Zeitschrift: Cementbulletin

Herausgeber: Technische Forschung und Beratung für Zement und Beton (TFB AG)

Band: 68 (2000)

Heft: 10

Artikel: Betonfeuchte
Autor: Hermann, Kurt

DOI: https://doi.org/10.5169/seals-153864

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Betonfeuchte

Beton ist ein poröser Baustoff, der Wasser aus der Luft aufnehmen kann.

Der Zementstein eines Betons setzt sich aus hydratisiertem und nicht hydratisiertem Zement sowie wasserund luftgefüllten Poren zusammen. Je nach Art und Grösse wird zwischen folgenden Porenarten unterschieden: Gelporen, Kapillarporen, Verdichtungsporen und künstlichen Luftporen (siehe Abbildung 1 und Tabelle 1).

Die Porenradienverteilung und das Porenvolumen hängen stark von der Zusammensetzung des Betons ab. Wichtige Parameter sind der Bindeund Zusatzmittelgehalt, der W/Z-Wert und der Hydratationsgrad a (abhängig von Nachbehandlung und Alter des Betons).

Gel- und Kapillarporen

Gel- und Kapillarporen werden auch

Verdichtungspore	Luftpore
Gelpore	geschlossene Kapillarpore offene Kapillar- pore

Abb. 1 Schematische Darstellung der Porenarten im Zementstein. Zeichnungen: TFB

	Gelporen	Kapillarporen	Luftporen	
			Verdichtungs- poren	künstliche Luftporen
Durchmesser	10 ⁻⁹ –10 ⁻⁸ m	10 ⁻⁸ –10 ⁻⁶ m	10 ⁻⁶ –10) ⁻³ m
Entstehung	bei Hydratation des Zements	bei Hydratation des Zements	bei Verarbeitung des Betons	durch Zusatz- mittel (LP)

Tab. 1 Porenarten im Zementstein und ihre Grössenbereiche [1].

als Hydratationsporen bezeichnet, denn sie entstehen bei der Hydratation des Zements.

Gelporen

Die Hydratationsprodukte des Zements bilden das Zementgel. Dieses ist mit einem feinen, starren Schwamm vergleichbar, der eine Vielzahl Poren unterschiedlicher Grösse enthält. Diese Poren entstehen, weil die Hydratationsprodukte des Zements einen kleineren Raum einnehmen als der Zement und der im Zementstein gebundene Anteil des

> chemisch gebundenen Wassers.

Gelporen sind mit chemisch und physikalisch gebundenem Wasser gefüllt, das unter den üblichen Austrocknungsbedingungen nicht verdunstet und erst bei Temperaturen zwischen –60 und –90 °C gefriert. Das maximale Gelporenvolumen, das bei vollständiger Zementhydratation auftritt, beträgt rund 28 % des Gelvolumens. Das Gelporenvolumen V_G in «normalen» Betonen lässt sich nach folgender Formel berechnen [1]:

$$V_G = 0.198 \,_{\alpha} \, Z \, [I/m^3]$$

Z = Zementdosierung in kg CEM I/m³ Beton

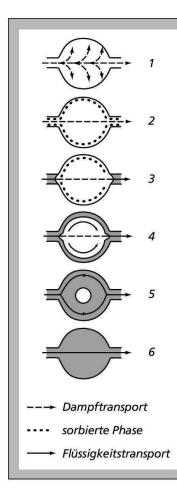
α = Hydratationsgrad des Zements;

Bei einem Beton mit einer Zementdosierung Z von 300 kg CEM I/m^3 und vollständiger Hydratation des Zements ($\alpha = 1$) beträgt das Gelporenvolumen V_G demnach 59 I/m^3 oder 5,9 % des Betonvolumens.

Kapillarporen

Für die vollständige Hydratation des Zements ist ungefähr ein W/Z-Wert von 0,40 erforderlich. Aus den Hohlräumen, die mit dem überschüssigen Wasser gefüllt sind, entstehen die Kapillarporen.

