U eine homogene
Randbedingung, z. B. U = 0. Sucht man nun durch
eine lineare Kombination U = ¢;u + ¢,v (Wo % und v
die beiden Partikularlosungen bedeuten) dieser Be-
dingung zu geniigen, so zeigt sich, dass der in den

& w
Funktionen # und » enthaltene Parameter x = .

nicht frei gewihlt werden kann. Es muss nimlich die
Determinante u (xx)sv (xx)y—v (xx)su (x )y ver-
schwinden. Diese Bedingungsgleichung besitzt, wie die
Theorie zeigt, eine unendliche Anzahl reeller Wur-
zeln x,, die Higenwerte des Problems, denen eben-
soviele Higenfunktionen U, entsprechen. Aus dem
Greenschen Satz folgt unmittelbar die Orthogonalitit
der entstehenden Eigenfunktionen, die so normiert
werden konnen (eine multiplikative Konstante ist
frei), dass

I m=mn

0 mFZEn

Physikalisch bedeuten die Eigenfunktionen nichts
anderes als die Higenschwingungen unseres Gebietes,
und zwar konnen wir, da es sich um Losungen der
Wellengleichung handelt, sie direkt identifizieren mit
der elektrischen oder der magnetischen Feldstirke.
Nach den Voraussetzungen iiber die Symmetrie-
verhéltnisse ist es zweckmiissig, die magnetische
Feldstiarke zu wiahlen. Ist also die magnetische Um-
laufspannung der n*" Eigenschwingung M, = 27 p 9u,
so gilt wegen der Orthogonalitit und Normierung:

i . m ' n MII:
Lo ;M-- d@ = 4 — dG@ = 4
: I 0 MmN

e P «

Der Stern bedeutet die konjugiert komplexe Funk-
tion. Die wechselseitige magnetische Energie zwischen
zwei Eigenschwingungen des betrachteten Gebietes
verschwindet im Zeitmittel, die Higenenergie der
ntr Schwingung ist endlich. Dasselbe gilt von der
elektrischen Energie, da im Vakuum W, = Wa-

(v, 046 — {
«

m = n

Bei festgehaltenem o lassen wir jetzt den Para-
meter der dussern Grenzfliche des Gebietes G wacl_l-
sen; die Randbedingungen bleiben dieselben. Die
Eigenwerte x, bleiben reell, indessen wird ihre Auf-
einanderfolge rascher. Die Eigenenergien nehmen zu,
aber das zeitliche Mittel ihrer Aenderungen bleibt
Null, da ja weder Energie vernichtet wird, noch
solche neu hinzukommt.
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Beim Grenziibergang Y — oo gehen die %, in ein
kontinuierliches Spektrum iiber; an die Stelle der
homogenen Randbedingung auf ¥, welcher durch das
Verschwinden der Losung im Unendlichen wie a1
ohnehin geniigt wird, tritt die Sommerfeldsche Aus-
bzw. Einstrahlungsbedingung. Dem Hin- und Her-
pendeln der Wellen zwischen den beiden Flachen
o und Y im endlichen Gebiet entspricht im Fall des
sich ins Unendliche erstreckenden Grundgebietes ein
stdandiger Energieaustausch durch Kin- und Aus-
strahlung. Diese Vorginge halten sich im Zeitmittel
die Waage.

Das wichtige Ergebnis ist die Feststellung, dass
trotz unendlichem Grundgebiet bei reellem x keine
Energie durch Strahlung verlorengeht, wenn gleich-
zeitig die Randbedingung auf ¢ erfiillt bleiben soll.

