Zeitschrift: Candollea: journal international de botanique systématique =

international journal of systematic botany

Herausgeber: Conservatoire et Jardin botaniques de la Ville de Genève

Band: 60 (2005)

Heft: 2

Artikel: Structure et composition floristique de la Forêt Classée du Scio (Côte

d'Ivoire): Etude descriptive et comparative

Autor: Nusbaumer, Louis / Gautier, Laurent / Chatelain, Cyrille

DOI: https://doi.org/10.5169/seals-879281

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Candollea 60(2): 393-443 (2005)

Structure et composition floristique de la Forêt Classée du Scio (Côte d'Ivoire). Etude descriptive et comparative

LOUIS NUSBAUMER,
LAURENT GAUTIER,
CYRILLE CHATELAIN
&
RODOLPHE SPICHIGER

RÉSUMÉ

NUSBAUMER, L., L. GAUTIER, C. CHATELAIN & R. SPICHIGER (2005). Structure et composition floristique de la Forêt Classée du Scio (Côte d'Ivoire). Etude descriptive et comparative. *Candollea* 60: 393-443. En français, résumés français et anglais.

La Forêt Classée (FC) du Scio est située à l'ouest de la Côte d'Ivoire, à cheval sur deux zones biogéographiques: la forêt ombrophile au sud et la forêt mésophile au nord. Afin de préciser ses affinités avec ces deux entités, un inventaire floristique a été réalisé dans la partie la mieux conservée de cette forêt, au nord-ouest (6°50'N 7°43'W). Des récoltes sélectives, un relevé d'un hectare et sept relevés linéaires ont été effectués à une altitude moyenne de 230 m. Un Inselberg situé dans la forêt a également été inventorié. Une liste floristique non exhaustive de 534 espèces a été dressée pour la zone d'étude. Dans un relevé d'un hectare (125 x 80 m), tous les arbres d'un Diamètre à Hauteur de Poitrine (DHP) égal ou supérieur à 10 cm ont été inventoriés. Un total de 413 individus, appartenant à 89 espèces, représentent une aire basale de 30,82 m²/ha. Pour l'ensemble des relevés linéaires (chacun établi sur une longueur de 200 m avec 100 points de mesure) des moyennes avec 110 espèces, 396 individus et 607 points de contact ont été calculées. Différents dendrogrammes d'agrégation ont été extraits à partir des données floristiques qualitatives et quantitatives. Ils rapprochent d'avantage le massif étudié des forêts ombrophiles si l'on ne considère que les arbres ayant un DHP ≥ 10 cm. Lorsque l'on considère l'ensemble des plantes, les dendrogrammes isolent les relevés de la FC du Scio de ceux réalisés en forêts ombrophiles (FC de Yapo et Parc National de Taï) et les rapprochent clairement des relevés effectués en forêts mésophiles (FC du Haut-Sassandra et de la Bossématié).

ABSTRACT

NUSBAUMER, L., L. GAUTIER, C. CHATELAIN & R. SPICHIGER (2005). Structure and floristic composition of Classified forest of Scio (Côte d'Ivoire). Descriptive and comparative study. *Candollea* 60: 393-443. In English, English and French abstracts.

The Classified Forest (CF) of Scio is situated in western Ivory Coast, at the border of two biogeographic zones: the ombrophilous rainforest in the South and the mesophilous forest in the North. In order to assess its affinities with the two zones a floristic inventory was conducted in the best preserved part of the forest, in the north-west (6°50'N 7°43'W). Selective collecting, a 1-hectare plot and seven linear transects were carried out. An Inselberg located in the forest has also been censed. A non exhaustive list of 534 species was obtained. For the 1-hectare plot (125 x 80 m), including all tree with a Diameter at Breast Height (DBH) of 10 cm or more, 413 individuals belonging to 89 species, with a total basal area of 30,82 m²/ha, were recorded. For the linear transects

(measuring 200 m long, with 100 measure points each) mean values of 110 species, 396 individuals and 607 contact points were established. Considering only trees (DBH with 10 cm or more), CF of Scio is related with ombrophilous forests. When we consider all plants, cluster analysis based on quantitative and qualitative data segregates the Scio samplings from the ombrophilous forests (CF of Yapo and Taï National Park) and groups them clearly with the mesophilous ones (CF of Haut-Sassandra and Bossématié).

KEY-WORDS: Tropical forest – Ivory Coast – Classified Forest of Scio – Ombrophilous – Mesophilous – Floristic composition – 1-ha plot – Linear transects – Biodiversity – Dendrogram

Introduction

La flore de Côte d'Ivoire possède, selon les estimations récentes, 3853 espèces de plantes vasculaires réparties entre les forêts et les savanes (AKÉ ASSI, 1963, 1976, 1984: 1069-1206, 2001, 2002). Toutefois, les informations botaniques actuellement disponibles pour la Côte d'Ivoire sont disparates et encore insuffisantes, ce qui souligne l'importance d'accroître les connaissances sur la distribution des communautés biotiques de manière à constituer une base de référence solide pour l'élaboration des stratégies futures de conservation et d'utilisation de la biodiversité. L'exploitation de la forêt et l'expansion des cultures de rente ont réduit d'une manière drastique le massif forestier de la Côte d'Ivoire au point qu'à l'heure actuelle, la forêt qui se répartit entre Parcs nationaux et Forêts classées est réduite à moins de 20 % de son étendue originelle (SINGH, 1993), à moins de 10 % (MENZIES, 2000), et à 7,5 % (CHATELAIN & al., 2004). Celles-ci abritent vraisemblablement une part encore importante de la diversité qui composait la forêt primitive ivoirienne. Il est donc urgent de dresser l'inventaire biologique des forêts ivoiriennes subsistantes dans un but de conservation de la flore et de la biodiversité en général.

Depuis de nombreuses années, les Conservatoire et Jardin botaniques de la Ville de Genève (CJBG) mènent des recherches sur la flore et la végétation de Côte d'Ivoire. D'abord orientées sur la problématique du contact forêt-savane (SPICHIGER & PAMARD, 1973; SPICHIGER, 1975; SPICHIGER & LASSAILLY, 1981; GAUTIER, 1989; GAUTIER, 1992; GAUTIER & SPICHIGER, 2004), les recherches se sont ensuite tournées vers l'analyse de la déforestation en intégrant la comparaison d'images satellitaires aux données de terrain (CHATELAIN, 1996). Dans ce but, une méthode de relevé linéaire qui permet d'approcher plus rapidement la structure et la composition floristique des formations végétales a été développée (GAUTIER & al., 1994).

Depuis une dizaine d'années, une stratégie d'inventaires des massifs forestiers restants en Côte d'Ivoire a été mise en place par les partenaires. Des étudiants ivoiriens et suisses ont ainsi été formés en botanique (Kouamé, 1993; Bänninger, 1995; Cortay, 1996; Kouamé, 1998; Bakayoko, 1999; Dotia, 1999; Menzies, 2000). Les travaux réalisés ont permis l'acquisition d'une importante masse de données sur la flore et la végétation.

Les CJBG ont mis en place un système d'information géographique (SIG) en Côte d'Ivoire. Ce système permet de regrouper les données botaniques, nombreuses, mais disparates, avec des informations cartographiques sur le milieu physique. Il est constitué d'une base de données botaniques et d'un environnement cartographique (GAUTIER & al., 1999). La partie base de données du SIG IVOIRE (BD IVOIRE) compte actuellement 56'000 données concernant 3660 taxons distribués sur 1990 localités.

En plus des tâches classiquement dévolues aux bases de données botaniques, le SIG IVOIRE permet de produire des listes d'espèces pour des régions, de dresser des cartes de répartitions actuelles et potentielles en fonction de différents facteurs écologiques (Chatelain & al., 2001). Toutefois ces applications nécessitent un grand nombre de données bien réparties géographiquement. Cela justifie la mise en place d'inventaires dans les zones encore peu ou pas prospectées.

Parmi les Forêts Classées non inventoriées (forêt de la Maya-Mabi, forêt du Scio, et forêts de l'extrême sud-est du pays), le massif du Scio occupe une place particulière par la présence d'affleurements granitiques et de plusieurs Inselbergs, mais aussi par sa position à la limite de deux types de végétation forestière.

La Forêt Classée (FC) du Scio (fig. 1) appartient au domaine phytogéographique guinéocongolais des forêts denses humides (MONNIER, 1983). Elle faisait partie du vaste ensemble forestier qui couvrait jadis toute la région littorale du Golfe de Guinée, et qui est maintenant largement détruite et morcelée (CHATELAIN & al., 2004). Le Scio, compris dans la partie nord de la forêt dense humide sempervirente (forêt ombrophile) par GUILLAUMET & ADJANOHOUN (1971) sur leur carte de la végétation de Côte d'Ivoire, se trouve non loin de la limite avec la forêt dense semi-décidue (forêt mésophile). Elle a été définie comme faisant partie d'une variante des forêts sempervirentes dite «à Chidlowia sanguinea». Cette formation représente une petite surface du territoire ivoirien et est plus déterminée par le climat que par les sols. Elle se définit comme étant une transition entre les forêts sempervirentes et semi-décidues du type à Celtis défini par MANGENOT (1955). Selon la carte de végétation de la Côte d'Ivoire, réalisée sur ces bases par MONNIER (1983), la FC du Scio appartient néanmoins bien au secteur de la forêt ombrophile. D'après Spichiger & al. (2002), la forêt ombrophile croit sous un régime de précipitations de plus de 1500 mm par an et par l'absence de saison sèche alors que la forêt mésophile est définie par des précipitations variant entre 1200-1500 mm et par la présence d'une saison sèche marquée. La FC du Scio présente des caractéristiques écologiques intermédiaires entre les formations végétales ombrophiles et mésophiles.

Selon Guillaumet (comm. pers.), la carte publiée en 1971 mérite d'être affinée par des recherches plus détaillées. Le but de ce travail est donc de documenter la FC du Scio par des données de terrain et de la replacer dans le contexte biogéographique ivoirien par la comparaison à d'autres massifs de référence.

Matériel et méthodes

Site d'étude

La FC du Scio est située à l'ouest de la Côte d'Ivoire (fig. 1). Elle a une surface de 91,03 km². Nous avons étudié la zone nord-ouest de cette forêt car c'est dans cette partie que son état de conservation est bon (fig. 2). La surface étudiée est délimitée par le campement de Lobykro et le fleuve Scio qui sont les limites nord et sud, respectivement. Les limites occidentales et orientales choisies sont, pour des raisons d'accessibilité, celles des blocs forestiers définis par la Société de Développement des Forêts (SODEFOR). Elle est située entre les latitudes 6°52' et 6°46' Nord et les longitudes 7°44' et 7°41' Ouest. La zone d'étude mesure 18 km², son altitude moyenne (Inselberg excepté) est de 230 m.

La forêt a toujours été une source importante de plantes médicinales et de nourriture (cultures et chasse) pour les populations locales autochtone Guérés et pour plusieurs sous-groupe ethniques allochtones dont principalement les Baoulé les Mossi et les Lobi vivant dans des campements en périphérie de la forêt (TRA BI, 1997; BONGERS & al., 2002). L'agriculture itinérante est une pratique traditionnelle dans la région comme dans la plupart des zones forestières du pays. Suite à une diminution très importante de la forêt dans le pays liée à une forte croissance de la population, un certain nombre de massifs forestiers ont été classés comme zones protégées, comme la FC du Scio en 1954. Les cartes réalisées par CHEVALIER (1920) ainsi que des images satellites prises au moment où l'exploitation était intensive en Côte d'Ivoire (Landsat MSS du 22 janvier 1974) montrent que la zone d'étude semble avoir été épargnée par une exploitation forestière massive. Dans les années 90, la République de Côte d'Ivoire a mis en place une stratégie de sauvegarde du patrimoine forestier en établissant des lois régulant les droits et devoirs de chaque partenaire en

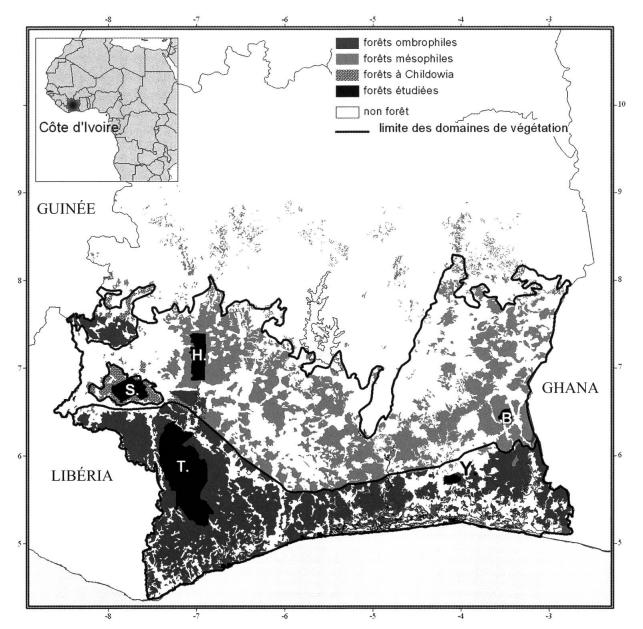


Fig. 1. – Situation géographique de la Forêt Classée (FC) du Scio (S.) sur la carte du couvert forestier de Côte d'Ivoire. Les divers massifs forestiers comparés à celui du Scio dans cette étude y sont localisés (T: Parc National de Taï, H: FC du Haut-Sassandra, Y: FC de Yapo, B: FC de la Bossématié).

Source des données: carte des domaines de végétation de Côte d'Ivoire (MONNIER, 1983), carte du couvert forestier de Côte d'Ivoire (GUILLAUMET & ADJANOHOUN, 1971), SIG IVOIRE (GAUTIER & al., 1999).

présence (populations riveraines, exploitants forestiers et SODEFOR). Par une charte avec l'état (1994), les populations riveraines de la FC du Scio ont obtenu la possibilité de continuer d'exploiter les terres qu'ils avaient plantées à condition de ne pas augmenter ou déplacer ces surfaces et de ne plus vivre à l'intérieur de la zone classée.

Le socle géologique est constitué de larges bandes orientées Nord Est/Sud Ouest, plissées et composées de roches granitiques (1850-2000 millions d'années). Ces roches sont superposées aux formations orogéniques libériennes plus anciennes (2200-2400 millions d'années). La nature des sols et la forme du réseau hydrographique sont déterminées par la nature de cette roche mère

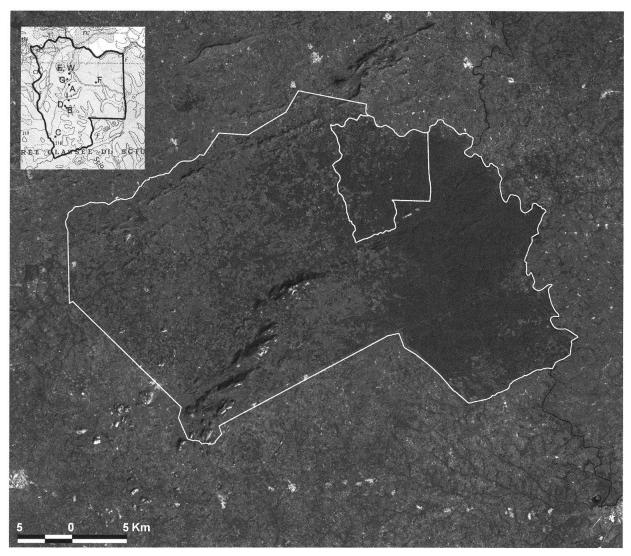


Fig. 2. – Image satellite de la Forêt Classée du Scio dont le périmètre est délimité en blanc. Les 7 relevés linéaires (A-G) et le relevé hectare (W) réalisés ainsi que l'Inselberg (I) y sont localisés sur la carte en médaillon.

