Zeitschrift: Cementbulletin

Herausgeber: Technische Forschung und Beratung für Zement und Beton (TFB AG)

Band: 69 (2001)

Heft: 9

Artikel: Betonstrassenbau in Österreich
Autor: Hermann, Kurt / Werner, Rolf

DOI: https://doi.org/10.5169/seals-153874

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Betonstrassenbau in Österreich

In Österreich besteht viel Erfahrung beim Einbau von Betondecken auf Autobahnen. Eine Gruppe von Schweizer Baufachleuten konnte sich davon selbst überzeugen.

Von 1958 bis zum Beginn der Siebzigerjahre wurden in Österreich fast alle Autobahnen und einige Bundesstrassen mit Betondecken versehen. Der anschliessende Vormarsch der Asphaltbauweise wurde erst Ende der Achtzigerjahre mit dem Aufkommen lärmmindernder Betonoberflächen und neuen Entwicklungen beim Recycling bestehender Betondecken aufgefangen.

Gegenwärtig sind rund 40 % der österreichischen Autobahnen in Beton gebaut [1]. Diese haben den folgenden Aufbau (siehe auch Abbildung 1):

- 20–25 cm dicke zementstabilisierte oder ungebundene Tragschicht
- mindestens 5 cm dicke erosionsbeständige bituminöse Tragschicht
- meist 25 cm dicker, nicht bewehrter zweischichtiger Betonbelag;
 Fugenabstände in der Regel 5,5 m (maximal 6,0 m).

Die Querfugen werden verdübelt und die Längsfugen verankert. In lärmempfindlichen Gebieten und bei hohen Ansprüchen an die Griffigkeit wird der Oberbeton mit einer Waschbetonoberfläche versehen. In Tunnels, die länger als 1000 m sind, werden in Österreich nach den schrecklichen Erfahrungen bei Tunnelbränden Betondecken vorgeschrieben (siehe Kasten «Betonbeläge in Strassentunnels» auf Seite 4).

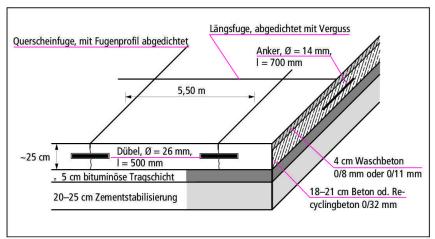


Abb. 1 Standard-Oberbau bei Autobahn-Instandsetzungen in Österreich (nach [2]).

Zeichnung: TFB

Lärmarme Waschbetonoberflächen

Zur Verminderung des Verkehrslärms auf Autobahnen werden die Oberflächen frisch eingebauter Betondecken verschiedenen Verfahren unterworfen. Hier drei Beispiele [1]:

- Nachziehen eines Jutetuchs
- Nachziehen eines Kunstrasens
- Herstellen von so genannten Waschbeton-Oberflächen.

Waschbeton-Oberflächen mit freigelegten Zuschlägen werden In Österreich seit Ende der Achtzigerjahre erfolgreich eingesetzt.

Der 4 cm dicke Oberbeton besteht zu 70 % aus qualitativ höchstwertigem Hartsplitt 4/8 mm. (Neuere Untersuchungen zeigen, dass auch Hartsplitt

Zu diesem Artikel

Organisiert von der Cemsuisse, dem Verband der Schweizerischen Cementindustrie, weilte im Juli eine Gruppe von Schweizer Strassenbaufachleuten in Österreich. Dort wurden sie von der Vereinigung der Österreichischen Zementindustrie über den aktuellen Stand des Betonstrassenbaus in unserem Nachbarland informiert. Im Zentrum stand dabei die Besichtigung einer Baustelle in Salzburg/Liefering, wo ein zweischichtiger Betonbelag mit Waschbeton-Oberfläche eingebaut wurde.

Dieser Artikel beruht grösstenteils auf Informationen, die während dieser Exkursion gegeben wurden, sowie auf den im Literaturverzeichnis auf Seite 7 aufgeführten weiteren Unterlagen.

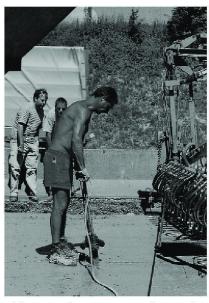


Abb. 2 Einvibrieren eines Ankers in der Mittellängsfuge unter kritischen Schweizer Augen.

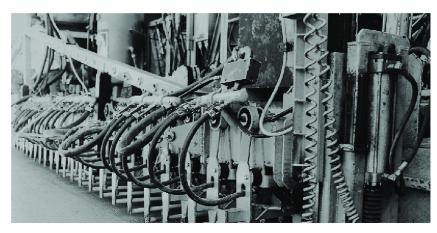


Abb. 3 Die Dübel werden in den Querfugen maschinell versetzt bzw. einvibriert.

4/11 ohne Verlust an lärmmindernder Wirkung verwendet werden kann [3].)

Weitere Anforderungen sind: Was-

serzementwert um 0,38 sowie Ausfallkörnung 1/4 mm.

