Zeitschrift: Cementbulletin

Herausgeber: Technische Forschung und Beratung für Zement und Beton (TFB AG)

Band: 6-7 (1938-1939)

Heft: 2

Artikel: Chemische Einflüsse auf Beton

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-153134

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

CEMENTBULLETIN

MÄRZ-APRIL 1938 JAHRGANG 6 NUMMER 2

Chemische Einflüsse auf Beton

Zerstörungsmöglichkeit durch die schädliche Einwirkung fester Stoffe, Flüssigkeiten und Gase. Schutzmassnahmen: dichter Beton und Mörtel, Oberflächen-Imprägnierung, chemisch widerstandsfähige Anstriche, Plattenverkleidung, Metallisierung.

Dem Beton die Zukunft!

Beton und besonders Eisenbeton sind in Tat und Wahrheit sehr widerstandsfähige Baustoffe. Sie werden vom Wasser nicht angegriffen und sind nur schwer zerstörbar durch Zug, Druck, Schlag und Feuer; ausserdem ist die Wetterbeständigkeit des Betons derjenigen vieler Natursteine überlegen. Die weitgehende Widerstandsfähigkeit des Betons gegen alle diese physikalischen Einflüsse wurde in den Cementbulletins No. 8 und 9 vom Jahre 1935 begründet und an Hand typischer Beispiele veranschaulicht. Zufolge aber der stets zunehmenden Anwendungen des Betons in den verschiedensten Gebieten des Bauwesens ist er auch nicht selten gefährlichen chemischen Einflüssen ausgesetzt, die übrigens eine zersetzende Wirkung auf fast alle Baumaterialien ausüben. Ein wirksamer Schutz ist meist möglich, aber dazu gehören genaue Kenntnisse über die Art der Zerstörung.

I. Chemische Einflüsse:

Feste Stoffe, Flüssigkeiten und Gase können auf Beton zerstörend wirken; eine Schädigung des Betons durch feste Stoffe und Gase ist nur bei Anwesenheit von Feuchtigkeit möglich, wobei bereits Luftfeuchtigkeit genügt.

Ihrer Natur und ihrer Einwirkung nach, können chemische Stoffe eingefeilt werden in Basen, Säuren und Salze.

Basen: Natron- und Kalilauge, Ammoniak- und Kalkwasser; organische Basen.

Als basische Verbindung wird der Beton von den in der Praxis vorkommenden Basen nicht angegriffen. Konzentrierte Kali- und Natronlaugen können jedoch bei längerer Einwirkung gefährlich sein.

Säuren: a n o r g a n i s c h e S ä u r e n : Schwefelsäure, Salzsäure, Salpetersäure usw.; o r g a n i s c h e S ä u r e n : Essigsäure, Milchsäure, Gerbsäure, Fruchtsäuren, Oelsäure usw.

Die meisten Säuren wirken lösend auf den Beton, indem sie den Kalk des Cementes und der Zuschlagstoffe herauslösen. Je stärker die Säure, desto schneller spielt sich der Zerstörungsvorgang ab, woraus sich erklärt, dass im allgemeinen die anorganischen Säuren gefährlicher sind als die organischen Säuren.

Salze: Anorganische Salze: Sulfate, Chloride, Nitrate, Karbonate, usw. Organische Salze und esterartige Verbindungen: von sehr komplizierter Zusammensetzung; nur die im praktischen Leben unter dem Namen Fette oder fette Oele sind betongefährlich.

Die meisten Salze sind für Beton unschädlich und dies erklärt die grosse Beständigkeit des Betons gegenüber Wässer und Böden, denn fast alle in der Natur vorkommenden löslichen Verbindungen sind Salze. Von den Natursalzen sind die Sulfate und die Magnesiumsalze gefährlich, weil sie zu Treiberscheinungen führen. Als Industriesalze sind gewisse Ammoniumsalze (Chlorid, Nitrat) infolge Bildung von löslichen Salzen ebenfalls schädlich. Fette Oele können von nachteiliger Wirkung sein, da eine Verseifung des Kalkes in Beton eintritt.

