Zeitschrift: Technische Mitteilungen / Schweizerische Telegraphen- und

Telephonverwaltung = Bulletin technique / Administration des télégraphes et des téléphones suisses = Bollettino tecnico /

Amministrazione dei telegrafi e dei telefoni svizzeri

Herausgeber: Schweizerische Telegraphen- und Telephonverwaltung

Band: 1 (1923)

Heft: 5

Artikel: Festigkeits-Versuche an Holzgestängen: Bericht an die

Obertelegraphendirektion [Schluss]

Autor: Häusler, W.

DOI: https://doi.org/10.5169/seals-873083

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 01.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Tednische Mitteilung

der schweizerischen Telegraphen- und Telephon-Verwaltung

BulletinTechniq

de l'Administration des Télégraphes et des Téléphones suisses

dell'Amministrazione dei Telegrafi e dei Telefoni svizzeri

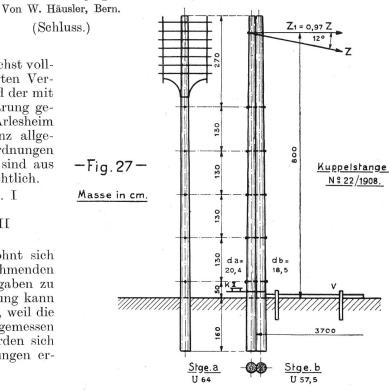
Herausgegeben im Auftrage der Obertelegraphendirektion

Publié par ordre de la Direction Générale des Télégraphes

Pubblicato per ordine della Direzione Generale dei Telegrafi

Festigkeits-Versuche an Holzgestängen.

(Bericht an die Obertelegraphendirektion.)

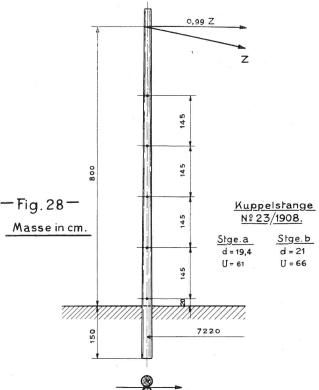

B. Versuchs-Serie in Arlesheim.

Nachdem die in Ostermundigen mit möglichst vollkommener Stangen-Einspannung ausgeführten Versuche über die Wirkung der gekuppelten und der mit Kreuzen versteiften Stangen nähere Aufklärung gebracht haben, soll im folgenden über die in Arlesheim vorgenommenen Festigkeitsproben nur ganz allgemein berichtet werden. Die Versuchsanordnungen und die beobachteten Instrumentangaben sind aus nachstehenden Skizzen und Tabellen ersichtlich.

Eine Trommelteilung bei Klinometer Nr. I =3.148''

Eine Trommelteilung bei Klinometer Nr. II = 4.17

Eine rechnungsmässige Untersuchung lohnt sich nicht, da die Ausbiegungen trotz der vorzunehmenden Korrekturen vermittelst der Klinometerangaben zu ungenau werden. Die Querschnittsverjüngung kann auch nur angenähert berücksichtigt werden, weil die Stangendurchmesser am Kopfende nicht gemessen wurden. Die zuverlässigsten Resultate werden sich durch direkten Vergleich der Bruchbelastungen er-

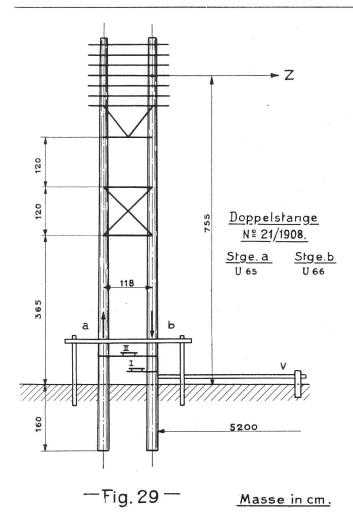


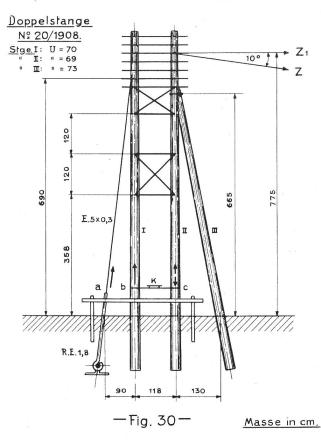
Versuch Nr. 1a

rorbuci	1 111. 110			0 07
Zug am Dynamom. kg	Ausbiegung im Angriffspkt. von Z in em	Verschiebung an Bodenober- fläche in mm	Klinometer II Teilstr. der Einstellung	Bemerkungen
2×250 2×325 2×375 0 2×375 2×425 2×475 2×500 2×525 2×550	53 87 111 64,5 125 144,5 164 182 201 222	28 41 55 49 67 95 85 95	2500 +1500 +1100 Neues 0 + 900	Wegen Bruchgefahr Beob- achtung eingestellt. Bruch a. d. Einspannstelle. Holz nicht mehr ganz gesund.

