Zeitschrift: Cementbulletin

Herausgeber: Technische Forschung und Beratung für Zement und Beton (TFB AG)

Band: 20-21 (1952-1953)

Heft: 6

Artikel: Fehlerquellen in der Betonverarbeitung

Autor: Ganahl, J.

DOI: https://doi.org/10.5169/seals-153287

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CEMENTBULLETIN

JUNI 1952 JAHRGANG 20 NUMMER 6

Fehlerquellen in der Betonverarbeitung

Kleine Auslese der häufigsten Fälle Von J. Ganahl, dipl. Ing., Zürich

Fehler beim Mischen: Wasserzusatz, Mischdauer, Dosierung. Einbringen in die Schalung, Betonierfugen, Nachbehandlung. Hochwertiger Beton.

In ungezählten Abhandlungen und Studien, mit einem imponierenden Aufwand an Tabellen, Bildern und Zahlenmaterial wird laufend dargelegt, wie wichtig und massgebend für die Lebensdauer eines Bauwerkes die sachgemässe Verarbeitung des Betonmaterials ist. Unermüdlich wird darauf hingewiesen, dass selbst die gewohnte ausgezeichnete Cementqualität und ein einwandfrei sortiertes Kiessandgemisch nicht genügen, wenn sie auf der Baustelle unzweckmässig verbunden und nachlässig verarbeitet werden.

Meist ist weder schlechter Wille, noch Unkenntnis der Materie, noch ungeeignetes Werkzeug verantwortlich für eine minderwertige Betonqualität. Die Klagen auf den kleinen Baustellen tönen anders: «Wir sind auf die Belieferung aus dieser oder jener Kiesgrube angewiesen. Unsere Preise erlauben es nicht, in jedem Betonhäufchen lange herumzustochern, um alle Kiesnester zu vermeiden. Flüssiger Beton nimmt uns diese Sorge ab. Im übrigen ist uns deswegen noch keine Decke eingestürzt. Unsere Ingenieure rechnen sowieso mit grossen Sicherheiten!»

Abgesehen davon, dass der seriöse Bauhandwerker sich bewusst bleibt, seinem Klienten, dem Bauherrn, für dessen Geld vollwertige «Ware» liefern zu müssen, führt die Vernachlässigung bewährter Regeln nicht nur zu einem Qualitätsrückgang, sondern birgt auch Gefahren technischer und finanzieller Natur in sich.

Aus den nachfolgenden Details ist leicht zu ersehen, wie einfach viele dieser Fehlerquellen behoben werden können.

Abb 1
Diese Betonmischung enthält zuviel
Kies und ist trotz grossem Wasserzusatz schlecht verarbeitbar. Solcher
Beton gibt Anlass zu Nesterbildung

Abb. 2
Dieser Beton ist richtig! Alle Bestandteile sind in den günstigsten Verhältnissen vorhanden und die Konsistenz ist so, dass der Beton erst beim Verdichten plastisch (teigförmig) wird. Beim Streichen mit der Kelle bildet sich eine geschlossene Oberfläche

Abb. 3
Die Mischung enthält zuviel Sand und Wasser. Obwohl sehr leicht verarbeitbar, können mit solchem Beton keine hohen Festigkeiten und Undurchlässigkeiten erzielt werden

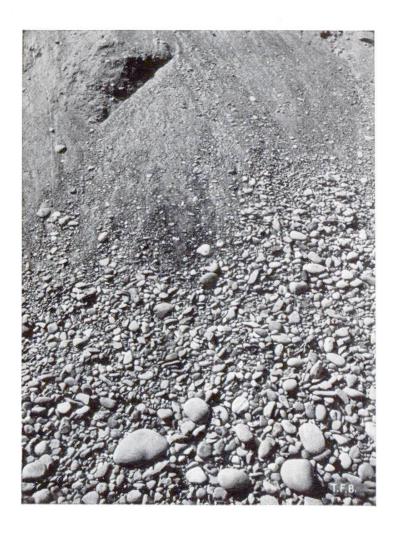
1. Fehler beim Betonmischen.

a) Der Wasserzusatz:

Wir wollen an dieser Stelle nicht um die Prozente des Wassergehaltes rechten. Zu oft ersetzt der Schöpfeimer und die direkte Schlaucheinspritzung den nicht funktionierenden Wassermesser. Trotzdem wird kein verantwortungsbewusster Vorarbeiter jene Betonbrühe dulden, die oft eingebracht wird unter dem Vorwand, die Mischung könne sonst zwischen den Eisen nicht genügend verarbeitet werden. Auch entgegen besserer Einsicht, dass diese übermässige Wasserzugabe die Widerstandsfähigkeit des Betons sehr stark herabsetzt. Würfelproben ergeben in solchen Fällen oft Werte, die nahe an den tatsächlich auftretenden Spannungen liegen, so dass es mit dem viel zitierten Sicherheitsgrad nicht mehr weit her ist. Es wird auch übersehen, dass solcher Beton gegen Frostgefahr

nicht widerstandsfähig ist, dem Bauherrn also «schlechte Ware» verkauft wird. Man vergesse nie, dass jeder Liter zuviel Anmachwasser die Festigkeit von 2—3 kg Cement zerstört.

Selbstredend muss der Beton eine gewisse Plastizität aufweisen, um den Mischer einwandfrei entleeren zu können und dem Gewirr von Armierungsrundeisen beizukommen. (Über die Erleichterungen durch Vibrieren später.)


Wie nebenstehende Aufnahmen zeigen, ist es ein Leichtes, an einer kleinen Probeentnahme, die geeignete Plastizität und Qualität des Betons zu beurteilen.

b) Entmischung am Kiessandhaufen.

In Abb. 1 ist der Kiesanteil zu gross. Die Kontrolle am eintreffenden Gemisch auf dem Lastwagen war vielleicht noch in Ordnung. Der Haufen vor der Maschine ist es nicht mehr. Durch zu grosse Häufung oder hohen freien Fall haben sich Kies und Sand zumindest oberflächlich entmischt. Dieser Tatsache sollte beim Einschaufeln durch wechselnde Entnahme feinerer und gröberer Partien Rechnung getragen werden, d. h. die Arbeiter müssen immer wieder dazu angehalten werden.

c) Mischdauer.

Um Zeit zu gewinnen, wird oft die bescheidene Mischdauer von 1 Minute weit unterboten. Kaum ist hinten das Gemisch

eingebracht und spritzt das Wasser klatschend gegen die Wände, wird die Masse vorn auch schon ausgeschüttet. Daher die häufige Tatsache, dass die erste Kübelfüllung sehr wasserreich und die zweite sehr steifplastisch an den Verteilort kommt. Eine schädliche Unregelmässigkeit, die selten durch nochmaliges Umschaufeln in der Schalung korrigiert wird.

d) Cementdosierung:

Eine häufige Klage: Wir brauchen viel mehr Cement als vorher errechnet! Wo liegt der Fehler? Alle gebräuchlichen Formeln zur Bestimmung der Litermasse pro Mischung basieren auf angenommenen Mittelwerten der Raumgewichte von Kies-Sand und Cement. Je grösser das Raumgewicht, das «Schüttgewicht» des Kiessandgemisches, d. h. je weniger Poren das Gemisch aufweist, um so weniger Liter und Anzahl Mischungen braucht es für einen m³ fertigen Beton.

Raumgewicht für Sandkies in t/m ³	1.50	1.60	1.70	1.80	1.90	2.00
Litergehalt für 1 m³ f. Beton	1300	1220	1150	1080	1020	980
Porengehalt in $0/0$ ca.	43,5	40	36	32	28	24,5

(Werte entnommen aus dem Buch von Dr. Ing. Humm und Bulletin November 1941.) In runden Zahlen ausgedrückt, schwankt also die Füllzahl einer 100 l-Maschine je nach der Zusammensetzung des Kiessandmaterials pro m³ Beton zwischen 10 und 13 Füllungen. War die Annahme auf 10 Mischungen und die Dosierung 30 kg Cement pro Füllung, während in Wirklichkeit ein schlechtes Kiesgemisch angeliefert wurde, das 13 Mischungen erfordert, ist der Mehrverbrauch an Cement pro m³ fertigen Beton 90 kg!