Das Ergebnis unserer Betrachtung lasst sich auf
Grund des Prinzips der raumzeitlichen Erhaltung
der Energie in den Satz verallgemeinern:

»Es gibt bei reellem x» und unendlichem Grund-
gebiet keine Eigenschwingungen, die auf einer im
Endlichen liegenden geschlossenen Fliche o den-
selben homogenen Randbedingungen und im Un-
endlichen der Ausstrahlungsbedingung geniigen.*

Dieser Satz wurde in der erwahnten Arbeit von A. Sommer-
feld 2) auf andere Art hergeleitet und daraus fiir reelles x die
Existenz der Greenschen Funktion der Schwingungsgleichung fiir
den unendlichen Rawm postuliert. In der ersten Mitteilung haben
wir auf die quellenmissige Darstellung der elektromagnetischen
Potentiale mittels des Ausdrucks eixZ/g, der von Sommerfeld
als Greensche Funktion der Schwingungsgleichung fiir den un-
endlichen Raum abgeleitet und bezeichnet wurde, aufmerksam
gemacht. Zur Losung des Strahlungsproblems mittels der elektro-
magnetischen Potentiale wire dann zum Kern eix®/g auf der
Strahleroberflache eine Belegungsfunktion derart zu bestimmen,
dass einerseits die bekannten Stetigkeitsbedingungen des Feldes
an der Grenzfliche, anderseits die aus der 2. Feldgleichung sich
ergebende Sprungbedingung fiir das Skalarpotential erfillt ist.

In diesem Zusammenhang verweisen wir auf eine neuere Be-
handlung des Antennenproblems durch E. Hallén.?) (Vergl. zu
diesem Thema auch O. Zinke ,,Grundlagen der Strom- und
Spannungsverteilung auf Antennen, Berliner Habilitations-
schrift.)

Da es aus Griinden der Erhaltung der Energie
nicht moglich ist, durch Grenziibergang vom endlichen
zum unendlichen Gebiet zu zeitlich ungedampften
Eigenschwingungen dieses unendlichen Gebietes zu
gelangen, die im Unendlichen der Ausstrahlungs-
bedingung und auf einer im Endlichen liegenden ge-
schlossenen Fliache ¢ einer homogenen Randbedin-
gung geniigen, lassen wir jetzt komplexe Werte des
Parameters x zu. Nun sind Losungen moglich; es
sind die bekannten eigentlichen, zeitlich gedampften
Eigenschwingungen.

111.

Der unendlichen Zahl reeller Eigenwerte x, und
zugehorigen Eigenfunktionen im endlichen Gebiet
entspricht eine ebenfalls unendliche Zahl komplexer
Eigenwerte x, und zugehoriger Eigenfunktionen im
Falle des sich ins Unendliche erstreckenden Raumes.

Berechnet sind diese Losungen fiir die Kugel (JJ. Thomson
1,893), fiir das Ellipsoid (M. Abraham 1898) und fiir Leiter be-
liebiger, gestreckter Form (E.Hallén 1931, vgl. auch: Oseen,
Ark. f. Mat. Astron. och Fys. 9 1913 Nr.12, 1914 Nr. 30, als
Vorliufer der Hallénschen Rechnungen).

) A. Sommerfeld ,,Die Greensche Funktion der Schwingungs-
gle‘flmng“, Jahresbericht d. Deutsch. math. Ver. 21. 1912.
) E. Ha.llén, »Theoretical investigations into the transmitting
and receiving Qualities of Antennae", Uppsala 1938.

Die Kugellosung wurde durch P. Debye (Ann.der Physik
IV.F. 1909 pag.73) in die Betrachtung iiber den ,Lichtdruck
auf Kugeln von beliebigem Material“ einbezogen. Bei der bereits
erwahnten Ableitung der Greenschen Funktion fiithrt A. Sommer-
feld ein Integral in der komplexen x Ebene iiber uneigentliche
Eigenschwingungen aus (loc. cit.).

Bei den uns interessierenden, nach Sommerfeld
eigentlichen geddmpften Eigenschwingungen ist auf
eine allgemeine Besonderheit aufmerksam zu machen,
die sich als Folge der Separierung in Raum- und
Zeitfunktion notwendigerweise ergibt.

