Zeitschrift: Cementbulletin

Herausgeber: Technische Forschung und Beratung für Zement und Beton (TFB AG)

Band: 64 (1996)

Heft: 7-8

Artikel: Zuschlagstoffe

Autor: Hermann, Kurt / Egmond, Bram von https://doi.org/10.5169/seals-153817

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Zuschlagstoffe

Zuschlagstoffe sind mengenmässig der wichtigste Bestandteil des Betons, dessen Eigenschaften sie stark beeinflussen.

Zuschlagstoffe, also Kies und Sand unterschiedlicher Korngrösse, bilden das feste Gerüst des Betons. Sie nehmen etwa 80 % der Gesamtbetonmasse und rund 75 % des Betonvolumens ein. Durch optimale Nutzung der Zuschlagstoffe lässt sich die Betonqualität erheblich verbessern.

Die folgenden Ausführungen beschränken sich fast ausschliesslich auf Zuschlagstoffe natürlichen Ursprungs mit Dichten um 2,6 bis 2,7 kg/dm³. Nicht behandelt werden beispielsweise schwere Zuschlagstoffe ($\rho > 3,0$ kg/dm³) wie Baryt, Eisenerz oder Stahlgranulat und leichte Zuschlagstoffe ($\rho < 2,0$ kg/dm³) wie Blähton.

Normen

Gemäss der Vornorm SIA V 162.051 (entspricht ENV 206) bestehen Zuschlagstoffe «aus ungebrochenen und/oder gebrochenen Körnern aus natürlichen und/oder künstlichen Mineralstoffen mit Korngrössen und Kornformen, die für die Betonherstellung geeignet sind» [1]. Zudem müssen sie «den Anforderungen der nationalen Normen bzw. den am Verwendungsort des Betons geltenden Bestimmungen genügen. Schädliche Bestandteile dürfen in den Zuschlägen nicht in derartigen Mengen vorhanden sein, dass die Dauerhaftigkeit des Betons beeinträchtigt bzw. die Korrosion der Bewehrung herbeigeführt wird.»

Die Anforderungen an Zuschlagstoffe sind in der Schweiz in den Ziffern 5 14 21 bis 5 14 29 der Norm SIA 162 [2] sowie in den Prüfungen Nr. 11 bis 15 der Norm SIA 162/1 [3] bzw. in der VSS-Norm SN 670710 d [4] festgelegt. Im Verlauf des vorliegenden Artikels wird an mehreren Stellen darauf eingegangen.

Ursprung von Zuschlagstoffen

Für den überwiegenden Teil des klassifizierten Betons werden Zuschlagstoffe verwendet, die aufgrund ihrer Entstehung in drei Gruppen eingeteilt werden, nämlich:

 Magmatische Gesteine sind durch mehr oder weniger rasche

Kiesabbau im Mittelland.

Foto: TFB

Bezeichnung	Kornform	Korngrösse	Ursprung
Rundsande	ungebrochene Gesteins- und/ oder Mineralkörner	feiner als 4 oder 2,8 mm	aus natürlichem Lockergestein (Gruben, Flüsse, Seen)
Brechsande	gebrochene Gesteins- und/ oder Mineralkörner	feiner als 2,8 mm	durch Brechen und Mahlen von Fels- oder grobem Lockerge- stein (Gruben, Flüsse, Seen) sowie Block- und Gehängeschutt
Kiese	ungebrochene Gesteinskörner	2,8 oder 4 mm bis 45 mm	aus natürlichem Lockergestein (Gruben, Flüsse, Seen)
Splitte	gebrochene Gesteins- und/ oder Mineralkörner	2,8 bis 22,4 mm	durch Brechen von Fels- oder grobem Lockergestein (Gruben, Flüsse, Seen) sowie Block- und Gehängeschutt
Schotter	gebrochene Gesteins- und/ oder Mineralkörner	22,4 bis 63 mm	durch Brechen von Fels- oder grobem Lockergestein (Gruben, Flüsse, Seen) sowie Block- und Gehängeschutt

Tab. 1 Bezeichnung von Zuschlagmaterial aufgrund der Kornform und der Korngrösse gemäss Norm SN 670710 d [4].