Source des données: Landsat ETM7 (décembre 2002), SODEFOR (1993).

(AVENARD, 1971: 161-263). Le sol de la forêt est ferrallitique, remanié et fortement désaturé. On y trouve un horizon gravillonaire et/ou graveleux de 60-100 cm d'épaisseur composé de 40-60% de gravillons ferrugineux, de débris plus grossiers de cuirasse, de fragments de roche ferruginisée et de cailloux de quartz (Perraud, 1971).

Les données climatologiques extraites du SIG IVOIRE (CHATELAIN & al., 2001) donnent une pluviométrie annuelle moyenne de 1712 mm entre 1950 et 2000 avec une diminution constante depuis 1950. Les températures moyennes annuelles mesurées à Man entre les années 1975-1994 oscillent entre 23,6°C et 26,8°C pour une moyenne de 25,2°C. Le diagramme ombrothermique (fig. 3), réalisé à partir des données climatiques de Man et Duékoué entre 1975 et 1994, révèle un climat tropical chaud et humide avec l'alternance d'une saison sèche de novembre à février et d'une saison des pluies qui s'étend de mars à octobre, avec un maximum net en août-septembre.

Le massif forestier du Scio est irrigué par la rivière Scio qui le traverse d'ouest en est. Cette rivière a de nombreux affluents de diverses tailles qui drainent le massif forestier.

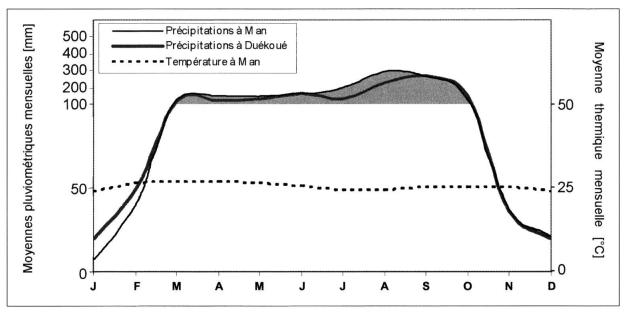


Fig. 3. — Diagramme ombrothermique: courbe des moyennes pluviométriques mensuelles (échelle réduite dès 100 mm, partie grisée) de Man et de Duékoué et de la température moyenne mensuelle de Man pour la période 1975-1994. Nous n'avons pas trouvé de valeurs mensuelles moyennes de températures à Duékoué, mais ces valeurs doivent être très proches de celles de la ville de Man puisque les villes de Daloa et de Gagnoa situées au sud et à l'est de Duékoué ont des valeurs mensuelles proches de celles de Man (Kouamé, 1998).

Méthodes

Les résultats présentés dans ce travail se basent sur des récoltes itinérantes, un inventaire forestier d'un hectare et sept relevés linéaires de 200 m.

Les récoltes itinérantes ont été menées sur l'ensemble de la surface étudiée dans le but d'établir une liste floristique des espèces des plantes vasculaires de la forêt. Toutefois, l'apport des relevés de végétation à cette tâche est important, car leur réalisation contraint à lever les yeux sur des plantes rarement remarquées au cours des récoltes itinérantes et à les récolter. Les plantes ont été déterminées à partir de diverses flores (ALSTON, 1959; AUBREVILLE, 1959; HAWTHORNE, 1996; HUTCHINSON & al., 1954-1972). Les échantillons récoltés ont été déposés dans les divers herbiers internationaux: G (Genève), CSRS (Abidjan), CNF (Abidjan), P (Paris) MO (St-Louis), WAG (Wageningen) et K (Kew), principalement.

Les informations extraites de cette liste sont diverses: importance des types biologiques et morphologiques (RAUNKIAER, 1934; RICHARDS & al., 1940), diversité botanique à l'échelle de la zone étudiée ou des relevés linéaires, diversité spécifique des familles, etc. Toute une série de comparaisons avec l'ensemble des données du SIG IVOIRE est ensuite possible: importance des espèces caractéristiques de la forêt ombrophile et des zones plus sèches, aires de distribution des taxons (chorologie), etc. Nous avons extrait de notre liste floristique et des listes du PN de Taï et de la FC du Haut-Sassandra (Chatelain, *comm. pers.*), les dix familles ayant les nombres d'espèces les plus élevés pour comparer les ressemblances et l'importance de chacune.

Le territoire ivoirien a été découpé en carrés de 0,1° de côté (soit 64 km² chacun) par Chatelain & al. (2001). Chaque carré présente des facteurs environnementaux particuliers. Une valeur a été attribuée à chaque carré pour chacun des facteurs les plus importants. Par cette mesure, il est possible de déterminer les facteurs écologiques moyens propres à chaque espèce et d'évaluer la chance de rencontrer une espèce en un lieu déterminé. Pour trois familles test (*Euphorbiaceae*, *Moraceae* et *Sapotaceae*), nous avons comparé la liste d'espèces potentielles du Scio obtenue par modélisation avec la liste d'espèces recensées dans le cadre de ce travail.

Un inventaire forestier quantitatif d'une surface d'un hectare a été réalisé selon une méthode standardisée largement répandue prenant en compte tous les individus dont le diamètre à hauteur de poitrine (DHP) est supérieur ou égal à 10 cm. Le relevé est disposé dans une portion aussi intacte que possible, choisie comme représentative de la forêt. La surface de relevé est un rectangle de proportions variables, mesurant dans notre cas 125 x 80 m divisé en 100 sous-parcelles de 100 m². A partir des information collectées, nous avons représenté un graphique de la distribution des diamètres en classes (ROLLET, 1979; STUTZ DE ORTEGA, 1987) ainsi que la courbe aire-espèces (GOUNOT, 1969). Nous avons également calculé diverses valeurs, comme l'aire basale ou surface terrière qui est la somme de l'aire de chaque tronc des arbres d'une surface définie et mesurée à une hauteur définie (DEVINEAU, 1984), l'indice de Valeur d'Importance des Familles (Family Importance Value, FIV) (MORI & al., 1983) et l'Indice de Valeur d'Importance (Importance Value Index, IVI) (COTTAM & CURTIS, 1956).

La structure de la forêt et la variation de sa composition floristique ont été évaluées au moyen de sept relevés linéaires quantitatifs prenant en compte tous les types biologiques (GAUTIER & al., 1994). Ces relevés mesurent 200 m chacun avec 100 points de mesure par relevé, répartis tous les 2 mètres le long d'une ligne. Un jalon gradué de 8 m de haut permet de mesurer la hauteur des points de contact avec la végétation. Au-delà de 8 m et jusqu'à la canopée, la hauteur des contacts est estimée. Cette méthode permet d'amasser une grande quantité d'informations. La répartition spatiale des individus le long du relevé permet d'extraire le profil des relevés qui représente la position verticale et horizontale de chaque point de contact dans un espace à deux dimensions. Afin d'étudier l'étagement en strates de la végétation et en accord avec les études utilisées pour comparaison (Chatelain, 1996; Kouame, 1998; Menzies, 2000), le découpage en 6 intervalles de hauteur, «0-2 m», «2-4 m», «4-8 m», «8-16 m», «16-32 m» et «> 32 m» a été retenu (Gounot, 1969: CHATELAIN, 1996). Le recouvrement est défini comme la projection verticale des couronnes des arbres sur la longueur de la ligne. Par exemple, un intervalle de hauteur pour lequel nous avons relevé un point de contact à 48 des 100 mesures réalisées aura un recouvrement de 48%. L'occupation des strates est représentée sous la forme d'un histogramme horizontal, appelé profil de recouvrement. Pour connaître l'importance d'une espèce par rapport aux autres dans un relevé linéaire, nous avons calculé son nombre de points de contact recensés le long du relevé linéaire indépendamment des intervalles de hauteur. Le nombre de points de contact donne une meilleure représentation du poids des espèces que le nombre d'individus recensés car cette dernière valeur ne tient pas compte de la taille des individus. Afin d'approcher la diversité floristique et en particulier de savoir si la longueur échantillonnée permet d'approcher le nombre total d'espèces de la zone étudiée, nous avons représenté la courbe longueur-espèces qui est analogue à celle des courbes aire-espèces, mais adaptée à notre échantillonnage linéaire. Dans les courbes présentées, l'ordre d'apparition des 100 points (et des 100 sous-parcelles pour l'inventaire hectare) a été permuté 100 fois pour obtenir les courbes longueur-espèces et aire-espèces (respectivement) à partir du logiciel «EstimateS» (Colwell, 1997-2000).

Analyse

Afin de situer les résultats obtenus dans le cadre de cette étude par rapport aux données disponibles sur les forêts denses de Côte d'Ivoire, nous avons réalisé une série de comparaisons avec d'autres massifs forestiers. Les principaux massifs comparés par ces analyses sont les massifs ombrophiles du PN de Taï (Menzies, 2000; Chatelain, *comm. pers.*) adjacents à la FC du Scio et celui de la FC de Yapo (Corthay, 1996) qui est plus éloigné, ainsi que les massifs mésophiles adjacent de la FC du Haut-Sassandra (Kouame, 1998) et plus éloigné de la FC de la Bossématié (Bakayoko, 1999); ces massifs sont représentés sur la figure 1. Les relevés dont les données ont été comparées proviennent toujours de faciès forestiers non inondés et réalisés dans des zones vraisemblablement peu ou pas exploitées.

La comparaison avec d'autres massifs a nécessité l'usage de diverses méthodes. Pour tester si le type de massifs comparés a réellement une influence sur la diversité spécifique des familles, nous avons eu recours au test du χ^2 (ZAR, 1995: 62-63).

Pour comparer les relevés réalisés avec ceux d'autres études, nous avons calculé deux indices de diversité et de similarité, soit :

- pour mesurer la diversité spécifique à partir d'une liste d'espèces et de leurs nombre de points de contact associés. L'indice de Shannon (H') a alors été utilisé (SHANNON & WEAVER, 1949). Nous avons retenu la base 2 comme SHANNON & WEAVER (1949) le décrivent dans leur théorie de l'entropie;
- b pour appréhender la similarité entre diverses listes d'espèces en intégrant l'aspect quantitatif en plus de l'aspect qualitatif. L'indice de Horn (HORN, 1966) a alors été utilisé. Cet indice varie entre les valeurs de 0 (pas de ressemblance) et 1 (ressemblance complète) et permet de générer une matrice de similarité de tous les relevés.

La classification hiérarchique ascendante (CAH) est une méthode d'analyse puissante permettant de regrouper des objets suivant une matrice de distance (la similarité dans notre cas) entre ces objets. La représentation graphique en deux dimensions sous forme de dendrogramme permet une visualisation facilitée de cette matrice de distance. La CAH fonctionne par regroupements successifs des objets initiaux (les relevés dans notre cas) selon un algorithme choisi en fonction de l'objectif souhaité. Pour notre étude nous avons utilisé un algorithme de regroupement par lien moyen «Unweighted Pair Group with Arithmetic Mean» (UPGMA) (BUTTLER & BORCARD, 1998; OPPERDOES, 1998). Cette méthode a été utilisée pour comparer les points de contact des espèces dans les relevés linéaires ainsi que les IVI des espèces et les FIV des familles sur les relevés hectares. Pour chacune de ces mesures de similarité, nous avons extrait un dendrogramme pour apprécier l'agrégation des relevés de Côte d'Ivoire entre eux.

Résultats

Composition floristique

La liste floristique est composée de 534 espèces (annexe 1) dont 473 identifiées actuellement. La nomenclature suit Lebrun & Stork (1991-1997). Les auteurs des noms scientifiques figurent dans l'annexe 1. Ces espèces se répartissent en 330 genres et 91 familles. Un Inselberg situé dans la zone d'étude à aussi été inventorié (annexe 2). Cette liste ne saurait être considérée comme exhaustive, vu le laps de temps relativement court passé à collecter. Elle contribue néanmoins de manière significative à l'augmentation des connaissances floristiques au niveau du pays.

Les familles les plus riches sont les *Fabaceae* (*Faboideae*, *Caesalpinoideae*, *Mimosoideae* confondues) représentées par 57 espèces, les *Rubiaceae* (50), les *Euphorbiaceae* (29), les *Apocynaceae* (21) et les *Annonaceae* (19) (fig. 4).

Les espèces recensées au Scio appartiennent à 15 types biologiques différents regroupés en 4 types morphologiques. De manière générale, il y a une domination des espèces lianescentes (149, soit 25%) et arbustives (186, soit 36%). La proportion d'espèces arborées (124, soit 23%) est moins grande bien que les arbres occupent la première place dans la forêt par leur biomasse. Le dernier type morphologique, les herbacées (75 espèces soit 16%), est assez faiblement représenté.

Avec le SIG IVOIRE nous avons comparé pour trois familles-test (*Euphorbiaceae*, *Moraceae* et *Sapotaceae*) la prédiction de présence dans les deux carrés de 0,1° de côté qui contiennent la FC de la Scio avec la liste floristique. Les résultats sont médiocres; le modèle prédit la présence de 64 espèces dont seules 25 ont effectivement été recensées, alors que 23 espèces recensées ne sont pas prédites. Ces résultats démontrent les limitations de ce type d'approche. Les principales raisons sont un manque général de données sur l'ensemble de la Côte d'Ivoire (80% de espèces sont représentées par moins de 10 échantillons, nombre minimal nécessaire pour l'analyse du profil écologique de chaque espèce (Chatelain & al., 2001)), mais aussi l'état incomplet de notre inventaire.

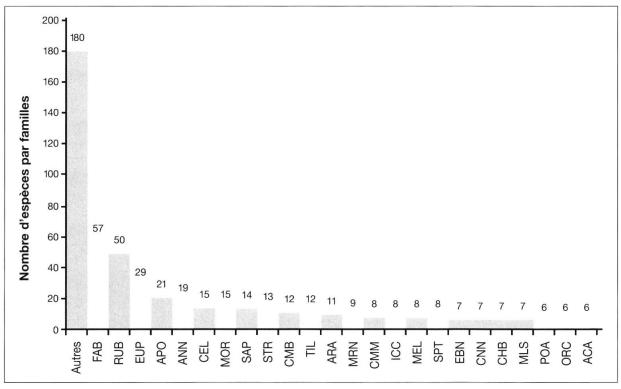


Fig. 4. – Diversité spécifique des familles recensées dans l'inventaire floristique de la Forêt Classée du Scio. Les nombres d'espèces recensées sont indiqués pour chaque famille (acronymes selon Weber, 1981).

Relevés hectare

Quelques 413 arbres et lianes de DHP ≥ 10 cm et représentant 89 espèces réparties entre 28 familles ont été recensés sur le relevé hectare. La surface terrière est de 30,82 m². Sur le plan des diamètres, le DHP maximum atteint 140,7 cm, mais de telles valeurs restent rares sur le relevé hectare. Dans l'hectare que nous avons réalisé, nous avons recensé 267 individus dans la classe des DHP ayant de valeurs comprises entre 10 et 20 cm.

