Zeitschrift: Technische Mitteilungen / Schweizerische Telegraphen- und

Telephonverwaltung = Bulletin technique / Administration des télégraphes et des téléphones suisses = Bollettino tecnico /

Amministrazione dei telegrafi e dei telefoni svizzeri

Herausgeber: Schweizerische Telegraphen- und Telephonverwaltung

Band: 2 (1924)

Heft: 4

Artikel: Bericht über die Erprobung der Fundamente von Freileitungstragwerken

in Gösgen

Autor: Sulzberger. G.

DOI: https://doi.org/10.5169/seals-873946

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Tehnische Mitteilungen

der schweizerischen Telegraphen- und Telephon-Verwaltung

BulletinTechnique

Bolletting Tecnica

dell'Amministrazione dei Telegrafi e dei Telefoni svizzeri

de l'Administration des Télégraphes et des Téléphones suisses

Herausgegeben im Auftrage der Obertelegraphendirektion Publié par ordre de la Direction Générale des Télégraphes Pubblicato per ordine della Direzione Generale dei Telegrafi

Bericht über die Erprobung der Fundamente von Freileitungstragwerken in Gösgen.

Von G. Sulzberger, Bern.

Die Vorarbeiten für die Revision der die Fundierung von Freileitungstragwerken regelnden Bestimmungen der Bundesvorschriften betreffend elektrische Anlagen vom 14. Februar 1908 sind von der Revisionskommission des Schweizerischen Elektrotechnischen Vereins (S. E. V.) und des Verbandes Schweizerischer Elektrizitätswerke (V. S. E.) einer Untergruppe übertragen worden. Diese beschloss die Vornahme von Versuchen zur weiteren Abklärung der Frage der Widerstandsfähigkeit verschiedenartiger Fundamentkörper gegen Verdrehung, Zug und Druck. In erster Linie wurden Versuche mit Blockfundamenten in Aussicht genommen, da diese als Grundtyp für Tragwerksfundamente anzusprechen sind und einzeln oder in Kombination am häufigsten Verwendung finden. An zweiter Stelle wurden Versuche mit einem aus vier annähernd starr unter sich verbundenen Einzelsockeln bestehenden Fundament, wie es zu jener Zeit für die Tragwerke einer Weitspannleitung vorgesehen war, in Betracht gezogen. In einer zweiten Serie sollten noch Versuche über den Widerstand von Holzstangen und andern glatten Tragwerken und von verschiedenartigen, eigentlichen Verankerungskörpern gegen das Ausziehen aus dem Boden vorgenommen werden.

Dank der kräftigen finanziellen Unterstützung durch die Obertelegraphendirektion, die Schweizerischen Bundesbahnen (S. B. B.), den S. E. V. und V. S. E. und durch eine grössere Zahl der bedeutenderen Elektrizitätswerke konnte die erste Versuchsreihe im Laufe des Frühjahrs 1923 durchgeführt werden, nachdem die ziemlich umfangreichen und kostspieligen Vorbereitungen im Spätherbst 1922 getroffen worden waren. Im nachstehenden soll über diese ersten Versuche kurz berichtet werden.

Versuche mit Blockfundamenten.

Bevor an die Feststellung des Versuchsplanes gegangen werden konnte, musste man sich über die an solche Fundamente zu stellenden Sicherheitsanforderungen und die zu deren rechnungsmässigen Prüfung am besten geeigneten Verfahren Rechen-

schaft geben, um bei den Versuchen die zweckdienlichen Feststellungen machen zu können.

Es liegt auf der Hand, dass unter gleichen Belastungsannahmen die wirkliche Sicherheit eines Tragwerkfundamentes gegen Umsturz oder starke Schiefstellung nicht kleiner sein darf als die wirkliche Sicherheit des Tragwerkes selbst gegen Bruch. Ist es leicht, diese Sicherheit bei einem freistehenden Fundamentblock rechnungsmässig zu bestimmen, so ist dies nicht mehr der Fall bei tief in den Boden hinabreichenden Fundamenten, da alsdann der Einfluss der seitlichen Einspannung im Boden immer mehr überwiegt. Anderseits steht es ausser Zweifel, dass durch die Ausnutzung der natürlichen Festigkeitseigenschaften des Erdbodens durch tiefreichende Fundamente an Material für den eigentlichen Fundamentkörper gespart werden kann. Somit erscheint es angezeigt, überall wo druckfester Boden zur Verfügung steht, tiefreichende, schlanke Fundamente zu verwenden. Bei derartigen Fundamenten tritt aber mit zunehmender Belastung nicht ein plötzlicher Umsturz ein, wie bei freistehenden Fundamenten, sondern nur eine fortschreitende Verdrehung, unter entsprechender Schiefstellung des Tragwerkes, die ein hohes Mass erreichen kann, bis ein eigentlicher Umsturz erfolgt. Nun soll aber ein Tragwerk bei den grössten wirklich zu gewärtigenden Belastungen nicht bloss nicht umstürzen, sondern sich höchstens in geringem Masse schiefstellen. Somit kommt bei der Beurteilung der "Güte" eines Fundamentes das Mass seines "Nachgebens" im Boden unter einer bestimmten Beanspruchung in

Nach dem Gesagten war bei den Versuchen das Hauptaugenmerk auf die Klarstellung folgender Punkte zu richten:

A. Einfluss der Länge der Einspannung des Fundamentes bei gleichen übrigen Abmessungen auf seine Widerstandsfähigkeit gegen Verdrehung im Boden durch eine in horizontaler Richtung auf die Tragwerkspitze wirkende Kraft bei gleicher Bodenart und -Beschaffenheit.

B. Einfluss der verschiedenen Druckfestigkeitseigenschaften verschiedener Bodenarten auf die Widerstandsfähigkeit von Fundamentkörpern gleicher Abmessungen gegen Verdrehung.

C. Statische Verhältnisse (Berechnung).

Im Hinblick auf das unter A gesagte musste ein Versuchsort gewählt werden, an welchem sich bis auf genügende Tiefe Erdboden möglichst gleichmässiger Beschaffenheit vorfand, wogegen die Rücksicht auf B möglichst verschiedene Bodenarten bedingte. Dabei musste auch auf leichte Zufuhrmöglichkeit für die Versuchsmaste, leichte Erreichbarkeit des Ortes und das Vorhandensein des zum Betonieren nötigen Materials Bedacht genommen werden. Diesen Bedingungen entsprach das Gelände südlich des Kraftwerkes Gösgen, das vom Elektrizitätswerk Olten-Aarburg in entgegenkommender Weise zur Verfügung gestellt wurde und das Geleiseanschluss besitzt. Das Nähere über die Anordnung der einzelnen Fundamente ist aus dem Situationsplan ersichtlich (Fig. 1).