- Abkühlung geschmolzener Gesteine (Magma) entstanden. Sie sind kristallin und/oder glasig erstarrt. Beispiele: Basalt, Granit, Diorit, Porphyr.
- Sedimentäre Gesteine sind chemische Ausfällungen oder Ablagerungen aus wässeriger Umgebung. Beispiele: Kalkstein, Dolomit, Mergel, Tonschiefer, silikatischer und kalkiger Sandstein, Quarzit.
- Metamorphe Gesteine sind durch Umkristallisation magmatischer und sedimentärer Gesteine unter erhöhten Temperaturen und Drücken entstanden. Beispiele: Gneis, Marmor, Amphibolit, Glimmerschiefer.

Ein anderes Unterscheidungsmerkmal ist das Vorkommen:

- Fluss- und Seeablagerungen sind durch natürliche Auslese entstanden. Sie bestehen aus rundlichen Körnern unterschiedlicher, meist harter Gesteinssorten und enthalten oft sehr wenig Feinanteile.
- Gletscherablagerungen (Moränekies) sind uneinheitlich. Sie enthalten oft auch weiche, weniger rundgeschliffene Körner. Der Anteil der Sandfraktion 0,2 bis 0,5 mm ist hoch, und es können tonige Bestandteile vorhanden sein.
- Material aus Steinbrüchen ist gebrochenes Material mit scharfen Kanten. Die Zusammenset-

zung ist einheitlich. Die Materialqualität hängt stark vom Abbauort ab.

Einteilung von Zuschlagstoffen

Zuschlagstoffe lassen sich grob in natürliches (ungebrochenes) und gebrochenes Material unterteilen. Gebrochene Zuschlagstoffe aus Felsgestein und grossen Blöcken sowie Recyclinggranulat enthalten nur Bruchflächen, Brechgut aus Rundmaterial dagegen auch natürliche Rundflächen. Rundkorn enthält weniger als 20 % Bruchflächen, Brechkorn dagegen mehr als 80 % [4]. Ein weiteres Unterscheidungskriterium ist die Korngrösse, wie sie

Härte	Mittlere Druckfestigkeit [N/mm²]	Gehalt an harten Mineralien [Masse-%]	Beispiele
Hart	> 140	> 25	Granit, Gneis, Amphibolit, Basalt, Kieselkalk, alpiner Sandstein
Mittelhart	> 140	< 25	Kalkstein, Dolomitgestein, Serpentinit
	60140	50100	kalkreicher Sandstein
Weich	60140	< 50	Molassesandstein, Mergelkalk, Glimmerschiefer, mürbes Gestein
	< 60	0100	

Tab. 3 Vereinfachte Klassifikation der Gesteinshärte nach SN 670 710 d [4].

Bezeichnung **Festigkeit Besondere** Prüfung der Prüfung Eigenschaften aemäss Norm SIA 162/1 B 25/15 ≥ B 40/30 B 30/20 und B 35/25 Frost-Tausalz-beständigkeit Abriebfestigkeit Nasserdichtigkeit Frostbeständigkeit Chemische Beständigkeit Nr. Siebanalyse (*) (*) 11 Sauberkeit (*) 12 Mehlkorngehalt 13 Petrographische Untersuchung (*) 14 Organische Verunreinigungen (*) 15 * notwendige Prüfung (*) Erfahrungswerte und Vorversuche ersetzen Prüfung

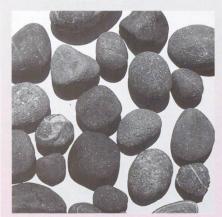
Tab. 2 Ausschnitt aus Tabelle 16, Norm SIA 162 [2].

beispielsweise in der Norm SN 670 710 d [4] verwendet und in *Tabelle 1* zusammengefasst ist. Eingesetzt werden auch Gemische aus ungebrochenen und gebrochenen Gesteins- und/oder Mineralkörnern (Mischsande und Mischkiese); Kiessande bestehen aus Kies und Sand.