Pour chaque famille, le nombre d'individus et d'espèces, l'aire basale, les valeurs de diversité, densité et de dominance relative ainsi que celles du FIV sont données dans l'annexe 3. Nous avons réalisé un graphique représentant le poids de chacun des 3 facteurs composant les Family Importance Value (FIV) du relevé hectare pour les 10 familles dont les valeurs FIV sont les plus importantes (fig. 5). Les familles y sont classées par FIV décroissant. Les *Fabaceae* dominent nettement. Elles sont représentées par beaucoup d'espèces, mais la plus grande part de leur valeur FIV provient du grand nombre d'individus et des importants DHP moyens de ces derniers.

Les autres familles principales ont des FIV qui peuvent être autant élevés parce que la famille est représentée :

- par un grand nombre d'espèces (ex. Sapindaceae);
- par un grand nombre d'individus (ex. Annonaceae);
- par des individus ayant un diamètre important (ex. Lecythidaceae);

L'annexe 4 donne, pour chaque espèce, le nombre de sous-parcelles où elle est présente (occurrence), le nombre d'individus, l'aire basale, puis les valeurs dérivées, soit respectivement ses fréquences, densités et dominances relatives, ainsi que la valeur de l'IVI.

Comme pour les familles, nous avons réalisé un graphique représentant la contribution de chacun des 3 facteurs composants les IVI du relevé hectare illustrant les 10 espèces dont les valeurs IVI sont les plus importantes (fig. 6). Pour ces espèces, la décroissance des valeurs IVI est moins

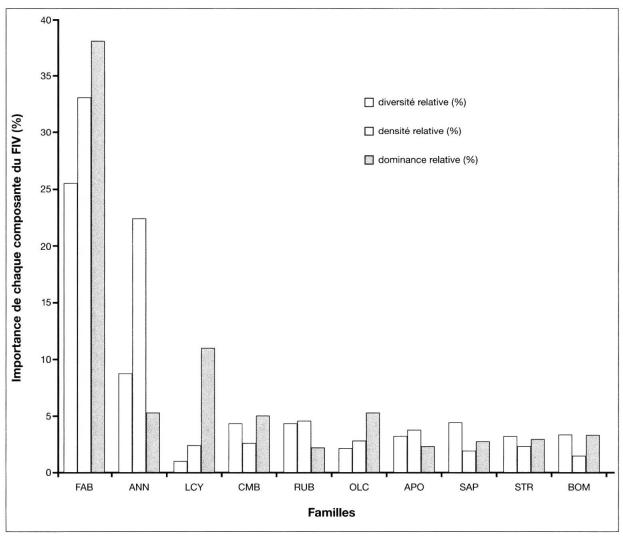


Fig. 5. – Représentation du poids de chacun des 3 facteurs composant le FIV pour les 10 familles dominantes sur le relevé de 1 ha.

abrupte que le FIV pour les familles, mais la forêt est dominée (quantitativement) par certaines espèces dont 4 appartiennent à la famille des *Fabaceae* (*Calpocalyx brevibracteatus, Piptadenias-trum africanum, Baphia pubescens* et *Erythrophleum ivorense*. L'IVI d'une espèce peut être élevé pour différentes raisons:

- a) une distribution homogène des individus sur les sous parcelles de l'hectare comme c'est le cas pour *Funtumia elastica* et *Corynanthe pachyceras*;
- b) la présence d'un grand nombre d'individus représentant l'espèce comme c'est le cas pour Polyalthia oliveri et Calpocalyx brevibracteatus;
- c) la présence de représentants ayant un diamètre important comme c'est le cas pour Piptadeniastrum africanum, Erythrophleum ivorense ou Petersianthus macrocarpus.

Les valeurs des IVI montrent une dominance forte d'un petit nombre d'espèces sur le relevé hectare.

La courbe aire-espèces (fig. 7) présente une certaine régularité mais malgré la diminution de la pente, nous sommes encore loin d'atteindre un plateau.

Relevés linéaires

Les 7 relevés linéaires réalisés dans la FC du Scio nous ont permis d'inventorier 312 espèces appartenant à 67 familles. Les principaux résultats sont donnés dans le tableau 1.

Les familles les plus représentées, tant par le nombre d'individus que par le nombre de points de contact recensés, sont: les *Fabaceae* (en moyenne: 71 individus et 137 points de contact par relevé), les *Euphorbiaceae* (en moyenne: 51 individus et 63 points de contact par relevé), les *Convolvulaceae* (en moyenne: 44 individus et 50 points de contact par relevé) et les *Annonaceae* (en moyenne: 32 individus et 47 points de contact par relevé).

Nous avons placé les valeurs du nombre de points de contact moyen de chaque espèce par ordre décroissant sur un graphique (fig. 8). Un petit nombre d'espèces sont nettement dominantes alors que les autres espèces, très nombreuses, sont rares. Les espèces les plus fréquentes sont:

- principalement des espèces lianescentes comme Neuropeltis acuminata, Griffonia simplicifolia, Tiliacora dinklagei, Platysepalum hirsutum, Manniophyton fulvum représentées par un grand nombre d'individus présents à tous les intervalles de hauteur;
- les espèces d'arbres comme Polyalthia oliveri, Calpocalyx brevibracteatus, Baphia pubescens, Corynanthe pachyceras, Ochthocosmus africanus représentées par de nombreux individus jeunes ou adultes. Un arbre, Strombosia pustulata var. pustulata,

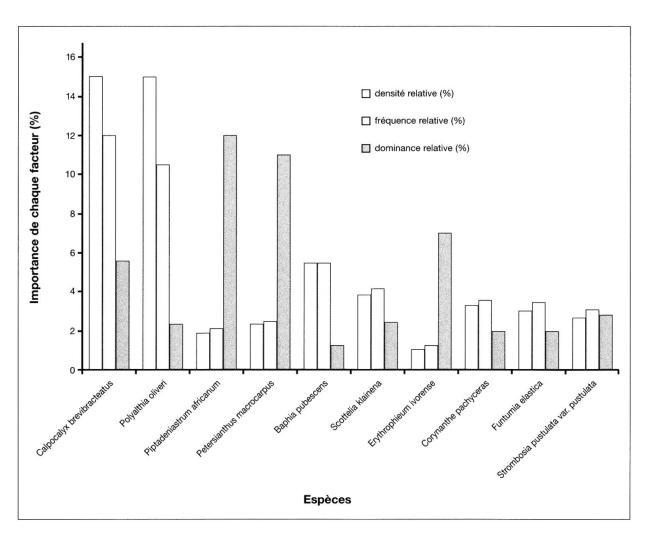


Fig. 6. – Représentation du poids de chacun des 3 facteurs composants l'IVI, pour les 10 espèces dominantes sur le relevé d'1 ha.

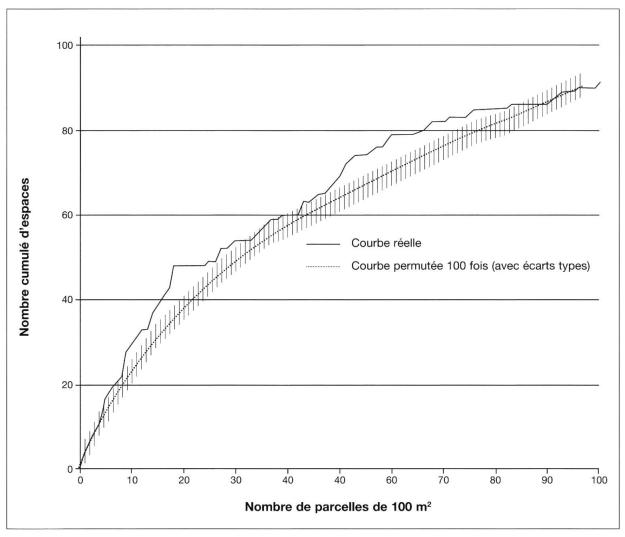


Fig. 7. – Représentation du nombre d'espèces recensées en fonction du nombre de parcelles de 100 m² inventoriées sur le relevé hectare. En gras: la courbe réelle; en pointillé: la courbe issue de 100 tirages aléatoires sans remise (écart-type en hachures verticales).

a été rencontré de nombreuses fois, mais à deux stades de développement distincts : des jeunes individus de moins de 1,5 m de haut et des adultes de taille impressionnante. Les stades intermédiaires n'ont étonnement que rarement été observés ;

 des espèces d'arbustes comme Argomuellera macrophylla, Drypetes chevalieri représentées par de nombreux individus.

Les différents intervalles de hauteur de la végétation sont nettement dominés par quelques espèces:

- des lianes occupent abondamment tous les intervalles de hauteur de la forêt. Il s'agit de Neuropeltis acuminata, Platysepalum hirsutum, Manniophyton fulvum, Tiliacora dinklagei, Griffonia simplicifolia, Dioscorea smilacifolia, Neuropeltis velutina, Combretum grandiflorum;
- l'intervalle de hauteur 0-2 mètres est dominé par Neuropeltis acuminata, Strombosia pustulata var. pustulata, Argomuellera macrophylla, Drypetes chevalieri et Streptogyna crinita;
- l'intervalle de hauteur de 2-4 m est dominé par Polyalthia oliveri, Neuropeltis acuminata,
 Tiliacora dinklagei, Drypetes chevalieri et Maesobotrya barteri;

Tableau 1. – Nombre d'espèces, de familles, d'individus et de points de contact de chaque relevé linéaire réalisé dans la FC du Scio. Le rapport entre le nombre de points de contact et le nombre d'individu de chaque relevé est également indiqué.

Relevé	Α	В	С	D	Е	F	G	Moyenne	Ecart type
Nb d'espèces	115	118	103	111	115	103	111	110,9	5,9
Nb de familles	43	43	36	37	43	39	41	40,3	3
Nb d'individus	458	430	422	406	383	358	316	396,1	48
Nb de pts de contact	712	672	629	591	562	569	516	607,3	68
Nb d'inds représentés									
par 1 seul pt contact	341	327	331	315	299	270	223	300,86	41,68
Nb pts contact / Nb inds	1,55	1,56	1,49	1,46	1,47	1,59	1,63	1,6	0,1
Indice de diversité									
de Shannon	5,87	5,90	5,55	5,98	5,88	5,61	5,84	5,81	0,15

- l'intervalle de hauteur 4-8 m est dominé par Polyalthia oliveri, Neuropeltis acuminata, Baphia pubescens, Corynanthe pachyceras et Platysepalum hirsutum;
- l'intervalle de hauteur 8-16 m est dominé par Calpocalyx brevibracteatus, Platysepalum hirsutum, Baphia pubescens, Manniophyton fulvum et Ochthocosmus africanus;
- à partir de 16 m jusqu'à la canopée, Petersianthus macrocarpus, Piptadeniastrum africanum, Triplochiton scleroxylon, Anopyxis klaineana, Erythrophleum ivorense dominent par leur nombre de points de contact. Ce sont également ces espèces qui émergent au dessus de la canopée.

La majorité des relevés a des profils de recouvrement similaires (fig. 9, partie gauche et centrale). L'histogramme du «profil de recouvrement moyen de la FC du Scio» construit nous permet de remarquer que la strate des herbacées et petits arbustes ainsi que les strates arborées entre 8 et 32 mètres sont très denses (fort recouvrement). La strate arbustive de 2 à 4 mètres est très faiblement occupée, puis la densité de la végétation est croissante jusqu'à 8 mètres. Les trous dans la végétation entre 12 et 18 mètres observés sur les graphiques de distribution des points de contact (annexe 5) sont cependant invisibles sur les profils de recouvrement en raison du choix des intervalles de hauteur.

Discussion

Les comparaisons entre les données issues de cette étude et celles issues d'autres forêts denses de Côte d'Ivoire portent aussi bien sur des paramètres structuraux que floristiques, et qualitatifs que quantitatifs. Le but principal est de déterminer le type de forêt (ombrophile/mésophile) avec lequel la FC du Scio a le plus d'affinités.

Structure

Au total, nous avons recensés 413 individus sur le relevé d'un hectare. Cette valeur est assez faible par rapport aux nombres moyens recensés par hectare dans les diverses études réalisées en Côte d'Ivoire. Les massifs ombrophiles (Taï, Yapo) présentent un plus grand nombre d'individus que les massifs mésophiles (Haut-Sassandra, Bossématié) (fig. 10). L'aire basale mesurée sur un hectare varie entre 29 et 40 m² dans les forêts comparées (fig. 11). Bien que le diamètre des arbres aux DHP les plus importants au Scio soient comparables à ceux des autres relevés, la somme totale des aires basale est plus faible au Scio. Le nombre d'individus recensés ayant un DHP compris entre 10 et 20 cm est de 267 au Scio alors que dans les études menées sur des hectares dégradés

(STUTZ DE ORTEGA, 1987; KOUAME, 1998), il est généralement inférieur à 100 (absence de régénération) ou supérieur à 350 (perchis). Cette valeur et la répartition des classes de diamètres observée sont typiques d'une forêt en bon état de conservation et ayant une bonne capacité de régénération (ROLLET, 1979). La taille des grands arbres rencontrés sur le terrain semble confirmer qu'il n'y pas eu d'exploitation forestière massive dans la zone étudiée.

Nous avons comparé le profil de recouvrement moyen des relevés linéaires réalisés à la FC du Scio aux profils «types» des travaux menés en Côte d'Ivoire. Les travaux utilisées sont ceux de Chatelain (1996) à Yapo, de Kouame (1998) au Haut-Sassandra ainsi que des profils que nous avons extraits du relevé de 2000 m de Menzies (2000) à Taï après l'avoir sectionné arbitrairement en relevés de 200 m. L'histogramme du profil de recouvrement moyen de la FC du Scio s'apparente d'avantage aux histogrammes de relevés réalisés dans des forêts très peu dégradées (fig. 9). Nous ne pouvons cependant pas conclure que la zone étudiée de la FC du Scio est dans son ensemble bien conservée, car nous avons sélectionné les lieux où nous avons réalisé les relevés linéaires dont l'aspect général structurel était bien conservé, donc plus proche de la structure originelle. Nous devons encore remarquer ici que la hauteur des arbres émergents a parfois pu être sous-estimée lorsque manquaient des arbres de hauteurs similaires à proximité pour comparaison. Ainsi le recouvrement de l'intervalle de hauteur le plus élevé peut parfois être légèrement en dessous de la réalité.

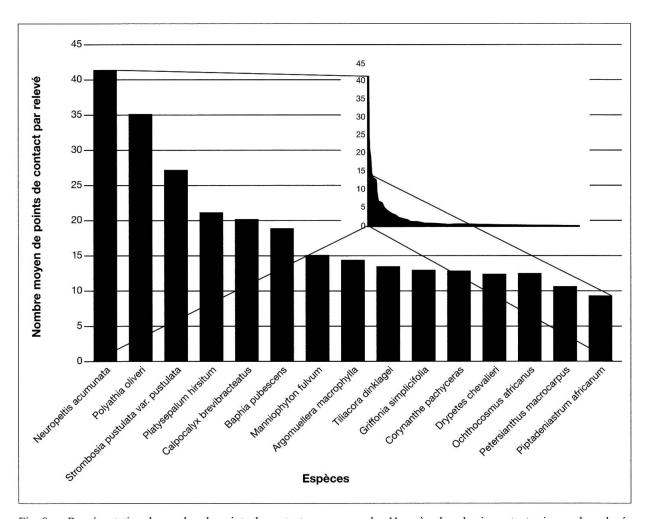


Fig. 8. – Représentation du nombre de points de contact moyen pour les 11 espèce les plus importantes issues des relevés linéaires réalisés dans la Forêt Classée du Scio. Les espèces ont été classées par fréquence décroissante. En médaillon, allure de la répartition avec toutes les espèces.