Die Fundamente I—IV dienten zur Abklärung der unter A genannten, die Nummern III, V, VI, VII und IX zur Abklärung der unter B gestellten Frage. Fundament VIII war ein zu Vergleichszwecken hergestelltes Plattenfundament.

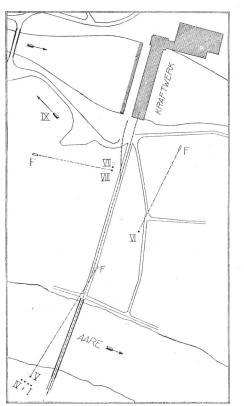


Fig. 1. Situationsplan der Versuchsanlage im Gebiete des Kraftwerkes Gösgen, Massstab 1:5000.

Legende:

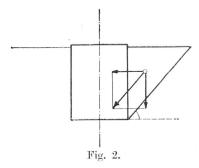
 $I \div IX = Lage der Fundamente.$

F = Flaschenzug.

Bodenbeschaffenheit am Versuchsort:

 $I \div IV = Humusaufschüttung.$

V = Kiesaufschüttung.


VI = Lehm und Sand bis 1,90 m, dann Kies.

VII u. VIII = Humus 10 cm, dann Kies. IX = Lehmboden.

Zum besseren Verständnis der vorgenommenen Beobachtungen ist es erforderlich, den späteren Ausführungen über die Berechnung solcher Fundamente etwas vorzugreifen.

Den bis jetzt bekannt gewordenen Berechnungsmethoden liegen zwei verschiedene Annahmen zu-

Nach der einen, mehr verbreiteten Methode beruht der Widerstand des Fundamentes gegen Verdrehung auf der Annahme eines passiven und eines aktiven

Erddruckes. Der letztere käme zustande durch den Druck eines Erdkeiles, infolge Abgleitens desselben auf einer unter einem bestimmten Reibungs- oder Böschungswinkel gegen den Horizont geneigten Ebene (Fig. 2). Bei der zweiten, hauptsächlich von Andrée¹) eingeführten Methode wird von der Annahme eines aktiven Erddruckes abgesehen und nur mit passivem Widerstand des Erdbodens gegen lotrecht und wagrecht gerichtete Druckkräfte gerechnet. Der Erdboden wird nach dieser letzteren Annahme

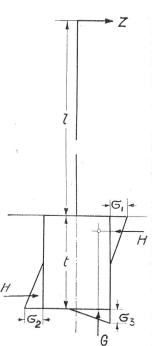


Fig. 3.

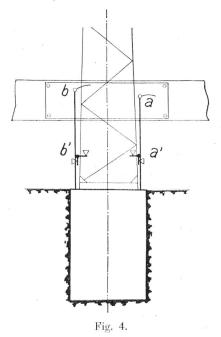
als mehr oder weniger druckfester und plastischer Körper angesehen. Die zweite Methode bietet gewisse Vorzüge und scheint auch den wirklichen Verhältnissen besser zu entsprechen. In der Regel können nämlich beim Ausheben von Fundamentgruben die Voraussetzungen für das Auftreten aktiven Erddruckes nicht festgestellt werden. Die Grubenwände erweisen sich meist als standsicher und zwar um so mehr, je härter der Boden ist. Bei der zweiten Methode ist es möglich, die Druckfestigkeitsund Plastizitätsverhältnisse des Erdbodens durch unmittelbare Messung nähernd zu ermitteln und gestützt darauf die bei bestimmten Belastungen entstehenden Verschiebungen (Nachgeben) mit praktisch

ausreichender Genauigkeit vorauszubestimmen.

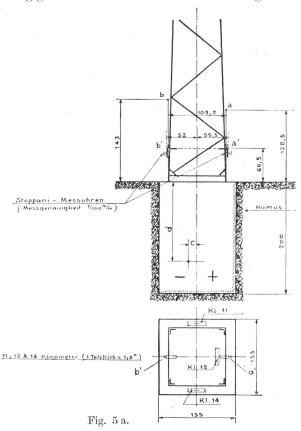
Aus diesen Gründen entschied sich die Untergruppe grundsätzlich für die Andréesche Berechnungsweise.

¹⁾ Zur Berechnung von Mastfundamenten von W. L. Andrée, "Der Eisenbau", Nr. 12, vom 15. Juni 1920.

Andrée nahm an, ein im Boden eingespanntes Blockfundament, dessen Tragwerk durch eine Kraft Z beansprucht werde, erzeuge im Boden ungefähr der Fig. 3 entsprechende Reaktionen, indem es sich um eine Axe drehe, die Andrée willkürlich als im Schnittpunkt der Kräfte G und H liegend annahm. Er stellte die für diese Annahmen gültigen Momentengleichungen auf und leitete daraus Formeln für die Berechnung solcher Fundamente ab. In diesen Formeln spielt das Verhältnis der Baugrundziffern


 $\frac{a_1}{a_2}$ an den Stellen der grössten Pressungen σ_1 und σ_2 eine wichtige Rolle. Unter Baugrundziffer ist dabei der Druck in kg zu verstehen, unter dessen Einwirkung eine senkrecht dazu stehende Fläche von 1 cm² einen cm tief in den Erdboden eindringt. Auch für dieses Verhältnis setzte Andrée willkürliche Werte ein. Es erschien nun ohne weiteres gegeben, bei den Versuchen diejenigen Feststellungen zu machen, die nötig waren, um an Stelle der willkürlichen Annahmen Andrées die tatsächlichen Verhältnisse berücksichtigen zu können. Zu diesem Zwecke wurden bei den Versuchen folgende Feststellungen gemacht:

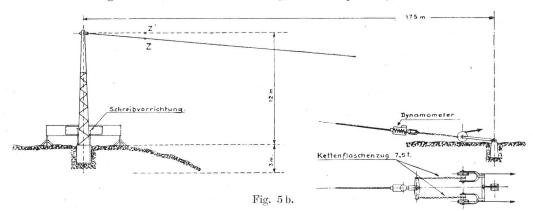
- Der auf die Mastspitze ausgeübte Zug wurde mit einem registrierenden Dynamometer der S. B. B. gemessen. Dieser Zug war etwas schräg abwärts gerichtet.
- 2. Die den verschiedenen Belastungen entsprechende Lage der Drehachse der Fundamente.
- 3. Die Baugrundziffern der seitlichen Grubenwände in verschiedenen Tiefen unter der Bodenoberfläche.