Die Ellipsoidlésung geht, wie man aus der Diff.Gl.
(2) (erste Mitteilung) ersieht, fiir grosse Abstidnde
vom Erregungszentrum in dieselbe asymptotische
Form iiber wie die Kugellosung und stellt dann einen
zu entfernteren Kugelflaichen forteilenden Wellen-
zug dar. Der Ausdruck fiir das magnetische bzw.
elektrische Feld lautet in diesen Entfernungen (an-
statt » aus der ersten Mitteilung schreiben wir wieder
voriibergehend z), wenn man von einem unwesent-
lichen Proportionalitatsfaktor absieht:

exp x, (r—ct) - & (y)

x «\/—Ij yz
Wegen der zeitlichen Dampfung muss der Realteil
der komplexen Konstanten x, positiv ausfallen. Wie
sofort ersichtlich, wiirde nun, wenn fiir ¢ (Zeit) ein
beliebiger, aber endlicher Wert eingesetzt wird,
der Ausdruck fiir & —» oo exponentiell iiber alle
Grenzen wachsen; er sollte aber verschwinden wie
x—1. Die Bedingung des Verschwindens ist erfiillt,
wenn x und ¢ gleichzeitig dem Wert oo zustreben.

Diese mangelnde Bestimmtheit der durch Sepa-
ration in Raum und Zeitfunktion erhaltenen mathe-
matischen Losung der Diff.Gl. wird durch die Vor-
schrift beseitigt, dass die Schwingung zur (beliebigen)
Zeit t = f, auf ¢ ihren Anfang nimmt. Nach Mass-
gabe ihrer ,Weltlinie® wird sie auf entfernteren
Flachen verspatet eintreffen. Wir haben also, um
zu einer konkreten Losung zu gelangen, der Anfangs-
zeit 1, jeweils die richtige Laufzeit zuzuzéhlen. Ins-
besondere wird im Strahlungsgebiet fiir x — oo

die Laufzeit t = g, und das richtige Verschwinden

des Feldes im Unendlichen ist gewéhrleistet. Wir
verfiigen einfach in einer uns bekannten Weise ent-
weder iiber die Zeit oder iiber den Ort.

Mit den partikuliren Integralen, welche uns die
Eigenschwingungen fiir den unendlichen Raum lie-
fern, ist scheinbar noch nicht viel im Sinne unserer
gestellten Aufgabe gewonnen. Ein gewisser physi-
kalischer Zusammenhang muss aber offenbar be-
stehen. Wenn man den Ausgleichsvorgang, wie wir
ihn in I in Betracht zogen, durch Aufladung stets
so rasch und phasenrichtig wiederholt, dass ein
neuer Anstoss erfolgt, bevor die vorausgegangene
Schwingung abgeklungen ist, haben wir bereits eine
gewisse Angleichung an die zeitlich ungedampfte er-
zwungene Schwingung. Wir machen einen Grenz-
iibergang und lassen sowohl das Intervall zwischen
zwei Stossen als auch die Amplitude des Stosses
derart zu Null gehen, dass der Scheitelwert der re-
sultierenden Schwingung konstant bleibt.

Bei diesem Grenziibergang werden vermutlich die
charakteristischen Grossen der Eigenschwingungen,
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d. s. Dimpfung und Eigenwellenlinge, physikalisch
auch im neuen Zustand der erzwungenen reinen
Periodizitit eine Bedeutung behalten.?)
IV.
Darf der Greensche Satz auf das System der
geddmpften Eigenfunktionen angewendet werden ?

Der magnetische Feldvektor der »** Eigenschwin-
gung geniigt der Schwingungsgleichung

A B+ 2,2 S = o
Es gilt also
o Mo
+ /1' — =0
A p P
| (Hy AH,— H, AH,)d6¢ =
@

Daraus leitete sich die Orthogonalitit der Kigen-
schwingungen des endlichen Raumgebietes G/ ab.
Die Funktionen Hy des unendlichen Raumes an
Stelle der H, eingesetzt, ergeben folgendes Bild:
Das Integral rechts ist iiber die innere Begrenzungs-
flache ¢ einerseits, anderseits iiber die Hiillfliche im
oo zu erstrecken. Wegen der homogenen Randbe-
dingung verschwindet aber der Integrand auf o.
Im Unendlichen geht, wenn man die Laufzeit be-

riicksichtigt, Hy wie —l, 0\ " wie —5 zu Null. Das
x on x

Fliachenelement dF geht wie x2 zu oo, der Integrand
also (wobei sich die Integration nurmehr iiber ein

endliches Gebiet erstreckt) wie é zu Null. Die ge-

dimpften Eigenschwingungen im wunendlichen Raum
bilden ein orthogonales Funkitionensystem.