Meist liegt der Fall nicht so krass. Aber bei grossen Betonkubaturen fallen auch kleinere Werte ins Gewicht.

Kontrollmöglichkeiten vor Beginn des Betonierens.

Raumgewicht des Cementes.

1 Sack Cement (oder kleineres Gewicht) in ein Gefäss mit rechteckigem Grundriss ausschütten, ebene Oberfläche erstellen, Volumen errechnen!

$$Raumgewicht = \frac{Cementgewicht}{Volumen}$$

Mittleres Raumgewicht ca. 1.12 t/m³; d. h. 45 l Cement pro Sack. Kistchen mit 1000 cm² Grundriss verwenden: 1 cm Höhe = 1 l Cement.

5 Raumgewicht des angelieferten Kiessandgemisches.

Auf gleiche Weise mit möglichst grossen Quantitäten bestimmen, um Zufälligkeiten in der Zusammensetzung zu eliminieren. Gute Mittelwerte ca. 1.8—2.0 t/m³, d. h. Kiessandbedarf von ca. 1000—1100 l/m³ fertiger Beton bei ungebrochenem Material. Stärkere Abweichungen können durch Zusätze korrigiert und die Füllungszahlen genauer ermittelt werden, oder das Material wird als untauglich zurückgewiesen.

Nachkontrolle während des Betonierens.

Ausmessen einer bereits eingebrachten Betonkubatur (z. B. Massivplatte oder Mauerteil). Vergleich mit der verbrauchten Kiessandmenge, Anzahl der Füllungen und der Cementmenge. Eventuelle Korrektur der vorerst angenommenen Zahlen.

2. Einbringen des Betons in die Schalung.

Die Anwendung des Vibrators ist heute auch im Kleinbetrieb zur Selbstverständlichkeit geworden. Häufig vereitelt allerdings eine unsachgemässe Ausführung den Zweck, einen möglichst kompakten Beton zu erhalten.

Abb. 5 Verdichten mit Nadelvibrator bis zum Wasseraustritt an der Oberfläche und Nachlassen der Luftblasen

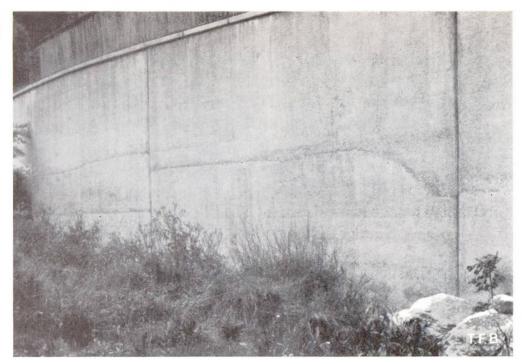
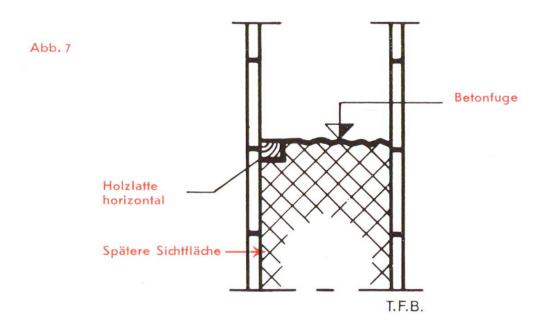


Abb. 6 Betonmauer mit schräg abfallenden Fugen

Nachstehend einige kurze Hinweise:

- a) Vibrator kurz eintauchen, bis Wasser und Luftblasen an der Oberfläche erscheinen. Nadel nicht zu lange eingetaucht lassen, Entmischungsgefahr! (Abb. 5)
- b) Die früher zitierte Betonbrühe lieber gar nicht vibrieren. Es ist meist zwecklos und Entmischung wahrscheinlich. Kiesnester en masse.
- c) Wenn beim Herausziehen des Nadelvibrators offene Löcher im Beton zurückbleiben, die sich nicht sofort schliessen, Wasserbeigabe in der Mischtrommel leicht erhöhen.
- d) Systematisch vorgehen. Nicht wahllos den Vibrator da und dort hinwerfen. Sukzessive die gesamte ausgebreitete Masse bearbeiten, so dass sich die Wirkungskreise überschneiden. Nicht an der Kippstelle ständig im grossen Haufen herumstochern.
- e) Bei grossen Deckenstärken, z.B. Luftschutzdecken, den Vibrator nicht nur auf der Oberfläche hin- und herschleifen, sondern in die Betonmasse eintauchen.
- f) Bei Hohlkörperdecken planmässig den Rippen nachgehen, geeignete dünnere Nadel wählen und in die Rippen einführen. Dort sind die grössten Gefahrenherde für die Kiesnester.
- g) Bei starken Säulen Innenvibration durch äussere auf Schalung ergänzen. Besonders in den Ecken (Abbröckeln beim Ausschalen wegen zahlreicher Hohlstellen).

7 3. Betonierfugen.


Sie sollten möglichst unabhängig von der «Znünipause» und dem Abendläuten sein und sich aus Überlegungen statischer und konstruktiver Natur ergeben.

a) Z. B. bei Hohlsteindecken nicht erst sämtliche Rippen füllen und den Überbeton teilweise erst am nächsten Morgen aufbringen, besonders dann, wenn die Armierungsbügel fehlen. Rippen und Überbeton bilden eine statische Einheit, die durch einen langen Unterbruch illusorisch werden kann. Arbeitsfugen parallel zur Tragrichtung der Rippen legen.

Das gleiche gilt für normale Platten.

Bei komplizierteren Tragsystemen werden die Fugen durch die Bauleitung nach statischen Gesichtspunkten von Fall zu Fall anzuordnen sein. Bei Wiederaufnahme der Arbeit kein Bestreichen der Fugenflächen mit Cementmilch. Dafür sauber abspritzen, gut nässen und eventuell leicht aufrauhen.

b) Unschön anzusehen sind besonders bei Mauern, Stützmauern etc., soweit sie unverputzt bleiben, die schräg nach unten verlaufenden Betonierfugen (Abb. 6). Statt den Beton in horizontalen, gut verarbeitbaren Schichten einzubringen, wird er in hohen Lagen eingeschüttet und ständig schräg nach unten vorgeschoben. Durch Einlage einer einfachen Holzlatte kann nach Wiederaufnahme der Arbeit ein sauberer Anschluss erzielt werden (Abb. 7).

4. Nachbehandlung des Betons.

Hier kann im heissen Sommer nur ein Grundsatz gelten: Lieber mehr Wasser während und nach dem Erhärten des Betons verwenden, als während des Mischens am frischen Beton!

8 5. Hochwertiger Beton.

Ist hochwertiger Beton vorgeschrieben, besteht leider weitgehend die irrige Auffassung, dass mit der Verwendung eines schnellbindenden oder hochwertigen Cementes dieser Forderung Genüge getan sei. Dem ist bei weitem nicht so. Häufig zeigen nachträgliche Würfelproben, dass mit normalem Portlandcement höhere Werte erzielt wurden als mit einem hochwertigen Produkt, wobei der Fehler bestimmt nicht beim Cement gelegen ist.

Ein hochwertiger Beton wird in erster Linie durch eine hochwertige Bearbeitung erzielt, d. h. indem der ganzen Litanei von Problemen, wie Qualität und Zusammensetzung der Zuschlagstoffe, Mischdauer, Wasserzusatz, Nachbehandlung etc. äusserst gewissenhafte Beachtung geschenkt wird. Vor allem aber, und hier liegt meist der Hase im Pfeffer, müssen die entsprechenden Anordnungen auf der Baustelle auch tatsächlich ausgeführt werden bis hinunter zum letzten Bauhandlanger. Gewissenhafte Ausführung, gute Baustellenorganisation und eine kritische Beobachtung der Baustoffe ermöglichen auch unter bescheidenen Verhältnissen Qualitätsarbeiten, ohne grosse finanzielle Mehrbelastung.

Meist fehlt es ja nicht am Wissen um diese Dinge, sondern an der Unterschätzung ihrer Bedeutung für ein gutes Endresultat.