Ferner wurden gemessen:

- 4. Die Längs- und Querneigung der Sockeloberfläche mittels Präzisionswasserwagen (Klinometern).
- 5. Die seitliche Verschiebung der Mastspitze in der Zugrichtung.

Zur Bestimmung der Drehachsenlage der Fundamente wurden die Verschiebungen von je zwei mit dem Fundament, bzw. mit dem Mast fest verbun-

denen Punkten a bzw. a' und b bzw. b' bestimmt (Fig. 4). An den Punkten a und b waren Schreibstifte angebracht, welche ihre Bewegung auf ein unabhängig vom Mast und Fundament aufgestelltes


Zeichenbrett aufzeichneten. Die Horizontal- und Vertikalbewegungen der Punkte a' und b' wurden mit Präzisionsmessuhren, die an einem festen Rahmen angebracht waren, gemessen. Die letztere Messung wurde vorgenommen, weil die Bewegungen der Schreibstifte bei den kleineren Belastungen zu gering waren, um daraus die Drehachsenlage ermitteln zu können. Die beiden Messungen sollten sich so ergänzen, dass diejenigen an den Punkten a' und b' für die kleinen, die Angaben der Schreibvorrichtung für die grösseren Belastungen massgebend sein sollten. Es sei vorweg bemerkt, dass die Zahlen betreffend die Verschiebungen von a' und b' bei den grösseren Belastungen mit Fehlern behaftet sind.

Für die Bestimmung der Baugrundziffern wurden zwei gleiche Instrumente benützt, welche die Obertelegraphendirektion auf Anregung des Eisenbahndepartementes hat anfertigen lassen. Die Messvorrichtung besteht aus runden Stempeln von wahlweise 30, 40 und 113 cm² Fläche, die mittels einer Schraube, unter Zwischenschaltung einer geeichten Feder, gegen die Grubenwände gepresst wurden. So konnte der auf den Stempel ausgeübte Druck, sein Vorschub und sein Eindringen in den Boden und durch eine einfache Rechnung die Baugrundziffer an der Messtelle ermittelt werden. Unmittelbar nach dem Ausheben der Baugruben wurden in jeder derselben, soweit sie sich nicht im festen Kies befanden, in verschiedenen Tiefen drei Reihen von Messungen mit den verschiedenen Stempeln vorgenommen. Im ganzen wurden so ungefähr an 100 Stellen Messungen ausgeführt. Bezüglich des Ergebnisses derselben sei auf die späteren Ausführungen verwiesen. Eine Wiedergabe der einzelnen Zahlen ist hier nicht möglich, weil dies zu viel Platz beanspruchen würde.

Mit Ausnahme von Fundament No. VIII wurden sämtliche Fundamente mit quadratischem Grundriss von 135 cm Seitenlänge erstellt. Dieses Mass drehung sehr stark vermindert ist. Der Zug erfolgte bei allen Versuchen parallel zu den in der Zugrichtung gelegenen Seiten der Fundamente.

A. Einfluss der Eingrabtiefe.

Die zur Abklärung dieser Frage benutzten Fundamente I—IV wurden in einer 8 Jahre alten Deponie steinfreier, etwas sand- und lehmhaltiger Erde ("Humusdeponie"), die selbst auf einer Aareschotter-

wurde gewählt, weil es bereits bei den von Fröhlich¹) beschriebenen Versuchen angewendet worden ist und diese Uebereinstimmung besser einen Vergleich ermöglicht. Der Beton wurde unmittelbar nach Vornahme der Baugrundziffermessungen in die senkrecht und glatt ausgehobenen Gruben eingefüllt und mässig gestampft. Nach oben verjüngte Fundamente wurden absichtlich nicht erprobt, weil bei dieser Fundamentform der Erdboden seitlich gelockert und dadurch der Widerstand gegen Ver-

deponie lagerte, erstellt. Das spezifische Gewicht dieser Erde betrug:

feucht ausgehoben 1,96 kg/dm³ getrocknet 1,65 kg/dm³.

Kies und Sand für den Beton wurden in guter Qualität der Schotterdeponie entnommen. Auf 1 m² Beton wurden 200 kg Portlandzement verwendet.

Der 12 m lange, besonders hergestellte, sehr kräftige Gittermast wurde durch Laschen mit den einbetonierten Fusswinkeln verschraubt. Die Versuchsanordnung ist aus Fig. 5a und 5b, die Versuchsergebnisse sind aus den nachfolgenden Tabellen ersichtlich.

Fundament I. Tabelle Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

	7.0		Ver-			Kl	inom	eter	anga	ben					g der Pu -Messuhr				g der P orrichti		Lag	ge der i	Drehachse	e
٧r.	Zü in	_	schie- bung der	1	Nr. 1		ngs*	Nr. 1	1		uer* Ir. 1		->	a'	->	b' 1	->	a ↓	->	b 🛕	aus o	ι', b'	aus a	ι, b
			Mast- spitze												$\operatorname{Nr}.rac{12+13}{2}$	$1.\frac{11+14}{2}$					c	d	c	d
	Z	Z'	cm	0	′	"	0	1	11	0	,	"			mm	mm	mm	mm	mm	mm	cm	cm	em	cm
1	100	96	0,8		2	12		2	12	_		36			0,85	0.05								
2	500	480	6,9	_	16	49		16	37		7	36	×	X	6,22	1,20					-			
3	700	675	15,7		39	10		38	37		12	36	ein	ein	14,02	4,30	10,0	3,2	6,9	_				
4	900	865	28,3	1	10	12	1	13	6		15	48	0	0	24,68	10,00	22,9	7,3	22,8	2,8			-12	56
5	1000	965	38,9	1	38		1	41	35		17	36	Mes	Messvorrich angebracht.	34,44	14,85	45,9	11,0	42,0	7,8		-	+ 12	85
6	1100	1060	49,2	2	5	48	2	9	35		19	24	ssv	ssv	43,80	19,70	64,1	14,0	58,2	12,1		_	+15	81
7	1150	1110	64,7	2	52	30	2	50	45	-	21	12	00 0	or ac	58,00	27,70	82,3	16,5	75,0	16,6			+17,5	84
8	900	865	84,2	3	39		3	37			23	12	rrich cht.	ric ht.			107,3	20,0	100,0	23,8		-	+25	89
9	900	865	99,2	4	19		4	12	20		24	-		-		_	141,4	25,0	133,0	33,4	^		+28	85
10	550	530	119,0	5	15		5	- 1			24	48	ung	ung				-						
11	500	480	130,0	5	28		5	31			25	12	99	019				-			. —			
12			156,0		-														-					

^{*)} In Richtung des Zuges. **) Quer zur Zugrichtung.

