Zeitschrift: Revue suisse : la revue des Suisses de l'étranger

Herausgeber: Organisation des Suisses de l'étranger

Band: 46 (2019)

Heft: 1

Artikel: Les pionniers de l'aspiration du CO2 de Zürich-Oerlikon

Autor: Müller, Jürg

DOI: https://doi.org/10.5169/seals-912746

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les pionniers de l'aspiration du CO₂ de Zürich-Oerlikon

Une entreprise suisse veut aspirer dans l'air le destructeur numéro un du climat et le transformer en calcaire dans les profondeurs du sol.

JÜRG MÜLLER

Au Moyen-Âge, les alchimistes tentaient de transformer les métaux communs en or. Aujourd'hui, des ingénieurs de l'École Polytechnique Fédérale de Zurich (EPFZ) tentent de transformer quelque chose d'impur en objet de valeur. La différence: à l'époque, ça ne marchait pas, aujourd'hui, ça fonctionne. Notamment pour le dioxyde de carbone (CO₂), un gaz à effet de serre qui joue un rôle majeur dans le réchauffement climatique. On peut filtrer le CO₂ de l'air – et le réutiliser comme gaz carbonique dans les boissons. Ou bien le CO₂ peut être complètement retiré de la circulation et stocké en toute sécurité dans des formations rocheuses appropriées, dans les profondeurs du sol.

Une start-up EPFZ prend son envol

L'entreprise suisse de cleantech Climeworks à Zurich-Oerlikon réalise un travail pionnier dans ce domaine. Elle a été fondée en 2009 par les ingénieurs en mécanique Christoph Gebald et Jan Wurzbacher en tant que start-up de l'EPFZ et se développe rapidement. Entre décembre 2017 et août 2018, le nombre de collaborateurs est ainsi passé de 45 à 60 postes à temps plein. Les objectifs de l'entreprise ne sont pas vraiment modestes: Climeworks veut contribuer de manière significative à la réduction du dioxyde de carbone nocif pour le climat dans l'atmosphère grâce à des méthodes de haute technologie. «C'est un objectif très ambitieux», déclare Louise Charles, responsable des médias chez Climeworks, à la «Schweizer Revue». «Mais la motivation au sein de l'entreprise est très élevée. On peut le faire.» Le développement progresse vite et «l'efficacité de la technologie augmente rapide-

Les pionniers de Climeworks Christoph Gebald et Jan Wurzbacher devant un de leurs «aspirateurs à CO2». ment.» Climeworks devance deux entreprises similaires au Canada et aux États-Unis, affirme Louise Charles, surtout en ce qui concerne l'utilisation commerciale.

Climeworks coopère avec différents investisseurs et plusieurs consortiums de l'industrie et de la recherche, est soutenu par l'Office Fédéral de l'Énergie et participe également aux programmes de recherche de l'UE, tels que Horizon 2020. La confiance des investisseurs augmente, comme l'a rapporté la «Neue Zürcher Zeitung» en août 2018: lors d'un quatrième tour de financement, l'entreprise a levé 30 millions de francs supplémentaires.

Le principe est simple

Le principe technique est simple: le CO_2 se lie chimiquement à un filtre. Ce qui reste, c'est de l'air sans CO_2 . Avec un apport de chaleur, le CO_2 peut être retiré du filtre et utilisé à d'autres fins. Climeworks est considéré comme le leader de la technologie de capture directe de l'air (DAC). Grâce à cette technologie, le CO_2 est aspiré directement dans l'air ambiant et filtré. Le premier projet commercial de ce type au monde est situé à Hinwil, dans le canton de Zurich, depuis 2017. Là, 18 ventilateurs aspirent l'air à travers un système de filtration sophistiqué et éliminent ainsi 900 tonnes de dioxyde de carbone par an. L'installation pilote fonctionne avec l'énergie thermique résiduelle de l'usine locale d'incinération des déchets, et le dioxyde de carbone libéré par l'air, sera ensuite vendu comme engrais gazeux à un producteur de légumes voisin.

