Zeitschrift: Cementbulletin

Herausgeber: Technische Forschung und Beratung für Zement und Beton (TFB AG)

Band: 36-37 (1968-1969)

Heft: 18

Artikel: Prüfung von Zuschlagsmaterial auf der Baustelle

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-153492

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CEMENTBULLETIN

JUNI 1969

JAHRGANG 37

NUMMER 18

Prüfung von Zuschlagsmaterial auf der Baustelle

Einflüsse der Zuschlagseigenschaften auf die Betonqualität. Einfache Prüfungen bezüglich der Reinheit, des Feuchtigkeitsgehaltes und der Kornzusammensetzung. Tabellen über die günstige Kornverteilung.

Von den drei Grundmaterialien des Betons: Zement, Zuschlag, Wasser, ist der Zuschlag am wenigsten verlässlich. Wenn, selten genug, die qualitativen Eigenschaften eines Betons nicht genügen, so ist dies meistens die Folge von mangelhaftem Zuschlagsmaterial. Oft beobachtet man den indirekten Einfluss über den Wasserzementwert, wonach gewisse Zuschlagsstoffe zu einer höheren Wasserzugabe verleiten und den Beton somit in mancher Beziehung schädigen.

Besonders gefährlich sind Zuschlagslieferungen, die in ihrer Qualität schwanken. So ändert sich der Wasserzementwert mit der Änderung des Feuchtigkeitsgehaltes, sofern von Mischung zu Mischung stur die gleichen Mengen Zement, Zuschlag und Wasserzusammengegeben werden. Will man diesem Übel entgehen, in-

2 dem man das Anmachwasser auf gleichbleibende Betonkonsistenz dosiert, so übertragen sich die Änderungen der Kornzusammensetzung bis zum Wasserzementwert. Schwankungen der Kornverteilung bewirken so unbemerkt Schwankungen der Betonfestigkeit und Betonbeständigkeit.

Die schweizerischen Normen für die Herstellung von Beton (SIA Nr. 162 [1968]) sind auf dem Prinzip der Wasserdosierung auf gleichbleibende Betonkonsistenz aufgebaut und verlangen deshalb eine eng begrenzte Kornzusammensetzung und eine dementsprechende Überwachung des Zuschlagstoffes. Würde umgekehrt der Grundsatz der Wasserdosierung auf gleichbleibenden Wasserzementwert gelten, so müsste man stets den Feuchtigkeitsgehalt des Zuschlages kennen.

Im folgenden sind einige einfach durchzuführende Kontrollen des Zuschlages beschrieben. Voraussetzung dazu ist, dass eine Waage zur Verfügung steht, mit der man bis 30 kg auf 100 g genau wägen kann und dass jeweils eine repräsentative Durchschnittsprobe des Materials verarbeitet wird (mehrere, an verschiedenen Stellen entnommene Teilproben werden zu einer Durchschnittsprobe von 5 bis 30 kg vereinigt).

1. Reinheit

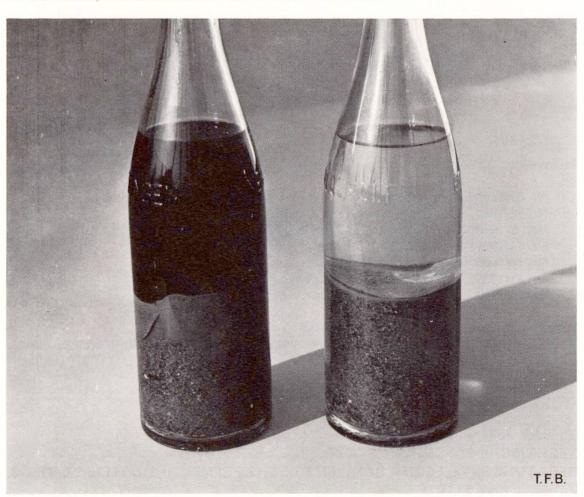
- a) Die Feinstanteile, Silt und Lehm, müssen beschränkt bleiben. Gewaschener Sand oder Kiessand enthält in der Regel keine schädlichen Mengen davon, d.h. die in den erwähnten Normen gesetzte Grenze von höchstens 1,5 Prozent feiner als 0,02 mm wird kaum je erreicht. Die Forderung der Norm lässt sich aber nur mit einem langwierigen Laboratoriumsversuch nachprüfen. Auf der Baustelle orientiert man sich grössenordnungsmässig mit der Flaschenprobe (Abb. 1 rechts): «Man füllt den unteren, geraden Teil einer Flasche bis zur ²/₃-Höhe mit Sand und giesst bis zur ³/₃-Höhe Wasser dazu. Dann wird kräftig durchgeschüttelt, abgestellt und unverzüglich die Höhe des Sandniveaus markiert. In drei Stunden ruhigem Stehen setzt sich aus dem überstehenden Wasser eine Schicht von Silt und Lehm ab, die nach Volumen gemessen nicht mehr als 8 Prozent der Sandmenge ausmachen sollte.» Auch mit der Handprobe kann man unzulässig hohen Lehmgehalt feststellen (s. Abb. 2).
- b) Organische Verunreinigungen, d.h. Überreste pflanzlichen oder tierischen Ursprungs, können die Erhärtungsvorgänge stören und die Festigkeit des Betons herabsetzen. Man erkennt solche Verunreinigungen mittels der Flaschenprobe mit Natronlauge (s. Abb. 1, links).