Anforderungen an Zuschlagstoffe

Allgemein gilt, dass Zuschlagstoffe aus sauberen, harten, kompakten, verschleissfesten und dauerhaften Körnern bestehen sollten, die einen guten Verbund mit dem Zementleim ergeben. Aufgrund von Erfahrungen, die teilweise in den Normenwerken [3, 4] ihren Niederschlag gefunden haben, sind dafür bestimmte Eigenschaften notwendig. Auf die wichtigsten wird hier eingegangen.

Gemäss Norm SIA 162 muss die Eignung von Zuschlagstoffen «hinsichtlich Petrographie, Sauberkeit, Härte, Kornform und Oberflächenbeschaffenheit vor der Verwendung nachgewiesen oder aufgrund ausgeführter Bauwerke bestätigt werden» [2].


In der Norm SIA 162/1 [3] sind fünf Prüfungen beschrieben, denen Zuschlagstoffe für sämtliche Betone ≥ B 40/30, für wasserdichte sowie für frost- und frosttausalzbeständige Betone zu unterwerfen sind. Einige der Prüfungen sind auch auf Zuschläge für weitere Betone anzuwenden (siehe *Tabelle 2*). Für die Durchführung der einzelnen Prüfungen wird auf die Norm verwiesen.

Festigkeit und Härte

Die Druckfestigkeit von Kies und Sand aus natürlichen Quellen und daraus gebrochenem Material ist in der Regel ausreichend. Sie liegt zwischen 50 und 300 N/mm², meist zwischen 150 und 200 N/mm². Damit ist auch klar, dass für die Betondruckfestigkeit nicht die Zuschlagstoff-, sondern die Zementsteinfestigkeit sowie der Verbund

zwischen Zuschlagstoffen und Zementstein ausschlaggebend sind. Zuschlagstoffe lassen sich nach ihrer Härte klassifizieren: Harte Materialien ritzen Stahl, mittelharte und weiche Materialien werden durch Stahl geritzt. Die Härte der Mineralien sowie ihre mittlere Druckfestigkeit dienen in der SN 670 710 d [4] zur vereinfachten Klassifikation der Gesteinshärte (siehe *Tabelle 3*).

Petrographische Untersuchungen
Der Gehalt an weichen Gesteinen
und schädlichen Beimengungen in
Zuschlagstoffen wird nach Norm
SIA 162/1 (Prüfung Nr. 14) [3] ermittelt. Weichgesteine lassen sich mit
dem Hammer mühelos zerschlagen.
Dazu gehören beispielsweise beinahe alle Molassesandsteine und angewitterten Gesteine, Mergelkalke
und Mergelschiefer sowie glimmerreiche Schiefer, Rauwacken und
poröse Jurakalke. Für Betone mit
Festigkeiten ≥ B 30/20 und für Betone mit besonderen Eigenschaften

natürliche kugelige/kubische Körner

gebrochene kugelige/kubische Körner

natürliche stengelige/plattige Körner

gebrochene stengelige/plattige Körner

Abb. 1 Zuschlagsmaterialformen.

Fotos: Willi Ingold, Solothurn

ist der Weichgesteinanteil auf 5 % der gesamten Zuschlagstoffmasse beschränkt; bei einem Weichgesteinanteil zwischen 5 und 10 % sind die Festbetoneigenschaften zu prüfen. Für Beton B 20/10 und B 25/15 betragen die entsprechenden Grenzwerte 10 % bzw. 10 bis 15 % [3].

Kornformen

Eine wichtige Eigenschaft der Zuschlagstoffe ist die Kornform. Massgebend für die Formbezeichnung ist das Verhältnis zwischen der kleinsten und der grössten Hauptabmessung, das heisst

Dicke (kleinster Durchmesser) / Länge (grösster Durchmesser) = c / a.