Unmittelbar nach dem Einbau des Oberbetons wird ein Kombimittel (Verzögerer und filmbildender Verdunstungsschutz) auf die Betonoberfläche gesprüht. Zu gegebener Zeit wird dann die Oberfläche trocken

Betonbeläge in Strassentunnels

Im Anschluss an den verheerenden Brand im Tauerntunnel wurde vom österreichischen Ministerium für Wirtschaftliche Angelegenheiten im Juli 1999 unter anderem verfügt, dass Tunnels ab einer Länge von etwa 1000 m mit einer Betondecke auszuführen sind.

In der Zwischenzeit wurde diese Verfügung in die Richtlinien und Vorschriften für den Strassenbau 9.234 (RVS 9.234) [6] aufgenommen. Diese wird voraussichtlich noch dieses Jahr verbindlich werden. Dort heisst es in Punkt 3.1:

«Der Oberbau in Tunnel, Unterflurtrassen und Grünbrücken ist im Regelfall mit einer Betondecke gemäss der Tabelle 1 (Bautype T2) zu dimensionieren¹⁾ und liegt auf einem tragfähigen (> 55 MN/m²) und entwässerten Unterbauplanum auf. [...] Die Ausführung einer bituminösen Befestigung [...] ist bei Gefährdungsklassen III und IV gemäss RVS 9.261 nur bis zu einer Tunnel-

länge von ca. 1000 m gestattet. Die Verwendung von Drainasphaltschichten in Tunnel, Unterflurtrassen oder Grünbrücken (einschliesslich allfälliger Galerien) ist nicht erlaubt.»

¹⁾ Bautype T2 gemäss Tabelle 1 = 20 oder 22 cm dicke verdübelte Betondecke auf 30 cm ungebundener unterer Tragschicht sowie 5 cm bituminöser Tragdeckschicht BTD (Anmerkung der Verfasser).

Abb. 4 Über ein Förderband, das über dem Unterbeton-Gleitschalungsfertiger montiert ist, wird der Beton für den Oberbeton-Gleitschalungsfertiger (links) antransportiert.

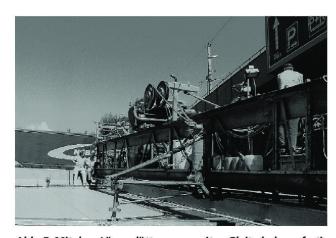


Abb. 5 Mit dem Längsglätter am zweiten Gleitschalungsfertiger wird die Ebenheit des Oberbetons optimiert.

Fotos: TFB

ausgebürstet. Anschliessend wird erneut ein Verdunstungsschutz aufgesprüht.

Optimale Ergebnisse bezüglich der Lärmminderung werden bei einer Rautiefe von ca. 1 mm und einem Profilspitzenabstand < 10 mm bzw. bei 60 Spitzen auf 25 cm² erreicht [5]. Waschbetonoberflächen wurden seit 1990 auf rund 300 km Richtungsfahrbahn von Autobahnen eingebaut. Sie verursachen im Vergleich zu herkömmlichen Fahrbahn-Oberflächen Mehrkosten von rund 10 % (rund 25 ATS/m² bzw. rund Fr. 3.-/m²). Auf der positiven Seite stehen Lärmminderungen im Vergleich zu glatten Betondecken um etwa 5 dB(A) auf < 101 dB(A), gemessen mit dem Lärmmessanhänger bei 100 km/Std.,

sowie über Jahre gleich bleibende ausgezeichnete Griffigkeits-Eigenschaften [1].

Betonrecycling [4]

Auch in Österreich werden gute Erfahrungen mit Recycling-Granulat gemacht. Im Unterbeton wird die Fraktion 4/32 mm eingesetzt.
Asphaltdecken, die zwecks Instandsetzung auf alte Betondecken aufgebracht worden waren, werden zusammen mit der alten Betondecke abgebrochen.

Das daraus produzierte Granulat kann für Unterbetone verwendet werden, denn Asphaltanteile zwischen 10 und 20 % werden in Österreich als unbedenklich betrachtet [4]. Die Sandfraktion 0/4 mm aus den alten Betondecken dient zur Verbesserung der Eigenschaften der zementstabilisierten Schichten.

Baustelle Salzburg/Liefering der A1 Westautobahn [5]

Die A 1 Westautobahn verbindet Wien auf 292 km mit Salzburg. Sie wurde durchgehend mit Betondecken erstellt und zwischen 1958 und 1969 dem Verkehr übergeben. Seit 1987 werden einzelne Abschnitte der A 1 instand gesetzt. Die Teilnehmer der Cemsuisse-Exkursion (siehe «Zu diesem Artikel» auf Seite 3) hatten Gelegenheit, den Einbau einer zweischichtigen Betondecke zu verfolgen. Es handelte sich um das Baulos Liefering zwischen den Anschlussstellen Salzburg Mitte

Abb. 6 Aufsprühen des Verzögerers am Schluss des Einbaus der zweischichtigen Betondecke.