Daraus lässt sich die Betongefährlichkeit der praktisch vorkommenden Stoffe wie folgt beurteilen.

Feste Stoffe: Böden mit saurer Reaktion, mit einem zu hohen Gehalt an Sulfate oder an Magnesiumsalze¹ sind betongefährlich. Düngemittelbestehend aus Superphosphaten oder Ammonsalzen greifen den Beton an; Chilesalpeter ist unschädlich. Er ze und Kohle mit geringem Schwefelgehalt sind ohne nachteilige Einwirkung, schwefelreiche Kohlen und Erze können dagegen eine weitgehende Zerstörung des Betons verursachen.

Flüssigkeiten: Basen lösungen (Natron- und Kalilauge, Ammoniakwasser, usw.) ohne Beimengung schädlicher Salze, üben keinen nachteiligen Einfluss auf den Beton aus. Dagegen sind alle Säurelösungen betongefährlich. Die Salzlösungen sind, wie bereits erwähnt wurde, zum grössten Teil unschädlich. Gewisse Salze greifen jedoch den Beton stark an und erfordern infolgedessen wirksame Schutzmassnahmen, so z. B. Gips, Bittersalz, Magnesiumchlorid, Ammoniumnitrat usw.

Gase: Cementgefährlich sind: Schwefelwasserstoff, schweflige Säure, Chlor und Kohlensäure. Schwefelwasserstoff entsteht beim Verfaulen organischer Substanzen und hat schon in Abwässerkanälen, Jauchegruben, usw. bedeutende Betonschäden verursacht.

Schweflige Säure ist noch gefährlicher als Schwefelwasserstoff, da sie sofort zu Gipstreiben führt. Dieses Gas kommt besonders in Rauchgasen vor, wenn schwefelreiche Kohle verbrannt wird. Chlor ist deshalb betongefährlich, weil er sich in Gegenwart von Wasser in Salzsäure umwandelt, das den Kalk in das leichtlösliche Kalziumchlorid überführt.

Gasförmige Kohlensäure greift den Beton nicht an. Nur sehr grosse Mengen Kohlensäure in wässriger Lösung vermögen eine zersetzende Wirkung auf den Cement auszuüben. Stark kohlensäurehaltige Grundwässer und Quellwässer sind somit beton-

gefährlich (aggressive Kohlensäure!).

II. Feststellung der Betongefährlichkeit.

Wir haben konstatieren können, dass nur eine beschränkte Anzahl chemischer Stoffe den Beton zu zerstören vermag und, dass besonders bei den in der Natur vorkommenden Verbindungen, eine Betonzersetzung erst von der kritischen Konzentration an

siehe: "Vorschrift zur Untersuchung von Böden auf Cementgefährlichkeit" von Dr. H. Gessner
Bericht Nr. 29 der Eidg. Materialprüfungsanstalt, April 1928.

4 möglich ist. Will man sich somit über die wirkliche Cementgefährlichkeit eines Bodens, eines Grundwassers, eines Abwassers, usw. Rechenschaft geben, so ist eine Probeentnahme und eine chemische Untersuchung der betreffenden Stoffe durch einen Fachmann erforderlich. Dank ihrer reichen Erfahrung auf diesem Gebiet sind die staatlichen Maierialprüfungslaboratorien am besten in der Lage, solche Versuche einwandfrei durchzuführen und die Aggressivität der untersuchten Stoffe richtig zu beurteilen. Man begnüge sich infolgedessen nie damit, die Boden- oder Wasserproben selbst zu entnehmen und irgendeinem Chemiker zwecks Untersuchung zu senden. Durch ein solches Vorgehen wird selten ein richtiges Bild über die Betongefährlichkeit der geprüften Stoffe zu erhalten sein. Dass dabei kostspielige Schutzmassnahmen umsonst getroffen werden oder unerwartete Betonzerstörungen nach kurzer Zeit eintreten können, braucht kaum erwähnt zu werden.