Für die Betonherstellung werden gedrungene Körner (kugelige oder kubische Körner) bevorzugt, für die c/a ≥ 0,40 ist. Körner mit c/a < 0,40 werden als stengelig oder plattig bezeichnet; sie bilden sperrige, schlecht verarbeitbare Frischbetone. Durch Kombination dieses Unterscheidungsmerkmals mit dem Unterscheidungsmerkmal natürlich (ungebrochen) – gebrochen lassen sich vier Klassen definieren:

- natürliche kugelige/kubische
 Körner
- natürliche stengelige/plattige Körner
- gebrochene kugelige/kubische Körner
- gebrochene stengelige/plattige Körner

Sie sind in *Abbildung 1* einander gegenübergestellt.

Flache, längliche Körner und Körner mit rauher Oberfläche haben einen höheren Wasserbedarf als runde Körner mit glatter Oberfläche, wenn Betone mit vergleichbarer Verarbeitbarkeit hergestellt werden sollen. Bei flachen Körnern besteht die Gefahr, dass sie sich während des Verdichtens horizontal legen, was zu Wasseranreicherungen unter den Körnern und damit zu Schwachstellen im Beton führt.

Sauberkeit

Organische Verunreinigungen (z. B. Zucker) können die Hydratation des Zements – und damit auch das Abbinden und Erhärten des Betons – erheblich verzögern oder gar unterbinden. Nach Norm SIA 162/1, Prüfung Nr. 15, sind organische Verunreinigungen in Betonen der Festigkeiten ≥ B 30/20 sowie in Betonen mit besonderen Eigenschaften bis zu einem Anteil

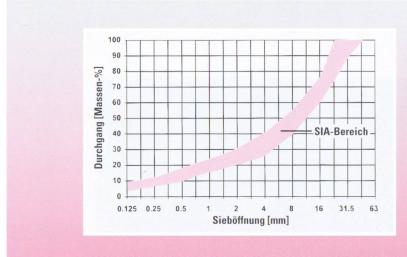


Abb. 2 Wenn die Siebkurve für natürliches gerundetes Material nicht durch Vorversuche festgelegt wird, muss sie nach Norm SIA 162 [2] im schraffierten Bereich («SIA-Bereich») liegen.

von maximal 0,05 % der Masse des Sandes zulässig.

Negative Auswirkungen auf die Dauerhaftigkeit von Beton haben mineralische Verunreinigungen wie Pyrit, Kohle und andere Materialien mit geringer Frostbeständigkeit sowie Ton-, Mergel- und Schieferpartikel, Materialien mit hoher Porosität und niedriger Druckfestigkeit, die durch die Prüfung Nr. 14 von Norm SIA 162/1 [3] ebenfalls erfasst werden.

Sand und Mehlkorn

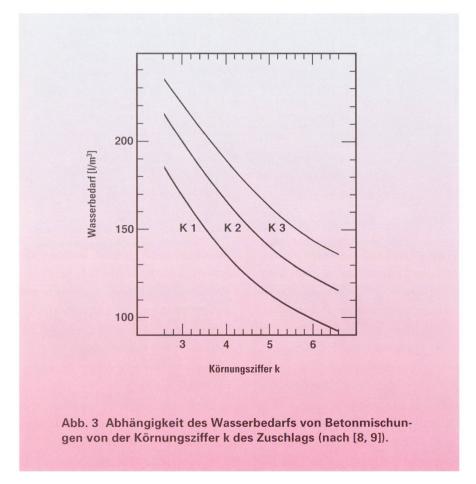
Sand, das heisst die Fraktion 0-4 mm, beansprucht ungefähr 95 % der spezifischen Oberfläche eines für die Betonherstellung geeigneten Kiessandgemisches. Je feiner der Sand ist, desto grösser wird die durch Zementleim zu überdeckende Oberfläche. Bei festgelegter Zementmenge bedeutet dies, dass eine grössere Wassermenge benötigt wird, um den Frischbeton verarbeiten zu können. Die Folgen davon sind ein höherer W/Z-Wert und dadurch eine herabgesetzte Druckfestigkeit des Festbetons. Zum Mehlkorn werden der Kornanteil < 0,125 mm des Kiessandes, der Zement und gegebenenfalls Zusatzstoffe gezählt. Mehlkorn dient im Frischbeton als Schmiermittel, das die Verarbeitbarkeit und das

Wasserrückhaltevermögen verbessert, die Entmischungsgefahr beim Einbringen vermindert und das Verdichten erleichtert.