Der Kapillarporenanteil ist beim Anmachen des Betons am grössten und nimmt mit zunehmender Zementhydratation ab, denn der Porenraum wird durch die entstehenden Gelmassen kleiner.


Kapillarporen sind teilweise isoliert, teilweise miteinander verbunden. Da sie im Mittel rund 100mal grösser als Gelporen sind, ist in den zusammenhängenden Kapillarporen ein verhältnismässig schneller Gas- und Wassertransport möglich. Das Kapillarporenvolumen V_K ergibt sich aus folgender Formel [1]:

$$V_K = W - 0.386 \,_{\alpha} \, Z \, [l/m^3]$$

W = Wassergehalt in Frischbeton in I/m³ Beton

- Z = Zementdosierung in kg CEM I/m³ Beton
- α = Hydratationsgrad des Zements; $0 \le \alpha \le 1$

Das Kapillarporenvolumen V_K ist also direkt vom W/Z-Wert abhängig. Für einen Beton mit einer Zementdosierung Z von 300 kg/m³ resultiert bei vollständiger Hydratation ($_{\alpha}=1$) und einem W/Z-Wert von 0,50 ein Kapillarporenvolumen V_K von 34 l/m³ (3,4 % des Betonvolumens). Bei W/Z = 0,60 beträgt V_K 64 l/m³ und bei W/Z = 0,70 ist V_K 94 l/m³.

Wassertransport in Betonen

Je nach Feuchteangebot bzw. Feuchtegehalt des Betons treten verschiedene Transportarten auf. Sie sind in der nebenstehenden Abbildung nach zunehmendem Wassergehalt geordnet.

- Trockener Beton speichert eindringenden Wasserdampf durch Adsorption an der Oberfläche der Poren.
- Porenwände, durch eine oder mehrere Molekülschichten Wasser belegt - Wasserdampf diffundiert durch Poren und Kapillaren.
- Steigender Wasserdampfgehalt Kapillaren füllen sich mit flüssigem Wasser (Kapillarkondensation); Wassertransport in den Poren weiter durch Diffusion.
- Dickere adsorbierte Wasserschicht → in den Poren neben Dampfdiffusion auch Wassertransport durch Oberflächendiffusion.
- Poren und Kapillaren enthalten so viel Wasser, dass Dampfdiffusion unterbunden. Wasser durch Kapillarkräfte oder durch hydraulisches Gefälle bewegt.
- Auch Poren vollständig mit Wasser gefüllt; Wasser durch Kapillarkräfte oder durch hydraulisches Gefälle bewegt.

Hauptquelle [4]

Betonfeuchte

Der Wassergehalt eines Betons wird gewöhnlich in Massen- oder Volumen-% angegeben. Dabei gilt:

 $u_m = 100 (m_f - m_{tr})/m_{tr}$ [Masse-%] $u_V = u_{m p tr}/p_{e W}$ [Vol.-%]

m_f = Masse des feuchten Betons [kg]

m_{tr} = Trockenmasse des Betons [kg]

 $_{P}$ tr = Trockenrohdichte des Betons [kg/m³]

P W = Dichte des Wassers [kg/m³]

Feuchtemessverfahren

Zuverlässige Angaben über die Betonfeuchtigkeit sind nicht einfach zu erlangen. Gänzlich oder mindestens annähernd zerstörungsfreie Methoden wurden in vielen Varianten untersucht. Beispiele sind:

 Widerstandsmessgeräte, bei denen der elektrische Widerstand über zwei oder vier Elektroden gemessen wird; ein tiefer Widerstand weist auf einen erhöhten Feuchtegehalt hin.