Versuch Nr. 2a

Zug am Dynamom. kg	Ausbiegung im Angriffspkt. von Z in em	Verschiebung an Erdoberfläche in mm	Klinometer II Trommelteilung	Bemerkungen
300	33	2	27	
350	57	14	645	
400	78	29	645	
475	89	42	390	
525	118	66	893	
575	132	80		
625	148	92		
650	161	102		
675	170	111		
700	178 ·	120		
725	185	125		
750	191	130		
775	196	135		
800	201	140		
825	210	145		
850	239	170		
875	254	185		
900	270	200	May and Table	
925	278	215		
950	290	235		
975	320			Bruch an Einspannstelle


geben, da die Stangendimensionen am Erdboden nicht allzugrosse Unterschiede aufweisen. Aus Versuch Nr. 2 a ergibt sich die Bruchbelastung pro Stange zu $\frac{975}{2} = 487$ kg; somit wird der Verstärkungsfaktor für Kuppelstange Nr. 22 gleich $\frac{2.535}{487} = 2,2$ und derjenige für Tragwerk Nr. 18 gleich $\frac{1100}{487} = 2,04$.


Stützpunkt Nr. 19 kann nicht berücksichtigt werden, weil er ohne zu brechen aus der Erde herausgedreht wurde. Auch diese Proben haben zu ähnlichen Ergebnissen geführt wie diejenigen in Ostermundigen. Daraus kann geschlossen werden, dass eine Kuppelstange mit der üblichen Verschraubung über alle Achsen nur den zweifachen Widerstand einer einzelnen Stange besitzt. Aus Versuch Nr. 5 a geht hervor, dass die Eingrabetiefe mit der Gestängsfestigkeit im Einklang sein muss, wenn der volle Widerstand der Tragwerke ausgenützt werden soll.

Aus einem Vergleich der Versuche 3a und 7a ergibt sich die Notwendigkeit, der Bodenbefestigung bei versteiften Doppelstangen erhöhte Aufmerksamkeit zu schenken. Bei Doppelstange Nr. 21 wird die Zugstange, infolge ungenügenden Bodenwiderstandes, durch die Wirkungsweise der Kreuzverstrebung

Versuch Nr. 3 a

Zug am Dynamom. kg	Ausbiegung im Angriffs- punkt von Z in em			Klinometer Trommelteilung Nr. I Nr. II		rschiebung b mm 	Bemerkungen
$2 \times 250 \\ 2 \times 300 \\ 2 \times 350 \\ 2 \times 400 \\ 2 \times 450 \\ 2 \times 450$	20 45 65 95 131 300	21 46 67 105 148	$ \begin{array}{c} , 910 \\ +1250 \\ +1000 \\ +1815 \\ +2050 \end{array} $	$875 \\ +1335 \\ +1070 \\ +2000 \\ +1900$	25 50 75 110 150	3 5 7,5 17 23	Stange a gibt nach Bruch Stange b

direkt aus der Erde herausgehoben. Je mehr die Zugstange nachgibt, desto grösser wird die Inanspruchnahme der Druckstange, welche schliesslich die ganze Belastung allein aufzunehmen hat. Es ist nun ganz

Versuch Nr. 4 a

Zug am Dynamom.	amom im Angriffs-		Klinometer Trommel-	Bemerkungen		
J J	punkt von Z	a	b	c	teilung	
kg	in cm	mm	$\mathbf{m}\mathbf{m}$	mm	I	
	i i					
2×250	0	0	0	0	. 0	8
2×300	0	0	0	0	- 8	
2×350	1	0	2	3	— 15	
2×400	1,2	0	2	3	- 8	· ·
2×450	1,5	0	2,5	4,5	0	2
2×500	2	0	4	4,5	+ 5	ces
2×600	5	4	6,5	6	+100	
2×700	6,5	5	6,5	6	+ 31	
2×800	10,5	5	10	6	+120	*
2×900	16	. 8	13	6,5	+185	
2×1000	17	9	13,5	6,5	+ 25	
2×1100	21	9	14	6,5	+138	
2×1200	23,5	9	18	6,5	+40	
2×1300	27	9				
2×1400	41	9				
2×1500	59	9	50	6,5		
2×1600	75	9	62	6,5		9
2×1700						Flaschenzug beschädigt
						Strebenschrauben abge-
2×1450					^	schert.
2×1500						Strebe in 1/3 H. geknickt.
						8

Versuch Nr. 5 a.

Zug am Dynamometer kg	Ausbiegung im Angriffspunkt von Z in cm	Verschiebung am Boden mm	Klinometer II Trommelteilung	Bemerkungen
275	8,5	6	136	
300	9	7	16	
350	9	7	5	
400	9,5	7	15	*
450	10,5	7,5	53	
500	15	10,5	220	
550	17	12	35	8
600	78,5	67	3200	
650	162	145	4000	Stangen-Ausbieg. gering; Erde gibt nach.
700	190,5	172	1293	
750	232	205	1700	
800	285	255	2860	
850	329	289	2070	
900	403	341	4000	Stange ohne Bruch ausgerissen.
X.			,	,

klar, dass im Boden nicht einfach die gleiche Befestigung genügt, die für einfache Stangen als notwendig erachtet wird, wenn über Boden Gestängsverstärkungen angebracht werden müssen, um eine bestimmte Drahtvermehrung gegenüber 2 einfachen Stangen zu erhalten. Als einfachstes Mittel zur Erhöhung des Einspannwiderstandes käme eine grössere Eingrabtiefe in Frage an Stelle von Querriegeln etc.