Zu hohe Mehlkorngehalte wirken sich negativ aus: Der Frischbeton wird teigig bis klebrig, während der Festbeton eine niedrigere Festigkeit aufweist sowie stärker schwindet und kriecht. Gemäss TFB-Empfehlungen sollte der Mehlkorngehalt bei Betonen mit 32 mm Grösstkorndurchmesser zwischen 350 und 400 kg/m³, bei 16 mm Grösstkorndurchmesser zwischen 400 und 450 kg/m³ liegen [5]. In der Norm SIA 162 wird ein Mehlkorngehalt für Betone mit besonderen Eigenschaften (insbesondere Pumpbetone) und für Sichtbetone von mindestens 350 kg/m³ empfohlen.

Zuschlagstoffe für klassifizierte Betone

Die Kornzusammensetzung von Zuschlagstoffen wird durch Sieblinien beschrieben. Darüber ist im letzten «Cementbulletin» ausführlich berichtet worden [6].


Die Zusammensetzung von natürlichen Kiessandgemischen kann stark schwanken. Deshalb wird Kiessand für die Betonherstellung meist gewaschen, nach Korngruppen getrennt (Sand 0–4 mm, Kies 4–8, 8–16, 16–32 mm) und er-

neut zusammengesetzt. Dieses Vorgehen ist in der Norm SIA 162 für Betone ≥ B 30/20 und für Betone mit besonderen Eigenschaften vorgeschrieben. (Für Betone B 25/15 dürfen natürliche Kiessandgemische verwendet werden, wenn ihre Eignung bekannt ist.)

In der Norm SIA 162, Ausgabe 1968, waren die Grenzen genau definiert, innerhalb derer die Sieblinien von Zuschlagstoffen für hochwertige und für Spezialbetone zu liegen hatten. Eine analoge Einschränkung gilt gemäss der geltenden Version der Norm SIA 162 [2] nur noch für gerundetes Kiessandmaterial, wenn die Sieblinie nicht durch Vorversuche festgelegt wird («SIA-Bereich» in Abbildung 2).

Gut zusammengesetzte Zuschlagstoffgemische

Grundsätzlich muss die Kornzusammensetzung so gewählt werden, dass ein hohlraumarmes Zuschlagstoffgerüst entsteht. Dies bedeutet, dass die Hohlräume zwischen den grossen Körnern durch kleinere Körner weitgehend aufgefüllt werden müssen; es wird eine möglichst hohe Packungsdichte angestrebt. In den meisten Fällen wird man gut daran tun, sich an die Vorgaben in der Norm SIA 162 für Sieblinien von Zuschlagstoffgemischen zu halten

(«SIA-Bereich» in Abbildung 2). Zuschlagstoffgemische, deren Sieblinien oberhalb des SIA-Bereichs liegen, haben einen zu hohen Anteil an Fein- und Feinstsand. Dadurch ist ihr Wasser- und Zementbedarf sehr hoch; sie sind unter Umständen für die Betonherstellung nicht geeignet. Zuschlagstoffgemische mit Sieblinien unterhalb des SIA-Bereichs sind für die Betonherstellung ebenfalls meist unerwünscht, denn wegen des niedrigen Sandanteils sind sie nur schwer verarbeitbar und selten gut verdichtbar. Bei der Zusammensetzung von Zuschlagstoffgemischen sind teilweise entgegengesetzte Effekte zu berücksichtigen. So ist der Versuch, ein Zuschlagstoffgemisch derart zusammenzusetzen, dass der Zementleimbedarf (und damit der Zementverbrauch) niedrig, die Verarbeitbarkeit gut und die Verdichtung vollständig sind, wenig erfolgreich, denn:

- ein grobkörniges Zuschlagstoffgemisch hat wohl einen geringen Zementleimbedarf, kann aber nur schwer verarbeitet und verdichtet werden, und
- ein feinkörniges Zuschlagstoffgemisch erfordert viel Zementleim (grosse spezifische Kornoberfläche).