3 c) Verunreinigungen, welche die Oberfläche von gröberen Zuschlagskörnern krustenartig bedecken, vermindern die Betonfestigkeit in gefährlichem Masse. Solches Zuschlagsmaterial ist unbedingt auszuschliessen, und deshalb ist eine häufige und regelmässige Sicht- und Handprobe unerlässlich.

2. Wassergehalt

Der Feuchtigkeitsgehalt des Zuschlages wird bestimmt, indem man eine Probe genau wägt, trocknet und wieder wägt. Die Gewichtsdifferenz entspricht dem gesuchten Wert, sofern beim Trocknen keine Substanz verlorengegangen ist. Das Trocknen geschieht am besten durch Ausbreiten des Materials auf einem Blech oder auf staubfreiem Kraftpapier (von Zementsack). Wenn

Abb. 1 Flaschenproben


Links: Prüfung des Zuschlages auf organische Verunreinigungen mit 3prozentiger Natronlauge (NaOH-Lösung). Der Sandanteil des Zuschlages wird in einer Flasche mit der genannten Lösung gut durchgeschüttelt, worauf man 24 Std. stehen lässt. Massgebend ist dann die Färbung der überstehenden Flüssigkeit:

weiss-hellgelb:

belanglos

hellbraun: dunkelbraun: bedingt anwendbar nicht anwendbar

Vorsicht! Augen vor Natronlauge schützen! Prüfen, ob in der Flasche kein Gasdruck entsteht. Rechts: Prüfung des Sandes auf Lehm- und Silthaltigkeit. Man erkennt die sich in drei Stunden auf dem Sand abgelagerte Schicht von Feinstbestandteilen in der Stärke von ca. 3 mm. Für die Absetzprobe enthält diese Flasche etwas zu viel Wasser.

4 gelegentlich umgeschichtet wird, so ist der Trocknungsprozess in wenigen Stunden beendet. Durch Erwärmen des Bleches kann nötigenfalls nachgeholfen werden.

3. Kornverteilung, Siebanalyse

Jedes Sieb teilt eine Zuschlagsprobe in zwei Teile, den Siebdurchgang und den Siebrückstand. Ordnet man in einem Diagramm diese Werte den betreffenden Sieblochgrössen zu, so erhält man eine Siebkurve oder Sieblinie. Diese, oder entsprechende Tabellen, geben Aufschluss über die Kornabstufung (Kornverteilung, Granulometrie) des Zuschlaggemisches.

Zwei Sieblinien bestimmter Art, die Fuller- und die EMPA-Kurve, begrenzen den günstigen Bereich der Kornabstufung. Mit Sieb-

Abb. 2 Schmutziger, lehmhaltiger Sand erweist sich bei der Handprobe als schmierig und klebrig.

- 5 proben soll auf der Baustelle festgestellt werden, ob dieser Bereich eingehalten wird und welches die Schwankungen der Kornzusammensetzung von Lieferung zu Lieferung sind.
 - Die praktische Durchführung der **Siebprobe** lässt sich kurz wie folgt beschreiben:
 - Eine genau abgewogene getrocknete Probe wird ausgesiebt, beginnend mit dem gröbsten und endend mit dem feinsten Sieb. Dabei ist darauf zu achten, dass kein Material verlorengeht und dass die Aussiebung mit jedem Sieb jeweils vollständig geschieht.
 - Die Rückstände auf jedem Sieb, wie auch der verbleibende feinste Rest, werden gewogen, aufaddiert und in Prozent der Gesamtprobe umgerechnet wie z.B.:

Siebanalyse, Kiessand 0/30, Probemenge: 5,78 kg

Siebweiten	Sieb	rückstände	Siebdurchgänge		
mm	gewogen kg	aufaddiert kg	in %	in %	
32	0,87	0,87	1,5	98,5	
16	1,24	2,11	36,5	63,5	
8	0,91	3,02	52,6	47,4	
4	0,78	3,80	65,8	34,2	
2	0,76	4,56	79,0	21,0	
1	0,30	4,86	84,2	15,8	
0,4	0,38	5,24	90,6	9,4	
0,2	0,14	5,38	93,1	6,9	
0,1	0,21	5,59	96,8	3,2	
0,00	0,18	5,77	100,0	0,0	
	5,77	1 10 10			

Oieser Siebsatz mit 9 Sieben entspricht dem Vorschlag der neuen Normen SIA Nr. 162 (1968). Die Siebprobe auf der Baustelle kann aber auch mit anderen Sieben dieser Grössenordnung ausgeführt werden, und die Kontrolle ist auch wertvoll, wenn nur mit einem oder wenigen Sieben geprüft wird. Die folgenden Tabellen zeigen die günstigen Bereiche für alle möglichen Siebe und für verschiedene Grösstkorndurchmesser.

