Zeitschrift: Cementbulletin

Herausgeber: Technische Forschung und Beratung für Zement und Beton (TFB AG)

Band: 66 (1998)

Heft: 6

Artikel: Portlandkalsteinzemente CEM II/A-L

Autor: Hermann, Kurt

DOI: https://doi.org/10.5169/seals-153838

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Aarebrücke bei Arch (A 5).

Foto: Vigier Cement AG, Péry

Portlandkalksteinzemente CEM II/A-L

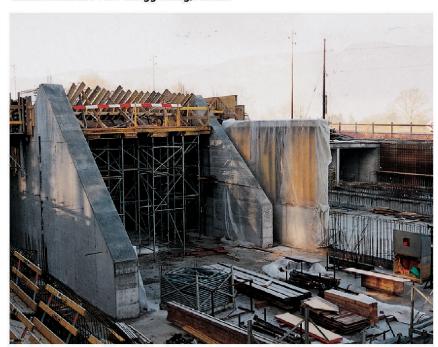
Portlandkalksteinzemente sind bei vielen Anwendungen eine interessante Alternative zu Portlandzementen.

Die Verwendung von Portlandkalksteinzementen (PKZ) hat in der Schweiz in kurzer Zeit stark zugenommen, und sie wird weiter zunehmen. Dafür verantwortlich sind sowohl technische als auch wirtschaftliche und ökologische Gründe. Auf die technischen Aspekte wird in diesem «Cementbulletin» ausführlich eingegangen. Wirtschaftlich sind die meistverkauften PKZ-Sorten vor allem, weil sie bei gleicher Dosierung preisgünstiger als Portlandzemente (CEM I) sind. Der Ersatz von gebranntem Material - Klinker - durch Kalkstein vermindert den Energieaufwand bei der Produktion, obwohl der Energiebedarf bei der Mahlung zunimmt. Ein PKZ, in dem 20 % Klinker durch Kalkstein ersetzt worden sind, bewirkt Energieeinsparungen

von 15 bis 17 % gegenüber einem vergleichbaren CEM I [3, 5]. Zudem nehmen auch die CO₂-, NO_x- und SO₂-Emissionen ab.

Normierung

In der Schweiz sind Portlandkalksteinzemente erst seit dem 1. Januar
1994 normiert: Auf dieses Datum
wurde die Norm SIA 215.002 [6] in
Kraft gesetzt. Dabei handelt es sich
um die Europäische Vornorm
ENV 197-1, die um ein nationales
Vorwort erweitert wurde.
Portlandkalksteinzemente wurden
vor allem auf Antrag von Frankreich
in die europäischen Betonnormen
aufgenommen. Dies erstaunt nicht,
denn in Frankreich wurde nach dem
Ölschock von 1973 die Produktion
von PKZ forciert, indem bis zu 35 %


des in der Herstellung energieintensiven Portlandzementklinkers durch Kalkstein ersetzt wurden [7]. Portlandkalksteinzemente sind gemäss Norm SIA 215.002 Portlandkompositzemente (CEM II), deren Bezeichnung vom Gehalt an Kalkstein und von der Festigkeitsklasse abhängig ist. In Tabelle 1 sind die Anforderungen an Portlandkalksteinzemente mit einem Kalksteingehalt zwischen 6 und 20 % zusammengefasst. Alle in der Schweiz produzierten PKZ gehören zu diesen Sorten; Zemente mit der Bezeichnung CEM II/B-L, die auf einen Kalksteingehalt zwischen 21 und 35 % hinweist, werden nicht hergestellt.

Der Kalkstein, der in CEM II/A-L verwendet wird, muss zu mindestens 75 Massen% aus CaCO₃ bestehen

Anwendung von CEM II/A-L 32,5 R in grosser Menge: Laborneubau der ETH Hönggerberg, Zürich.

Foto: "HCB Cementverkauf AG

Tagbautunnel Lüsslingen (A 5): Anwendung von CEM II/A-L 32,5 R.