Abb. 7 Auch Engpässe können mit dem Gleitschalungsfertiger problemlos durchfahren werden.

und Klessheim. Hier werden seit dem 1. September 1999 neben dem Ausbau der A 1 auf sechs Spuren in Betonbauweise unter anderem auch ein 503 m langer Tunnel sowie fünf Brücken erstellt.

Für die 37 000 m² Betondecke werden insgesamt 9500 m³ Beton eingesetzt. Die Rezepturen des 21 cm

dicken Unter- und des 4 cm dicken Oberbetons sind in *Tabelle 1* zusammengefasst.

Die Betondecken werden im Hocheinbau erstellt. Als Unterlage dienen der alte bituminöse Belag samt Frostkoffer aus den Jahren 1980, 1981 bzw. 1986. Bei Neubauabschnitten

	Unterbeton	Oberbeton
Zement	380 kg/m³	465 kg/m ³
Sand 0/2 mm		420 kg/m ³
Sand 0/4 mm	710 kg/m³	
Edelbrechkorn 4/8 mm		1325 kg/m ³
Brechkorn 8/16 mm	1150 kg/m ³	
Wasser	151 kg/m³	171 kg/m³
W/Z-Wert	0,40	0,37
Luftporengehalt Minimum Zielwert	4,0 % 4,5 %	4,5 % 5,0 %

Tab. 1 Rezepturen eines Ober- und eines Unterbetons nach H. Krenn [5].

(Verbreiterungen und Nivelette-Absenkungen) wurde der Standard-Aufbau mit 25 cm HGT (Zementstabilisierung) sowie 5 cm BTD (bituminöse Tragschicht) ausgewählt. Der Einbau des Betons erfolgt auf einer Breite von 11,5 m mit zwei unmittelbar hintereinander fahrenden Gleitschalungsfertigern frisch in frisch. Mit dem ersten Gleitschalungsfertiger wird die 21 cm dicke Unterbetonschicht eingebaut. In diese Schicht werden die Dübel maschinell und die Anker von Hand einvibriert. Direkt dahinter folgt der Einbau der 4 cm dicken so genannten Waschbetonschicht, deren Oberfläche – zur Verbesserung der Längsebenheit – anschliessend mit einem Längsglätter nachbearbeitet wird. Unmittelbar nach dem Einbau des

Abb. 8 Perfekt «stehende» Betonkante unmittelbar nach dem zweiten Gleitschalungsfertiger.

Abb. 9 Detail des zur Bürstmaschine umgebauten Graders, mit dem die lärmmindernde Oberfläche hergestellt wird.

LITERATUR

- [1] Werner, R., und Hermann, K., «Moderner Betonstrassenbau», Cementbulletin **68** [7/8], 3–11 (2000).
- [2] Pertl, W., «Die neue österreichische Betonstrassenbauweise – 10 Jahre Erfahrung», Zement und Beton 2000 [1], 4–6.
- [3] Beiglböck, P., «Erfahrungen bei Betondeckenherstellungen 1999», Zement und Beton 2000 [1], 7–9.
- [4] Sommer, H., «Beton aus Altbeton und lärmarme Betonoberflächen auf Autobahnen in Österreich», Strasse und Autobahn 43 [3], 160–167 (1992).
- [5] Referat von Ltd. OBR Dipl.-Ing. Heinz Krenn, Referatsleiter Autobahnbau und Erhaltung des Landes Salzburg, anlässlich des Besuchs der Schweizer Strassenbau-Fachleute in Salzburg am 4. Juli 2001.
- [6] Richtlinien und Vorschriften für den Strassenbau RVS 9.234: «Projektierungsrichtlinien» (Entwurf 2001).

Oberbetons wird das Kombimittel (Verzögerer plus Verdunstungsschutz) auf die Betonoberfläche gesprüht.

Nach dem Schneiden der Fugen wird die abbindeverzögerte Oberfläche trocken abgebürstet (je nach Temperatur und Betoneigenschaften nach etwa 8–30 Stunden). Sie erhält so die lärmmindernde Betonoberfächenstruktur. Unmittelbar danach wird erneut ein Verdunstungsschutz aufgetragen. Vor der Verkehrsfreigabe werden die Querfugen mit Profilen und die Längsfugen mit einem Heissverguss abgedichtet.

Die mittlere Tages-Einbauleistung im besichtigten Abschnitt betrug zwischen 500 und 600 m. Unter günstigeren Bedingungen können aber bis zu 800 m lange Tagesetappen realisiert werden.

Anlässlich der Besichtigung verlief der Betoneinbau problemlos, obwohl eine enge Überführung (Abbildung 7) mit den Gleitschalungsfertigern durchfahren werden musste. Einzelne Phasen des Einbaus sind in den Abbildungen 2–9 festgehalten.

Rolf Werner und Kurt Hermann, TFB

Schlüsselwörter

Betonstrassen, Lärmminderung, Recyclinggranulat, Waschbetonoberflächen