Fundament I (Fig. 6). Datum der Erstellung 22. Novembrer 1922. — Datum der Erprobung 4. April 1923. — Gesamtgewicht (Fundament + Mastfuss + Mast + halbe Seillänge) $G = 7000 \,\mathrm{kg}$.

Bemerkung. Der Mast wurde bereits durch das Anlegen des schweren Stahldrahtseiles schiefgezogen und darauf quer zur ursprünglichen Zugrichtung mit einem leichten Seil, das 8,5 m über dem Boden am Mast befestigt war, gezogen. Das bei diesem Versuch verwendete Dynamometer war sehr ungenau. Aus diesen Gründen sind die mit diesem Fundament erhaltenen Ergebnisse unzuverlässig.

¹) "Beitrag zur Berechnung von Mastfundamenten". Von Dr. ing. H. Fröhlich. Verlag von W. Ernst und Sohn, Berlin.

Fundament II. Tabelle II. Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

	7:	ige	Ver-		K. T. P. T. T. S.	Kli	nom	eter	anga	ben			Ver (S	schiebun Stoppani	g der Pu -Messuhr	ınkte en)	Versch (Sch	iebung reibvo	der Purichtu	inkte ing)	Lag	ge der	Drehach	se
Nr.	in		schie- bung der		Nr. 1	(Lä 4	ngs)	Nr. 1	1	(Quei Nr. 1	2	->	<i>α'</i> ↓	->	<i>b'</i>	->	a	->	<i>b</i>	aus a	., b'	aus a	i, b
			Mast- spitze												$\operatorname{Nr.}\frac{11{+}12}{2}$	N $.\frac{14+15}{2}$	5	Ì			c	d	c	d
	Z	Z'	em	0	,	"	0	/	"	0	,	"			mm	mm	mm	mm	mm	mm	cm	em	em	cm
1	230	215)	2,0		3	6		2	54			6	Ke	Ke	$0,4 \\ 1,54$	1,31	2,00	0,20	2,5	1,8				
2	490	475	2,0	_	5	32		5	_			6	Keine 1	Keine 1		2,11	2,50	0,60	2,5	3,6				_
3	460	440	3,0	_				_					Messvorrichtung	Messvorrichtung	$1,50 \\ 2,59$	2,55	4,30	1,20	3,5	3,8	+1,7	10		
4	590	590	4,0		7	36		7	24			12	orric	orric	2,5 3,61	2,17	5,50	2,00	4,5	4,0	+1,0	58		-
5	670	670	8,5		18	2		18	10			30	ntung	ntung	5,0 8,44	3,55	12,30	3,60	12,0	6,1	+1,5	69	+ 8,5	77
9	800 920 1040 1150 1200 1230	$\frac{1150}{1200}$	22,5	$ \frac{1}{2}$ $\frac{3}{4}$	$ \begin{array}{r} 30 \\ 52 \\ 27 \\ 6 \\ \hline 21 \end{array} $	$ \begin{array}{r} $	$-\frac{1}{2}$ $\frac{3}{4}$	$ \begin{array}{c} 31 \\ 51 \\ 28 \\ 7 \\ 1 \\ 22 \end{array} $	$ \begin{array}{r} 20 \\ 15 \\ 20 \\ \\ 30 \end{array} $		$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 5 \\ 7 \\ 11 \end{array} $	$ \begin{array}{r} $	angebracht.	angebracht.	14,49 22,0 37,3 52,9 77,5 93,0		21,80 36,80 61,80 87,80 132,30 191,80	$20,90 \\ 30,90$	35,6 59,1 82,6 125,6	12,1 17,9 23,8 34,6	+ 1,8 	76 	+7,0 +8,0 +11,5 +15,0 +18,5 +22,0	75 73 72 74 78 83
				1,5m	****	F	ig. 7		Card Sal						Oatum d Oatum d Ge	er Erst er Erpi	0	21. N 6. A	lovem pril 1	923.	922.			

Fundament III. Tabelle III.

Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

	Zü	or o	Ver-			Kli	inon	ieter	anga	ben					g der Pı Messuhr				ng der P orricht		Lag	ge der	Drehachs	e
Nr.			schie- bung der	1	Nr. 1	(Lä 4	ngs)	Nr. 1	1	(Que Nr.	r) 12	->	a' ↓	->	b' 1	->	$a \downarrow$	->	b 📥	aus a	', b'	aus o	ı, b
	Z	Z'	Mast- spitze	0	,	"	0	,	,,	0	,	"			Nr. 13						c	d	c	d
_			em	U	<u> </u>		0		"	U	<u> </u>		mm	mm	mm	mm	l mm	mm	mm	mm	cm	cm	em	cm
1	1000		12,7		26	12	0	26	54				15,64	6,4	15,7	3,75	21,0		23,0	3,5	-11,5	106	- 8,8	
2	1350		14,0		29	36	0	31	18		-	-	17,64	5,78	17,7	3,88	25,0		26,0			-	-25,5	
3	1700				43		0	48	12	-	-	-	24,79	6,83	27,5	6,18	35,5		38,5		+16,0	218	-4,5	
4	1900				3	12	1	8	6	-		-	36,79	10,33	38,0	7,88	52,5		54,0			175	→ 5,9	
5	2200				2	48	2	9	30	-		_	59,79	17,03	71,85	17,03			105,0		+ 5,5	129	- 1,0	
9	2200				54	36	$\frac{2}{3}$	41	30	-	Marriaga	-	75,79	21,53	87,85	14,03							-5,0	
6	2400				20	48		26	54				100,79	26,53	114,85						+26,0	132	+12,5	
$\begin{bmatrix} 8 \\ 9 \end{bmatrix}$	2400		$93,0 \\ 132,0$		$\frac{39}{21}$	0	3 5	48 26	6		11	20	112,29		128,35						+27,0	168		142
9	2000	2000	152,0	9	21	U	9	20	30	U	11	20	167,79	47,33	185,85		256,0	60,5	269,0	39,0	+ 5,0	134	+11,5	132
				_			i																	
				A					100	*														
							1		le.															
				1	-	ł			3							Funda	ment	III (Fig. 8)					
				3			İ		-					D	atum de	r Frete	llung	91	Nove	mbon	1099			
				a	•	1	-		H									(3)						
					d	1								Da	atum de				April					
				V											Ges	samtgev	vicht	G =	10 900) kg.				
				1		4-0	-	d_seller:	J.															
						TZ	ig.	Q																

 $Fundament\ IV.$

Tabelle IV.

Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

Technische Mitteilungen T. T.