Foto: Vigier Cement AG, Péry

und darf maximal 1,20 Massen%
Ton enthalten. Die Obergrenze für
den Gehalt an organischen Bestandteilen (TOC) beträgt 0,20 Massen%.
Allerdings kann Kalkstein mit einem
TOC zwischen 0,20 bis 0,50 Massen%
«ebenfalls für die Herstellung von
Zement mit annehmbarer Leistungsfähigkeit geeignet sein» [6].

Eigenschaften von CEM II/A-L

Die in der Schweiz hergestellten Portlandkalksteinzemente gehören in der Regel zur Sorte CEM II/A-L 32,5 R. Dies beruht auf der Erfahrung, dass diese Zementsorte in vielen Eigenschaften zu Betonen führt, deren Eigenschaften bei gleicher Zementdosierung ähnlich oder teilweise gar besser als diejenigen von Betonen

mit CEM I 42,5 sind. Im weiteren Verlauf dieses Artikels werden denn auch hauptsächlich diese beiden Zementsorten miteinander verglichen. Beim gemeinsamen Vermahlen von Kalkstein und Portlandzementklinker entsteht ein Zement, dessen Korngrössenspektrum breiter als dasjenige eines CEM I- bzw. Portlandzements ist: Der schwerer mahlbare Klinker weist eine enge, der weichere Kalkstein aber eine breite Korngrössenverteilung auf [8, 9]. Da der Festigkeitsverlust aufgrund des geringeren Klinkergehalts durch feineres Mahlen wettgemacht werden muss, sind CEM II/A-L-Zemente feiner als die CEM I-Zemente der gleichen Festigkeitsklasse [10].

Frischbetoneigenschaften

Betone mit CEM II/A-L 32,5 R weisen bei gleichem W/Z-Wert fast immer eine etwas weichere Konsistenz auf als analoge Betone mit CEM I 42,5. Nach einem vereinfachten Modell [9] ist dies darauf zurückzuführen, dass die feinen Kalksteinteilchen im Frischbeton einen Teil des Wassers aus den Hohlräumen zwischen den gröberen Zementkörnern verdrängen. Dieses Wasser wirkt als zusätzliches «Gleitmittel». Gleichzeitig verbessert sich wegen des guten Wasserrückhaltevermögens von PKZ die Verarbeitbarkeit ganz allgemein

Wohnüberbauung in Baar (CEM II/A-L 32,5 R).

Foto: "HCB Cementverkauf AG, Zürich

[1–4]. CEM II/A-L-Betone neigen weniger zum Bluten. Dies wirkt sich positiv auf die Herstellung von einwandfreiem Sichtbeton aus. Eine weitere auffallende Eigenschaft von Betonen mit CEM II/A-L betrifft die Hydratationswärme. Diese ist niedriger als bei vergleichbaren Betonen mit CEM I und entwickelt sich auch langsamer [1–4], Vorteile, die sich vor allem bei Massenbetonen

Betonzusatzmittel können in Betonen mit CEM II/A-L wie in Betonen mit herkömmlichen Portlandzementen (CEM I) verwendet werden, meist mit vergleichbaren Effekten. Betonverflüssiger (BV) und Hochleistungsbetonverflüssiger (HBV) haben tendenziell eine stärkere Wirkung als in CEM I-Betonen; der gleiche Effekt

positiv auswirken.

wird oft mit einer geringeren Dosierung erzielt [11].

Festbetoneigenschaften

Druckfestigkeit

Betone mit CEM II/A-L 32,5 R und analoge Betone mit CEM I 42,5 unterscheiden sich bei gleicher Verarbeitbarkeit in ihrer Druckfestigkeitsentwicklung wenig. Bei B 35/25 wurden beispielsweise um rund 5 bis

10 % tiefere Frühfestigkeiten sowie

annähernd gleiche Endfestigkeiten

festgestellt [1]. Bei Spezialbetonen

wurden mit CEM II/A-L 32,5 R aber auch 28-Tage-Druckfestigkeiten um 60 N/mm² erreicht [1].