- dielektrische Feuchtemessungen, bei denen die hohe statische Dielektrizitätskonstante von Wasser (ε = 80) ausgenützt wird. Derartige Geräte eignen sich nur zur Messung von Feuchten bis in wenige cm Tiefe.
- Messung der Gleichgewichtsfeuchte in abgedichteten Bohrlöchern durch kapazitive Feuchtefühler.
 Wenn die Sorptionsisotherme des Betons und die Temperatur bekannt sind, kann daraus die Bauteilfeuchte bestimmt werden.

Zahlreiche weitere Verfahren sind in einer Publikation aus dem Jahr 1999 zusammengefasst [3]. Das Fazit des Autors dieser umfangreichen Studie lautet: «Im Bauwesen stellen die klassischen gravimetrischen Methoden nach wie vor die wichtigsten Feuchtemessmethoden dar. Handelsübliche Messgeräte sind nur äusserst begrenzt einsetzbar…»

Bei den gravimetrischen Verfahren handelt es sich um die Darr-Methode: Eine Bohrprobe (Bohrmehl oder Bohrkern) wird bis zur Massenkonstanz getrocknet, und zwar bei 105°C. Bei dieser Temperatur wird das chemisch gebundene Wasser (Hydratwasser) nicht freigesetzt.

Direkt vor Ort eingesetzt werden können *chemische Verfahren*. Beim Calciumcarbid-Verfahren (CM-Verfahren) werden zerkleinerte Materi-

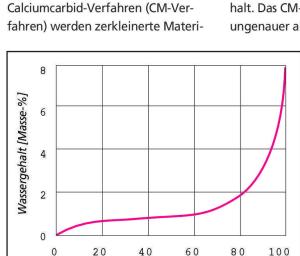


Abb. 3 Typische Sorptionsisotherme von Beton [2].

Relative Luftfeuchtigkeit [%]

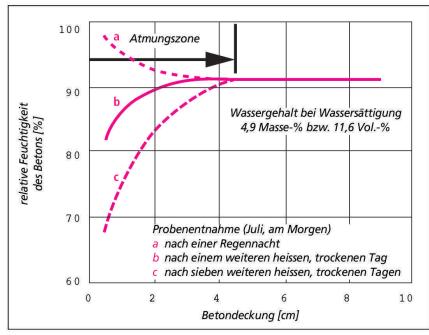


Abb. 2 Einfluss der Umgebung auf den Wassergehalt einer Mole in Helgoland (ermittelt an Bohrkernen), nach [5].

alproben in einem Druckgefäss mit Calciumcarbid CaC₂ umgesetzt:

$$CaC_2 + 2 H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

Die über die Druckzunahme ermittelte Menge an gebildetem Acetylen (C₂H₂) ist ein Mass für den Wassergehalt. Das CM-Verfahren ist etwas ungenauer als das Darr-Verfahren.

Seine Vorteile sind die Schnelligkeit und die Einfachheit.

Wassertransport in Betonen

In Betonen wird die Bewegung von Wasser – und auch von anderen, hier nicht diskutierten Flüssigkeiten – prinzipiell von den folgenden vier Parametern beeinflusst [4]:

- Porosität (Porenart bzw. Porenradienverteilung und Porenvolumen)
- Aggregatzustand des Wassers (flüssig, dampfförmig)
- Wechselwirkungen zwischen Zementstein und Wasser
- Transportmechanismen (Wasserführungsgrad der Poren, Druckdifferenzen, Kapillarkräfte).

Ausführlichere Angaben zu diesem Thema sind im Kasten «Wassertransport in Betonen» zu entnehmen.

Der Wassergehalt von Betonen

Die Aussenbedingungen entscheiden, ob ein Beton Wasser abgibt oder aufnimmt. Die wichtigsten, den Wassergehalt eines Betons bestimmenden Faktoren sind:

- Porosität
- Alter des Betons (innerer Wasserverbrauch für Hydratation)

- äusseres Feuchtigkeitsangebot (relative Luftfeuchtigkeit RL, direkter Kontakt mit Wasser, Schlagregen...)
- Temperatur
- innerer Wasserverbrauch für Hydratation
- Karbonatisierung.