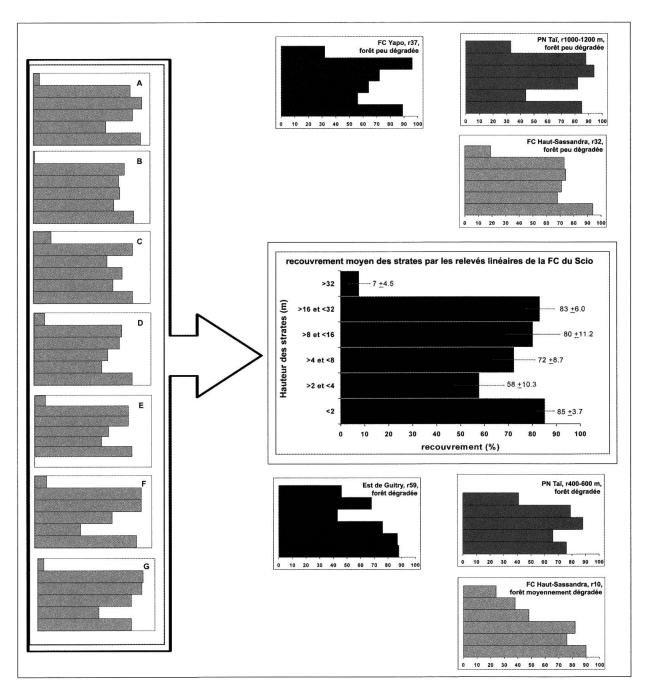


Fig. 9. – Profils de recouvrement par intervalles de hauteur. Ceux des 7 relevés linéaires réalisés dans la Forêt Classée du Scio sont représentés à gauche, l'histogramme moyen au centre, des relevés de comparaisons en forêt ivoirienne à droite (en teinte intermédiaire: Menzies, 2000; en foncé: Chatelain, 1996; en clair Kouamé, 1998). Les trois histogrammes en haut à droite appartiennent à des relevés de sites faiblement dégradés, ceux en bas à droite à des relevés issus de trois sites dégradés.

Comme pour la FC du Scio, les types morphologiques dominants dans la FC du Haut-Sassandra et le PN de Taï sont les arbustes et les lianes mais ces trois forêts diffèrent entre elles par plusieurs points: les herbacées occupent une grande place dans la FC du Haut-Sassandra car des savanes sont incluses dans ce massif. Le PN de Taï contient une proportion intermédiaire d'herbacées car les espèces de *Cyperaceae* forestières y sont diversifiées, cette aire protégée ne contenant aucune savane. En parallèle, l'importance des arbres est plus élevée au Scio.

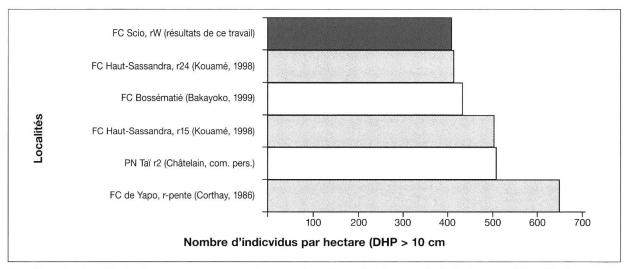


Fig. 10. – Nombre d'individus ayant un DHP ≥ 10 cm sur des relevés de 1 hectare de forêt dense en Côte d'Ivoire.

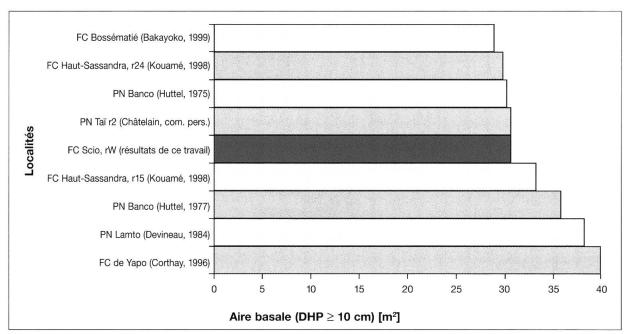


Fig. 11. – Représentation de l'aire basale (DAP ≥ 10 cm) de différents relevés de 1 hectare. Les relevés sont classés par valeurs croissantes.

En résumé, sur le plan structurel, le massif étudié se situe dans la moyenne des relevés hectares de Côte d'Ivoire comparés. Les sites les mieux conservés du massif étudié, ceux qui ont fait l'objet de nos relevés, présentent une structure forestière équivalente à celle que l'on rencontre dans d'autres massifs ivoiriens, dont le PN de Taï. Le spectre morphologique de la forêt du Scio n'est guère différent de celui du PN de Taï et de la FC du Haut-Sassandra, avec une dominance massive des arbres, arbustes et lianes. Nous avons vu, au chapitre «résultats» que la dynamique forestière du site présente une forte capacité de régénération. Même si une partie de la FC du Scio est dégradée, il reste des zones ayant une structure assez intacte qui donnent à cette forêt un intérêt biologique non négligeable. Sur le plan de la structure, les résultats accumulés n'apportent pas d'éléments décisifs pour la classification de la FC du Scio en une forêt mésophile ou ombrophile.

Diversité

Le tableau 2 présente les résultats de diversité derivant de la liste floristique, en comparaison avec d'autres études menées en côte d'Ivoire à différentes échelles. Ces données sont uniquement fournies à titre indicatif et aucune conclusion ne saurait être tirée de ces chiffres en raison de la nature différente des études.

Tableau 2. – Richesse floristique, diversité générique et diversité familiale de quelques Forêts Classées (FC) et Parc Nationaux (PN) étudiés en Côte d'Ivoire disposés par ordre de surface décroissante.

Région	Auteur	Surface	Nbre	Nbre	Nbre
		(km²)	d'espèces	de genres	de familles
Côte d'Ivoire	Aké Assi (2002)	322460	3853	1270	195
Zone du					
Bas-Cavally	GUILLAUMET (1967)	28000	1146	667	12 2
Zone sud					
du PN de Taï	ADOU (2000)	1143	899	550	104
FC Yapo	CORTHAY (1996)	245,92	794	433	97
FC Bossématié	Вакауоко (1999)	224	308	229	72
FC Haut-Sassandra	KOUAMÉ (1998)	102,4	1047	538	114
FC Lamto	KOUAMÉ (1993)				
	BÄNNINGER (1995)	100	977	525	105
FC Scio	Nusbaumer & al.				
	(présente étude)	18	536	330	91

La diversité des relevés effectués permet des comparaisons sur des bases plus solides. Au niveau spécifique, si nous comparons le nombre d'espèces recensées dans l'hectare de la FC du Scio à ceux d'autres relevés d'un hectare en Côte d'Ivoire, le relevé réalisé présente la diversité la plus importante (fig. 12). Au niveau de la courbe aire-espèces, différents auteurs (CAMPBELL & al., 1986; LOIZEAU, 1992) préconisent une aire minimale théorique de 3 à 5 hectares pour la forêt dense de «terra firme» sud-américaine. D'après une étude de FANGLIANG & al. (1996) en Malaisie, il est nécessaire de prendre en compte 5-10 hectares pour estimer la diversité.

Le nombre moyen d'espèces recensées (la richesse spécifique) par relevé linéaire de 200 m dans cette étude est assez élevé en comparaison d'autres sites d'étude en Côte d'Ivoire. Les relevés réalisés en forêt ombrophile présentent des nombres moyens d'espèces et des indices de diversité plus élevés que les forêts mésophiles (fig. 13). L'indice de diversité H' de Shannon (Shannon & Weaver, 1949) (fig. 14) nous permet une approche plus fine de la diversité sur ces relevés, car il tient non seulement compte du nombre d'espèces, mais aussi de la répartition des abondances. Les relevés des différents massifs présentent des valeurs semblables à l'exception de la FC de Yapo, dont les relevés présentent une régularité sensiblement plus élevée que ceux des autres massifs.

Les courbes des effectifs cumulés des espèces (courbes longueur-espèce) rencontrées progressivement le long des relevés linéaires de 200 m réalisés au Scio ont été placées sur un graphique avec celle d'un relevé de 2000 m réalisé par Menzies (2000) au Parc National (PN) de Taï (fig. 15). Nous remarquons clairement que la longueur minimale n'est de loin pas atteinte par un relevé linéaire de 200 m. Après avoir étudié deux relevés de 2000 m de longueur chacun, Menzies (2000) estime que la longueur minimale serait atteinte à une distance qui dépasse assez largement les 2000 m.

Un certain nombre de taxons remarquables se trouvent dans la liste floristique de la FC du Scio. Au niveau familial, les *Medusandraceae*, les *Dioncophyllaceae* et les *Octoknemataceae* sont 3 familles observées qui font partie des 5 familles endémiques de la région guinéo-congolaise.

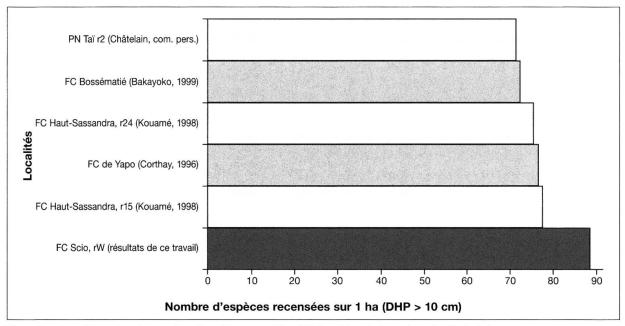


Fig. 12. – Représentation du nombre d'espèces recensées (DHP ≥ 10 cm) dans des relevés de 1 hectare.

Au niveau générique, *Chidlowia* Hoyle et *Gymnostemon* Aubrév. & Pellegr. sont deux des 9 genres endémiques de la région guinéo-congolaise (genres appartenant à des familles endémiques non compris). Au niveau spécifique, 22 des 178 espèces dites «sassandriennes» (AKÉ ASSI, 2002) ont été observées. Ces espèces confèrent un faciès particulier aux forêts hygrophiles de l'ouest de la Côte d'Ivoire (Mangenot, 1956; Kouame & al., 2004). Malgré la position éloignée de la FC du Scio par rapport à l'aire classique de ces espèces sassandriennes, des parentés floristiques existent. L'Inselberg apporte également un certain nombre d'espèces particulières à la liste floristique globale vu ses particularités écologiques (annexe 2).

En résumé, sur le plan de la diversité, la FC du Scio compte parmi les forêts les plus diversifiées botaniquement à l'échelle de la Côte d'Ivoire, en se basant autant sur le relevé hectare que sur les relevés linéaires. De plus, sur le plan qualitatif, cette diversité se singularise par un éventail de taxons remarquables. Ce massif présente donc un réel intérêt à être conservé.

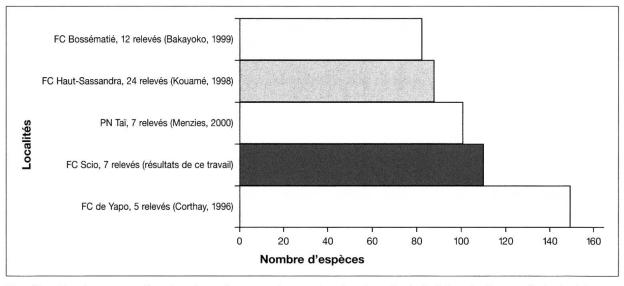


Fig. 13. - Nombre moyen d'espèces (avec écart-types) recensées dans les relevés linéaires de diverses forêts ivoiriennes.

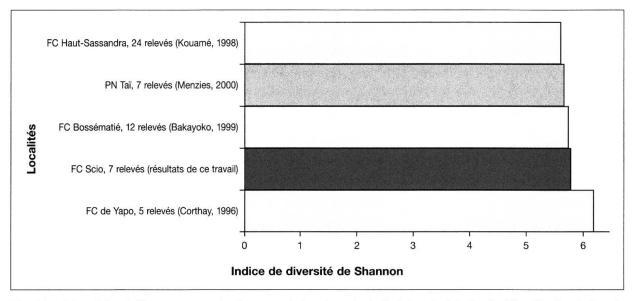


Fig. 14. – Diversité spécifique moyenne (et écart-types) dans les relevés linéaires de 4 forêts de Côte d'Ivoire (indice de Shannon, calculé sur les fréquences).

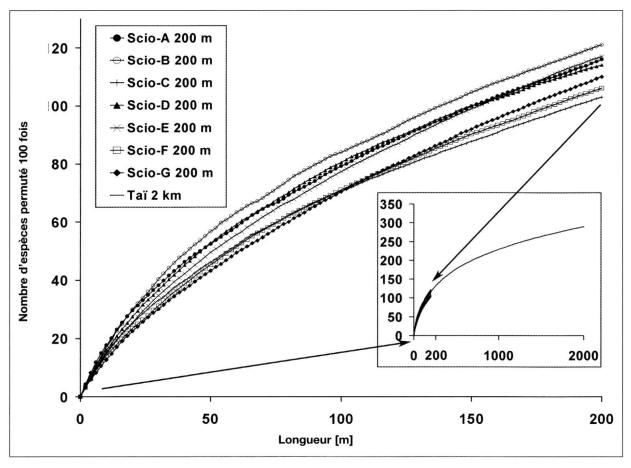


Fig. 15. – Représentation du nombre d'espèces recensées en fonction de la distance relevée sur le transect de 200 m. Dans l'encarté en bas à droite, les 7 relevés linéaires de 200 m de la Forêt Classée du Scio sont comparés à un relevé linéaire de 2000 m réalisé dans le Parc National de Taï.

Composition floristique

Liste floristique. – La liste floristique de la FC du Scio a été comparée à celles du PN de Taï au sud, et de la FC du Haut-Sassandra au nord, afin de faire ressortir les ressemblances et les dissimilarités entre ces zones d'étude. Le fait d'inclure la FC du Haut-Sassandra introduit dans la comparaison un nombre restreint de taxons savanniens présents au nord de cette aire protégée. La nature des données ne nous a malheureusement pas permis de les exclure.

Sur les 10 familles les plus diversifiées dans chacun des trois massifs comparés (15 familles au total), nous avons:

- 7 familles communes aux trois massifs. Les Fabaceae s.l., les Rubiaceae, Euphorbiaceae, Apocynaceae, Moraceae, Annonaceae et Celastraceae peuvent donc être définies comme les familles caractéristiques de la forêt dense en Côte d'Ivoire;
- 1 famille commune aux FC du Scio et du Haut-Sassandra: les Sapindaceae;
- 7 familles ne figurant parmi les dix plus importantes que dans un seul des trois massifs:
 les Melastomataceae, Acanthaceae, Cyperaceae (PN de Taï), Sterculiaceae, Combretaceae (FC du Scio), Poaceae, Meliaceae (FC du Haut-Sassandra).

A partir de ces 15 familles et des nombres d'espèces par lesquelles elles sont représentées dans chaque forêt, l'histogramme cumulé (en %) réalisé (fig. 16) nous a permis de faire ressortir l'affinité des massifs comparés:

- 7 familles rapprochent d'avantage la FC du Scio de la FC du Haut-Sassandra. Parmi ces familles, on trouve les *Fabaceae*, une des deux familles les plus représentées en nombre d'espèces pour les trois massifs. Les autres familles sont les *Apocynaceae*, les *Celastraceae*, les *Sapindaceae*, les *Melastomataceae*, les *Acanthaceae* et les *Cyperaceae*;
- 2 familles rapprochent d'avantage la FC du Scio du PN de Taï. Il s'agit des *Poaceae* et des *Annonaceae*;
- 1 famille rapproche d'avantage la FC du Haut-Sassandra du PN de Taï. Il s'agit des Combretaceae;
- 5 familles ne regroupent pas clairement deux de ces trois massifs entre eux.