Frost- und Frosttausalzbeständigkeit
Die Frost- und die Frosttausalzbeständigkeit von CEM II/A-L-Betonen
ist mit derjenigen von analogen
CEM I-Betonen vergleichbar. Entscheidend sind nicht die Zementsorten, sondern die Rezepturen, die
Verarbeitung und die Nachbehandlung. Zudem ist die Anwesenheit
künstlich erzeugter Luftporen eine

		CEM II/A-L 32,5	CEM II/A-L 32,5 R	CEM II/A-L 42,5	CEM II A-L 42,5 R
Portlandzementklinker	%	80–94	80–94	80–94	80–94
Kalkstein	%	6–20	6–20	6–20	6–20
Druckfestigkeit nach 2 Tagen nach 7 Tagen nach 28 Tagen	N/mm ² N/mm ² N/mm ²	- ≥ 16 ≥ 32,5 / ≤ 52,5	≥ 10 - ≥ 32,5 / ≤ 52,5	≥ 10 - ≥ 42,5 / ≤ 62,5	≥ 20 - ≥ 42,5 / ≤ 62,5
Erstarrungsbeginn	min	≥ 60	≥ 60	≥ 60	≥ 60
Dehnungsmass	mm	≤ 10	≤ 10	≤ 10	≤ 10
Sulfatgehalt (als SO₃)	%	≤ 3,5	≤ 3,5	≤ 3,5	≤ 4,0
Chloridgehalt	%	≤ 0,10	≤ 0,10	≤ 0,10	≤ 0,10

Tab. 1 Mechanische, physikalische und chemische Anforderungen an CEM II/A-L-Zemente gemäss Norm SIA 215.002 [6].

Voraussetzung für eine gute Frosttausalzbeständigkeit [8].

Wasserdichtigkeit

Bei der Prüfung der Wasserdichtigkeit nach DIN 1048 wurden bei Betonen mit Portland- und mit Portlandkalksteinzementen ähnliche Wassereindringtiefen gemessen [11]. Permeabilitätsmessungen ergaben leichte Vorteile für CEM II/A-L-Betone, wobei hier allerdings die Nachbehandlung und nicht die Zementsorte der entscheidende Faktor war [12].

Karbonatisierung

CEM II/A-L-Betone und analoge CEM I-Betone mit identischer Druckfestigkeit haben aufgrund verschiedener Untersuchungen [8, 11, 13] einen vergleichbaren Karbonatisierungswiderstand.

Chorid- und Sulfatbeständigkeit Laboruntersuchungen [12, 14] scheinen darauf hinzudeuten, dass sich Betone mit CEM II/A-L gegenüber eindringenden Sulfat- oder Chloridionen ähnlich verhalten wie analog zusammengesetzte Betone mit CEM I.

Anwendung von CEM II/A-L in der Praxis

CEM II/A-L 32,5 R ersetzt bereits jetzt in vielen Anwendungen den «Standard-Portlandzement» CEM I 42,5.