Beim so genannten verdampfbaren Wasser handelt es sich um Wasser, das sich im Porensystem wie «normales» oder «freies» Wasser bewegen kann. Es wird durch Adsorptionsoder Kapillarkräfte mehr oder weniger stark an die Oberfläche der Po-

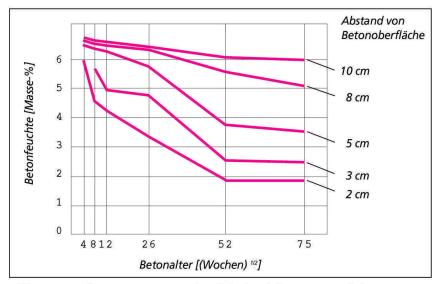


Abb. 4 Austrocknen einer unten und seitlich abgedichteten 20 cm dicken Betonplatte (B 25) bei 50–60 % RF und 20 $^{\circ}$ C [7].

LITERATUR

- [1] Badawy, M., und Hermann, K., «Wasserdichter Beton», Cementbulletin 65 [1], 3–7 (1997).
- [2] Hunkeler, F., «Grundlagen der Korrosion und der Potentialmessung bei Stahlbetonbauten» ASTRA/AAVED, VSS-Bericht Nr. 510 (1994).
- [3] Leschnik, W., «Feuchtemessung an Baustoffen – Zwischen Klassik und Moderne», DGZfP-Berichtband BB 69-CD, Vortrag H2 am Feuchtetag '99, 7./8. Oktober 1999, Berlin.
- [4] Fechner, O., «WU-Beton im Erdreich», http://felix.bv.tu-berlin.de/forschung/fechner/wubeton/1.html
- [5] Rehm, G., «Chloridkorrosion von Stahl in gerissenem Beton – B: Untersuchungen an der 30 Jahre alten Westmole in Helgoland», Deutscher Ausschuss für Stahlbeton 390, 59–88 (1988).
- [6] Linder, R., «Wasserundurchlässige Baukörper aus Beton», Betonkalender 1998, Teil II, Seiten 383–440.

- [7] Rheinwald, D., «Blasenbildung durch Feuchtigkeit (Osmose)», in Seidler, P. (Herausgeber), «Industrieböden '95», Technische Akademie Esslingen (1995).
- [8] Norm SIA 252: «Fugenlose Industriebodenbeläge und Zementüberzüge» (Ausgabe 1988).
- [9] Norm SIA 253: «Bodenbeläge aus Linoleum, Kunststoff, Gummi, Kork und Textilien» (Ausgabe 1988).
- [10] Norm SIA 254: «Bodenbeläge aus Holz» (Ausgabe 1988).
- [11] Empfehlung SIA V 242/1: «Verputze und Gipserarbeiten: Aussenputze, Innenputze, Stukkaturen» (Ausgabe 1994).
- [12] Empfehlung SIA V 243/1: «Verputzte Aussenwärmedämmung» (Ausgabe 1998).
- [13] Schnell, W., «Zur Ermittlung von Belegreife und Ausgleichsfeuchte von mineralisch gebundenen Estrichen», Seiten 341–352 in «Handbuch für das Estrichund Belaggewerbe: Technik», Verlagsgesellschaft Rudolf Müller, Köln (1999).

renwände des Zementsteins gebunden [2]. Nicht verdampfbar ist das in den Reaktionsprodukten des Zements gebundene Hydratwasser.

Aus Abbildung 2 geht hervor, dass selbst starke klimatische Veränderungen den Wassergehalt eines Betons nur in einem beschränkten oberflächennahen Bereich beeinflussen. Der Zusammenhang zwischen der Betonfeuchte und unterschiedlichen relativen Luftfeuchtigkeiten RL bei einer bestimmten Temperatur wird durch die Sorptionsisotherme beschrieben (siehe Abbildung 3).

