**Zeitschrift:** Cementbulletin

**Herausgeber:** Technische Forschung und Beratung für Zement und Beton (TFB AG)

**Band:** 60-61 (1992-1993)

**Heft:** 14

Artikel: Sickerbeton

Autor: Hermann, Kurt

**DOI:** https://doi.org/10.5169/seals-153777

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

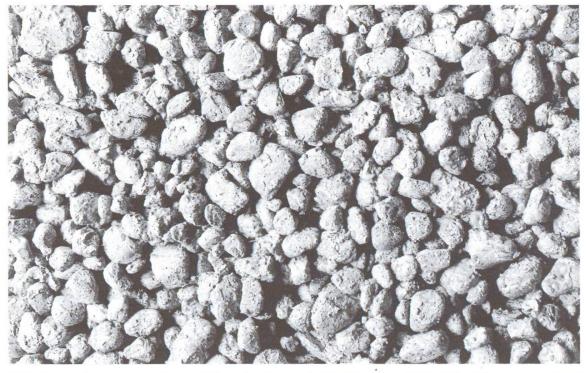
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 22.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch


# CEMENTBULLETIN

FEBRUAR 1993 JAHRGANG 61 NUMMER 14

# Sickerbeton

Sickerbetone - ihre Herstellung, ihre Eigenschaften und ihre Verwendung.

Sickerbeton ist ein eigenartiger Werkstoff: Er bewährt sich seit über 50 Jahren bei Entwässerungsaufgaben, die meisten Fertigbetonwerke bieten ihn an, umfassend normiert aber ist er nicht. Eine Ausnahme sind die von der Vereinigung Schweizerischer Strassenfachleute (VSS) im Jahr 1983 herausgegebenen Normen über Filtermaterialien [1] und über die Drainage im Strassenbau [2], in denen Sickerbeton erwähnt wird. Im täglichen Gebrauch von Sickerbeton spielen diese Normen aber keine Rolle.



Sickerbeton (Zusammensetzung: Kies 16–32 mm, Portlandzement 150 kg/m³, Wasserzementwert 0,35). (Foto: TFB)

Normen für Sickerbeton fehlen auch in Deutschland. Dort wird übrigens meistens von Dränbeton und nicht von Sickerbeton gesprochen [3, 4]. Eine andere Bezeichnung ist Filterbeton. Sie ist zu finden in Betonfilterrohren, Betonfiltersteinen und Betonfilterplatten, die alle ebenfalls für Entwässerungsaufgaben eingesetzt werden.

Bei der «normalen» Betonherstellung wird man sich in der Regel bemühen, ein möglichst geschlossenes Gefüge zu erhalten. Beim Sickerbeton ist dies genau umgekehrt. Er soll möglichst gut wasserdurchlässig sein, dabei soll er aber auch – je nach Anwendung – Minimalanforderungen an die Druckfestigkeit erfüllen und frostbeständig sein.

# Herstellung von Sickerbeton

Voraussetzungen für die Herstellung eines guten Sickerbetons sind:

- relativ eng begrenzte Kornabstufung des Zuschlags
- teilweiser oder völliger Verzicht auf die Feinfraktionen
- niedriger Zementgehalt
- niedriger Wasserzementwert (um 0,35)

Dadurch wird erreicht, dass sich zwischen den Zuschlagkörnern ein Netz von Hohlräumen bildet; der Beton wird für Wasser durchlässig. Bei der Sickerbetonherstellung ist darauf zu achten, dass sämtliche Zuschlagkörner vom Zementleim umhüllt und an den Kontaktstellen miteinander «verklebt» werden, die Hohlräume dürfen aber beim Einbringen nicht ausgefüllt werden. Diese Forderungen erfüllt ein Beton mit steifer, besser «erdfeuchter» Konsistenz. Als Faustregel wird auch angegeben, dass frischer Sickerbeton gerade «speckigglänzend» aussieht, wenn er mit einer Kelle überstrichen wird [3]. Grössere Zementleimschichten auf den Zuschlagkörnern lassen sich durch die Verwendung von wasserreduzierenden Hilfsmitteln erzielen [5].