Ein Spezialfall sind die sogenannten «Ausfallkörnungen». Dabei handelt es sich um Kornzusammensetzungen, bei denen ganze Korngruppen fehlen. Auf die Sieblinie wirkt sich dies dahingehend aus, dass sie unstetig wird (siehe Mischung D in *Abbildung 5*).

Über die Verwendung stetiger und unstetiger Kornzusammensetzungen sind die Meinungen geteilt. Einige Vor- bzw. Nachteile von Zuschlagstoffen mit geeigneten Ausfallkörnungen gegenüber Zuschlagstoffen ohne Ausfallkörnung sind nach [7]:

- oft niedrigerer Wasseranspruch
- verbesserte Pumpfähigkeit
- höhere Grünstandfestigkeit
- höherer Verschleisswiderstand, aber möglicherweise verminderte Griffigkeit
- niedrigere Druck- und deutlich niedrigere Biegezugfestigkeit
- geringerer Frostwiderstand Praktiker verwenden bei der Beurteilung der Sieblinien von Kiessandgemischen oft die Körnungsziffer k. Damit lässt sich der Feinheitsgrad eines Zuschlagstoffgemisches numerisch erfassen. Berechnet wird k folgendermassen:
- prozentualen Rückstand auf einzelnen Prüfsieben im Bereich 0,25–63 mm berechnen
- Prozentsätze addieren
- Summe durch 100 dividieren Am besten lässt sich das Vorgehen anhand eines Beispiels zeigen: Für das Zuschlagstoffgemisch, das in Tabelle 1/Abbildung 1 von [6] beschrieben ist, beträgt die Körnungsziffer k (siehe Zahlenwerte in *Tabel-le 4*):

k = (0 + 4 + 32 + 54 + 70 + 78 + 82 + 86 + 92) / 100 = 4,98

Je kleiner die Körnungsziffer k, desto grösser ist die spezifische Oberfläche des Zuschlagstoffgemisches und desto höher ist dessen Wasseranspruch. Die Abhängigkeit des Wasseranspruchs von k ist in Abbildung 3 für steifen Beton (K 1), plastischen Beton (K 2) und weichen Beton (K 3) dargestellt. Zuschlagstoffe mit rauher Oberfläche haben einen besseren Verbund mit dem Zementstein als Zuschlagstoffe mit glatter Oberfläche. Dadurch sind ihre mechanischen Eigenschaften (u. a. erhöhte Zugfestigkeit!) besser. Hochleistungsbeton mit Druckfestigkeiten

> 100 N/mm² werden deshalb bevorzugt mit gebrochenem Kalkstein oder Dolomit hergestellt [8].

Recyclinggranulat

Die Empfehlung SIA 162/4 [10] aus dem Jahr 1994 enthält Anforderungen an Zuschlagstoffe aus Beton-, Misch- und Strassenaufbruch. Diese sehr sinnvolle Anwendung von Recyclingmaterialien sowie neuere VSS-Normen zum gleichen Thema

wurden 1995 im «Cementbulletin»-Artikel «Recycling von Bauschutt» [11] behandelt. Der Vollständigkeit halber sind in *Abbildung 4* kugeliges/kubisches und stengeliges/plattiges Recyclinggranulat einander gegenübergestellt.