Le fait que près de la moitié des 15 familles les plus représentées dans les listes floristiques soit partagées entre la FC du Scio et la FC mésophile du haut-Sassandra est remarquable.

Nous avons effectué le teste du Chi-carré (χ^2) pour vérifier l'hypothèse nulle (H_0 : «la diversité spécifique des familles est indépendante du massif considéré»). Ainsi, les valeurs de la diversité spécifique des 15 familles considérées dans les 3 massifs comparés nous ont permis d'obtenir une valeur calculée (67,65) plus grande que la valeur critique au seuil 0,001 (56,89), ce qui rend l'hypothèse alternative H_I vraie. Nous pouvons affirmer avec moins de 1‰ de chance de nous tromper que l'appartenance à un des massifs conditionne la diversité spécifique des familles.

Au niveau spécifique nous trouvons un certain nombre d'arbres caractéristiques de la forêt mésophile à la FC du Scio: *Triplochiton scleroxylon, Mansonia altissima, Morus mesozygia, Celtis mildbraedi, Celtis adolfo-friederici, Lychnodiscus reticulatus* et *Nesogordonia papaverifera*. Ces espèces y sont parfois assez abondantes. Il faut noter aussi la présence caractéristique de plantes de plus petite taille comme *Argomuellera macrophylla*, qui est un arbuste très fréquent dans le sous-bois à la FC du Scio, du Haut-Sassandra ou de la Bossématié, mais rare ou absent des forêts dense humides sempervirentes. A l'inverse, nous avons des espèces typiques de forêts denses humides sempervirentes comme *Triphyophyllum peltatum* dont nous n'avons toutefois trouvé qu'un seul représentant au cours de nos récoltes.

Pour apprécier les pourcentages d'espèces exclusives ombrophiles ou mésophiles dans les forêts du Scio et les comparer aux valeurs de Taï et du Haut-Sassandra, nous avons confronté la distribution des espèces en Côte d'Ivoire et de la carte des domaines de végétation de MONNIER (1983) par le SIG IVOIRE. La flore du PN de Taï est composée de 18% d'espèces exclusives des forêts ombrophiles. Celle du Scio n'en comporte que 2%. La FC du Haut-Sassandra comprend 8%

d'espèces exclusives des milieux mésophiles à arides, valeur qui atteint 5% dans la FC du Scio. Proportionnellement, la FC du Scio, bien que présentant une composition floristique intermédiaire, comporte plus d'espèces exclusives mésophiles que d'exclusives ombrophiles.

Sur la carte de la végétation de GUILLAUMET & ADJANOHOUN (1971), la FC du Scio a été attribuée au type le moins humide de forêt sempervirente, la «forêt à *Chidlowia sanguinea*». Les auteurs ont établi une liste des espèces caractéristiques de cette formation. Une première liste donne les espèces censées être présentes dans la forêt à *Chidlowia sanguinea* et une seconde les espèces censées en être absentes. Au Scio, nous remarquons que 83 % des 18 taxons caractéristiques ont été recensés et que la moitié des taxons normalement absents de la forêt à *Chidlowia* y ont pourtant été trouvés. La composition floristique effective diffère donc partiellement de la formation attendue.

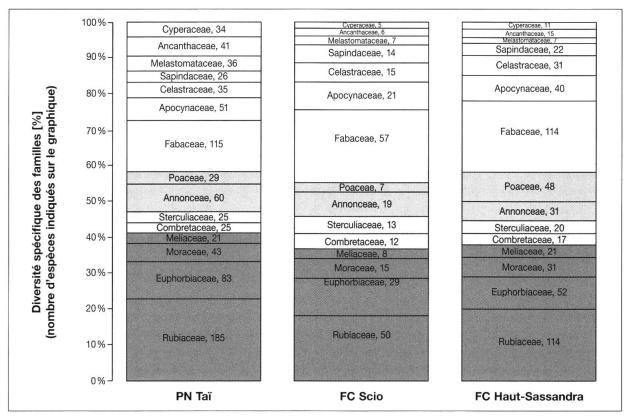


Fig. 16. – Importance de la diversité spécifique des familles les plus importantes des massifs forestiers de Taï (extrait du SIG IVOIRE), du Haut-Sassandra (Kouamé, 1998) et du Scio (présente étude). Les familles dont les valeurs rapprochent la Forêt Classée du Scio et celle du Haut-Sassandra sont indiquées en blanc, celles rapprochant la Scio du Parc National de Taï en gris moyen, celles rapprochant le Parc National de Taï et du Haut-Sassandra en gris clair, et celles ne regroupant pas clairement les deux massif en gris foncé. Le nombre d'espèces recensés pour chaque famille est indiqué sur le graphe.

Relevé 1 ha. – Au niveau des familles, nous avons établi un dendrogramme pour apprécier l'agrégation de 6 relevés hectares réalisés en Côte d'Ivoire à Taï et Yapo (forêts ombrophiles) et au Haut-Sassandra et à la Bossématié (forêts mésophiles). Ce dendrogramme se base sur l'indice de similarité de Horn calculé sur les FIV des familles recensées (fig. 17). La longueur des branches des relevés d'un groupe traduit les différences importantes qu'il y a entre chaque site. Un premier groupe est constitué des relevés réalisés dans les FC mésophiles du Haut-Sassandra et de la Bossématié (nœuds 7 et 8). La FC du Scio rejoint le PN de Taï et la FC de Yapo dans un groupe ombrophile (nœuds 9 et 10). Certaines familles influencent fortement cette séparation comme les Ulmaceae et les Sterculiaceae (FIV élevé dans le groupe mésophile) ou comme les Olacaceae et les Clusiaceae (FIV élevé dans le groupe ombrophile).

Au niveau spécifique, nous avons extrait un dendrogramme à partir du calcul de l'Indice de Horn pour apprécier l'agrégation de 6 relevés hectares à partir des IVI des espèces recensées (fig. 18). La FC de la Bossématié forme un groupe avec la FC du Haut-Sassandra (forêt mésophile) (nœud 8). Ce groupe est ensuite rattaché aux relevés du PN de Taï, de la FC de Yapo (forêts ombrophiles) et de la FC du Scio (nœud 10). Le cloisonnement de ces deux groupes principaux est dû à quelques espèce discriminantes, comme par exemple *Celtis adolfi-fridericii*, *Celtis mildbraedii*, *Sterculia rhinopetala*, *Celtis zenkeri*, *Mansonia altissima*, *Alstonia boonei*, *Triplochiton scleroxylon*, *Entandrophragma cylindricum* qui sont importantes dans le groupe mésophile et absentes dans le groupe ombrophile. *Scytopetalum tieghemii*, *Calpocalyx brevibracteatus*, *Anthonotha fragrans*, *Scottellia klaineana*, *Coula edulis*, sont importantes dans le deuxième groupe des relevés de forêts ombrophiles et absentes du groupe mésophile. Le résultat obtenu soutient les conclusions tirées au niveau familial concernant la similarité plus élevée entre la FC du Scio et les relevés de massifs ombrophiles. Toutefois, au niveau familial comme au niveau spécifique, il aurait fallu un plus grand nombre de relevés par site pour assurer une meilleure robustesse des résultats.

Relevés linéaires. — Comme pour les relevés-hectare, nous avons extrait un dendrogramme basé sur l'Indice de Horn calculé sur le nombre de points de contact des espèces afin d'apprécier l'agrégation de 41 relevés linéaires en forêt dense ivoirienne (fig. 19). Nous remarquons, comme pour les relevés hectare, que les relevés d'un même massif sont regroupés entre eux avant de l'être avec les relevés d'un autre massif. Le regroupement des relevés linéaires se fait en priorité en fonction des conditions édapho-climatiques qui prédominent sur la distance géographique (fig. 1 et 19). Le dendrogramme regroupe les massifs ombrophiles de Yapo et de Taï (nœud 80).

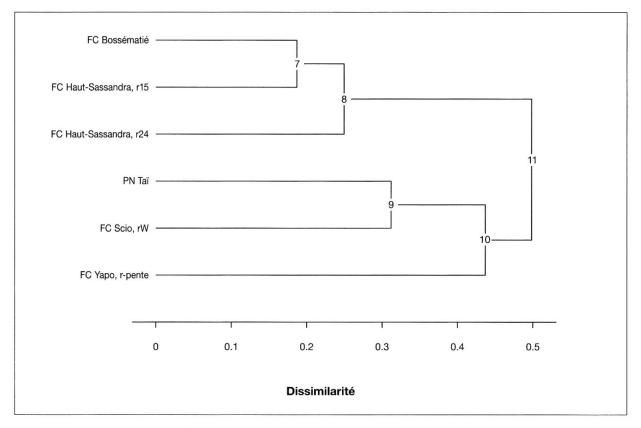


Fig. 17. – Dendrogramme d'agrégation des relevés hectares par calcul de l'indice de Horn pour les FIV des familles recensées. Le nœuds sont numérotés. Le pourcentage de similarité entre les relevés est représenté en abscisse.

Source des données: Haut-Sassandra (Kouamé, 1998), Taï (Chatelain, comm. pers.), Bossématié (Вакауоко, 1999), Yapo (Соктнау, 1996), Scio (présente étude).

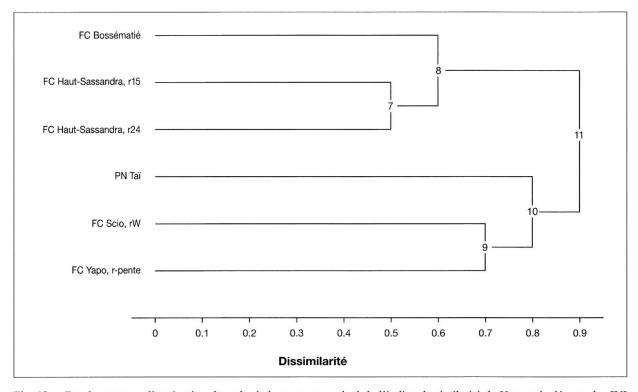


Fig. 18. – Dendrogramme d'agrégation des relevés hectares par calcul de l'indice de similarité de Horn calculé pour les IVI des espèces recensées. Les nœuds sont numérotés. Le pourcentage de similarité entre les relevés est représenté en abscisse. Source des données: Haut-Sassandra (KOUAMÉ, 1998), Taï (Chatelain, comm. pers.), Bossématié (BAKAYOKO, 1999), Yapo (CORTHAY, 1996), Scio (présente étude).

Les FC du Haut-Sassandra, de la Bossématié (forêts mésophiles) et celle du Scio sont regroupés. La séparations en deux groupes ombrophiles et mésophiles (malgré des distances géographiques entre deux forêts parfois supérieures au sein d'un groupe qu'entre deux groupes) est due à certaines espèces discriminantes comme *Dichapetalum angolense*, *Carapa procera*, *Soyauxia floribunda*, *Rhaphiostylis beninensis*, *Laccosperma opacum*. Ce sont des espèces très fréquentes dans le groupe ombrophile et absentes dans le groupe mésophile. Certaines espèces ont un nombre de points importants dans le groupe mésophile et sont absentes dans le premier groupe ombrophile comme *Drypetes chevalieri*, *Celtis mildbraedii*, *Griffonia simplicifolia*. Contrairement à l'analyse basée sur les relevés hectare, celle des relevés linéaires, qui prend en compte tous les types biologiques, rattache donc davantage le Scio aux forêts mésophiles.

Si nous nous intéressons au clade regroupant les relevés linéaires de la FC du Scio, nous remarquons que les couples de relevés ont une similarité peu élevée entre eux (nœuds 53, 54, 56). Cependant, les nœuds reliant ces couples de relevés sont généralement étalés sur un court intervalle (nœuds 64, 69, 72). Ces deux éléments montrent que les relevés présentent une diversité régulière entre eux.

Nous avions sélectionné les zones sur lesquelles nous avons réalisé nos relevés dans le but d'avoir un aperçu de la composition qualitative et quantitative de la végétation zonale de la FC du Scio. Les deux éléments mis en évidence ci-dessus montrent que ce but est atteint. Au vu du nombre assez important de relevés linéaires comparés, les regroupements montrent une bonne cohérence des résultats du Scio entre eux et face à ceux des autres études comparées.

En résumé, au niveau spécifique et familial, parmi les forêts ivoiriennes comparées, la FC du Scio est associée à des massifs forestiers ombrophiles (PN de Taï et FC de Yapo) par l'étude de relevés sur lesquels seuls les arbres de DHP > 10 cm sont considérés. Lorsque l'on s'intéresse aux

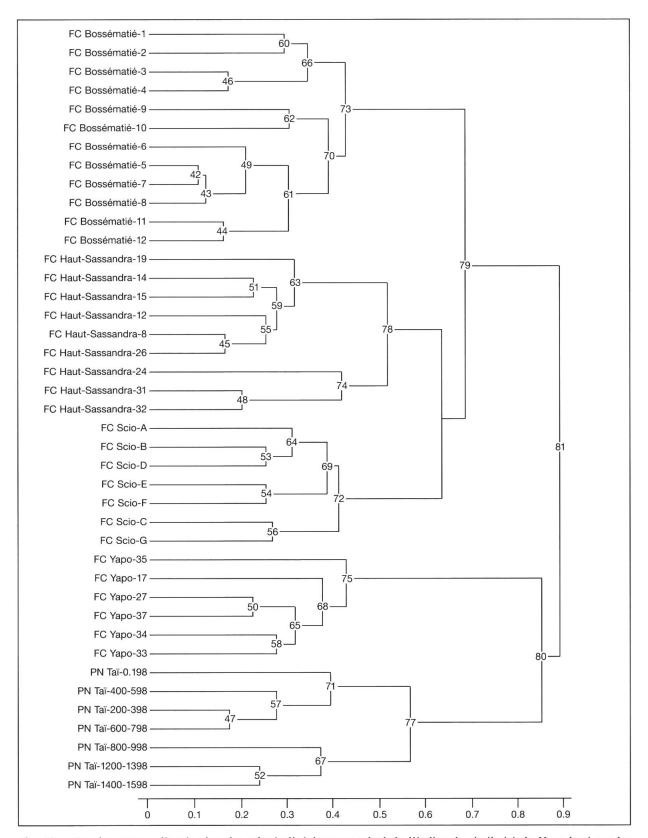


Fig. 18. – Dendrogramme d'agrégation des relevés linéaires par calcul de l'indice de similarité de Horn basé sur les fréquences des espèces recensées. Le pourcentage de similarité entre les relevés est représenté en abscisse. Source des données: Haut-Sassandra (KOUAMÉ, 1998), Taï (MENZIES, 2000), Yapo (CHATELAIN, 1996), Bossématié (BAKAYOKO, 1999), Scio (présente étude).

plantes de tous les types biologiques par les listes floristiques et par des relevés linéaires de végétation, la FC du Scio se rapproche d'avantage de celle du Haut-Sassandra ou de la Bossématié qui sont des forêts mésophiles. Au niveau du nombre d'espèces par familles, la FC du Scio présente à nouveau plus d'affinités avec la forêt mésophile du Haut Sassandra qu'avec la forêt ombrophile de Taï. Au niveau des espèces exclusives, on trouve une plus grande proportion de mésophiles. Ces considérations montrent qu'en se basant sur les données floristiques globales considérant l'ensemble des types biologiques, la FC du Scio se rapproche davantage de la forêt dense semi-décidue tout en présentant un caractère transitionnel avec la forêt sempervirente.