C. Zweite Versuchs-Serie in Ostermundigen.

Diese Versuche wurden durchgeführt, um zu prüfen, ob es möglich sei, den Verstärkungsfaktor bei Kuppelstangen zu vergrössern. Zur Verstärkung sollen nur einfache Mittel verwendet werden. Ein Verbinden der beiden Stangen mit Schrauben und eingepassten Dübeln kann nicht in Frage kommen,

Versuch Nr. 6 a.

Zug am Dynamo- meter kg	Ausbiegung im Angriffs- punkt von Z in cm	Ver- schiebung am Boden in mm	Klinom. II Trommel- teilung	Klinom. I Trommel- teilung	Bemerkungen
	1				<u> </u>
250	16	5	320	725	
300	19,5	7	90	250	
350	23,5	9	145	310	
400	31	13	260	610	
0	16	10	305	590	9
400	33	15,5	+435	+815	
450	40,5	18,5	225	505	
500	49	23,5	320	640	
550	59	30	465	860	
600	68	35	380	810	
650	80	43	475	980	n a
700	89,5	49	385	830	
750	102	57	480	1090	
800	118	67,5	600	1288	*
Ò	67	59			
800	124	74			
850	130	78			
900	141	85	× =	0 8	
950	155	94		6	9
1000	175	107			
1050	195	121			
1100					Bruch

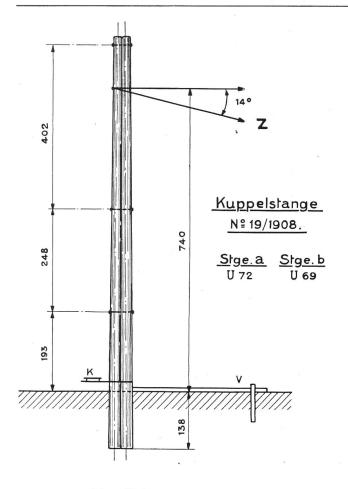
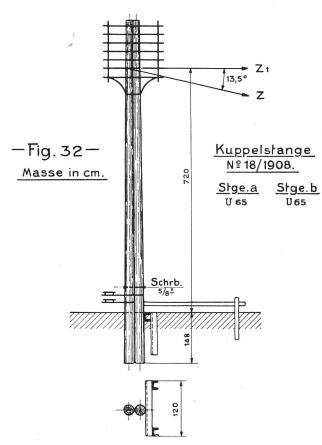
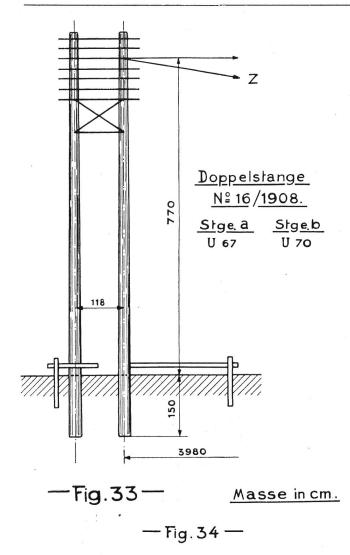
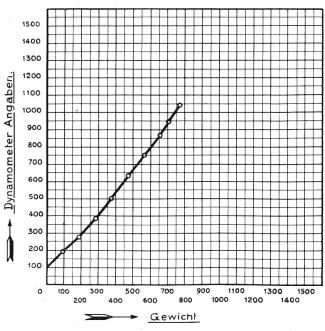
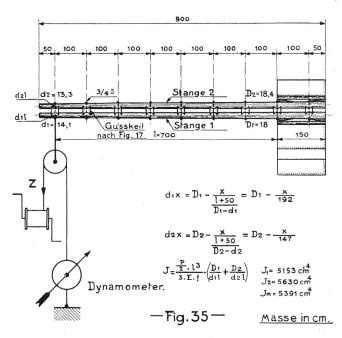



Fig. 31— Masse in cm.


weil diese Arbeit genau und fachmännisch ausgeführt werden muss und daher teuer zu stehen kommt. Ein weiterer Nachteil ist die Lockerung der Dübelverbindungen infolge Schwindens des Stangenholzes.



Um die grossen Vorräte der Telegraphenverwaltung an Kuppelstangen-Traversen aufbrauchen zu können, muss ein Verstärkungsmittel angewendet werden, das die Stangendistanz nicht vergrössert. Am einfachsten und billigsten wird dies erreicht durch Vermehrung der Kuppelschrauben. Zur Prüfung des Einflusses von Kuppel-Verbindungen mit vergrössertem Stangenabstand dienten gusseiserne


Versuch Nr. 7 a.

			isuon iii. i a.	
Zug am Dynamometer kg	Ausbiegung im Angriffspunkt von Z in cm	Verschiebung am Boden mm	Hebung von Stange a mm	Bemerkungen
250	8	2	5	
300	12	3	9	
350	16	4	11	
400	19	5	12	
450	22	5,5	13	
500	25	6	14	
. 550	28	7	15	
600	31	8,5	16	
650	35	10	17	
700	40	12	19	9 2
750	45	14	20	
800	53	17	21	
850	102	43	17	Abscherung der Bolzen bei C.
900	112	48	10	
950	128	55	10	
1000	140	62		
1050	_		_	
1050			_	Bruch.
	1	,	l	

Eichkurve des Dynamometers
— der —
B.K.W.