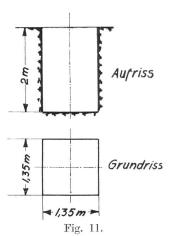

	Zi	ige	Ver-					neter		aben			Vers (S	chiebun; toppani-	g der Pı Messuhr	unkte en)	Versch (Sch	niebun reibvo	g der P orrichti	unkte ing)	Lag	e der	Drehachs	se .
Nr.		kg	schie- bung der		Nr. 1	(Lä	ngs)	Nr. 1	11	(Quei Nr. 1	r) 12	->	a′ ↓	-▶	b'	-▶	a ↓	->	b 🛕	aus a	', b'	aus	a, b
	Z	Z'	Mast- spitze cm	0		"	0	,	"	0	,	"	Nr. 16	Nr. 14	Nr. 11	Nr. 13	mm	mm	mm	mm	c cm	d cm	c em	d cm
	$\begin{vmatrix} 1500 \\ 1800 \\ 2000 \\ 2400 \\ 2700 \\ 3000 \\ 3250 \end{vmatrix}$	$\begin{array}{c} 850 \\ 1100 \\ 1500 \\ 1800 \\ 2000 \\ 2400 \\ 2700 \\ 3000 \\ 3250 \\ \end{array}$	0,9 2,1 3,5 7,7 13,2 17,4 29,0 47,5 68,4 99,5 142,0	0 0 0 0 0	0 2 5 13 27 37 5 51 42	51 42 48 18 18 18 42 0	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 2 \\ 4 & 5 & 5 & 5 \end{bmatrix}$	1 2 5 13 26 36 3 50 41 0 47	9 55 1 13 7 25 43 19 25 58 28				0,60 2,00 3,57 8,85 17,45 24,45 41,45 68,45 100,45 151,45 217,45	0,30 0,70 0,85 2,18 4,45 6,70 12,90 22,40 26,80 37,50	0,58 2,07 3,70 8,95 17,90 24,55 44,05 74,55 110,75 162,05 229,95	21,72 28,00	$101,0 \\ 148,0 \\ 218,0$	7,0 12,5 20,0 30,0 45,0	207,5	18,5 26,0	$ \begin{array}{c} -8,0 \\ -12,0 \\ -13,0 \\ -15,0 \\ -8,0 \\ +20,0 \\ -2,0 \end{array} $	69 72 248 180 187 147 130 125 230 242 242	$\begin{array}{c} -3,0 \\ -7,0 \\ +5,0 \\ -16,0 \\ -1,5 \\ -12,5 \\ -12,0 \\ +1,0 \\ -2,5 \\ +2,0 \\ +8,0 \end{array}$	92 244 139 198 191 167 180 172 181
		2,5 m	- 0,3m		्रक ्		ම ක්රම ක්රම ක්රම ක්රම ක්රම ක්රම ක්රම ක්ර		mu.	s	r (11	ose)				Fu n der E n der E Gesam	rstelli rprob	ing ung	10. A	ovem pril 1		2.		
			Z	T+	Fig.	9.							3	1				4	Z 000			Z		
		kom	3	97.	50									= 2,5m(l		_		30	000	tze in kg	NAVAVA V			
٠		Drehmoment kom	2	650	00									III. t = 2,01		Z _{IV} 6,25		20	000	der Mastspitze in	- 12.m			
		Dreh	. /.	325	50		f				/ ^{I.}	t=	1,0m	$t = 1,5 m$ $\underline{\pi}' : Z_{\underline{x}}$	- 7	5) 2,25 6,25	-	10	00	Zug an de		t _r -1m		
					0	-				40		6	$I': Z_{I'} = Z$	ZIV 6,25	100	120		0			(1-1.5m)	t _r -1m		

Fig. 10.

Um die in den Tabellen I—IV enthaltenen Angaben etwas übersichtlicher zu gestalten, sind in Fig. 10 die Mastspitzenverschiebungen in Abhängigkeit von dem auf die Mastspitze ausgeübten Zuge (volle Linie) bzw. von dem auf den Drehpunkt des Fundamentes bezogenen Momente dieser Kraft (strichpunktierte Linie) dargestellt. Die gestrichelt eingetragenen Kurven zeigen den Verlauf der Mastspitzenverschiebung, die sich ergeben müsste, wenn der Widerstand gegen Verdrehung, so wie angenommen, direkt mit dem Quadrate der Eingrabtiefe zunehmen würde, wobei Fundament IV als Grundlage benutzt wurde, weil dieses Fundament wegen seiner grossen Tiefe von Zufälligkeiten am wenigsten beeinflusst wird. Die Mastspitzenverschiebung in-

folge Durchbiegung des Mastes und Spiel in den Laschen ist in dieser Darstellung vernachlässigt. Das Bild wird dadurch nur unwesentlich geändert, da die davon herrührende Verschiebung nur ungefähr 2 cm/t ausmacht.

Die Richtigkeit der das Fundament I betreffenden Linie ist aus bereits erwähnten Gründen sehr zweifelhaft. Sieht

man von diesem Fundament ab, so zeigt die Darstellung, dass die Widerstandsfähigkeit derartiger Blockfundamente annähernd proportional mit dem Quadrat der Eingrabtiefe zunimmt.

B. Einfluss der Druckfestigkeitseigenschaften verschiedener Bodenarten.

Die zur Prüfung dieser Frage verwendeten fünf Fundamente waren alle gleich bemessen und waren gleich wie die ersten Fundamente unmittelbar in die frisch ausgehobenen Gruben einbetoniert worden (Fig. 11). Die Ergebnisse sind aus den Tabellen V—VIII ersichtlich. (Fundament III, Humusdeponie, siehe unter Kapitel A).