Conclusion

L'étude floristique de la FC du Scio en Côte d'Ivoire, nous a permis d'acquérir des données qualitatives et quantitatives permettant de situer cette forêt par rapport aux autres massifs forestiers de Côte d'Ivoire (FC du Haut-Sasssandra, PN de Taï, FC de Yapo et FC de la Bossématié). L'inventaire de cette région jusque là méconnue permet également d'améliorer la connaissance de la répartition des espèces en Côte d'Ivoire, en effet, 725 données supplémentaires ont été ajoutées à la BD IVOIRE, qui en comprend près de 60000.

Parmis les 536 espèces recensées, certaines la rapprochent du type «forêt à Chidlowia» à laquelle Guillaumet & Adjanohoun (1971) proposaient de l'associer. Ces sont des espèces comme Celtis sp., Triplochiton scleroxylon, Napoleonaea vogelii, Nesogordonia papaverifera, etc. De plus, un groupe d'espèces fortement représentées la caractérisent: Calpocalyx brevibracteatus, Neuropeltis acuminata, Polyalthia oliveri, Platysepalum hirsutum, Baphia pubescens, etc. La comparaison entre les données de la FC du Scio et celles de quatre forêts dont deux ombrophiles (PN de Taï, FC de Yapo) et deux mésophiles (FC du Haut-Sassandra, FC de la Bossématié), rapprochent d'avantage le massif étudié du type ombrophile si l'on ne considère que les arbres de DHP ≥ 10 cm par l'indice d'importance des familles, et les indices de valeur d'importance des espèces. Si l'on considère tous les types biologiques, les comparaisons rapprochent d'avantage le massif étudié du type mésophile. Cette remarque est valable pour les données qualitatives et quantitatives comme la diversité spécifique des familles, le nombre de points de contact des espèces, ou encore la présence des espèces exclusives des deux types de forêt.

De plus, les courbes isohyètes se sont progressivement déplacées vers le sud au cours de la période 1951-1989 et cette tendance risque de s'accentuer puisqu'elle semble partiellement due à la déforestation (Brou, 1997). Ce phénomène n'influence probablement encore que très peu nos résultats vu l'âge des grands arbres fournissant une protection à la végétation contre la dessiccation. Cependant, cette progression des courbes isohyètes vers le sud risque fortement de modifier la forêt qui se rapprochera encore d'avantage d'une forêt de type mésophile.

Deux méthodes de relevé peuvent été évaluées à partir des résultats obtenus par chacune d'elle. Les valeurs mesurées sur un relevé linéaire et un relevé hectare réalisés sur un même site attribuent une importance quantitative semblable aux espèces et aux familles recensées. Cependant, les relevés linéaires s'avèrent plus rentables au niveau des résultats obtenus particulièrement en regard du temps de travail nécessaire. En un tiers du temps, 35 espèces supplémentaires, soit quasiment une moitié de plus, ont été récoltées sur un même site par la méthode linéaire (115 espèces recensées) en comparaison de la méthode des relevés hectares (80 espèces recensées). La seconde méthode, ne considérant que les plantes de DHP > 10 cm, nous prive d'une information qui s'avère indispensable. Les données structurales du relevé linéaire sont également nettement plus pertinentes que celles dérivées du relevé hectare, car elles nous donnent des informations sur l'ombrage produit par les feuillages sur les strates inférieures, qui sont des facteurs déterminant pour l'écologie de la forêt. Le relevé linéaire nous apporte encore des informations sur la perturbation verticale (cycles sylvogénétiques) au travers la mesure de l'occurrence des trouées.

Sur le plan de la conservation, la FC du Scio a été associée aux «forêts à *Chidlowia*», qui occupent une surface restreinte en Côte d'Ivoire. La FC du Scio représente donc une formation végétale assez rare. Nous avons également vu que ce type de forêt transitionnel entre la forêt dense humide sempervirente et semi-décidue est un réservoir de biodiversité contenant des espèces de ces deux écologies forestières différentes, y compris des espèces remarquables. Ceci explique probablement la haute diversité observée tant sur les relevés hectare que linéaires. Ces éléments sont des arguments fondamentaux pour conserver la zone nord-est de la FC du Scio (la zone ouest étant colonisée par des plantations) qui est encore intacte structurellement, tant au niveau des strates de la forêt que du nombre d'arbres de diamètre importants ou encore de la forte capacité de régénération mis en évidence dans ce travail. Pour ce faire, la République de Côte d'Ivoire se doit de respecter la stratégie de sauvegarde du patrimoine forestier ivoirien mise en place, particulièrement au niveau du temps accordé aux parcelles forestières entre deux exploitations.

REMERCIEMENTS

Nous remercions vivement tous les chercheurs pour leurs travaux dont les données nous ont été précieuses afin de pouvoir comparer nos résultats, particulièrement François N'Guessan Kouamé (Haut Sassandra), Adama Bakayoko (Bossématié), et Alisdair Menziès (Taï) qui nous ont transmis des données complémentaires détaillées. Notre gratitude va également au Centre Suisse de Recherches Scientifiques en Côte d'Ivoire et aux Conservatoire et Jardin botaniques de la Ville de Genève qui nous ont accueillis et fourni l'assistance nécessaire à ce travail. Nous remercions également le Ministère de la Recherche Scientifique de Côte d'Ivoire qui nous a autorisé à mener ces recherches. Sur le terrain, notre reconnaissance va à la Société de Développement des Forêts et aux habitants du village de Lobykro qui ont toujours été serviables et efficaces. Deux experts anonymes ont apporté des remarques perspicaces et constructives à une première version de ce texte. Ce travail a été effectué avec le soutien d'une Bourse Augustin Lombard.

RÉFÉRENCES BIBLIOGRAPHIQUES

- ADOU, Y. C. Y. (2000). *Inventaire et étude de la diversité floristique du Sud du Parc National de Taï (Côte d'Ivoire)*. Mémoire de D.E.A. Université de Cocody, U.F.R. Biosciences, Abidjan.
- AKÉ ASSI, L. (1963). Contribution à l'étude floristique de la Côte d'Ivoire et des territoires limitrophes. Thèse de doctorat. Université de Paris.
- AKÉ ASSI, L. (1976). Esquisse de la flore générale de Côte d'Ivoire. Boissiera 24: 543-549.
- AKÉ ASSI, L. (1984). Flore de la Côte d'Ivoire: étude descriptive et biogéographique avec quelques notes ethnobotaniques. Vol. 3. Thèse de doctorat. Université d'Abidjan.
- AKÉ ASSI, L. (2001). Flore de la Côte d'Ivoire: catalogue systématique, biogéographique et écologie. I. Boissiera 57.
- AKÉ ASSI, L. (2002). Flore de la Côte d'Ivoire: catalogue systématique, biogéographique et écologie. II. Boissiera 58.
- ALSTON, A. H. G. (1959). The ferns and fern-allies of west tropical Africa. Crown agents for oversea governments and administrations, Millbank, London.
- AUBREVILLE, A. (1959). Flore forestière de la Côte d'Ivoire. 3 vol. Centre Technique Forestier Tropical, Nogent-sur-Marne.
- AVENARD, J. M. (1971). Aspect de la géomorphologie [de la Côte d'Ivoire]. Mém. O.R.S.T.O.M. 50: 7-72.
- BÄNNINGER, V. (1995). Inventaire floristique des dicotylédones de la Réserve de Lamto (V Baoulé) en Côte d'Ivoire centrale. Mémoire de Diplôme. Université de Genève.
- Вакауоко, A. (1999). Comparaison de la composition floristique et de la structure forestière de parcelles de la forêt classée de Bossématié, dans l'Est de la Côte-d'Ivoire. Mémoire de D.E.A. Université de Cocody, U.F.R. Biosciences, Abidian
- BOOM, B. M. (1986). A forest inventory in Amazonian Bolivia. Biotropica 18: 287-294.
- Bongers, F., S. A. Schnitzer, D. Traore (2002). The importance of lianas and consequences for forest management in West Africa. *Bioterre*, special issue: 59-70.
- Brou Y. T. (1997). Analyse et dynamique de la pluviométrie en milieu forestier ivoirien: recherche de corrélation entre les variables climatiques et les variables liées aux activités anthropiques. Thèse de 3° cycle. Université de Cocody, Abidjan.
- BUTTLER, A. & D. BORCARD (1998). Support du cours d'écologie numérique de l'Université de Neuchâtel. Neuchâtel.
- CAMPBELL, D. G., D. C. DALY, T. G. PRANCE, & U. N. MACIEL (1986). Quantitative ecological inventory of terra firme and

- varzea tropical forest on the Rion Xingu, Brazilian Amazon. Brittonia 38: 369-393.
- CDC (2004). Map of Ivoiry Coast. Centers for Disease Control and Prevention. Global AIDS Program [http://www.cdc.gov/nchstp/od/gap/countries/cote_divoire.htm].
- CHATELAIN, C. (1996). Possibilités d'application de l'imagerie satellitaire à haute résolution pour l'étude des transformations de la végétation en Côte d'Ivoire forestière. Thèse de doctorat. Université de Genève.
- CHATELAIN, C., H. DAO, L. GAUTIER & R. SPICHIGER (2004). Forest cover changes in Upper Guinea, with special reference to Côte d'Ivoire. *In*: Poorter, L., F. Bongers, F. Kouamé & W. D. Hawthorne (ed.), *Biodiversity of West African forest An ecological atlas of woody plant species*: 15-32. CABI Publishing,.
- CHATELAIN, C., L. GAUTIER & R. SPICHIGER (2001). Application du SIG IVOIRE à la distribution potentielle des espèces en fonction des facteurs écologiques. *Syst. & Geogr. Pl.* 71: 313-326.
- Chevalier. A. (1920). Exploitation botanique de l'Afrique occidentale française. Enumération des plantes récoltées. Vol. 1. Ed. Lechevalier.
- Colwell, R. K. (2004). EstimateS: Statistical estimation of species richness and shared species from samples. [http://viceroy.eeb.uconn.edu/EstimateS].
- CORTAY, R. (1996). Analyse floristique de la forêt sempervirente de Yapo (Côte d'Ivoire). Mémoire de Diplôme. Université de Genève.
- COTTAM, G. & J. T. CURTIS (1956). The use of distance measures in phytosociological sampling. *Ecology* 37: 451-460.
- DEVINEAU, J. L. (1984). Structure et dynamique de quelques forêts tropophiles de l'ouest Africain, (Côte d'Ivoire). Thèse de doctorat. Université Paris VI.
- DOTIA, Y. P. (1999). Arbre, Arbustes et lianes ligneuses de la commune de Kouto, Nord de la Côte d'Ivoire. Mémoire de D.E.A. Université de Cocody, Abidian.
- FANGLIANG, H., P. LEGENDRE, J. V. LAFRANKIE, (1996). Spatial pattern of diversity in a tropical rain forest in Malaysia. J. Biogeogr. 23: 57-74
- GAUTIER, L. (1989). Contact forêt-savane en Côte d'Ivoire centrale: évolution de la surface forestière de la réserve de Lamto (sud du V-Baoulé). *Bull. Soc. Bot. France, Actual. Bot.* 136: 85-92.
- GAUTIER, L. (1992). Contact forêt-savane en Côte d'Ivoire centrale: le rôle de Chromolaena odorata (L.) R. King & H. Robinson dans la dynamique de la végétation. Thèse de doctorat. Université de Genève.
- GAUTIER, L., L. AKÉ ASSI, C. CHATELAIN & R. SPICHIGER (1999). IVOIRE: a geographical system for biodiversity management in Côte d'Ivoire. In: TIMBERLAKE, J. & S. Kativu (ed.), *African plants: biodiversity, taxonomy and uses:* 183-194. Royal Botanic Gardens, Kew.
- GAUTIER, L., C. CHATELAIN & R. SPICHIGER (1994). Presentation of a releve for vegetation studies based on high resolution satellite imagery. *In:* SEYANI, J. H. & A. C. CHIKUNI (ed.), *Proceedings of the the XIIIth plenary meeting of Aetfat, Zomba, Malawi, 2-11 April 1991* 2: 1339-1350.
- GAUTIER, L. & R. SPICHIGER (2004). The forest-savanna transition in West-Africa. *In*: Poorter, L., F. Bongers, F. Kouamé & W. D. Hawthorne (ed.), *Biodiversity of West African Forest An ecological Atlas of Woody Plant Species*: 15-32. CABI Publishing.
- GOUNOT, M. (1969). Méthodes d'étude quantitative de la végétation. Masson et Cie.
- GUILLAUMET, J.-L. (1967). Recherche sur la végétation et la flore de la région du Bas-Cavally (Côte-d'Ivoire). *Mém. O.R.S.T.O.M.* 20.
- GUILLAUMET, J.-L. & E. ADJANOHOUN (1971). La végétation [de la Côte d'Ivoire]. Mém. O.R.S.T.O.M. 50: 157-263.
- HAWTHORNE, W. D. (1996). Guide de terrain pour les arbres arbres des forêts denses de la Côte d'Ivoire et pays limitrophes. Projet ECOSYN. Université de Wageningen.
- HORN, H. S. (1966). Measurement of «overlap» in comparative ecological studies. Amer. Naturalist 100: 419-424.
- HUTCHINSON, J. & J. M. DALZIEL (1954-1972). Flora of West Tropical Africa, ed. 2. 4 vol. Crown Agents for Oversea Governments and Administrations, London.
- JACCARD, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. *Bull. Soc. Vaud. Sci. Nat.* 37: 241-272.
- KOUAME, F. (1993). Contribution au recensement des monocotylédones de la réserve de Lamto et à la connaissance de leur place dans les différents faciès savaniens. Mémoire de D.E.A. Université de Cocody, Abidjan.
- KOUAME, F. (1998). Influence de l'exploitation forestière sur la végétation et la flore de la forêt classée du Haut-Sassandra (Centre-Ouest de la Côte d'Ivoire). Thèse de 3ème cycle. Université de Cocody, U.F.R. Bioscience, Abidjan.