Keile mit scharfkantigen Rippen nach Fig. 17, welche zwischen die beiden zu kuppelnden Stangen gelegt wurden. ¹)

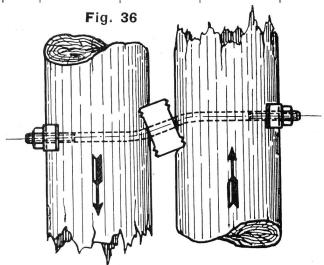
Beim Anziehen der Schrauben, welche die Stangen zusammenhalten, schneiden diese scharfen Kanten der Rippen in das Holz ein. Dadurch wird eine breitere Holzfaserschicht zur Aufnahme der Schubkräfte in Stangenrichtung herangezogen und somit die Schubbeanspruchung bedeutend herabgesetzt. Auch eine Bearbeitung der Stangen wird dadurch vermieden. Dieses Vorgehen wurde von Herrn Kontrollingenieur G. Sulzberger angeregt.

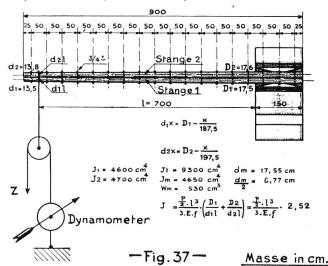
Die Versuchsanordnung war gleich wie bei den schon durchgeführten Versuchen. Die Dynamometer-Angaben sind nach der Eichkurve in Fig. 34 zu korrigieren.

In folgenden Tabellen sind die gemessenen und beobachteten Grössen eingetragen, sowie die betreffenden Tragwerkskizzen beigefügt.

Versuch Nr. 10.

Dieser Versuch wurde ausgeführt an einer Kuppelstange, aus zwei Weisstannen bestehend, mit 9 Gusskeilen und 9 Schrauben. (Fig. 35).

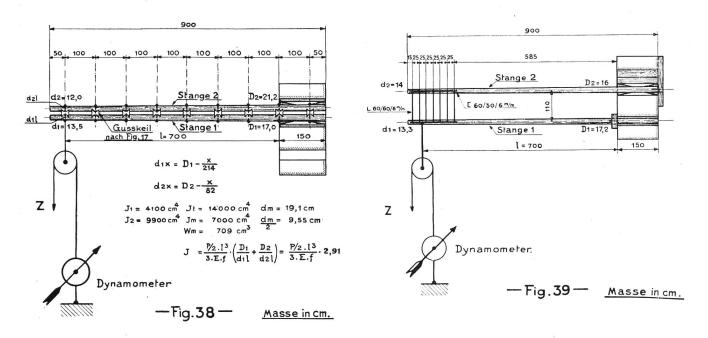

Diese Versuche ergeben keine bessern Resultate als die früheren. Nach den berechneten Verstärkungsfaktoren ist eine grössere Verstärkung nicht nachzuweisen. Vergleicht man die Zugkraft, die den Bruch herbeiführt, in den Versuchen 10 bis 12 mit derjenigen einer einfachen Stange, so ergibt sich für Kuppel-


stange Nr. 10 eine $\frac{790}{590} = 1,4$ fache Verstärkung. Für

Kuppelstange 11 und 12 erhöht sich dieser Faktor auf 1,65. Unter Voraussetzung der Richtigkeit der Dynamometer-Angaben kann geschlossen werden, dass mit gewöhnlicher Verschraubung der beiden zu kuppelnden Stangen eine Verstärkung des Widerstandes nicht zu erreichen ist.

¹⁾ Siehe T. M. Nr. 4, Seite 76.

Nr.	Zug am Dynamo- meter	Ausbiegung	Verschiebung am Kopfende	Verschiebung am Fussende	Korrigierter Zug am Dy- namometer	Stangenzug	Bemerkungen
	kg	em	mm	mm	kg	kg	- 1
				<u> </u>			
1	150.	16,4	0	_	50	100	* *
2	200	24,1	0	_	100	200	
3	250	36	0	_	155	310	
4	300	44,5	0		205	410	
. 5	110	8,5	0	Manager 1	0	0	
6	300	48	0		205	410	04
7	350	56,5	2	6	255	510	
8	400	68,5	3		295	590	
9	450	83,5	4		335	670	
10	500	95,3	6		375	750	
11	540	110,5	6	_	405	810	
12	550	122	6		410	820	
13	550		_		410	820	Die äussersten Fasern br.
14	530	162			395	790	Vollständiger Bruch von
							Stange Nr. 2 an Ein- spannstelle