Tabelle 1

Masc siebe	hen-	Günstiger Bereich des Siebrückstandes je nach Grösstkorn Grösstkorn:						
Ma- schen- weite mm	Ma- schen pro cm²	8 mm %	12 mm %	15 mm %	20 mm %	30 mm %	50 mm %	64 mm %
0,102	3600	88-94	90-96	91–96	92-96	93–96	95–97	96-98
0,120	2500	87-93	89-95	90–95	91–95	93–96	94–97	95–98
0,150	1600	85-91	88-94	89-94	91-94	92-95	94-97	95-98
0,20	900	82-90	86-93	87–93	89–93	91–95	93-96	94-97
0,25	576	81-89	84-91	86–92	88–93	90-94	92-96	94-97
0,30	400	78–87	83-90	85–91	87–92	89–94	91-95	93-96
0,385	256	75–85	80–88	82-89	85–91	87–93	90–95	92-96
0,40		75–85	80–88	82–89	84–91	87–92	90–94	91-95
0,43	196	74-84	79–87	81–88	84-90	86-92	89-94	91–95
0,49	144	72–83	77–86	80–88	83–90	85–91	89–93	90–95
0,54	121	71–82	76–85	79–87	82–89	85–91	88–93	90–95
0,60	100	69–80	75–85	78–86	81–89	84–90	88–93	90–95
0,75	64	66–77	72–82	75–84	78–88	82–89	87–92	89–94
0,80		65–76	71–81	74–84	78–87	81–89	86–92	88–94
1,0	36	61–72	68–79	71–82	76–85	79–87	85–90	87–92
1,2	25	57–69	66–77	69-80	73–83	78–86	83–89	86–91
1,5	16	51–63	60–72	65–76	69–80	75–84	80–88	82–90
1,6		50-62	59-71	64–75	68–79	74-84	80–88	82-90
2,0		45–56	56-67	59–70	64–76	70–81	78–87	80–88
2,5		37–48	49–61	55–67	60–72	67–78	75–85	79–87
3,2		29-40	42–55	49-61	56-67	63–75	72–82	75–85
4,0		20–27	35–46	42-54	50-61	58-70	68–79	71–82
5,66		5- 8	22-30	31-41	40–51	51–63	62-74	66–78
6,4		0	18–26	27–37	37–49	48–60	60–72	65–76

7 Tabelle 2

Rundlochsiebe

Günstiger Bereich des Siebrückstandes je nach Grösstkorn

_				
G	rös	stk	or	n

ø mm	8 mm %	12 mm %	15 mm %	20 mm %	30 mm	50 mm	64 mm %
0,5	75–84	80–88	82–89	84–91	86–92	90–95	91–96
1,0	65–76	71–82	74–84	78–86	81–89	86–92	88-94
2,0	50-62	59–71	63–75	68–79	74–83	80–88	82-90
4,0	29-40	42-55	48-61	55-68	63–75	72–82	75–84
5,0	20–30	34–45	41–54	50-62	59-71	68–79	72–82
8,0	0-8	18–26	27-37	37–48	48-60	60–72	65–76
10		8–12	18-24	29-39	42-53	55–67	60-72
12		0- 5	10–15	23-30	36-48	51–63	57-69
15			0- 4	13–19	29-40	45–58	51-64
16				11–16	27–37	43-56	50-62
20				0- 4	19–28	37–47	45–56
30					0- 3	23-32	31–42
32						20-28	29-40
40						12–16	22-30
50					12	0- 3	11–18
60							2- 7
64			NEW TEACH	Man Maria			0- 3

Die erste Zahl (untere Grenze) entspricht der Fuller-Kurve, die zweite Zahl (obere Grenze) der EMPA-Kurve.

Mischungen mit kleinerem Grösstkorn als 20 mm sollten zur EMPA-Kurve tendieren, Mischungen mit 50 mm Grösstkorn und gröbere zur Fuller-Kurve.

Hinweise:

CB Nr. 22/1953 Probenahme

Nr. 13/1955 Der Siebversuch auf der Baustelle

Nr. 8/1956 Das Feinkorn im Zuschlagstoff Nr. 14/1961 Einfluss der Kornabstufung

Nr. 14/1961 Einfluss der Kornabstutung Nr. 14/1965 Einfluss des Grösstkornes

Nr. 21/1965 Einfluss des Grösstkornes mit Siebkurven

Nr. 3/1966 Zusammensetzung von Kornfraktionen

Abb. 1 und 2 entnommen aus dem Buch:

Trüb, Baustoff Beton, Verlags-AG der akademischen technischen Vereine, Zürich.

Zu jeder weiteren Auskunft steht zur Verfügung die TECHNISCHE FORSCHUNGS- UND BERATUNGSSTELLE DER SCHWEIZERISCHEN ZEMENTINDUSTRIE WILDEGG, Telephon (064) 53 17 71