- KOUAME, F., K. E. KOUADIO, K. KOUASSI & L. POORTER (2004). Floristic diversity of closed forests in Côte d'Ivoire. *In:* POORTER, L., F. BONGERS, F. KOUAME & W. D. HAWTHORNE (ed.), *Biodiversity of west african forests. An ecological atlas of woody plant species:* 53-59. CABI Publishing.
- LEBRUN, J.-P. & A. STORK (1991-1997). Enumération des plantes à fleurs d'Afrique tropicale. 4 vol. Conservatoire et Jardin botaniques de Genève.
- LOIZEAU, P.-A. (1992). La diversité: exemple des forêt denses humides amazoniennes. Saussurea 23: 49-82.
- MANGENOT, G. (1955). Etude sur les forêts des plaines et de plateaux de la Côte d'Ivoire. Études Eburn. 4: 5-61.
- MANGENOT, G. (1956). Les recherches sur la végétation dans les régions tropicales humides de l'Afrique occidentale. *Actes du colloque de Kandy (Ceylon): l'étude de la végétation tropicale:* 115-126. UNESCO.
- MENZIES, A. (2000). Structure et composition de la forêt de la zone Ouest du Parc National de Taï (Côte d'Ivoire). Mémoire de Diplôme. Université de Genève.
- MONNIER, Y. (1983). Carte de la végétation de la Côte d'Ivoire. *In*: VENNETIER, P. & G. LACLAVERE (ed.), *Atlas de Côte d'Ivoire*, éd. 2. Jeune Afrique, Paris.
- MORI, S. A., B. M. BOOM, A. M. CARVALHO & T. S. Dos SANTOS (1983). Ecological importance of Myrtaceae in an Eastern Brazilian wet forest. *Biotropica* 15: 68-70.
- OPPERDŒS, F. (2004). Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA) [http://www.icp.ucl.ac.be/~opperd/private/upgma.html].
- PERRAUD, A. (1971). Les sols [de Côte d'Ivoire]. Mém. O.R.S.T.O.M. 50: 265-391.
- RAUNKIAER, C. (1934). The life forms of plants and statistical plant geography. Clarendron Press.
- RICHARDS, P. W., A. G. TANSLEY & A. S. WATT (1940). The recording of structure, life forms and flora of tropical forest communities as a basis for their classification. *J. Ecol.* 28: 224-239.
- ROLLET B. (1979). Application de diverses methods d'analyse de données à des inventaires forestiers détaillés levés en forêt tropicale. *Œcol. Pl.* 14: 319-344.
- SHANNON, C. E. & W. WEAVER (1949). A mathematical theory of communication. University of Illinois Press.
- SINGH, K. D. (1993). L'évaluation des ressources forestières en 1990. Unsaylva 174(44): 10-20.
- SODEFOR (1993). Carte régulière de l'Afrique de l'Ouest 1/200 000. République de Côte d'Ivoire-Feuille NB-29-XVII. Guiglo.
- SPICHIGER, R. (1975). Contribution à l'étude du contact entre flores sèche et humide sur les lisières des formations forestières humides semi-décidues du V baoulé et de son extension nord-ouest (Côte d'Ivoire centrale). Thèse de doctorat. Université de Genève.
- SPICHIGER, R. & V. LASSAILLY (1981). Recherches sur le contact forêt-savane en Côte d'Ivoire: note sur l'évolution de la végétation dans la région de Béoumi (Côte d'Ivoire centrale). *Candollea* 36: 145-153.
- SPICHIGER, R. & C. PAMARD (1973). Recherches sur le contact forêt savane en Côte d'Ivoire: Etude du recrû forestier sur des parcelles cultivées en lisière d'un îlot forestier dans le sud du pays Baoulé. *Candollea* 28: 21-37.
- SPICHIGER, R., V. SAVOLAINENE, M. FIGEAT & D. JEANMONOD (2002). *Botanique systématique des plantes à fleurs*. Presses polytechniques et universitaires romandes.
- STUTZ DE ORTEGA, L. C. (1987). Etudes floristiques de divers stades secondaires des formations forestières du haut-Parana (Paraguay Oriental). Dynamisme et reconstruction d'une forêt secondaire peu dégradée. *Candollea* 39: 386-394.
- TRA BI, F. H. (1997). *Utilisation des plantes par l'homme, dans le Haut-Sassandra et le Scio, en Côte d'Ivoire*. Thèse de 3^e cycle. Université de Cocody, U.F.R. Biosciences, Abidjan.
- WEBER, W. A. (1981). Mnemonic three-letter acronyms for the families of flowering plants. *ASC News-Lett.* 9: 23-26. ZAR, J. H. (1995). *Biostatistical Analysis*, ed. 2. Prentice Hall.

Reçu le 11 octobre 2004 Accepté le 6 octobre 2005

Annexe 1. - Liste floristique de la Forêt Classée du Scio, avec nombres d'individus et fréquence des espèces recensées sur les relevés linéaires.

9		Fourilles	TOVE	1	1	1	1		100			L	1	1		of a second substitution of the second		1	
Z	Especes	Lammes		2	200	5	200	5	IIac	ND de points de contact recenses	i se	^	Z	= 5 0		Since	ECE.	Ses	
			BIOL		Š	ur le	s re	evés	liné	sur les relevés linéaires			ร	ar les	s rele	sur les relevés linéaires	inéai	res	
3)				۷	В	O	0	E	ш.	<u>ა</u>	Tot	t A	8	ပ	٥	Ш	ш	G	Tot
-	Abildgaardia hispidula (Vahl) Lye	CYP	Ŧ																
2	Acacia catechu Willd.	FAB (Mim)	Lmg																
က	Acacia kamerunensis Gand.	FAB (Mim)	Lme	2	က	18			4	_	13	<u>ო</u>	2				က	-	6
4	Acanthus montanus (Nees) T. Anders	ACA	I																
2	Acridocarpus smeathmannii (DC.) Guill. & Perr.	MLP	Lmi		_						_		_						-
9	Adenia cissampeloides (Hook.) Harms	PAS	Ĺ			2					2			2					2
7	Adenia dinklagei Hutch. & Dalziel	PAS	Lmi																
∞	Adenia lobata (Jacq.) Engl.	PAS	Lmi																
6	Adenopodia scelerata (A. Chev.) Brenan	FAB (Mim)	Lme		က	(2),170	4			_	∞		_		_			_	က
10	Aeglopsis chevalieri Swingle	RUT	Ē																
Ξ	Aeollanthus pubescens Benth.	LAM	Th																
12	Aframomum sp. 1	ZIN	ģ				*****	_			_					-			-
13	Afrotrilepis pilosa (Boeckeler) J. Raynal	CYP	I																
14	Afzelia bella Harms	FAB (Mim)	me	-					_		0	_					-		Ŋ
15	Aganope leucobotrya (Dunn) Polhill	FAB (Fab)	mp (Lmp)	_							_	_							-
16	Agelaea pentagyna (Lam.) Baill.	CNN	Lme	4	_	_	_	2	₀	4	=	4	_	_	0	7	က	4	11
17	Aidia genipiflora (DC.) Dandy	RUB	Ë	_	_	_	_	_			5	_	_	_	-	_			2
18	Alafia lucida Stapf	APO	Lme			_	_		-		_			_					-
19	Albertisia scandens (Mangenot & Miège) Forman	MNS	lna																
20	Albizia adianthifolia (Schumach.) W. Wight	FAB (Mim)	me						_	22-91	_						-		-
21	Albizia dinklagei (Harms) Harms	FAB (Mim)	me																
22	Albizia ferruginea (Guill. & Perr.) Benth.	FAB (Mim)	me																
23	Albizia zygia (DC.) J. F. Macbr.	FAB (Mim)	me				-		2	0:							7		7
24	Alchornea cordifolia (Schumach. & Thonn.) Müll. Arg.	EUP	Lmp (mp)		2						5		-						-
25	Allophylus africanus P. Beaux.	SAP	Ë																
26	Alstonia boonei (DC.) Willd.	APO	mg				=	_	9		17	_			7		-		œ
27	Amorphophallus johnsonii N. E. Br.	ARA	IJ																
28	Amphimas pterocarpoides Harms	FAB (Csl)	mg					_											
59	Anacardiaceae sp. 1	ANA	me											74-22					
30	Aneilema umbrosum (Vahl) Kunth	CMM	na																
31	Annickia polycarpa (DC.) Setten & Maas	ANN	ш.	2	_	_	_	_			6	က	_	_	_	_			7
L					-	-	+	$\frac{1}{1}$	$\frac{1}{2}$	-	-	-	-	-	-				

* Espèces sassandriennes

°z	Espèces	Familles	TYPE	NP	le po	ints	de co	ntac	trec	Nb de points de contact recensés		Ž	Nb d'individus recensés	divid	us re	cens	és	
			BIOL		sur	es r	sur les relevés linéaires	s line	aire	"		ร	sur les relevés linéaires	rele	vés li	néair	es	
				4	8	ပ	۵	ш	П	G Tot	+	B	ပ	۵	ш	ш	G	핰
32	Anopyxis klaineana (Pierre) Engl.	RHZ	mg	13		29				20	2		က			-	-	7
33	Anthonotha fragrans (Baker f.) Exell & Hillc.	FAB (Csl)	mg		-		2	_		4		-		7	-			4
34	Anthonotha macrophylla P. Beauv.	FAB (Csl)	Ē		-	_	_			က		_	-	-				က
35	Antiaris toxicaria var. africana A. Chev.	MOR	me			100	-			_				-				-
36	Antiaris toxicaria var. welwitschii (Engl.) Corner	MOR	me															
37	Aporrhiza urophylla Gilg	SAP	Ë				S.	2		7					-		20 00	-
38	Argomuellera macrophylla Pax	EUP	na	21	28		2	24 2	20 6	9	1 21	28		7	23	20	9	90
39	Arthropteris palisoti (Desv.) Alston	DAV	Se-Ep				ľ										77.37	
40	Asplenium jaundeense Hieron.	ASL	ebi		-115-111				-									
4	Aubrevillea kerstingii Pellegr.	FAB (Mim)	mg											. *				
42	Baissea leonensis Benth.	APO	Lme	ო			က	_		7	•			-	-			ო
43	Baissea multiflora A. DC.	APO	Lme	2	-					9	4	-			ii ii	ij		2
44	Baissea zygodioides (K. Schum.) Stapf	APO	_		4		_	က		00		က		-	ო			7
45	Balanites wilsoniana Dawe & Sprague	BLT	mg															
46	Baphia capparidifolia Baker																	
	subsp. polygalacea Brummitt	FAB (Fab)	Lmi						J112-0-2									
47	Baphia nitida Lodd.	FAB (Fab)	Ë	2	7	7	က			2 27	200	7	2	N		က	8	22
48	Baphia pubescens Hook. f.	FAB (Fab)	Ë	œ	27	56	_	12	20	33 133	3	15	15	9	12	12	8	82
49	Bequaertia mucronata (Exell) Wilczek	CEL	Lmg	4	7		9	8	4	8	4	4		4	^	4	-	24
20	Bertiera breviflora Hiern	RUB	na															
51	Blighia sapida Koenig	SAP	me							3							8	8
52	Blighia sp. 1	SAP	me			-		_	-	0			-		-			8
53	Blighia unijugata Baker	SAP	me	4		4		ဗ	_	32	<u>س</u>		8		-		-	7
54	Blighia welwitschii (Hiern) Radlk.	SAP	me	7					_	4	_					-	-	ო
22	Bobgunnia fistuloides (Harms) J. H. Kirkbr. & Wiersema	FAB (Csl)	me	13		4				1	~		-					က
26	Bolbitis gemmifera (Hieron.) C. Chr.	LOM	£			_		_		2			-		-		7	4
22	Bombax brevicuspe Sprague	BOM	mg	-				က		4	_				7			ო
28	Bombax buonopozense P. Beauv.	BOM	mg															
29	*Breviea sericea Aubrév. & Pellegr.	SPT	me					ဗ	-	က					-			-
09	Bridelia grandis Hutch.	EUP	me	က						က	_							-
61	Bridelia micrantha (Hochst.) Baill.	EUP	Ë						_									
62	Brillantaisia lamium (Nees) Benth.	ACA	na					_		_					-			-
63	Buforrestia obovata Brenan	CMM	ಕ				က			က				က				က
64	Bulbophyllum sp. 1	ORC	də					_					_					

4 10			က	11	7			_		-			7	2 7	9			2				_	16		_		7	_	-	_					-
4				2											(-)	_		_				_	8				_								_
				15 2					-					-				-		-		-		-	_		-								
_				19 1									_		_			_		_			7			-		_	_						
_				2						_		_	_	7	_			_								-			_						_
7			_	8				_					_	_	7								ဗ				_	_							
				42				_					_	_									4		-					_					
7			9	151	2			7		_			9	88	က			2				_	48		_		7	e	_	_		_		-	<u>س</u>
13 27			_							-		-	_	-	7							-	4		•		_		_	•	_				_
_				47								-		· ·	-			_				_	9				_								<u>س</u>
				2e 4		-				-								0							_	-							0		
<u>ი</u>			4	36	8								က		_			_					15						_			-			
			7							_				4													-	က							
2				16				7					က	7	2								F												-
				22										7									16							-					
																		Ep)	a V																
																		Se-																	
me	na	Ē	me	ше	Lme	ebi	na	Ina	Ē	mg	na	Ē	mg	mg	me	Ē	당	Lmp	Ē	na	na	<u>წ</u>	me	Ē	I	Ē	mg	me	me	Ē	Ē	Ē	Lme	ర్	me
(s			(lim)	(mil							(ls					ab)							(IS												
FAB (CsI)	APO	O	FAB (Mim)	FAB (Mim)	CN	ORC	OCH	SCH	OCH	BRS	FAB (Csl)	Μ	BOM	Σ	Σ	AB (F		ΡĄ	NB	RUB	RUB	NB	FAB (Csl)	Ö	Ⅎ	릳	Ы	SPT	Ы	SAP	⊢	⊢	⊢	_	ANN
Ţ	₹	正	Ŧ	Ţ	O	0	0	0	0	8	Ŧ	>	ā	\supset	\supset	Ŧ	<u>a</u>	₹	Œ	Œ	Œ	Œ	Ŧ	0	_	F	S	ଊ	ଊ	Ś	>	>	>	F	₹
							egh.		rron																										
						Calyptrochilum christyanum (Reichb. f.) Summerh.	*Campylospermum duparquetianum (Baill.) Van Tiegh.	Campylospermum glaberrimum (P. Beauv.) Farron	Campylospermum schoenleinianum (Klotzsch) Farron																ers.										
						Sumi		v.) Fį	tzscl															JZ.	Chlorophytum macrophyllum (A. Rich.) Aschers.			alz.	<u>-</u> -						S
						. ()	(Bai	ean	(K)											ē		ē		Chlamydocarya macrocarpa Hutch. & Dalz.	h.) A			Chrysophyllum perpulchrum Hutch. & Dalz.	'Chrysophyllum taïense Aubrév. & Pellegr.						Cleistopholis patens (Benth.) Engl. & Diels
	apf			SL	ine	chb.	mn	(P. B	un										۲.	Chassalia corallifera (De Wild.) Hepper	per	Chassalia subherbacea (Hiern) Hepper		ch.	Bi			ch.	& P			٠.		rer	<u>ا۔</u> ھ
	St (Gilg	<u>-</u> -	larm	He	(Rei	stiar	ur	nian			ς,				Ŧ.			hun	Ţ	Hep	J.		Ŧ	ą.		<u>S</u>	Ξ	év.			ınch		che	Enc
<u>;</u>	inth	(Jd	eg	JS F)liv.)	mr	rque	rim	nlei	Eng		nes	Ē.	_:		3ent			S.	Nild	h.)	Hieri	yle	гра	llum		Ä	un	\ub	≚.		Pla) Be	th.)
	(B	(Sta	% Pe	eat	#!! (C	yanı	nba	aper	hoe	thii		r) S	Зае	Eng	<u>-</u> :	ns E		#	S X	De/	тас	39 (1	운	oca	ohy.	ci	nn	lchr	se A	Rac		ker)	<u>:</u> و	Baill.	Ben
lis F	silis	Sec	ville	raci	le/oi	rist	nd	n gle	J SC	nfun	SS L	ake	<u>(</u> ;	icii	Eng	sce		cho	Hieri	ra (Shul	Jace	inea	Jacr	cro	3 DC	rical	rpu	ijen.	Sne	×.	(Ba	look	у (E	ns (
enta	ses	eviç	ıbre	evib.	eno	n ch	ınıı	nnu	nnu	weir	oide	s (B	dra (ider	ilbe	npe	p. 1	S III	// (F	allife	<u>(</u>	hert	ingu	am	ma	Sans	n afi	η pe	n të	arne	유	ora	ta H	ninc	ate
cide	sub	a br	x ar	c bre	1sh	ilun	ber	nec	nec	schi	nos	ebili	tanc	fi-fr	brae	Da p	3a S	afze	afze	COR	kolly	qns	sar	cary	tum	afric	<i>Illun</i>	<i>Illun</i>	yllu	SC	uta	usif	iola	nia r	JIS L
3 00	hilia	cop	caly	Saly	poli	roct	ylos	los)	los,	un	mir	ia d	pen	Ope	nila	sen	the	stis	alia	alia	alia	alia	owia	ydo	phy	ana	hdy	hdo	ydo.	nth	arg	diff	pet	Stol	pha
Bussea occidentalis Hutch.	*Callichilia subsessilis (Benth.) Stapf	*Caloncoba brevipes (Stapf) Gilg	*Calpocalyx aubrevillei Pellegr.	Calpocalyx brevibracteatus Harms	Calycobolus heudelotii (Oliv.) Heine	lypt	dut	mp	mps	Canarium schweinfurthii Engl.	Cassia mimosoides L.	Cayratia debilis (Baker) Suess.	Ceiba pentandra (L.) Gaertn.	Celtis adolfi-fridericii Engl.	Celtis mildbraedii Engl.	Centrosema pubescens Benth.	Ceratotheca sp. 1	Cercestis afzelii Schott	Chassalia afzelii (Hiern) K. Schum.	ass	Chassalia kolly (Schumach.) Hepper	ass	*Chidlowia sanguinea Hoyle	lam	loro	Christiana africana DC.	Chrysophyllum africanum A. DC.	rysc	Nys	Chytranthus carneus Radlk.	Cissus arguta Hook. f.	Cissus diffusiflora (Baker) Planch.	Cissus petiolata Hook. f.	Clappertonia minor (Baill.) Becherer	isto
Bu	Ÿ	౪	౪	Ca	Ca	Sa	ζ̈̈	Sa	Ca	Ca	Ca	S.	Se	Ö	Se	Ö	Se	S	S	ς	S	S	Ç	S	S	S	S	S	Ç	5	Cis	Sis	Cis	S	S
	0	29	89	69	20	71	72	73	74	75	9/	11	28	29	80	81	82	83	84	85	98	87	88	83	90	91	92	93	94	92	96	97	86	66	100
65	99	CD					0.000				-	-	100			-	-	-	-	-				-											0.7