Berechnet

Nr.	Korri- gierter Kraft- hebelarm em	Träg- heits- moment cm ⁴	Vergrösse- rungsfaktor d. Trägheits- momentes einer einzeln. Stange	Abstand der neutralen Achse em	Abstand der äussersten Faser- schicht em	Wider- stands- moment em ³	Vergrösse- rungsfaktor des Wider- stands- momentes einer einzeln. Stange	Biegungs- moment	Span- nung kg/cm²	Bemerkungen
1	700	9050	1,68	imag.		-		70000	*****	
2	700	12400	2,3	1,76	10,86	1142	1,93	140000	122	,
3	699	12800	2,38	1,97	11,07	1159	1,96	216500	187	
4	698,5	13700	2,55	2,36	11,46	1196	2,03	286000	239	P. Grenze
5	700	and the same of th								3 66
6	698	12700	2,36	1,92	11,02	1150	1,95	286000	248	
7	698	13400	2,49	2,26	11,36	1180	2,00	356000	302	
8	697	12800	2,38	1,97	11,07	1158	1,96	411000	356	Diese Spannungen
9	695	11900	2,2	1,64	10,74	1108	1,87	466000	421	korrigieren sich
10	694	11700	2,18	1,34	10,44	1120	1,90	520000	465	nach dem am
11	691	10900	2,02	0,55	9,65	1130	1,92	560000	495	Schlusse ermit-
12	689	10000	1,86	imag.		*******	Posteria	565000		telten mittlern
13	689					property		565000		Verstärkungs-
14	681		_					540000	-	faktor

Die bleibenden Deformationen sind aus Fig. 36 ersichtlich.

Versuch Nr. 11.

Kuppelstange mit 18 gleichmässig verteilten Schrauben. (2 Rottannen). S. Fig. 37.

Nr.	Zug am Dynamo- meter	Ausbiegung in	Verschiebung am Kopfende	Verschiebung am Fussende	Korrig. Zug am Dynamo- meter	Stangenzug in	Bemerkungen
	kg	em	mm	mm	kg	kg	* *
1	150	10,2	0	0	50	100	
2	200	17,5	0	5	100	200	
3	250	26,7	0	6	155	310	9
4	300	34,5	. 0	6	205	410	
5	110	7,0	0	2	. 0	0	
6	300	38,0	0	6	205	410	
7	350	46,5	0	9	255	510	
8	400	57,5	2	12	295	590	
9	470	67,0	2	16	350	700	
10	500	90,0	- 2	17	375	750	
11	550	103,5	- 2	19	410	820	
12	570	-	. *	_	420	840	Einspannung ausgerissen
13	150	19,5	0	. 1	50	100	
14	200	31,5	. 0	2	100	200	
15	250	37,4	0	<u> </u>	155	310	
16	300	50,5	0	4	205	410	Einspannung ausgerissen
17	150	19,5	0	_	50	100	
18	200	30,2	0	,	100	200	
19	250	41,6	0	9	155	310	
20	300	50,0	0		205	410	
21	350	60,0	0	12	255	510	
22	400	72,0	2	. —	295	590	
23	450	81,5	2	14	335	670	
24	500	92,0	2	16	375	750	
25	550	105,0	3		410	820	,
26	580	117,0	3	20	435	870	
27	610	130,0	4		455	910	
28	650	142,0	4	24	485	970	
29	650	154,5	_		485	970	Bruch
30	600	166,0		_	450	900	Bruch beider Stangen an
					*		Einspannstelle

Berechnet

,										
Nr.	Korri- gierter Krøft- hebelarm cm	Träg- heits- moment cm ⁴	Vergrösse- rungsfaktor d. Trägheits- momentes einer einzeln. Stange	Abstand der neutralen Achse em	Abstand der äussersten Faser- schicht cm	Wider- stands- moment cm ³	Vergrösse- rungsfaktor des Widerstands- momentes einer einzeln. Stange	Biegungs- moment cm/kg	Span- nung kg/cm²	Bemerkungen
1	700	14100	3,03	3,14	11,9	1185	2,24	70000	59	*
2	700	16500	3,55	3,86	12,63	1305	2,46	140000	107	
3	700	16700	3,58	3,90	12,67	1320	2,49	217000	164	
4	699	17000	3,66	3,98	12,77	1330	2,50	286500	216	P. Grenze
5	700							_		
6	699	15500	3,34	3,57	12,34	1255	2,37	286500	228	
7	698	15600	3,36	3,60	12,37	1262	2,38	356000	282	
8	698	14600	3,14	3,30	12,02	1210	2,28	412000	340	
9	697	14800	3,18	3,36	12,13	1220	2,30	488000	400	Diese Spannungen
10	694	11700	2,52	2,22	10,99	1065	2,01	520000	488	korrigieren sich
11	693	11100	2,39	1,91	10,68	950	1,80	569000	600	nach dem am
12										Schlusse ermit-
13	700	7400	1,6	imag.				70000		telten mittleren
14	700	9150	1,96	imag.	_			140000		Verstärkungs-
15	699	11900	2,56	2,31	11,08	1075	2,03	217000	202	faktor
16	698	11600	2,5	2,18	10,95	1060	2,00	286500	270	
17	700	7400	1,6	imag.		-		70000		
18	700	9100	1,9	imag.	_		_	140000		
19	698	10600	2,28	1,63	10,40	1020	1,93	217000	213	
20	698	11700	2,5	2,22	10,99	1062	2,00	286500	270	
21	698	12100	2,6	2,40	11,17	1085	2,05	356000	328	
22	696	11600	2,5	2,18	10,95	1060	2,00	412000	389	. 9
23	695	11600	2,5	2,18	10,95	1060	2,00	466000	440	
24	694	11400	2,45	2,06	10,83	1050	1,98	520000	495	
25	693	10900	2,34	1,8	10,57	1030	1,94	569000	550	
26	690	10250	2,2	1,4	10,17	1008	1,90	600000	595	
27	688	9550	2,05	1,12	9,89	965	1,82	626000	650	
28	685	9200	1,95	imag.		-		664000		
29	683	8400	1,8	imag.	_		_	663000		
30	680			_						
1			1		1		I	E .	ı	

Versuch Nr. 12.