Fundament V. Tabelle V. Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

	Zü	ld o	Ver-			Kli	non	neter	anga	ben		-			g der Pu Messuhr				ng der F orricht		Lag	ge der	Drehachs	e
Nr.	in	-	schie- bung der]	Nr. 1	(Lä 4	ngs)	Nr. 1	1	(Quei Nr. 1	r) 12	-▶	a' 🕴	->	b' 🛕	-▶	a .↓	->	b 1	aus a	', b'	aus b	, b
			Mast- spitze										Nr. 14	Nr. 16	Nr. 15	Nr. 11					c	d	c	d
	Z	Z'	cm	0	,	"	0	1	"	0	,	"	mm	mm	mm	mm	mm	mm	mm	mm	em	cm	em	cm
1	250	250	0,6	0	1	6	0	1	6	_			0,35	0,15	0,68	0,33					+ 4,0	51	-	
2	350	350	1,0	0	1	48	0	2	0				0,65	0,30	1,03	0,44	-			-	-11,0	64	-	
3	500	500	2,9	0	6	18	0	6	12				3,00	1,40	3,48	0,65					-34,0	123		
4	700	700	5,6	0	13	18	0	13	12				5,80	2,90	7,10	0,94	10,0	3,5	8,0	1,0	-36,0	105	-29,0	61
5	900	900	11,9	0	29	6	0	29	0		-		14,00	6,60	15,50	2,05	22,0	7,0	20,0	2,5	-26,0	114	-20,0	110
6		1100	24,0		59	54	0	60	42		-		29,00	12,20	32,00	5,15	45,0		39,0			121	7,0	
7	1200		30,0	1	14	42	1	15	48				35,00	14,20	39,10	7,30	57,0		50,5		+ 2,0	99	-13,0	
8		1300	34,0	1	24	54	1	25	48		-		40,50	16,20	44,50	8,45	64,5	,	57,0		- 8,0	116	+ 8,0	106
9	1400		48,0		0	54	2	1	48			-	57,00	21,20	62,00	13,85	91,5			,		105	+ 2,0	98
10	1500	2000	69,8	2	34	12	2	35	48				71,50	26,10	77,80		116,0		105,5		-1,5	117	+ 8,0	127
11		1600	78,5		56	42	2	57	12	-			81,00	28,70	89,00	,	131,0				+11,0	117	+ 9,0	99
12			93,5		33	54	3	34	24	-			99,50	33,80	107,70	- /	159,0		147,0	-	+15,0	107	+ 7,0	117
13	1800		118,0		47	42	4	53	36				136,50	44,55	143,70		217,0				+20,0	93	+ 7,0	113
			135,5		58	6	5	4	12			—	142,50	46,45	149,70				212,0			-	+ 5,0	184
15	2000	2000	161,5	5	36	6	5	41	48	0	11	50	159,50	50,85	166,70		249,0	61,5	236,0	41,0	-		+11,0	108

Fundament V. Bodenart: Fluss-Schotterdeponie (Kies mit Sand). — Datum der Erstellung 31. November 1922. Datum der Erprobung 11. April 1923. — Gesamtgewicht $G=10~800~{\rm kg}$.

Bemerkung. Es war dies das einzige Fundament, das in einer Schalung hergestellt werden musste, da die Grubenwände nicht standsicher waren. Nach Erhärtung des Fundamentes wurde dasselbe wieder vollständig eingeschüttet. Böschungswinkel der eingestürzten Grubenwände ungefähr 45°.

Fundament VI.

Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

	70	do	Ver-			Kli	inon	eter	anga	ben				chiebun toppani-					ig der P orrichti		La	ge der l	Drehachs	e
٧r.	Zü in	-	schie- bung der		Que Nr. 1			Nr. 1	(Lä 2	ngs)	Nr. 1	1	4 −	<i>b'</i>	4 -	α' 1	◄ -	<i>b</i> ↓	◄ -	а <u>А</u>	aus	a', b'	aus d	a, b
			Mast- spitze										Nr. 14	Nr. 16	Nr. 15	Nr. 11					c	d	c ·	d
	Z	Z'	cm	0	,	"	0	,	11	Ö	,	"	mm	mm	mm	mm	mm	mm	mm	mm	cm	cm	em	cm
1	500	490	1,3	0	0	0	0	0	51	0	1	3	0,60	0,10	0,73	0,297	1,0	0,1	0,8	0,3	+22,0	115,0	+34,0	98,
2	750	735	1,5	0	0	0	0	0	59	0	1	8	0,75	0,125	0,86		1,5	0,2	1,6		+22,0			
3		1025	, ,	0	0	0	0	1	20	0	1	26	0,90	0,149	1,10	0,448	2,0	0,3	2,4		+23,0	,	1	,
4		1460		0	0	2	0	4	42	0	4	40	2,80	0,444	3,37	1,378	5,0		3,2					
9				0	0	5	0	10	11	0	10	22	6,70	0,999	7,30	2,998	11,0	1,1	9,2		1 '	121,0	1	
	2100			0	0	7	0	17	58	0	18	22	11,50	1,649	12,27	5,108	18,0	1,3	15,2					
- 1	2500		, ,		0	12	0	27	0	0	29	16	17,90	2,549	18,57	7,658	27,0	1,8	22,7			127,0	+40,0	
	2900				0	40	0	42	46	0	44	16	27,70	3,434		11,548	39,0	2,3	34,7				, ,	
	3300				1	25	1	4	34	1	6	40	39,45	3,70	40,70	,	58,0	3,3	51,7		+42,5		+41,0	
- 1	3650				2	25	1	29	22	1	31	22	53,95	4,50	55,50		79,0	4,3			+48,0	,		
- 1					4	55	2	11	10	2	21	8	75,95	6,15	78,70		103,0	5,5	,	- , -				
_	4200				11	43	3	1	15	3	15		106,95	,	94,20		151,0	,	,	47,0		,		,
			101,0		11	55	5	20	0	5	6		154,95		142,70		221,0	/			+49,0			,
$4 \mid$	4200	4100	139,5	0	14	7	6	5	34	6	7	16	185,95	21,05	174,70	81,55	267,0	24,5	[250,7]	78,0	+49,0	136,0	+33,0	107

Fundament VI. Bodenart: Bis 1,70 m Tiefe gewachsener, etwas lehmiger und stark sandhaltiger Ackerboden mit wenig Steinen, darunter fester Fluss-Schotter. — Spezifisches Gewicht der oberen Schicht: feucht ausgehoben 2,0 kg/dm³, getrocknet 1,7 kg/dm³. — Grubenwände vollkommen standsicher. — Datum der Erstellung 24. November 1922. — Datum der Erprobung 13. April 1923. — Gesamtgewicht $G = 10\,800$ kg.