v 2=

Das Raumintegral iiber die wechselseitige Energie-
dichte ist Null. Fiir die Normierung dieser Funktionen
kann man so iiberlegen: Beim endlichen Gebiet be-
deutete die Vergrosserung dieses Gebietes ein An-
wachsen der Feldenergie, im Limes 2 — oo wiirde
diese gar unendlich gross, was physikalisch plausibel
erscheint, benotigte doch ein Generator zum , Auf-

o9
(Hy H; d6 =

4) Die Konstanten, welche den Ablauf der gedampften Schwin-
gungen charakterisieren, lassen sich auf folgende Weise physi-
kalisch einfach deuten: der Zeitfaktor exp (—x,ct) der wten

Oy

)Tv f—
Wellenlidnge der freien Schwingung, ¢, das Dekrement) geniigt
einer linearen homogenen Diff.Gl. mit konstanten Koeffizienten,
die wir mit denen der gleichlautenden Diff.Gl. eines geschlossenen
elektrischen Schwingungskreises identifizieren. Also aus

2
gedampften Eigenschwingung mit x, = ] '7:; (7 ist die
»

@J,  Rydd, 1
= t I, dt+C’LI,J_0
folgt:
& o2 - Ry e \/
)»y 2 Lp Ay (’PLI'

Dieser Vergleich gestattet e.g. den Ji.rsatz des Strahlers
durch eine Kombination von unendlich vielen mit Widerstand
behafteten, jeder einer Eigenschwingung des Strahlers zugeord-
neten Schwingkreisen. Ferner ergibt sich wegen der Dampfung
eine Verkiirzung der Wellenlinge gegeniiber der nach der Thom-
sonschen Formel berechneten; diese Verkiirzung nimmt mit
wachsender Ordnungszahl der Eigenschwingung stindig ab, usw.

A JJE’ L J‘{{ﬂ Y

Schreibt man H an Stelle von M

/)
die erste Gl. mit Hy,, die zweite mit H, und sub-
trahiert man, so kommt:

H/t A Hy— Hv A H/I = ().”:1,2 — szz) H/l, H
Bei endlichem Grundgebiet (o,

Randbedingungen auf ¢, Y
schen Satz

[l %5

b

, multipliziert man

2') und homogenen
wiire nach dem Green-

Hﬂ

0 H) dF — o

fiillen des unendlichen Raumes mit Energie eine
unendlich lange Zeit; die geleistete Arbeit selbst
wiirde ins Unendliche wachsen. Gliicklicherweise ist
aber der Energieinhalt unserer gedimpften Kigen-
funktionen beschrinkt; er lisst sich, was einer festen
Wahl der Anfangsamplitude gleichkommt, normieren.

Eine geddmpfte Eigenschwingung des unendlichen
Raumes wiirde nach der phenomenologischen Feld-
theorie immerhin erst nach unendlich langer Zeit
von ihrem Anfang an gerechnet zur Ruhe kommen.
Praktisch jedoch ist die Schwingung bereits nach
Bruchteilen einer Sekunde vollstindig verklungen.
Wir konnen voriibergehend die Dauer der Schwin-
gung so festlegen, dass die Endamplitude in einem
bestimmten Verhaltnis zum Anfangswert steht. Ist
also beispielsweise die Dauer der »#* Schwingung
Ty, so ergeben sich folgende Moglichkeiten, ihren
Energieinhalt zu berechnen:

a) Als Zeit und Oberflichenintegral auf o.

b) Als Volumenintegral iiber den von der Schwin-
gung zwischen den Zeitpunkten ihres Beginns und
ihres Aufhorens erfiillten Raum. In unserem
Beispiel liegt dieser Raum zwischen zwei kon-
fokalen Ellipsoidschalen, deren Parameter ent-
sprechend 7'y voneinander verschieden sind und
die sich mit Lichtgeschwindigkeit vergrossern.

c¢) Als Poyntingsche Energiestromung iiber die un-
endlich ferne Kugelfliche wihrend der Zeit

oo —:- (o] —I—- Tzl Oder 0 + 711'

Als gegeben scheint uns c) der einfacheren asym-
ptotischen Form der Schwingung wegen. (Es er-
weist sich iibrigens, wo iiber die Zeit zu integrieren
ist, wegen des exponentiellen Abklingens einfacher,
vom Anfang ¢, bis { = o< zu integrieren.)