III. Schutzmassnahmen.

Die Widerstandsfähigkeit eines Betons sowohl gegen physikalische als gegen chemische Einflüsse ist vor allem durch ein dichtes Gefüge zu erreichen.

Im Gegensatz zum porösen Beton wird dichter Beton infolge seiner Wasserundurchlässigkeit von den aggressiven Flüssigkeiten nur an der Oberfläche angegriffen werden.

Zur Erzielung eines kompakten, rissfreien und somit wasserundurchlässigen Betons dienen folgende Massnahmen:

- a) ausreichende Cementdosierung zwecks Ausfüllens der feinen Hohlräume,
- b) günstig zusammengesetzte Zuschlagstoffmischung (wenig Hohlräume),
- c) mässiger Wasserzusatz Vermeidung von Wasserporen. Bei gleichbleibender Konsistenz (Verarbeitbarkeit des Betons) kann eine wesentliche Herabsetzung der Anmachwassermenge durch die Vibration ¹ oder durch besondere Cementzusätze ² erzielt werden, was gleichzeitig eine Erhöhung der Betondichte zur Folge hat,
- d) sorgfältige Mischung, fachgemässer Transport keine Kiesnester, keine Entmischung —
- e) Verdichtung des Betons bei der Einbringung Stampfen, Stochern, Klopfen der Schalung, Vibration —
- f) möglichst lange Feuchthaltung des fertig eingebrachten Betons, um Schwindrisse zu vermeiden — 7 bis 14 Tage —
- g) sorgfältige Behandlung der Arbeitsfugen Entfernung des Schlammes, Aufrauhen der Oberfläche, Befeuchten der bereits erhärteten Betonlage —

¹ "La vibration du béton" (Seite 7), W. Jeannin, 1936.

² Einfluss des Zusatzes von Plastiment auf die bautechnischen Eigenschaften des Betons, Prof. Dr. M. Roš, 1934. Influence de l'addition de plastiment sur la qualité des bétons, Prof. J. Bolomey, 1935.

Gewisse Cementzusätze verhindern die unerwünschte Schlammbildung und üben somit eine günstige Wirkung auf die Dichtigkeit und die Festigkeit des Betons bei den Betonierungs- und Arbeitsfugen aus.

Für Betonbauten, die chemischen Einflüssen ausgesetzt sind, wird nicht selten die Verwendung von Sondercementen empfohlen. Es ist jedoch nachgewiesen, dass stark aggressive Flüssigkeiten, wie Säuren, alle Cemente zersetzen, allerdings in kürzerer oder längerer Zeit. Es wäre somit falsch, zu glauben, dass allein durch die Verwendung von Sondercementen ein chemisch widerstandsfähiger Beton zu erhalten ist. Viel wichtiger als die Cementart ist die Dichtigkeit des Betons, was deutlich durch folgende Feststellung aus dem Untersuchungsbericht der schweizerischen Kommission zur Prüfung des Verhaltens von Cementröhren in Meliorationsböden bewiesen wird: "«sehr dichte Rohre (Schleuderrohre) erwiesen sich als sehr gut; weniger dichte Rohre, sei es aus Tonerdecement oder aus Portlandcement, sind dagegen gegen chemische Angriffe der Böden empfindlich.»

Die unterzeichnete Stelle erteilt auf Wunsch nähere Auskünfte über die Eignung der verschiedenen Cementarten bei Betonbauten, die chemischen Einflüssen ausgesetzt sind.

Die eigentlichen Schutzmittel, die an der Oberfläche des Betons angebracht werden, verfolgen den Zweck, den Beton vor dem Zutritt der schädlichen Flüssigkeiten und Gase zu schützen.