 $Fundament\ VII.$ Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

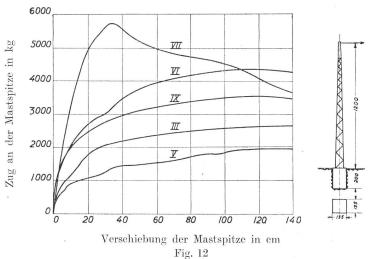
	7::	0.0	Ver-			Kli	nom	etera	nga.	ben					g der Pu Messuhr		Versch (Sch	iebunę reibyo			Lag	ge der I	rehachs	e
Nr.	Zü in		schie- bung der	1	Nr. 1	(Läi 4	ngs)	Nr. 1	1	(Quer Vr. 1	2	->	α' \	-▶	b'	->	a ↓	-▶	<i>b</i>	aus a	t', b'	aus <i>c</i>	a, b
			Mast- spitze										Nr. 14	Nr. 13	Nr. 16	Nr. 11					c	d	c	d
	Z	Z'	cm	0	,	11	0	,	"	0	,	"	mm	mm	mm	mm	mm	mm	mm	mm	cm	cm	em	cm
1	500	490	0,8	0	0	19	0	0	26	0	0	0	0,21	0,01	0,22	0,01	0,2	0.06	0,5	0.05	+35.0	126,0	+ 28	108
2	750	735	1,1	0	0	27	Ö	Ö	25	Ŏ.	0	ő	0,31	0.15	0.30	0,03	0,5		1,0	0,09		129,0	+28	108
3	1000	980	1,4		ő	54	ő	0	30	0	0	0	0,38	0.19	0,34	0,04	1.1	0,35	1,5		+39.0	129,0	+28	108
4	1250	1220	2,5		1	24	Ö	1	8	ő	Ö	4	0.91	0,44	0.82	0.05	1.4		2,0		+36.0	131.0	+28	108
5	1500	1460	3,4		1	38	0	ī	42	0	0	4	1,33	0.64	1,12	0.07	1.7	0,55	2,8	0,22		132,0	+ 28	108
6	1800	1760	4,7		2	37	0	2	24	0	0	8	2,01	0,92	1,72	0,12	2,2	0.75	3.3	0,29		133.0	+29	111
7	2000	1950	5,8		2	56	0	2	58	0	0	11	2,51	1,15	2,17	0.15	2,7	0,95	4,5	0.39		137.0	+ 32	109
8	2250	2200	6,6		3	51	0	3	34	Ö	0	11	3,08	1,40	2,62	0,16	3,0		6.0	, , ,	, ,	139,0	+29	113
9	2500		7,5		4	49	0	4	28	0	0	11	3,69	1,70	3,17	0,20	3,6	,	7,5			139,0	+31	113
10	2750	2690	8,8		5	46	0	5	25	0	0	18	4,43	2,02	3,92	0,24	3,7	1,45	9,0		+39.0	139,0	+30	116
11	3000	2940	9,7	0	6	57	0	6	26	0	0	24	5.14	2,37	4,52	0.26	4.3		10,5	0.77	+40.0	140.0	+29	114
12	3250	3180	10,9	0	8	15	0	7	51	0	0	24	6,06	2,70	5,32	0,30	4,6	1,75	12,0	0,90	+39.0	142,0	+ 32	114
13	3500	3430	12,1	0	9	44	0	9	19	0	0	30	6,96	3,20	6,12	0,35	4.9	1,85	13,0	0,97	+41.0	142,0	+ 32	120
14	3750	3670	13,3	0	11	42	0	11	1	0	0	38	8,01	3,70	7,12	0,42	6,4	2,35	14,0	1,07	+40.0	143,0	+32	120
15	4000	3920	14,5	0	13	44	0	12	50	0	0	42	9,16	4,22	8,12	0,49	7,0	2,65	17,0	1,27	+42,0	143,0	+24	121
16	4250	4160	16,5	0	16	56	0	16	13	0	0	57	10,90	5,00	9,97	0,60	10,0	3,65	19,0	1,47	+41,0	145,0	+34	115
17	4500	4410	18,0	0	19	54	0	19	7	0	1	9	12,43	5,70	11,32	0,65	13,0	4,65	22,0	1,77	+41,0	146,0	+ 33	117
18	4750	4650	19,8	0	23	3	0	22	25	0	1	9	14,27	6,55	13,12	0,75	16,0	5,85	24,0	1,97	+41,0	147,0	+ 34	122
19	5000	4900	22,0	0	26	2	0	27	1	0	1	13	16,58	7,65	15,42	0,90	.19,0	7,05	28,0	2,27	+43,0	147,0	+35	123
20	5250	5140	24,7	0	33	16	0	32	49	0	1	18	19,60	9,07	18,12	1,05	23,0	8,35	32,0	2,57	+44,0	149,0	+34	124
21	5500	5380	29,1	0.	41	38	0	44	20	0	1	33	22,55	10,47	21,60	1,25	30,0	10,65	41,0	3,27	+43,0	150,0	+36	123
22	5750	5630	34,8	0	55	2	0	57	46	0	2	10	45,90	22,17	27,10	1,57	39,0	13,65	50,0	3,77	+43,0	152,0	+36	124
23	5200	5090	55,5	1	51	50	1	14	40	0	7	20	69,40	32,13	53,10	3,10	76,0	26,65	87,0	6,27	+45,0	152,0	+40	92
24	4500	4410	98,5	2^{0}	30') ar	is S	pitz	enve	erscl	hieb	ung	93,45	33,56	89,10	10,90	133,0	44,15	145,0	14,67	-40,0	370,0	+36	93
25	4000	3920	124,0	4^{0}	404	1		er	mitt	elt.					_		176,0	55,15	191,0	23,87	· -	_	+ 21	93

Fundament VII. Bodenart: Bis 50 cm Tiefe wie bei Nr. VI. Darunter sehr fester Fluss-Schotter, mit einem spezifischen Gewicht von 2,15 kg/dm³. — Grubenwände vollkommen standsicher. — Datum der Erstellung 1. Dezember 1922. — Datum der Erprobung 18. April 1923. — Gesamtgewicht $G=10~800~\mathrm{kg}$.

Fundament IX. Tabelle VIII.

Angaben über Lageveränderungen und Lage der Drehachse (berechnet), in Funktion des Spitzenzuges.