Ist also die »* Eigenfunktion zu normieren, so

hat man, wenn wieder die normalen Bezeichnungen
aus der ersten Mitteilung verwendet werden:

Mo(wy), o _ E(W)T6(w), o =’ 72“.
P p Ko o 4
der Ausdruck geht in 1. Abrahamscher Niherung in
y und fiir u —> oo iber in
swn v

ay

cos fiir ungerade v
sin fir gerade v
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Und die Norm der Funktion folgt aus

) —YIt
Yoo f [lM' . J)e T azar =
\‘ t=o0

Das Flichenelement ist aber dX = 2ru*dy;
funktion

Mo (u, y)

(=) (1—y?) [+ifsin =2
v /(cos "2) i
g Lejp %

s 7:)2

o0
. ? Iy, y —
\‘lzm f [6—271,Ct (cos 2l o
A'—'>:~\Q" (Z 'U/‘: ] - yz -

3 t=o0

wir integrieren und erhalten fiir die normierte v* Eigen-

2 51:
/11:

Das im Nenner stehende Integral lasst sich leicht berechnen; man findet mit den Bezeichnungen von

Jahnke-Emde:

-+ I
=

v

/ cos? —; 1
—dy =

[y 1 — y2 Y 2

e J

+ T

{ Iny—+ ln2vr — ci Qv } v ungerade

¥ v
sin? -
/ i dy = ; { Iny+ In8vr — 2 2m} v gerade

J T — gy
- 1T
Das so normierte Orthogonals ystem der Eigenfunktionen
far ein Gebiet, das sich von einer inneren geschlossenen
Begrenzungsﬂache aus ins Unendliche erstreckt, be-
sitzt einen matirlich definierten Amuendungsbereich.
Die Funktionen beschreiben jede einen Normal-
vorgang, der als elektromagnetische Storung zu einer
gegebenen Zeit auf der Oberfliche des sehr gut lei-
tenden Ellipsoides seinen Anfang nimmt.

Eine beliebige erzwungene statésche Ladungsvertei-
lung an der Leiterobertliche, die plotzlich durch den
Wegfall der dusseren Krifte sich selbst iiberlassen
wird, lasst sich nach dem vorliegenden Orthogonal-
system in eine Reihe von ,,Normalvorgingen® ent-
wickeln, wobei jeder Vorgang einen eigenen zeitlichen
Verlauf besitzt.

Der Rawmteil der definierten Eigenfunktionen er-
tillt unabhingig die Wellengleichung ; schreiben wir
deshalb auf der Quellfliche, d.i.die Leiterober-
tlache, sei es eine bestimmte erzwungene Bewegung
der Ladungen, sei es die Gegenwart der EMK eines
Generators vor, so muss es moglich sein, den ent-
stehenden Schwingungszustand aus Normalvorgén-
gen aufzubauen (die Wirkung der EMK konnte ja
als Sprung der Ladungsdichte erklirt werden).

Gelingt es, aus den unendlich vielen Losungen der
Gleichung A 7’ + o? %{F = o eine konvergente
I
Reihe zu bilden, die unserer erzwungenen Quellen-
verteilung an der Leiteroberfliche entspricht, so ist
die uns gestellte Aufgabe gelost. Mit der Ortho-
gonalisierung und Normierung unseres Funktionen-
systems (wobei die Tatsache des unendlichen Grund-
gebietes nicht mehr direkt in Erscheinung tritt) und
der grundsitzlichen Beschrinkung der Quellvertei-
lung auf die Leiteroberfliche ist das Problem der
Reihenentwicklung durch nichts mehr von dem ein

endliches Gebiet betreffenden wunterschieden; die
bekannten Entwicklungssitze konnen deshalb an-
gewendet werden.

V.