Beispiele

In der TFB wurden vor einigen Jahren vier Betone hergestellt, die sich hauptsächlich in der Kornzusammensetzung (und damit in den Sieblinien) unterschieden [12]:

- Mischung A: stetige Sieblinie, niedriger Sandanteil
- Mischung B: stetige Sieblinie, hoher Sandanteil
- Mischung C: stetige Sieblinie ausserhalb des SIA-Bereichs, zu hoher Sandanteil
- Mischung D: unstetige Sieblinie mit Ausfallkörnung (Korngruppe 4–8 mm fehlt); da die anderen Korngruppen sogenanntes Überund Unterkorn enthalten, sind im Bereich 4–8 mm trotzdem einige Körner zu finden

Sieb	Rückstand		Berechneter Rückstand		
[mm]	[g]	[Massen-%]	[Massen-%]		
63			0		
31,5	456	4	0 + 4 = 4		
16	3192	28	4 + 28 = <i>32</i>		
8	2508	22	32 + 22 = 54		
4,0	1778	16	54 + 16 = <i>70</i>		
2,0	889	8	70 + 8 = <i>78</i>		
1,0	479	4	78 + 4 = <i>82</i>		
0,50	456	4	82 + 4 = <i>86</i>		
0,25	661	6	86 + 6 = <i>92</i>		
0,125	502	4	96		
< 0,125	479	4	100		

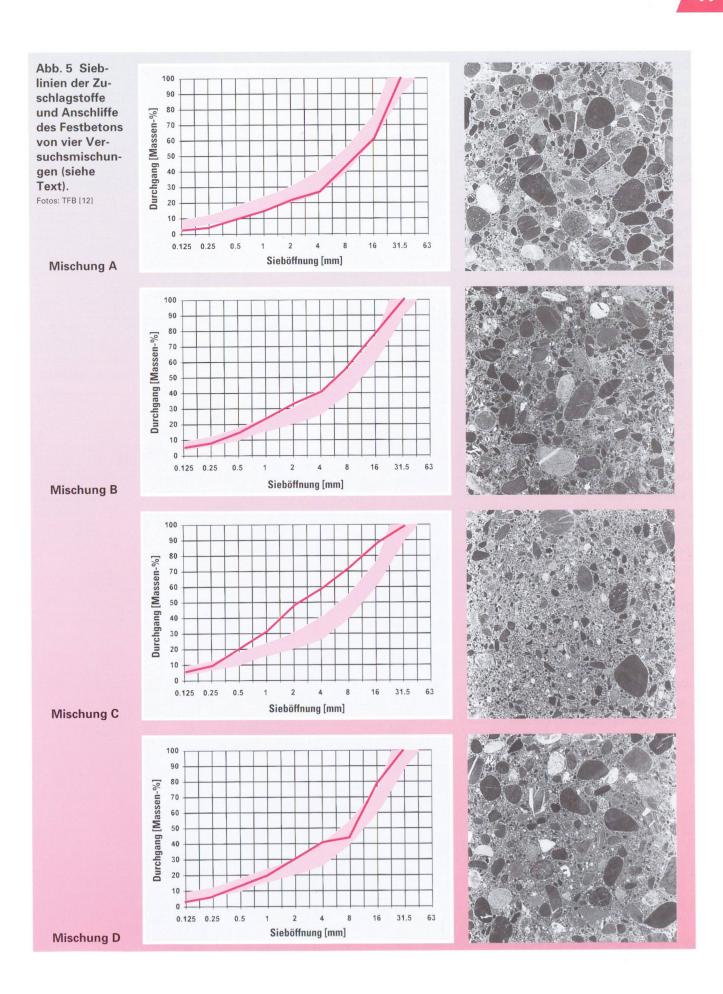
Tab. 4 Berechnung der prozentualen Rückstände auf einzelnen Sieben für Bestimmung der Körnungsziffer k [8].