Kuppelstange mit 9 Gusskeilen und 9 Schrauben (s. Fig. 38).

Nr.	Zug am Dynamo- meter kg	Ausbiegung	Verschiebung am Kopfende mm	Verschiebung am Fussende mm	Korrigierter Zug am Dy- namometer kg	Stangenzug kg	Bemerkungen
						3.5	10
1	150	8,0	0	0	50	100	
2	200	20,5	0	6	100	200	
3	250	30,0	2	9	155	310	
4	300	39,5	2		205	410	
5	100	6,0	0		0	0	
6	300	41,5	2	13	205	410	
7	350	51,5	2		255	510	
8	400				295	590	Einspannung ausgerissen
9	150	16,5	2		50	100	
10	210	23,2	2	4	105	200	
11	250	31,0	2		155	310	
12	310	36,5	2	7	215	430	
13	350	41,5	3		255	510	
14	400	48,5	4	10	295	590	
15	450	59,7	4,5	_ ~	335	670	
16	475	62,8	5	12	355	710	
17	500	68,5	5		375	750	

Nr.	Zug am Dynamo- meter kg	Ausbiegung em	Verschiebung am Kopfende mm	Verschiebung am Fussende mm	Korrigierter Zug am Dy- namometer kg	Stangenzug kg	Bemerkungen
18	525	77,0	5,5	16	395	790	
19	550	83,5	6		410	820	
20	575	93,0	7		430	860	
21	610	104,0	9	21	455	910	
22	640	112,0	10		480	960	
23	650	128,5	- 11	28	485	970	
24	650	140,0			485	970	Bruch an Einspannstelle

Rerechnet

	Berechnet									
Nr.	Korri- gierter Kraft- hebelarm em	Träg- heits- moment cm ⁴	Vergrösse- rungsfaktor d. Trägheits- momentes einer einzeln. Stange	Abstand der neutralen Achse cm	Abstand der äussersten Faser- schicht cm	Wider- stands- moment ${ m cm^3}$	Vergrösse- rungsfaktor des Wider- stands- momentes einer einzeln. Stange	Biegungs- moment cm/kg	Span- nung kg/cm²	Bemerkungen
1	700	20700	2,96	3,64	13,19	1570	2,2	70000	45	
2	700.	16100	3,3	2,28	11,83	1360	1,92	140000	103	l+
3	700	17100	2,44	2,64	12,19	1405	1,98	217000	154	8
4	699	17100	2,44	2,64	12,19	1405	1,98	286000	204	
5	700								-	entlastet
6	698	16300	2,32	2,36	11,91	1370	1,94	286000	208	P. Grenze
7	698	16300	2,32	2,36	11,91	1370	1,94	356000	260	
- 8	700			screener of		*******	1			
9	700	10000	1,43	imag.				70000		80
10	700	15000	2,14	1,81	11,36	1320	1,86	147000	111	A.
11	700	16600	2,37	2,45	12,00	1380	1,95	217000	157	
12	699	19400	2,77	3,32	12,87	1510	2,14	300000	198	
13	698	20200	2,90	3,52	13,07	1545	2,18	356000	230	
14	698	20000	2,86	3,46	13,01	1540	2,17	411000	267	8
15	698	18400	2,63	3,02	12,57	1465	2,07	468000	. 320	Diese Spannungen
16	697	18500	2,64	3,06	12,61	1467	2,07	495000	338	korrigieren sich
17	696	17800	2,54	2,86	12,41	1430	2,02	522000	365	nach dem am
18	696	16700	2,38	2,51	12,06	1385	1,96	550000	398	Schlusse ermit-
19	695	15900	2,27	2,21	11,76	1350	1,90	570000	422	telten mittleren
20	694	14900	2,13	1,78	11,33	1315	1,86	596000	454	Verstärkungs-
21	693	14100	2,02	1,34	10,89	1300	1,83	630000	485	faktor.
22	690	13600	1,95	imag.				663000		
23	688	11800	1,69	*****				667000		
24	685	10700	1,53					664000		

Versuch Nr. 13. Doppelstange mit Traversengerüst (s. Fig. 39).