		CEM II/ A-L 32,5 R	CEM I 42,5 + Flugasche
Zementdosierung Z	kg/m³	330	280 50
Flugaschedosierung f Korngrösse und Rezeptur	kg/m³	_	identisch
Zusatzmittel: HBV	0/	4.0	4.0
(bez. auf Bindemittelmenge)	%	1,2	1,2
Frischbetoneigenschaften			
Betontemperatur	°C	12	11
Umgebungstemperatur Konsistenz (Setzmass)	°C mm	6 40	3 45
Rohdichte	kg/m ³	2483	2462
Luftporengehalt	%	1,4	1,3
Wassergehalt	kg/m ³	134,9	145
Ergiebigkeit	kg/m³	326,4	295,3
W/Z-Wert		0,41	0,49
$W/(Z + k \times f)$ -Wert, wenn $k = 1,0$		0.41	0.42
k = 1,0 k = 0.4		0,41 0.41	0,42 0.46
	sav	0,41	0,40
Temperaturprofil mit Sonde in Beto	n		
Anfangstemperatur	°C	10,7	10,0
innen aussen	°C	11,2	11,3
Maximaltemperatur		11,2	11,3
innen	°C	23,9	30,3
aussen	°C	15,7	18,1
Maximum erreicht nach Stunden			
innen	h	24,8	23,0
aussen Differenz zwischen Anfangs-	h	33,3	31,8
und Maximaltemperatur			
innen	°C	13,2	20,3
aussen	°C	4,5	6,8
Festbetonprüfungen			
Druckfestigkeit			
nach 7 Tagen	N/mm ²	54,1	55,5
nach 28 Tagen	N/mm ²	63,9	59,2
Wassereindringtiefe nach DIN 1048	mm	18	23
Elastizitätsmodul	N/mm²	40 185	36797
nach Norm SIA 162/1, Prüfung Nr. 3 Schwinden	N/IIIII-	40 100	30/9/
nach Norm SIA 162/1, Prüfung Nr. 4	‰	-0,174	-0,198
Porosität	,,,,	•,	3,,55
nach Norm SIA 162/1, Prüfung Nr. 7			
(FS ≥ 1,5 → F-Beständigkeit hoch)	FS	1,64	1,52
FT-Prüfung nach TFB-Methode		gut	gut

Tab. 2 Vergleich zwischen Betonen aus CEM II/A-L 32,5 R und CEM I 42,5 mit Zusatz von Flugasche (Baustellenversuch, Quelle: [1]).

Vorteile ergeben sich vor allem bei der Herstellung von Betonen mit niedriger Druckfestigkeit. Bei feinsandarmen Zuschlagmaterialien lassen sich mit CEM II/A-L 32,5 oder CEM 32,5 R eher bessere Frisch- und Festbetoneigenschaften erzielen als mit CEM I 42,5 und einem Mehlkornersatz wie beispielsweise Kalksteinmehl.

Praktiker schätzen besonders die Tatsache, dass sich Betone mit CEM II/A-L gut verarbeiten lassen. Diese eignen sich besonders gut für Betonteile, deren Herstellung glatte Schalungen erfordern.

Das Kalksteinmehl in CEM II/A-L beeinflusst auch die Beschaffenheit und das Erscheinungsbild von Betonoberflächen positiv: Sie sind gleichmässiger, geschlossener und etwas heller als bei der Verwendung von CEM I.

Bei CEM II/A-L 32,5 ist zu beachten, dass der Frischbeton klebrig wird, wenn der Feinanteil im Zuschlagmaterial zu hoch ist [2]. Bei tiefen Temperaturen verlangsamt sich die Festigkeitsentwicklung – wie bei anderen Zementen auch. Die Nachbehandlung, die immer ein wichtiger Bestandteil der Betonverarbeitung ist, ist dann besonders wichtig. Zu den Bereichen, in denen sich CEM II/A-L 32,5 und vor allem CEM II/A-L 32,5 R vorteilhaft einset-

zen lassen, gehören [1-4]:

- Betone im allgemeinen Hoch- und Tiefbau, wenn keine hohen Festigkeiten gefordert werden
- Massenbetone bzw. Betone, die niedrige Erhärtungstemperaturen aufweisen müssen
- Mager- und Füllbetone
- Hüllbetone
- Pumpbetone
- Sichtbetone
- wasserdichte Betone
- frost- und frosttausalzbeständige Betone
- Betonwaren
- Unterlagsböden
- Putz- und Mauermörtel
- Zementstabilisierungen
- Füllinjektionen im Erdbau