Gleichgewichtsfeuchte

In Kern von Betonen, die nicht in ständigem Kontakt mit Wasser ste-

	Maximaler Feuchtegehalt	Methode	Lit.
Fugenlose kunstharzgebundene Industriebodenbeläge auf Beton ohne Bodenheizung auf Beton mit Bodenheizung	3,0 Masse-% in . 30 mm Tiefe gemessen 1,5 Masse-% in . 30 mm Tiefe gemessen	CM-Gerät CM-Gerät	[8]
Bodenbeläge aus Linoleum, Kunststoff, Gummi, Kork und Tex auf Zementunterlagsboden ohne Bodenheizung auf Zementunterlagsboden mit Bodenheizung	tilien 2,5 % in 3 cm Tiefe gemessen 1,5 % in 3 cm Tiefe gemessen	CM-Gerät CM-Gerät	[9]
Bodenbeläge aus Holz auf Zementunterlagsboden ohne Bodenheizung auf Zementunterlagsboden mit Bodenheizung	2,5 % in 3 cm Tiefe gemessen 1,5 % in 3 cm Tiefe gemessen	CM-Gerät CM-Gerät	[10]
Verputz- und Gipserarbeiten auf Beton auf Zementstein	3,0 Masse-% in . 30 mm Tiefe gemessen 3,0 Masse-% in . 30 mm Tiefe gemessen	Darren Darren	[11]
Verputzte Aussenwärmedämmung auf Beton auf Zementstein	3,0 Masse-% in . 30 mm Tiefe gemessen 3,0 Masse-% in . 30 mm Tiefe gemessen	Darren Darren	[12]

Tab. 2 Anforderungen an den maximalen Feuchtegehalt von zementgebundenen Untergründen bei unterschiedlichen Anwendungen.

hen, stellt sich im Verlauf vieler Monate eine Gleichgewichtsfeuchte ein [6]. Im Wesentlichen hängt die Gleichgewichtsfeuchte von den Klimabedingungen, dem WZ-Wert des Betons (Kapillarität des Zementsteins) und der Bauteildicke, aber wenig von den Jahreszeiten ab [6].

Das Austrocknen eines Betons erfolgt allerdings langsam. Illustriert wird dies in *Abbildung 4,* in der das Austrocknungsverhalten einer 20 cm

dicken Betonplatte dargestellt ist, die unten und seitlich wasserdicht abgedichtet war [7].

Eine Faustregel besagt, dass ein 1 cm dicker Beton etwa 100 Tage benötigt, um im Gleichgewicht mit der Umgebungsfeuchte (< 100 % r.F.) zu sein. Ein 2 cm dicker Beton benötigt bereits rund 400 Tage.

Feuchte in Betonunterlagsböden und Betonwänden

Zu feuchter Beton bei Oberflächen-

	Belegsreife Darren	CM-Gerät
Dampfdichte Beläge	3,5 Masse-%	2,0 %
Feuchtigkeitsempfindliche Beläge	. 4,0 Masse-%	2,5 %
Feuchtigkeitsunempfindliche Beläge	_ 4,5 Masse-%	- 3,0 %

schutzmassnahmen, beim Anbetonieren, unter Tapeten oder Bodenbelägen kann die Ursache von Bauschäden sein. Deshalb werden beispielsweise in den relevanten Normen – mindestens teilweise – Angaben über den maximalen Feuchtegehalt von zementgebundenen Unterlagsböden oder Wänden gemacht, die als Untergründe für wasserdampfdichte Beläge, Tapeten usw. dienen (Tabelle 2). In Deutschland wird in diesem Zusammenhang von Belegreife des Betons gesprochen. Ergebnisse einer Untersuchung zur Belegreife von Estrichen (Unterlagsböden) [13] sind in Tabelle 3 enthalten.