Nr.	Zug am Dynamo- meter kg	Ausbiegung in cm	Korrigierter Zug am Dynamo- meter kg	Stangen- zug kg	Bemerkungen
1	150	12,0	50	100	
2	200	24,5	100	200	-
3	250	35,5	155	310	,
4	300	41,0	205	410	
5	100	10,5	0	0	
6	300	42,5	205	410	
7	350	49,0	255	510	
8	400	58,0	295	590	P
9	450	66,0	335	670	
10	500	77,0	375	750	
11	560	90,0	410	820	*
12	600	105,0	450	900	
13	650	126,0	485	970	
14	675	152,0	505	1010	Bruch der Zugstange an
15	675		505	1010	Einspannstelle

Der Verstärkungsfaktor hat hier den Wert $\frac{1010}{590}$ =

1,7, wobei zu berücksichtigen ist, dass die zum Vergleich dienende einfache Stange einen grössern Durchmesser an der Einspannstelle hat als jede der beiden Stangen des Doppelgestänges.

Um den Einfluss der ungleichen Stangendurchmesser an der Einspannstelle auf die Verstärkungsfaktoren, welche sich durch direkten Vergleich der den Bruch herbeiführenden Zugkräfte ergeben, möglichst auszuschalten, wurden auf Grund der Bruchbeanspruchung in Versuch Nr. 2 die Bruchbelastungen einfacher Stangen verschiedener Dimensionen berechnet und in nachfolgende Tabelle eingetragen. Da die Stangen vor Durchführung der

Versuche etliche Wochen an der Sonne gelegen und sich vier Jahre auf dem Stangenlager befunden hatten, kann der Feuchtigkeitszustand des Versuchsholzes als lufttrocken bezeichnet werden. Die Biegungsfestigkeit, welche in hohem Masse vom Wassergehalt des verwendeten Fichtenholzes abhängig ist, darf daher zu 584 kg/cm² angenommen werden. (Troschel, Holzkonservierung; Winnig, Die Grundlagen der Bautechnik für oberirdische Telegraphenlinien). Dieser Wert stimmt mit dem in Probe Nr. 2 ermittelten Werte annähernd überein, so dass letzterer zu Vergleichsberechnungen benützt werden darf. (Bruchversuche, in der eidg. Materialprüfanstalt Zürich ausgeführt, ergaben $K_b=555~\mathrm{kg/cm^2}$ und $K_b=500~\mathrm{kg/cm^2}$. Angaben über Feuchtigkeitszustand fehlen).

Aus Versuch Nr. 2 sich ergebende Bruchbeanspruchung des Holzes = 618 kg/cm².

Stangen- Durch- messer an der Einspann- stelle	Wider- stands- moment	Biegungs- moment	Bruch- belastung	Stangen- Durch- messer an der Einspann- stelle	Wider- stands- moment	Biegungs- moment	Bruch- belastung	Stangen- Durch- messer an der Einspann- stelle	Wider- stands- moment	Biegungs- moment	Bruch- belastung
em	cm³	cm/kg	kg	cm	cm³	cm/kg	kg	cm	cm³	cm/kg	kg
16,0 16,5 17,0 17,5	402 442 482 527	249.10^{3} 273.10^{3} 298.10^{3} 325.10^{3}	370 405 440 492	18,0 18,5 19,0 19,5	572 622 673 729	$ \begin{array}{r} 354.10^{3} \\ 385.10^{3} \\ 415.10^{3} \\ 450.10^{3} \end{array} $	524 570 615 665	20,0 20,5 21,0	785 847 909	485.10 ³ 524.10 ³ 561.10 ³	718 775 830

Mit diesen Werten lassen sich die unten angegebenen genaueren Verstärkungsfaktoren berechnen.

Versuch Nr.	Stangen- durchmesser an der Einspann- stelle	Dem Stangen- durchmesser entspr. Bruch- belastung einer einfachen Stange	Gemessene Bruch- belastung	Ver- stärkungs- faktor	Bemerkungen
3	$17,3; 16,8$ 2×17	440	1150	2,6	Kuppelstange mit 5 Bolzen am Kopfende
4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	605	1180	1,95	Kuppelstange mit 5 Eisendübeln
5	$19,4; 18,4$ $2 \times 18,9$	605	1420	2,35	Normale Kuppelstange
6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	550	1630	2,96	Doppelstange mit niedrig eingebautem Kreuz
7	18,5; 16,8 $2\times17,6$	498	<1840	<3,7	Doppelstange mit Kreuz ohne Horizontal-Traversen
8	$19.7; 17.5$ 2×18.6	570	1800	3,16	Doppelstange mit normalem Kreuz
9	$17.5; 18.5$ 2×18	524	1180	2,25	Doppelstange mit einer Horizontaltraverse
10	$18,0; 18,4 \\ 2 \times 18,2$	$5\overline{42}$	820	1,52	Kuppelstange mit Gussdübeln
11	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	492	970	1,97	Kuppelstange mit 19 Schrauben
12	$\begin{array}{c c} 2 \times 17,36 \\ 17; 21,2 \\ 2 \times 19 \end{array}$	615	970	1,58	Kuppelstange mit Gussdübeln
13	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	412	1010	2,4	Doppelstange mit Traversengerüst

Zu den Proben 10 bis 13 ist zu bemerken, dass dieselben nach einer längern Regenperiode (Sept. 1922) ausgeführt wurden. Die Stangen waren dem Regen

ausgesetzt gewesen, enthielten somit auch eine grössere Wassermenge. Am Tag der Durchführung der Versuche herrschte kühles, bedecktes Wetter, der Boden war

nur oberflächlich trocken, so dass der Feuchtigkeitszustand des Holzes mit luftfeucht bezeichnet werden muss. Dadurch verringert sich der Bruchmodul für Biegungsfestigkeit um ca. 20% und erreicht etwa 480 kg/cm². Das Verhältnis der beiden Festigkeiten beträgt $\frac{618}{480} = 1,285$; die Verstärkungsfaktoren erhöhen sich nach folgender Tabelle und stimmen nun besser mit denjenigen der zuerst durchgeführten Versuche überein.