# Anforderungen an die Zuschlagstoffe

Die Grösse der Hohlräume im Sickerbeton hängt von der Grösse, der Form und der Abstufung der Zuschlagstoffe ab. Durch eine enge Korngrössenverteilung, also beispielsweise 4–8 mm, 8–16 mm oder 16–32 mm, lässt sich die Menge der Hohlräume beherrschen und theoretisch berechnen [3]. Derart zusammengesetzter Sickerbeton – das Grösstkorn ist höchstens doppelt so gross wie das Kleinstkorn – wird auch Einkornbeton genannt. Bei Kies und gebrochenem Material muss übrigens der Anteil an flachen Teilen (Länge mehr als dreimal grösser als Dicke) beschränkt werden [5].

# 3 Mischungsverhältnisse

Eine kleine Umfrage bei Fertigbetonwerken ergab, dass in der Schweiz vor allem Sickerbeton mit der Kornfraktion 32–50 mm – einer Überschusskomponente – und Portlandzementgehalten zwischen 100 und 150 kg/m³ verkauft wird. Dieser Sickerbeton wird auch Geröllbeton genannt. Sickerbeton mit der Kornfraktion 16–32 mm wird ebenfalls angeboten; Sickerbetone anderer Zusammensetzung (beispielsweise Kornfraktion 8 bis 16 mm) werden auf Anfrage hergestellt.

Für bestimmte Anwendungen wurden aufgrund von Erfahrungen spezielle Rezepte entwickelt. Aus Deutschland stammen die folgenden Beispiele [3]:

|   | Sickerbeton zur Ummantelung von Filterrohren   |                        |
|---|------------------------------------------------|------------------------|
|   | Kiessand 2-8 mm                                | 1600 kg/m <sup>3</sup> |
|   | Portlandzement                                 | 160 kg/m <sup>3</sup>  |
|   | Wasser                                         | 58 kg/m <sup>3</sup>   |
| • | Sickerbeton für Filterkörper (Platten, Steine) |                        |
|   | Natursand 2-4 mm                               | 1600 kg/m <sup>3</sup> |
|   | Portlandzement                                 | 300 kg/m <sup>3</sup>  |
|   | Wasser                                         | 108 kg/m <sup>3</sup>  |
|   | Sickerbeton für Filterrohre                    |                        |
|   | Edelsplitt 2–5 mm                              | 1600 kg/m <sup>3</sup> |
|   | Portlandzement                                 | 330 kg/m <sup>3</sup>  |
|   | Wasser                                         | 118 kg/m <sup>3</sup>  |

Ein Beispiel aus der Schweiz zeigt, dass mindestens im Bereich der Filterbetone teilweise mit recht komplexen Mischungen gearbeitet wird: Für Filterplatten und Filtersteine verwendet ein Hersteller Sand 0–3 mm, Sand 3–8 mm, Brechsand 0–3 mm sowie Splitt 3–16 mm (Wasserzementwert etwa 0,35).

# Eigenschaften von Sickerbetonen

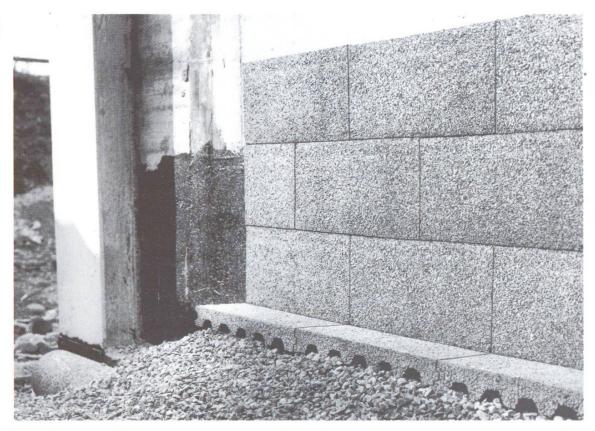
Festigkeiten müssen an separat hergestellten Prismen und Würfeln ermittelt werden; das Ziehen von Bohrkernen ist meistens nicht möglich, da dadurch Gefügestörungen auftreten. Für die Abschätzung der Druckfestigkeit in Abhängigkeit vom mittleren Korndurchmesser der Zuschläge und vom Zementgehalt sind empirische Formeln aufgestellt worden [3]. Einen Eindruck vom Einfluss des Korndurchmessers der Zuschläge, des Zement- und des Wassergehalts auf die Druckfestigkeit vermittelt *Tabelle 1*. Erwartungsgemäss ergibt feinkörniger Einkornbeton grössere Festigkeiten als grobkörniger, denn sein Korngerüst weist mehr Berührungsflächen auf.