Die Diff. G1."(1)’ ist mit Ausnahme der Erregungs-
zone tiiberall homogen, d.h.man erhdlt in der
Greenschen Funktion des Differentialsausdrucks links
(x ist reell und deshalb kein Eigenwert) unmittelbar
die Losung des Problems selbst. Diese Losung heisst

Re M (u, y) eiot = Re p He— ot
Zu diesem Zweck bilden wir die Zackenfunktion, d. h.
die Reihendarstellung der Unhomogenitat durch die
Eigenfunktionen. Dann lasst sich die von Prof.
Sommerfeld (loc. cit. pag. 33) gegebene Ableitung
anwenden.

Abkiirzend schreiben wir wieder My = H,, dazu

j ‘C" E, = 8 (u, 75), dann lautet die Diff. G1. (1)’

AH+x*H=S8 (u,7s) a)
Die Eigenfunktionen geniigen der Diff. Gl.
AHV+XV2H:0 b)
Weiter soll S = 3 a, H» H =2YXbHy» ¢)
somit ist AH = — Xbyxn? H d)
AHA+x2H=23b (22— %) Hy e
Qy

Wegen a) folgt somit by = —5——
X5 — Xv

Fir die Entwicklungskoeffizienten der ausgearteten

Zacke (der Grenziibergang wird in der in Vorberei-

tung befindlichen Arbeit gebracht) erhilt man

Hy (u,, )

x — a0
und die Losung von a), wenn man auf die urspriing-
lichen Bezeichnungen zuriickgeht:

av = Hv (uo, 75) daraus by, =
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M (u,y) - =

A

\/(1(2—-

62)(1_77*)V -1

\1 My (u, y) My (w0, 35)

9
2 — 2

Dle Losung genugt
. der Wellengleichung,

2. der homogenen Randbedingung auf u, da die
Glieder der Reihe ihr einzeln geniigen,

3. der Ausstrahlungsbedingung wenn, wie das fiir
die Raumfaktoren der Kigenschwingungen der
Fall sein muss, die Laufzeit berticksichtigt wird,

4. wegen des Anwachsens des Nenners der Konver-
genzbedingung wie analoge Entwicklungen fiir
ein endliches Gebiet.

Unser Ausdruck unterscheidet sich formal durch

nichts von der erzwungenen Schwingung eines end-

lichen Raumgebietes. Und doch besteht ein grosser
Unterschied, kann doch beim endlichen Gebiet, wo
die »2, reell waren, ein vollstindiges Verschwinden
eines Nenners eintreten, dann namlich, wenn die
erregende Frequenz mit einer der Eigenschwingungs-
zahlen iibereinstimmt. Nicht so in unserem Fall, wo
neben dem reellen x* die »® von Haus aus komplex
sind und somit bei endlicher Erregung die Amplitude
immer beschrinkt bleibt. Dass Resonanzen auf-
treten, bedingt die Uebereinstimmung der reellen
Teile von x* und x? Kine Reihe wichtiger Schliisse
lasst sich aus unserer Losung ziehen. Auf die Rezi-

56 — 56

52 52

48 48

44 44

40 40

Strahlungsimpedanz a6
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gestreckten, in der Mitte erregten
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prozitit zwischen Aufpunkt und Quellpunkt in w,
wurde in der ersten Mitteilung bereits hingewiesen.
Unsere Methode der gedampften Eigenfunktionen
lasst sich auch auf zylindrische Leiter anwenden, fiir
welche E. Hallén (1. c.) die Eigenschwingungen mit
grosser Genauigkeit berechnet hat.

Wie belastete Leiter zu behandeln sind, wurde in
der ersten Mitteilung bereits angegeben.

Um ein Bild vom grundsitzlichen Verhalten der
Losung zu gewinnen, haben wir fiir ein sehr ge-
strecktes Ellipsoid von 430 m Linge und 1,5 mm
halber kleiner Achse den Scheineingangswiderstand
fiir ein breites Frequenzband in unbenannten Ein-
heiten berechnet (Fig. 1). In Fig. 2 ist die Strom-
verteilung auf demselben Ellipsoid mit der Annahme

2e
T =
auch in 1. Naherung zeitraubenden Rechnung wegen
die KErregungszone in y = 7, = o angenommen; die
geradzahligen Eigenfunktionen fallen damit fort.