Versuch Nr.	Verstärkungsfaktor ohne Berücksichtigung des Feuchtigkeits- zustandes	Verstärkungsfaktor mit Berücksichtigung des Feuchtigkeits- zustandes		
10	1,52	1,96		
11	1,97	2,54		
12	1,58	2,04		
13	2,4	3,09		

Die Gegenüberstellung der Verstärkungsfaktoren der Kuppelstangen, die auf zwei ganz verschiedenen Wegen berechnet wurden, ist aus Untenstehendem ersichtlich und zeigt gute Uebereinstimmung.

Versuch Nr.	Verstärkungsfaktor erhalten durch direkten Vergleich der Zugkräfte, die den Stangenbruch herbeiführten	Verstärkungsfaktor aus der Durch- biegungsformel er- halten (Gültigkeit nur innerhalb der Proportionalitäts- grenze)	Mittl. Verstär- kungsfaktor Cm	7 Wirkl. Verstärkungsgrad
3	2,6	2,75	2,57	1,33
4	1,95	1,93	1,94	0,97
5	2,35	1,94	2,15	1,07
10	1,96	1,97	1,96	0,98
11	2,54	2,42	2,48	1,24
12	2,04	2,02	2,03	1,01

Im Vorangehenden beziehen sich alle Verstärkungsfaktoren auf einfache Stangen, weil diese sich im Telegraphenlinienbau als Masseinheit für kombinierte Gestänge herausgebildet haben. Richtiger ist es, die gefundenen Verhältniszahlen durch 2 zu dividieren, um so den wirklichen Verstärkungsgrad zu erhalten.

Mit diesen Koeffizienten ergeben sich folgende Bruchbeanspruchungen:

	Versuch Nr.	Bruch Biegungs- moment cm/kg	Mittleres Widerstands- moment einer einzel- nen Stange em ³	$\begin{aligned} & Totales \\ & Widerstands-\\ & moment \\ & W_m \cdot C_m \end{aligned}$	$\begin{aligned} & Bruchmodul \\ & K_b = & \frac{M_b}{W_m \cdot C_m} \\ & kg/cm^2 \end{aligned}$	Bemerkungen
a —	3 4 5 10 11 12	784000 802400 958000 540000 663000 664000	535 663 663 592 530 709	1430 1285 1555 1160 1315 1440	550 624 615 465 504 460	Lufttrockenes Holz Luftfeuchtes Holz

Zusammenfassend kann aus den bis jetzt durchgeführten Versuchen und unter Voraussetzung der Richtigkeit der Dynamometerangaben folgendes geschlos-

1. Kuppelstangen sind gegenüber stärker dimensionierten einfachen Stangen mit gleichem Widerstandsmoment unwirtschaftlich. Die Verschraubung der beiden zu kuppelnden Stangen mit einer grössern Anzahl Bolzen erhöht die Festigkeit nicht wesentlich, und es kann für das Widerstandsmoment einer Kuppelstange bezogen auf die Achse a-b nur der 2 oder höchstens der 2,5fache Wert desjenigen einer einfachen Stange in Rechnung gezogen werden; an-

ders gesagt, die Summe der einzelnen Stangen-Widerstandsmomente ist mit 1 bis 1,25 zu multiplizieren. Der entsprechende Faktor für das Trägheitsmoment ist aus Fig. 12 zu bestimmen.

2. Bei Doppelstangen-Linien ist die Kreuzverstrebung in ca. ²/₃ Stangenhöhe einzubauen unter Weglassung der beiden horizontalen Verbindungs-Traversen des Kreuzes. Eine solche Linie kann annähernd mit der drei- bis vierfachen Anzahl der für eine einfache Stange zulässigen Drähte belastet werden, wenn die Stangen im Boden genügend verankert sind. Sämtliche Verstärkungstraversen können weggelassen werden.

Die Fundierung von Freileitungstragwerken und ihre Berechnung.

Von G. Sulzberger, Ingenieur, Bern.

(Schluss.)

Fröhlich führt die Festigkeit der Einspannung solcher Fundamente unter Anlehnung an Versuche und Ableitungen von Engels und Mohr auf den seitlichen Erddruck zurück, herrührend vom Gewicht eines Erdkeils, der unter einem bestimmten Böschungswinkel a am Fundament anliegt und darauf

drückt. Daraus hat er Gleichungen zur Bestimmung der erforderlichen Eingrabtiefe h abgeleitet, die in bezug auf h vom fünften Grad sind. Zu ihrer bequemeren Lösung sind Tafeln aufgestellt worden, welche erlauben, ohne Rechnung für ein gegebenes äusseres Moment und angenommene Breitenabmessungen