	7.0	of a	Ver-	I	Kline	met	eran	gabe	n			g der Pun Messuhren				g der Pu orrichtun		La	ge der I	Orehachs	e
Ŋr.	Zü in		schie- bung der	(I N	Läng Ir. 1	s) 1	(Quei Ir. 1	2	->	a′ ↓	->	b'	_>	a ↓	->	<i>b</i>	aus e	ι', b'	aus e	a, b
			Mast- spitze							Nr. 16	Nr. 14	Nr. 15	Nr. 11.					c	d	c	d
-	Z	Z'	em	0	,	"	0	,	"	mm	mm	mm	mm	mm	mm	mm	mm	em	cm	cm	em
1	250	247	0,6			32				0,23	0,028	0,28	0,16	0	Ō	0	0	34	90		
2	500	494				46	_			0,42	0,05	0,5	0,28	0,5	ő	ő	ő	34,5	96		_
3	750	741	1,0			46				0,42	0,05	0,5	0,28	1	0	0,5	0,2	34,5	96		-
4	1000	988	1,6	_	1	30	_	_		0,8	0,088	0,89	0,49	1,5	0,1	1	0,3	36,5	. 102	-	-
5	1250	1235	2,8		2	53			5	1,6	0,16	1,76	0,92	3	0,3	2,5	0,5	36,5	117	_	
6	1500		4,2		5	48	-		10	3,3	0,3	3,55	1,55	5	0,5	4,5	1	33	175		-
7	1750		6,8		10	54	-		17	6,5	0,55	6,93	2,76	10,2	0,8	9,3	2	33,5	174		
	2000		11,2		20	22	-	-	22	12,2	0,9	12,52	4,98	18	1,2	16,5	4,3	38,5	164		_
	2250				32	39		-	22	19,3	1,25	19,93	8,11	28,5	2	26	7,5	37,5	149		-
	2500		22,7		47	1			22	26,3	1,6	28,01	12,48	41	2,75	38	11	43,5	105	36,5	141
	2750		,	1	10	12	-		-8	39,3	2,2	40,81	18,58	61	4	57	16,8	43	135	37,5	130
	$\frac{3000}{3250}$				57 16	42	_	1	-10 30	62,3	3,6	65,1	31,38	97	6,6 13	93 155	27,2	-		37,5	136
	3400				37	$\frac{24}{48}$		-1	30	$\frac{103}{147}$	6,2 $10,5$	$105,1 \\ 150,6$	50,78 $71,08$	$\begin{vmatrix} 161 \\ 227 \end{vmatrix}$	22	219	44 59			35,5 32	$\frac{127}{127}$
			137,5		57	40		-3	90	185	10,3 $12,7$	186.1	86	282	31	274	70.5	_		31	126
	3500			_						100	12,1	100,1	-	314	$\frac{31}{37,5}$	307	77			01	140


Fundament IX. Bodenart: Reiner, steinfreier Lehmboden, im unteren Teil trocken und hart, im mittleren Teil feuchtplastisch. — Grubenwände vollkommen standsicher. — Datum der Erstellung 1. Dezember 1922. — Datum der Erprobung 24. April 1923. — Gesamtgewicht 10 800 kg.

Zur besseren Uebersicht sind die Versuchsergebnisse in Fig. 12 in der unter A gewählten Darstellungsweise graphisch aufgetragen.

Kurve V entspricht einem kohäsionslosen ("schlechten") Boden. Ungünstigere Verhältnisse bestehen nur in Sumpf- und Moorboden, in losem Schwemmsand und dergleichen. Demgegenüber stellt Kurve VII (gewachsener, sehr fester Fluss-Schotter) sehr günstige Verhältnisse dar, wie sie, abgesehen von eigentlichem Felsboden, in der Regel nicht vorkommen. Die Kurven spiegeln deutlich die sehr stark verschiedenen Druckfestigkeitseigenschaften der verschiedenen Bodenarten und deren ebenso verschiedene Plastizität wider. Sie zeigen deutlich, wie durchaus gerechtfertigt es ist, bei der Anordnung und Bemessung der Fundamente auf diese Besonderheiten Rücksicht zu nehmen. Der Vergleich der Kurven V und VII zeigt drastisch den Unterschied zwischen geschüttetem und gewachsenem Boden. Die Bodenart ist nämlich in beiden Fällen die gleiche, allein bei Fundament V

handelt es sich um eine 8 Jahre alte Schüttung, bei Fundamen t VII dagegen um vollständig festen, gewachsenen Boden.

Es ist aus diesen Ergebnissen ersichtlich, dass namentlich in den stark plastischen Bodenarten

Kurve III: für Humusdeponie, 8 Jahre alt.

- " V: " Schotterdeponie (Flussgeröll mit Sand) 8 Jahre alt.
 - VI: "festen, lehmhaltigen Sandboden.
- ,, VII: ,, festen, mit Sand gemischten Fluss-Schotter.
- ,. IX: "festen, reinen Lehm.

schon bei kleinen Belastungen kleine Fundamentverdrehungen stattfinden, dass somit, von eigentlichem Felsboden abgesehen, eine völlig starre Einspannung des Fundamentes nicht zu erreichen ist. (Fortsetzung folgt.)

Linienstörungen, verursacht durch Rauhreif- und Eisansatz.

Nach mehrtägigem Nebelwetter mit reichlicher Rauhreifbildung wurden in der Nacht vom 2. auf den 3. April 1924 an den interurbanen Telephonleitungen, welche vom Dorfe Entlebuch über die Bramegg nach Schachen-Malters führen, sehr schwere Verheerungen besonderer Art angerichtet.

Zur Beurteilung dieses ganz aussergewöhnlichen Störungsfalles mögen, ausser den nachfolgenden aufklärenden Darlegungen, vier photographische Aufnahmen dienen. Leider sind auf diesen die an den Drähten aufgetretenen ganz kompakten Eisansatzbildungen nicht mehr ersichtlich, die einen Durchmesser bis zu 8 cm und ein Gewicht von 1,75 kg pro laufenden Meter erreichten. Es ist zu bemerken, dass die Störungen ausschliesslich auf Reif- und Eisansatz zurückzuführen sind, da die Nacht vom 2. auf den 3. April völlig windstill war.

Die interurbane Linie Entlebuch—Bramegg—Schachen besteht aus gekuppelten Stangen mit Traversen zu 4 Isolatoren. Dagegen wurde das jetzt beschädigte Teilstück der Linie über die Brachweid in Doppelstangen hergestellt, mit Traversen zu 8 Isolatoren und gegenseitig versetzter Drahtlage. Diese anormale Bauanordnung war seinerzeit nicht etwa als Verstärkung der Linie gedacht, sondern lediglich als Schutz gegen Rauhreifansatz, der in dieser Gegend namentlich während der Herbstzeit ausserordentlich stark auftritt. Die vorsorgliche Massnahme hat sich bis anhin tatsächlich auch gut bewährt. Die 1059 Meter ü. M. gelegene, vollständig baumfreie Anhöhe Brachweid ist als ganz besonders

windig bekannt. Herrscht daselbst Nebelwetter, was öfters vorkommt, und entsprechend tiefe Temperatur, so bilden sich an den Drähten sog. "Duftbärte" oder auch Eiszapfen, welche schon in Längen von 30 cm und mehr beobachtet wurden. Solche vom Winde meistens in horizontaler Richtung getriebene Eisgebilde überbrücken bei normaler Drahtmontage die Leitungen und rufen dadurch Verwicklungen und Ableitungen hervor.

Das vollständig zerstörte Linienstück liegt zwischen zwei Winkelstützpunkten und erstreckt sich über 27 Stützpunkte mit 28 Spannweiten von durch-

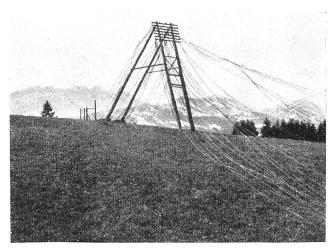


Fig. 1.