VI.

Das Studium der speziellen Aufgabe erzwungener
Schwingungen am Rotationsellipsoid fithrt uns in
seinen Krgebnissen iiber den Rahmen der urspriing-
lichen Fragestellung hinaus zu einem Losungsansatz
bei allgemeiner Problemstellung. Von besonderem
technischem Interesse diirfte u.a. die Behandlung
der erzwungenen Schwingungen an zylindrischen
Leitern sein.

Um zu allgemeinen Losungsansiitzen zu gelangen,
wobei auch die Rotationssymmetrie nicht unbedingt
gefordert wird, ist es notwendig, das Feld anstatt
aus den klassischen Feldgleichungen, aus dem
Hertzschen Vektor oder aus den zu diesem in ein-

0.62 dargestellt. In beiden Fillen ist der

facher Beziehung stehenden elektromagnetischen Po-
tentialen zu berechnen.

Wir beschrinken uns auf eine grundsitzliche For-
mulierung in einem Cartesischen Koordinatensystem,
wo z, y, z die Koordinaten des Aufpunktes, &, y, ¢
diejenigen des Quellpunktes bedeuten. Man hat mit
iiblichen Bezeichnungen 2 und ¢ fiir das Vektor-
potential bzw. das Skalarpotential im GauBschen
Mafisystem :

1 4?9 4z o e
AQ’I%cé'bfltz»:_El A=A(x,y,2) 1=i(9C)
1 d*¢ e
Ae—Gup=—te ¢=¢(wyz) q=q(570)

Anstatt der Stromdichte 7 schreiben wir mit der
Annahme grosser Leitfihigkeit $ (%, 9, £), wobei
&, n, C einen auf der Leiteroberfliche o liegenden
Punkt festlegen. Die Ladungsdichte ¢ ist als Flachen-
divergenz des Vektors € an der Leiteroberfliche
definiert. Die Erregung sei wieder zonal, die be-
treffende Zone S durch die Angaben 8 (%, 5, £,)
gegeben.

Dann gilt fir die erzwungene Schwingung
AAA42UA=— 9 (&9,0
und fiir die v* Eigenschwingung _
AN+ 22 W = — (2 7, O)

Wir konnen aber nach Vorausgegangenem die er-
zwungene Quellverteilung in die Reihe entwickeln:

Y o . - ’1‘ E) 7C v E: /B :0
9 (59 ) = 7,{EOZ§Q_(,A’ZN,7),_®¥ G2

12 . x,“2
V=1

Und die Lﬁsﬁng fir das Vektorpotential der er-
zwungenen Schwingung lautet:

w

o |

| i
mm%mwz—pm//Z@@%J@ﬁ%W i

g Vel

r=\l(x— &)+ (y—y 2+ (z—2)*

X% — X r
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Das Vektorpotential kommt in Resonanz mit der
v E. Sch., wenn das aufgedriickte x»* mit dem
Realteil von x?iibereinstimmt. Das Skalarpotential ¢
setzt sich, wie bereits in der ersten Mitteilung aus-
gefiihrt, aus zwei Teilpotentialen, herriihrend von
der Ladungsverteilung auf ¢ beidseitig der Erre-
gungszone zusammen und erfahrt beim Durchgang
durch die Generatorzone einen Sprung von der
Grosse der EMK E,. :

Auch hier wie beim Beispiel des Rotationsellipsoi-
des wird die Quellverteilung auf ¢ nach den Eigen-
funktionen des unendlichen Raumes entwickelt
(vgl. pag. 166).

Die Anwendung der hier entwickelten Theorie auf
zylindrische Leiter lost z. B. die seit langem strittige
Frage der Wellenlangenverkiirzung auf Drahtanten-
nen. Das Mass der Verkiirzung wird offenbar be-
stimmt durch diejenige der nachstgelegenen Eigen-
schwingung (vgl. die Fussnote Seite 164). Nach den
Rechnungen von Hallén sind diese Verkiirzungen bei
den Zylindereigenschwingungen erheblich grosser als
beim gestreckten Ellipsoid.

Zusammenfassung.