Die Grösse der sogenannten «Haufwerksporen» (Öffnungen, durch die das Wasser fliesst) hängt selbstverständlich von der Grösse der Zuschlagkörner ab [4]. Sie beträgt beispielsweise im Mittel 1,3 mm 4 für Zuschläge der Fraktion 8–11 mm. Bei den üblicherweise verwendeten Korngruppen erreicht der Hohlraumgehalt 35–45 %.

Da Sickerbeton offenporig und sein Wasserzementwert niedrig ist, sind keine Sprengwirkungen von gefrierendem Wasser zu erwarten; Sickerbeton ist frostbeständig. Dagegen ist er seiner grossen Angriffsfläche wegen weit anfälliger auf chemisch aggressive Wässer als dichter Beton. Bei einem möglichen Sulfatangriff ist ein Portlandzement mit hoher Sulfatbeständigkeit zu verwenden.

# Verwendung von Sickerbeton

Sickerbeton im herkömmlichen Sinn (Einkornbeton) ist vergleichsweise billig. Einige Hauptanwendungen sind:


- Ableitung von Grund- und Meteorwasser bei Gebäuden
- Trockenlegung von Baugruben und Gebäudeteilen unter Terrain
- Einbettung von Wasser- und Drainageleitungen
- Entwässerung von Böschungen in rutschigem, wasserführendem Gelände
- Betonriegel
- Unterlagsbeton für elektrische Leitungen

In Deutschland wird Sickerbeton für Entwässerungen im Strassenbau und bei Start- und Landebahnen von Flughäfen gebraucht [3]. Diese Anwendungen haben sich in der Schweiz nicht durchgesetzt.

Zu den Anforderungen an das an den Sickerbeton grenzende Bodengefüge sei hier nur erwähnt, dass keine Feinteile in den Sickerbeton gelangen dürfen, die diesen verstopfen könnten. (Für weitere Informationen siehe [4].)

Sickerbeton darf nicht mit Vibriernadeln verdichtet werden. In der Schweizer Norm SN 640342 a [2] wird jegliches Verdichten untersagt, während in den Niederlanden das Verdichten von oben durch leichtes Stampfen oder Vibrieren empfohlen wird [5]. Gute Druckfestigkeiten und Beständigkeiten lassen sich nur erreichen, wenn die Hydratation des Zements möglichst ungestört erfolgt. Vor allem bei dünnen Schichten erfordert dies eine sorgfältige Nachbehandlung, beispielsweise durch Abdecken mit Kunststoffolien, damit ein Austrocknen bei warmer Witterung bzw. ein Ausschwemmen des Bindemittels bei Regen verhindert wird.

|                                      | Zuschläge (mm) |           |            |
|--------------------------------------|----------------|-----------|------------|
|                                      | Kies 4–8       | Kies 4–16 | Kies 16–32 |
| Zementgehalt (kg/m³)                 | 200-400        | 150-300   | 75–150     |
| Wassergehalt (I/m³)                  | 75–150         | 75–125    | 50-100     |
| Druckfestigkeit (N/mm <sup>2</sup> ) | 15–30          | 10-20     | 5-15       |



Versetzen von Filterplatten: Auf einer Schicht Filterkies liegt eine horizontale Schicht von Filterfusssteinen, auf denen die Filterplatten entlang der Wand aufgeschichtet werden.

(Foto: Sebastian Müller AG)

# Einsatz von Filterbeton

Filterbeton, ein Sickerbeton mit relativ feinem Zuschlagsmaterial, wird für Filterrohre, Filterplatten und Filtersteine verwendet. Allerdings scheint sich in der Schweiz die Produktion von Filterrohren [6] nicht mehr zu lohnen. Gelochte Beton- und vor allem gelochte Kunststoffrohre ersetzen sie zunehmend.