Verputz: kompakter, fettdosierter Mörtel mit Zusatz von Wasserdichtungs- und wasserabweisenden Mitteln. Ausserordentlich dichte Mörtel werden mit der Cementkanone (Gunitierung) erzielt. Ein Verputz allein kann aber den Beton nur gegen wenig aggressive Stoffe auf die Dauer wirksam schützen; bei ausgesprochen cementgefährlichen Flüssigkeiten ist gleichzeitig die Anbringung eines chemisch widerstandsfähigen Anstriches erforderlich.

Anstriche lassen sich in Oberflächen-Imprägnierungen und aufliegende Anstriche trennen.

Oberflächen-Imprägnierungen mittels Flüssigkeiten, die mit dem Beton harte, unlösliche und chemisch widerstandsfähigere Verbindungen bilden. Zu diesem Zwecke werden meist Fluate oder Wasserglas (Alkalisilikate) verwendet.

A ufliegende Anstriche bilden eine mit dem Beton nicht verwandte Schutzhaut, ohne mit ihm eine chemische Verbindung einzugehen; sie bestehen meistens aus bituminösen Produkten, die einen wasserdichten und chemisch widerstandsfähigen Film bilden. Solche Anstriche sind gegen mechanische Abnützung empfindlich und werden mit den Jahren brüchig; sie sollen deshalb von Zeit zu Zeit erneuert werden.

Normen für die Herstellung von Cementröhren, Bericht Nr. 29 der Eidg. Materialprüfungsanstalt, 1928.

6 Bewährte Imprägnierungs- und Anstrichmittel werden im Handel unter verschiedenen Markennamen verkauft. Es empfiehlt sich aber, nur solche Erzeugnisse zu verwenden, deren Wirksamkeit von einer amtlichen Materialprüfungsstelle begutachtet wurde.

Plattenverkleidungen finden der hohen Kosten wegen nur in bestimmten Fällen Anwendung. Die aus chemisch widerstandsfähigen Materialien (Glas, Ebon usw.) bestehenden Platten, die mit Spezialkitt ausgefugt werden, schützen den Beton gegen seine gefährlichsten Feinde (z. B. konzentrierte Säuren). So sind mehrmals für Mischsäure an Stelle der wesentlich teureren Bleibottiche verkleidete Betonbehälter mit Erfolg verwendet worden. Solche Betonbehälter werden auch öfters zur Lagerung von Wein und Bier ausgeführt.

Metallisierung: Mit Hilfe des Metallspritzverfahrens (z. B. nach Dr. Schoop) können Betonflächen mit einem dünnen, chemisch widerstandsfähigen Metallüberzug (Blei) gegen aggressive Stoffe wirksam geschützt werden. Dieses Verfahren ist beim Betonbau wenig bekannt, dürfte jedoch besonders bei heissen Flüssigkeiten und Gasen, wo Beton durch einen Anstrich nicht geschützt werden kann, zahlreiche Anwendungsmöglichkeiten finden.¹

IV. Schlussfolgerungen.

Unsere Ausführungen legen dar, dass Betonbauten gegen alle chemischen Einflüsse dauernd geschützt werden können. Meist ist ein solcher Schutz mit geringen Kosten möglich, so dass Betonkonstruktionen in zahlreichen Fällen andere viel teurere Bauausführungen ersetzen können.

Zum Schlusse sei noch erwähnt, dass es keine allgemeine Regel über Betonschutz geben kann. In jedem praktischen Fall sollen die chemischen Einflüsse genau ermittelt und die entsprechenden Schutzmassnahmen danach getroffen werden. Nur so ist es möglich, wirksame und wirtschaftlich tragbare Massnahmen vorzuschreiben. Die unterzeichnete Stelle hat seit Jahren diese Schutzfragen mit besonderer Aufmerksamkeit verfolgt und ist somit in der Lage, jeden Konstrukteur weitgehend zu beraten.

¹ Versuche zur Abklärung des Schutzvermögens von Bleiüberzügen auf Beton werden z. Zt. von der Technischen Forschungs- und Beratungsstelle ausgeführt.