Die Differentialgleichung durch innere eingeprdgte
Krifte erzwungener elektrischer Schwingungen am ver-
langerten Rotationsellipsoid bei zonaler Anrequng wird
far beliebige Eaxzentriziliten exakt gelost. Die in der

ersten  vorldufigen Mutteilung (Techn. Mitteilungen
der schweiz. Telegraphen- wund Telephonverwaltung
Nr. 6, 1941) angegebenen Erweiterungen des An-
satzes fur die Wirkung konzentrierter Belastungen
(Induktivititen, Kapazititen, Widerstinde) konnen
nach den jetzt vorliegenden Ergebnissen konkret be-
handelt werden. Es wird gezeigt, dass dve eigentlichen
geddampften elektrischen Eigenschwingungen an ge-
schlossenen Flichen bei sich ins Unendliche erstrecken-
dem Grundgebiet ein orthogonales mormaerbares Funk-
tionensystem bilden. Diese Funktionen konmen zur
Darstellung eines Awusgleichsvorgangs bei beliebig vor-
geschriebener anfinglicher Ladungsverteilung awf der
betrachteten Fliche beniitzt werden. Wird die La-
dungsverteilung nach periodischem Gesetz durch eine
eingeprigte KM K wnterhalten, so entsteht die Losung
des Problems der erzwungenen Schwingungen.

Die Methode der Rethenentwicklung nach Eigen-
funktionen des unendlichen Raumes lisst sich auf be-
liebig geformte Leiter wverallgemeinern, insbesondere
auf solche von zylindrischer Form, fir welche die Lo-
sung der geddimpften Schwingungen in der Literatur
vorhanden ist.

In praktischer Anwendung der Theorie werden die
berechmete Stromverteilung wnd der Scheineingangs-
widerstand an einem gestreckten Rotationsellipsoid in
1. Niherung graphisch veranschaulicht.

Bern, 4. September 1942.

Fehlerortsberechnung
bei Isolationsdefekten an Kabeln verschiedener Aderdurchmesser.

Heute sind unsere Teilnehmerkabelanlagen viel-
fach aus Kabellingen verschiedener Aderdurchmesser
zusammengespleisst. Fiir die Kabeladern wird noch

621.317.333.4
die Aequivalenz des in den Lokalkabelanlagen vor-
herrschenden Aderdurchmessers 0,8 bringen. Es be-
steht die Proportion

ausschliesslich Kupfer verwendet. Im folgenden soll d | 7
angegeben werden, wie der Fehlerort bei Isolations- 1 1 -
defekten an solchen Leitungen verschiedener Quer- 7: 1 = ) : “0?, daraus 0,6 | 1,778
schnitte berechnet werden kann. 082 0,8 |1
Es ist nach den Methoden Murray oder Varley R y = — 0,9 | 0,790
in Ohm zu bestimmen. Die Entfernung des Fehler- d? 1,0 | 0,640
ortes von der Mefistelle in Meter kann dann folgen- Die Werte 7 der bei uns ge- 1,2 | 0,444
dermassen berechnet werden: briuchlichen  Aderdurchmesser 1,4 | 0,327
Da der spezifische Widerstand p der verschiedenen Lksnnen beistehender Tabelle ent- 1,6 | 0,284
Kabel gleich ist, lassen sich die Liangen fiir jede Sek- pommen werden. 1,8 | 0,198
tion durch Multiplikation mit einem Faktor ; auf 2,0 | 0,160
x Fehlerort
| '?ij ’
& 2 & X3 J/ n(;,
?r } 'gz ’ gy ’ g ”
* =3 ] T
Fig. 1 Rs gy a2 ds h
o O —On - — == =~
Sektion 7 2 3 n

Es bedeuten:

711y = Aequivalenzlinge der Kabelsektion 1
Y71 = Aequivalenzlinge der MeBstrecke
7 x = Aequivalenzentfernung des Fehlerortes von
der Mefstelle
k = Widerstand von 1 m Ader 0,8 mm Durchmesser
x3 = Entfernung des Fehlerortes von Anfang

Sektion 3 in m.

Dann gelten die Beziehungen:
Srl=nh+rnk+... + 7o ln
_ R,
223yl

k =

7‘X = =

'S
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