Eigenschaften		Einheit	Versuc	Versuchsmischungen			
			Α	В	C	D	
Zuschlagstoffe (trocken)							
Siebdurchgang bei	0,125 mm	Massen-%	2	4	6	3	
	0,25 mm	Massen-%	4	7	11	6	
	0,50 mm	Massen-%	9	14	21	12	
	1,0 mm	Massen-%	14	23	33	19	
	2,0 mm	Massen-%	21	33	49	30	
	4,0 mm	Massen-%	26	40	60	40	
	8,0 mm	Massen-%	44	57	73	43	
	16,0 mm	Massen-%	60	78	89	78	
	31,5 mm	Massen-%	100	100	100	100	
Körnungsziffer k			5,22	4,48	3,64	4,72	
Anmachwasser		I/m ³	150	174	198	165	
Portlandzement		kg/m³	300	300	300	300	
Wasserzementwert		-	0,50	0,58	0,66	0,55	
Frischbeton							
Rohdichte		kg/m ³	2476	2449	2399	2475	
Luftporengehalt		Vol%	0,7	0,8	1,6	0,8	
Ausbreitmass		mm	420	430	410	420	
Festbeton							
Betonklasse		-	B 35/25	B 30/20	B 25/15	B 30/20	
Rohdichte		kg/m ³	2455	2388	2325	2435	
28-Tage-Druckfestigkeit		N/mm ²	37,0	34,4	26,7	33,3	

Tab. 5 Zusammensetzung der Versuchsmischungen [12].

Für alle Betone wurden die gleichen Kornfraktionen verwendet, die Zementdosierung war gleich. Die angestrebte weiche Konsistenz (K 3; Ausbreitmass 410 bis 430 mm) wurde durch die Anmachwassermenge gesteuert.

Die Daten der Siebanalysen der einzelnen Zuschlagstoffgemische sowie die Eigenschaften der Frischund Festbetone sind in *Tabelle 5* zusammengefasst. Grafische Darstellungen der Sieblinien und Anschliffe der entsprechenden Festbetone sind in den *Abbildung 5* zu finden.


An den vier Versuchsmischungen kann die früher behandelte Beziehung zwischen der Körnungsziffer kund dem Wasserbedarf einer Frischbetonmischung der Konsistenz K 3 überprüft werden: Je tiefer die Körnungszahl kist, desto mehr Anmachwasser ist erforderlich, um einen Beton mit einem Ausbreitmass von (420 ± 10) mm herzustellen (siehe auch *Abbildung 3*).

Literatur

- [1] Vornorm SIA 162.051: «Beton: Eigenschaften, Herstellung, Verarbeitung und Gütenachweis», Ausgabe 1994.
- [2] Norm SIA 162: «Betonbauten», Ausgabe 1989 (Rev. 1993).
- [3] Norm SIA 162/1: «Betonbauten Materialprüfung», Ausgabe 1989.
- [4] Norm SN 670710 d: «Sand, Kies, Splitt und Schotter für Beläge – Qualitätsvorschriften», Ausgabe Oktober 1988.
- [5] Meyer, B., «Die Rolle des Mehlkorns in der Betonmischung», Cementbulletin 54 [6], 1–8 (1986).
- [6] van Egmond, B., und Hermann, K., «Siebanalyse von Zuschlagstoffen», Cementbulletin 64 [6], 3–7 (1996).

- [7] Weigler, H., und Karl, S., «Beton: Arten Herstellung – Eigenschaften», Verlag Ernst & Sohn, Berlin (1989).
- [8] Unterlagen zum TFB-Workshop 955251 «Siebanalyse von Zuschlägen» vom 2. Februar 1996 in Wildegg.
- [9] *Trüb, U., «*Körnungsziffer und Wasseranspruch», Cementbulletin **50** [3], 1–6 (1982).
- [10] Empfehlung SIA 162/4: «Recyclingbeton», Ausgabe 1994.
- [11] Werner, R., und Hermann, K., «Recycling von Bauschutt», Cementbulletin **63** [2], 2–7 (1995)
- [12] Meyer, B., «Kiessand-Zusammensetzung und Betoneigenschaften», Cementbulletin 58 [7], 1–12 (1990) (als Separatdruck bei der TFB erhältlich).

Bram van Egmond und Kurt Hermann, TFB