Vorfabrizierte Betonfilterplatten, ausgebildet als einfache Platten oder als Platten mit Hohlkammern, ersetzen Stein-, Geröll- und Sickerpackungen entlang von senkrechten oder stark geneigten Baukörpern wie Fundamentmauern im Hoch- und Tiefbau (Kellerfundamente, Stützmauern, Unterführungen). Sie werden im einfachsten Fall trocken an der Wand aufgeschichtet. Als Basis dient die Filterschicht über dem Filterrohr oder eine Reihe horizontal verlegter, ebenfalls wasserdurchlässiger Filterfusssteine. Durch Aussparungen entlang der wandnahen Seite gewährleisten die Filterplatten nicht nur eine wirksame Entwässerung, sondern auch die Belüftung im Wandbereich [7].

Bodenplatten aus Sickerbeton – Betonsickersteine – befestigen und entwässern horizontale Flächen wie Terrassen. Eine interessante Anwendung ist das Verlegen dieser Steine über dem Wurzelbereich von Bäumen, die so weiterhin auf natürliche Weise bewässert werden.



Wasser- und luftdurchlässige Betonsickersteine befestigen eine Fläche gleichmässig und dauerhaft, ohne sie zu versiegeln.

(Foto:

Hunziker-Baustoffwerke AG)

### Schäden am Sickerbeton

Über Verstopfungen von Sickerbetonen ist in der Literatur wenig zu finden. Wie die Berater der Technischen Forschungs- und Beratungsstelle der Schweizerischen Zementindustrie (TFB) in Wildegg aber wissen, treten sie gelegentlich auf; es kommt zur Bildung von Kalkstein, der sich in den Hohlräumen ablagert und diese teilweise auffüllt.

Auf der Ebene der chemischen Vorgänge lässt sich der folgende mögliche Reaktionsverlauf ableiten: Bei der Hydratation des Zements entsteht viel relativ gut wasserlösliches Calciumhydroxid, Ca(OH)<sub>2</sub>. Andererseits ist in den meisten natürlichen Wässern Calciumhydrogencarbonat, Ca(HCO<sub>3</sub>)<sub>2</sub>, gelöst. Wenn calciumhydrogencarbonathaltiges Wasser durch den Sickerbeton fliesst, kann es zur folgenden Reaktion kommen:

$$Ca(OH)_2 + Ca(HCO_3)_2 \rightarrow 2 CaCO_3 + 2 H_2O$$

Das sehr schlecht wasserlösliche Produkt Calciumcarbonat (CaCO<sub>3</sub>) fällt als Kalkstein aus. Diese Erklärung wird auch in einer Untersu-

7 chung über Versinterungen von Sickerbetonen in der Westschweiz aus dem Jahr 1978 als eine mögliche Ursache erwähnt [8].

Zur Abhilfe bietet sich die Verwendung von puzzolanischen oder Hochofenschlackezementen an, wie dies in der Schweizer Norm SN 670 125 a [1] vorgeschlagen wird. Diese Zemente binden Calciumhydroxid bzw. setzen weniger Calciumhydroxid als Portlandzement frei. Ungünstig wirkt sich allerdings ihre langsame Festigkeitsentwicklung aus. Microsilica, das die Druckfestigkeit von Sickerbeton erhöht [10], hätte diesen Nachteil nicht und würde ebenfalls Calciumhydroxid binden. Eine weitere wirksame Massnahme besteht darin, die Kontaktzeit des Wassers mit dem Sickerbeton möglichst zu reduzieren (schnelles Ableiten), wodurch weniger Calciumhydroxid herausgelöst wird.