Le CO_2 extrait peut donc être recyclé à diverses fins. Il pourrait également servir de produit chimique de base pour des produits industriels, tels que les plastiques ou même les carburants, ce qui pourrait également réduire la dépendance au pétrole. Cependant, si on veut éliminer définitivement le CO_2 de l'atmosphère, il ne faut pas le remettre en circulation, mais l'éliminer définitivement. Ici aussi, l'entreprise Climeworks réalise un travail de pionnier.

Le dioxyde de carbone se transforme en calcaire

Lors de la conférence sur le climat de Bonn en novembre 2017, Climeworks a présenté un nouveau procédé pour éliminer le CO_2 de l'atmosphère et le minéraliser sous terre. En Islande, Climeworks exploite un «aspirateur d'air» spécial en colla-

boration avec le projet de recherche européen CarbFix. Sur l'île de l'Atlantique Nord, le CO_2 est filtré à partir de l'air, mélangé à de l'eau, puis pompé dans des cavernes de basalte souterraines. Après une réaction chimique, le gaz carbonique se dépose sous forme de carbonate et forme du calcaire, pour ainsi dire, un stockage final sûr pour l'éternité. Grâce aux sources chaudes, l'Islande dispose également de suffisamment d'énergie propre pour aspirer l'air de l'atmosphère.

«Dès que la phase d'essai de notre projet pilote en Islande sera terminée, nous voulons éliminer de plus grandes quantités de CO_2 de l'atmosphère et les proposer à la vente aux particuliers, aux organisations et aux entreprises», explique Christoph Gebald, directeur général de Climeworks. Par exemple, si les entreprises utilisent cette méthode pour compenser cinq pour cent de leurs émissions de CO_2 , «cela nous permettra de poursuivre l'industrialisation de cette technologie indispensable pour l'élimination du CO_2 .»

Des dimensions énormes

Cependant, les dimensions sont énormes, ainsi que le montrent quelques chiffres. Climeworks s'est fixé pour objectif de filtrer un pour cent des émissions atmosphériques mondiales d'ici 2025, ce qui correspond environ à 300 millions de tonnes de dioxyde de carbone par an. Pour y parvenir, il faudrait environ 250 000 installations comme celles de Hinwil. Cependant, dans un rapport sur le climat publié à l'automne 2018, le conseil mondial sur l'évolution du climat estime que ce sont 100 à 1000 milliards de tonnes de CO_2 qui devraient être éliminées de l'atmosphère – selon la vitesse à laquelle les émissions de gaz à effet de serre diminueront. Le

climatologue suisse Thomas Stocker a expliqué lors de l'inauguration de l'installation de Hinwil que tous les scénarios du conseil mondial sur l'évolution du climat prévoyaient l'extraction active du CO_2 de l'atmosphère dans la seconde moitié du XXIe siècle. «Cependant, 1000 milliards de tonnes peuvent difficilement être atteintes», a déclaré Andreas Fischlin, chercheur en climatologie à l'EPFZ à divers médias. Selon une évaluation des académies suisses des sciences, le potentiel du filtrage direct de CO_2 se situe entre 500 millions et un maximum de 10 milliards de tonnes par an.

Greenpeace émet des réserves

Les activités de recherche et développement de la société Climeworks ont également rencontré une sympathie de principe de la part de l'organisation environnementale Greenpeace. Georg Klingler, spécialiste du climat chez Greenpeace Suisse, souligne également dans la «Schweizer Revue» que de telles technologies seront malheureusement nécessaires dans une certaine mesure à l'avenir. Toutefois Klingler met en garde contre les illusions et un risque: ceux qui accordent trop d'importance à de telles solutions fourniraient aux politiciens des excuses pour retarder davantage la nécessaire réduction radicale des gaz à effet de serre. L'organisation Greenpeace appelle elle aussi à des mesures techniques dans le domaine de la politique climatique, mais elle explique que cela signifie avant tout - conjointement à l'éviction des gaz à effet de serre -, un important reboisement. Cela permettrait également d'éliminer une quantité considérable de dioxyde de carbone de l'atmosphère. Et cela serait également bénéfique pour la biodiversité.

L'installation pilote Climeworks en Islande: la chaleur nécessaire au fonctionnement est fournie par la centrale géothermique Hellisheidi.

Photo: Arni Saeberg