Aktuelle Anwendungsbeispiele

Beispiele für die Anwendung von CEM II/A-L 32,5 R sind in den Abbildungen in diesem Artikel zu finden. In Tabelle 2 werden die Eigenschaften zweier Betone einander gegenübergestellt, die sich in der Art der Bindemittel unterscheiden: ein Beton enthält 330 kg CEM II/A-L 32,5 R/m³, der andere 280 kg CEM I 42,5/m3 und 50 kg Flugasche/m³ [1]. Die Resultate dieser Praxisversuche bestätigen, dass auch mit CEM II/A-L 32,5 R bei entsprechenden Vorkehrungen (gute Verarbeitbarkeit, niedriger W/Z-Wert) Betone mit hoher Druckfestigkeit sowie weiteren guten Festbetoneigenschaften hergestellt werden können. Interessant ist sicher die niedrige Wärmeentwicklung beim

Beton mit Portlandkalksteinzement. Bei einem Grossteil der Kunstbauten in Zusammenhang mit der Neubaustrecke Zuchwil-Biel der Autobahn A 5 kommt CEM II/A-L 32,5 R zum Einsatz. Interessante Bauwerke sind hier die Tagbautunnels Spitalhof Solothurn, Lüsslingen und Pieterlen, der Birchitunnel sowie die Aarebrücke bei Arch, bei der ursprünglich Weisszement eingesetzt werden sollte [4]. Erwähnenswert sind zudem Kunstbauten der A 5 im Welschland (Beispiel: Galerie de Treytel) [1] sowie der gegenwärtig realisierte grosse Laborneubau der ETH Hönggerberg, Zürich [2].

Kurt Hermann, TFB

Literatur

Ein grosser Teil der in diesem Artikel aufgeführten praktischen Resultate wurde anlässlich der Januartagung 1998 von Cemsuisse, dem Verband der Schweizerischen Cementindustrie, in Brunnen vorgetragen. Für die Unterstützung bei der Abfassung des vorliegenden Artikels danke ich im einzelnen:

- [1] René Bolliger, Jura-Cement-Fabriken, Wildegg, und Martin Knecht, Juracime SA, Cornaux.
- [2] Erich Ritschard und Felix Worni, "HCB Cementverkauf AG, Zürich.
- [3] **Benedikt Schneider**, Bündner Cement Untervaz, Untervaz.
- [4] Kurt Strahm, Vigier Cement AG, Péry.

Literaturzitate:

- [5] Baron, J., und Douvre, C., «Technical and economical aspects of the use of limestone filler additions in cement», World Cement 1987 [4], 100–104.
- [6] Norm SIA 215.002 (entspricht ENV 197-1): Zement – Zusammensetzung, Anforderungen und Konformitätskriterien; Teil 1: Allgemein gebräuchlicher Zement (Ausgabe 1993).
- [7] Livesey, P., «Strength characteristics of Portland-limestone cements», Construction & Building Materials 5 [3], 147–150 (1991).

- [8] Siebel, E., und Sprung, S., «Einfluss des Kalksteins im Portlandkalksteinzement auf die Dauerhaftigkeit von Beton», Beton 41 [4], 185–188 (1991).
- [9] Schmidt, M., «Zement mit Zumahlstoffen – Leistungsfähigkeit und Umweltentlastung, Teil 1», Zement-Kalk-Gips 45 [2], 64–69 (1992).
- [10] Schiller, B., und Ellerbrock, H.-G., «Mahlung und Eigenschaften von Zementen mit mehreren Hauptbestandteilen», Zement-Kalk-Gips 45 [7], 325–334 (1992).
- [11] Albeck, J., und Sutej, B., «Eigenschaften von Betonen aus Portlandkalksteinzement», Beton 41 [6], 288–291 (1991).
- [12] Schmidt, M., «Zement mit Zumahlstoffen – Leistungsfähigkeit und Umweltentlastung, Teil 2», Zement-Kalk-Gips 45 [2], 64–69 (1992).
- [13] Schmidt, M., Harr, K., und Boeing, R., «Blended cement according to ENV 197 and experiences in Germany», Cement, Concrete, and Aggregates 15 [2], 156–164 (1993).
- [14] Cochet, G., und Jésus, B., «Diffusion of chloride ions in Portland cement-filler mortars», in Swamy, R.N. (Ed.), «Blended cements in construction», Elsevier, New York (1991), Seiten 365–376.