# Drainbeton

Eine Alternative zu Drainasphaltbelägen, die auch in der Schweiz angewendet werden [9], sollen Drainbetonbeläge sein. Umfangreiche Versuche dazu wurden vor einigen Jahren in den Niederlanden begonnen. Unter anderem wurde auf einer Versuchsstrecke ein 4 cm dicker Drainbetonbelag mit einem Gleitschalungsfertiger auf 24 cm dickem Unterbeton eingebaut. Die bisher vorliegenden Ergebnisse sollen durchaus ermutigend sein. So wirkt die poröse Oberschicht in gewissen Frequenzbereichen lärmabsorbierend, und die Spritzwassermenge wird reduziert.

Einige wichtige Erkenntnisse aus den umfangreichen Labor- und Feldversuchen sind [5, 9, 11]:

- Die maximale Korngrösse des Zuschlags soll 10 mm nicht übersteigen. Besonders geeignet ist scharfeckiges Material der Korngruppe 4–8 mm, das ein stabiles Korngerüst ergibt. Der Sandanteil sollte auf 5 % der Zuschlagmenge beschränkt werden.
- Auf Polymerzusätze kann nicht verzichtet werden. Sie verbessern die Frosttausalzbeständigkeit und die Biegezugfestigkeit, erniedrigen den Wasseranspruch und verkürzen die Nachbehandlungsdauer.
- Drainbetone mit 25 % Hohlraumanteil weisen Druckfestigkeiten von ≥ 20 N/mm² und Biegezugfestigkeiten um 5 N/mm² auf.

Auf weitere Ergebnisse von Versuchen mit Drainbetonbelägen darf man gespannt sein.

Kurt Hermann

# 8 Literatur

- [1] SN 670 125 a, «Filtermaterialien», vom Juli 1983.
- [2] SN 640 342 a, «Drainage», vom Juli 1983.
- [3] *Drinkgern, G.,* «Dränbeton Aufbau, Eigenschaften und Anwendung», Beton **39** [3], 105–110 (1989).
- [4] *Drinkgern, G.,* «Dränbeton Aufbau, Eigenschaften und Anwendung», Beton-Verlag, Düsseldorf, 1988.
- [5] «Open beton», Betoniek **9** [4] (1992).
- [6] «Beton-Filterrohre», Cementbulletin 39 [23] (1971).
- [7] «Sickerplatten», Cementbulletin 37 [15] (1969).
- [8] Houst, Y., et Delisle, J.-P., «L'obstruction des canalisations et drainages en béton filtrant par les dépôts calcaires», Chantier 1978, 21–24.
- [9] Onstenk, H.J.C.M., und Jacobs, L.J.M., «Het geluidarme alternatief van de beton-wegenbouwers», Land+Water **31** [3], 33–39 (1991).
- [10] Köster, H., «Drainasphalt Beobachtungen des Verhaltens von hohlraumreichen Verschleissschichten unter Verkehr», VSS-Forschungsauftrag Nr. 10/82, Schriftenreihe des ITV 85, Zürich 1990.
- [11] «Betonwegendag 3 oktober 1991», Betonwegen-nieuws 86, 3–9 (1991).

Infolge unvorhersehbarer Ereignisse, auf welche die Redaktion keinen Einfluss hatte, musste die bereits gedruckte Februarausgabe des «Cementbulletin» zurückgezogen werden. Wir bitten unsere Leserinnen und Leser, das daraus resultierende verspätete Erscheinen mehrerer Ausgaben unserer Fachzeitschrift zu entschuldigen.

Kurt Hermann

#### Redaktion

Dr. Kurt Hermann TFB, Lindenstrasse 10 5103 Wildegg Telefon 064 57 72 72 Telefax 064 53 16 27

#### Herausgeber

TFB, Lindenstrasse 10 5103 Wildegg Telefon 064 57 72 72

## Das «Cementbulletin»

erscheint einmal monatlich Jahresabonnement: Schweiz: Fr. 25.– Übriges Europa: Fr. 50.– Restliches Ausland: Fr. 80.–

#### Druck

Zürichsee Druckereien AG Seestrasse 86 8712 Stäfa

## Vertrieb/Abonnemente

Frau M. Winter Zürichsee Medien AG Seestrasse 86, 8712 Stäfa Telefon 01 928 52 23 Telefax 01 928 52 00

#### Copyright

TFB Lindenstrasse 10 5103 Wildegg