Š	Espèces	Familles	TYPE	Nbc	le po	ints	de co	Nb de points de contact recensés	t rec	ensé	8	Ž	d'in	Nb d'individus recensés	us re	cens	és	
			BIOL		sur	les r	elevé	sur les relevés linéaires	aire	'n		าร	ır les	sur les relevés linéaires	/és li	néair	es	
				4	В	ပ	۵	ш	Т	G Tot	¥ A	В	ပ	۵	ш	ш	σ	1ot
5	Cnestis ferruginea DC.	CNN	Lmi				7		-	4	7720			7		-	-	4
102	Cnestis racemosa G. Don	CNN	Lmi						_	<u>ო</u>					-	-		7
103	Coccinia grandis (L.) Voigt	cnc	Lmi															
104	Coelocaryon oxycarpum Stapf	MYS	me						_	_	100					8		7
105	Coffea ebracteolata (Hiern) Brenan	RUB	na		-					_		_						-
106	Coffea liberica Hiern	RUB	Ē															
107	Coffea sp. C037	RUB	me			_	2			9	7000		-	4				2
108	Coffea sp. 2	RUB	me															
109	Cola caricaefolia (G. Don) K. Schum.	STR	Ë	-		_	_		2	2	_		-	-	က	7	7	9
110	Cola gigantea A. Chev.	STR	me		7	-		9		4	_	က	-		က			7
Ξ	Cola lateritia K. Schum.	STR	ïE.	ო	7					7	_	7					-	4
112	Cola nitida (Vent.) Schott & Endl.	STR	me							2							-	-
113	Cola reticulata A. Chev.	STR	ïE.				-			_				-				_
114	Combretum adenogonium A. Rich.	CMB	Ë		_					_		_						-
115	Combretum aphanopetalum Engl. & Diels	CMB	Lme					_		_					-			-
116	Combretum grandiflorum G. Don	CMB	Lme	2	-	7	6	9	_	<u>జ</u>	_	_	0	က	4	ო		4
117	Combretum homalioides Hutch. & Dalz.	CMB	Lme						_	က	222				-	-		7
118	Combretum mucronatum Schumach. & Thonn.	CMB	Lmi		8			7		4		7			-			က
119	Combretum racemosum P. Beauv.	CMB	Lme															
120	Combretum sordidum Exell	CMB	Lme	-	7						_	က						4
121	Combretum sp. D070	CMB	<u>m</u>				_			_				-				-
122	Combretum sp. G031	CMB	Lme							_							-	-
123	Connarus africanus Lam.	CNN	Lme	6	-	-	7	7		23	9	_	_	9	8	0	-	52
124	Copaifera salikounda Heckel	FAB (Csl)	me															
125	Corynanthe pachyceras K. Schum.	RUB	me	8	8	12	52	3	9	9	8	7	7	9	-	2	7	36
126	Costus afer Ker-Gawl.	ZIN	na															
127	Coula edulis Baill.	FAB (CsI)	me							2							-	-
128	Crossostemma laurifolium Benth.	PAS	Lmi	-	-			_		ო	_	_			-			က
129	Cryptosepalum tetraphyllum (Hook. f.) Benth.	FAB (Csl)	me		9		12			22	0	_		8				က
130	Ctenitis pilosissima (J. Sm.) Alston	ASD	I					_		_					-			-
131	Cuervea macrophylla (Vahl) N. Hallé	CEL	Lme	-		က	-	-		9	_		8	-	-			2
132	Culcasia angolensis Schott	ARA	드		28 11 20	_		က		2 6			_		က		7	9
133	Culcasia glandulosa Hepper	ARA	Lmp (Se-Ep)	-	က		က	-	က	우	_	က		က		က		우
134	Culcasia liberica N. E. Br.	ARA	Lmp (Se-Ep)	-		7	7	_	- 2		_		7	7	-	7		œ

135	Culcasia mannii (Hook. f.) Engl.	ARA	므	_			_			-	_						-
136	Culcasia saxatilis A. Chev.	ARA	na														
137	Culcasia scandens Beauv.	ARA	Lmp (Se-Ep)		_	<u></u>	2	-	က	7		_	_	N	-	က	7
138	Culcasia seretii De Wild.	ARA	Lmp (Se-Ep)		_			0		က		_	_		7		က
139	Culcasia sp. 1	ARA	na		ဗ	2		-		9		က	~		-		9
140	Cuviera acutiflora DC.	RUB	Ë		31.35	7				က		<u>-</u>	_				7
141	Cyanotis lanata Benth.	CMM	5														
142	Dacryodes klaineana (Pierre) Lam.	BRS	me							-		_	_				-
143	Dactyladenia dinklagei (Engl.) Prance & White	CHB	iE.	_						-	-	72.30.2					_
144	Dalbergia afzeliana G. Don	FAB (Fab)	Lme														
145	Dalbergia oblongifolia G. Don	FAB (Fab)	Ë	-	-					-	-						-
146	Dalbergia sp. G051	FAB (Fab)	Ë						-	-						-	-
147	Dalbergiella welwitschii (Baker) Baker f.	FAB (Fab)	Ĺmj														
148	Daniellia ogea (Harms) Holl.	FAB (CsI)	mg														
149	Dasylepis sp. C069	FLC	na			8				0		-	_				_
150	Deinbollia grandifolia Hook. f.	SAP	Ë		_					-		_					-
151	Desmodium adscendens (Sw.) DC.	FAB (Fab)	5														
152	Desmodium velutinum (Willd.) DC.	FAB (Fab)	lna														
153	Desplatsia chrysochlamys (Mildbr. & Burret)				-							1000					
	Mildbr. & Burret	1	Ē	_	4	_	_			9	-	က	_				2
154	Desplatsia dewevrei (De Wild. & T. Durand) Burret	TIL	Ë		က				4	7		_				7	က
155	Detarium senegalense J. F. Gmel.	FAB (CsI)	me	8						8	-	•					_
156	Dialium aubrevillei Pellegr.	FAB (CsI)	me	-	ო		_	က		12	-	7	د	_	0	37 1311	10
157	Dialium dinklagei Harms	FAB (Csl)	Ē	4	_	12	က	-		8	9		2		-		10
158	Dichanthium annulatum (Forssk.) Stapf	POA	I														
159	Dichapetalum heudelotii (Oliv.)				-												
	Baill. var. ndongense (Engl.) Breteler	DCH	Ĺmi	8					N	4	-					-	8
160	Dichapetalum madagascariense Poir.	DCH	Ë					8		N					7		7
161	Dichapetalum madagascariense																
	Poir. var. madagascariense	DCH	Ē					-		-					-		-
162	Dichapetalum pallidum (Oliv.) Engl.	DCH	Lme	2	2		_	-		6	ო	7		-	-		7
163	Dichapetalum toxicarium (G. Don) Baill.	DCH	Lmi		_	4	7			9		_	4	0			9
164	Dictyandra arborescens Hook. f	RUB	Ē														
165	Dioscorea abyssinica Kunth	DSC	ŋ														
166	Dioscorea bulbifera L.	DSC	ŋ														
167	Dioscorea lecardii De Wild.	DSC	g			_	_			-			_				-
				1		$\frac{1}{1}$	-				1	$\frac{1}{1}$	$\frac{1}{1}$	-		1	

* Espèces sassandriennes

ž	Espèces	Familles	TYPE	₽ Q	de	oint	s de	cont	Nb de points de contact recensés	ecer	Isés		S	d'in	Nb d'individus recensés	us re	cens	és	
			BIOL		ัช	r les	rele	vés l	sur les relevés linéaires	res			sm	es.	sur les relevés linéaires	és li	néair	es	
				4	æ	ပ	۵	ш	щ	G	절	4	æ	ပ	۵	ш	ш	G	<u>To</u>
168	Dioscorea smilacifolia De Wild.	DSC	ŋ	8	우	က	-	-		က	25	56	œ	က	-	-		က	42
169	Dioscoreophyllum volkensii Engl.	MNS	Lmi																
170	Diospyros canaliculata De Wild.	EBN	Ē	2	4	8	2				16	4	က	7	4				13
171	Diospyros ferrea (Willd.) Bakh.	EBN	Ē																
172	Diospyros heudelotii Hiern	EBN	me					7	-		က					7	-		က
173	Diospyros mannii Hiern	EBN	Ē		_						-		-						-
174	Diospyros soubreana F. White	EBN	na	4	9	9	œ		2	2	8	4	9	9	œ		2	4	33
175	Diospyros vignei F. White	EBN	na			-					-			-					-
176	Diospyros viridicans Hiern	EBN	me						-		-						-		-
177	Discoglypremna caloneura (Pax) Prain	EUP	me		_					4	2		-					-	7
178	Distemonanthus benthamianus Baill.	FAB (CsI)	me			4				9	9			-				-	8
179	Dorstenia kameruniana Engl.	MOR	na																
180	Dorstenia sp. D071	MOR	na				-				-				_				-
181	*Dorstenia turbinata Engl.	MOR	na	-							-	-							-
182	Dracaena arborea (Willd.) Link	AGA	Ē																
183	Dracaena aubryana C. J. Morren	AGA	na																
184	Dracaena cristula W. Bull.	AGA	na																
185	Dracaena ovata Ker-Gawl.	AGA	na	_			_		-		က	-			-		-		က
186	Dracaena sp. D072	AGA	na				-				-				-				-
187	Drypetes aylmeri Hutch. & Dalz.	EUP	Ē	8	4				7		24	15	8				-		8
188	Drypetes chevalieri Beille	EUP	ïE	F	1	26	8	2	-	6	87	Ξ	4	26	48	2	-	7	82
189	Drypetes floribunda (Müll. Arg.) Hutch.	EUP	Ē			Ω.					2			4					4
190	Drypetes gilgiana (Pax) Pax & K. Hoffm.	EUP	Ē		0		F	8	-	8	18		8		F	-	-	_	19
191	Drypetes parvifolia (Müll. Arg.) Pax & K. Hoffm.	EUP	Ē																
192	Drypetes sp. G021	EUP	Ē							-	-							-	-
193	Duboscia cf. viridiflora (K. Schum.) Mildbr.	⊒	me							8	0							-	-
194	Duguetia staudtii (Engl. & Diels) Chatrou	ANN	mg																
195	Elaeophorbia drupifera (Thonn.) Stapf	EUP	ше																
196	Entada mannii (Oliv.) Tisserant	FAB (Mim)	Lme																
197	Entandophragma sp.	MEL	me			4		-	2		9			-		-	-		က
198	Entandrophragma utile (Dawe & Sprague) Sprague	MEL	шg		_		က			7	9		-		8			-	4
199	Eremospatha hookeri (Mann & Wendl.) Wendl.	ARE	Lmg																
200	Eremospatha macrocarpa (Mann & Wendl.) Wendl.	ARE	Lmg			-				-	7			-	/			-	7
201	Eribroma oblongum (Mast.) Germain	STR	mg	4	~	4	4	_	_	-	22	4	7	0	က		7	-	4

202	Eriocaulon plumale N. E. Br.	ERO	H H			- 10						-					
203	Eriocoelum pungens Engl.	SAP	Ë			_				-			_				_
204	Eriocoelum sp. 1	SAP	Ē														
205	Erythrophleum ivorense A. Chev.	FAB (Csl)	me			_	•	18 20	-	84			_	8	7	-	9
206	Erythroxylum mannii Oliv.	ERX	Ē		18		5	76	15	22			_	-		-	ဗ
207	Eulophia guineensis Lindl.	ORC	I		-												
208	Eulophia horsfallii (Bateman) Summerh.	ORC	I														
209	Farquharia elliptica Stapf	APO	Lme	7						8	-						_
210	Ficus barteri Sprague	MOR	ebi														
211	Ficus elasticoides De Wild	MOR	Ë		,		4			4			_				_
212	Ficus natalensis Hochst.	MOR	Ē												1.4		
213	Ficus saussureana DC.	MOR	mp (Ep)	-						-	-						_
214	Ficus thonningii Blume	MOR	Ē	~				-					-				
215	Funtumia africana (Benth.) Stapf	APO	me			_	3	4	က	19			5	-	4	8	14
216	Funtumia elastica (Preuss) Stapf	APO	me	ო	7	_				11	8	4	_	-			6
217	Garcinia kola Heckel	CLU	me		- 200				ო	က						-	_
218	Garcinia ovalifolia Oliv.	CLU	Ë		-		_	- 19	-	8				-		-	7
219	Geophila obvallata (Schumach.) F. Didr.	RUB	ర			ဗ	_	7	က	œ		-	က		8	ო	œ
220	Gloriosa superba L.	=======================================	IJ						n ş.					20			
221	Glyphaea brevis (Spreng.) Monachino	1	Ë	-	W		2		_	9	-		2	7		-	9
222	Grewia barombiensis K. Schum.	1	Lme				4		. 1	4				8			7
223	Grewia carpinifolia Juss.	1	Lmi				_										
224	Grewia hookerana Exell & Mendonça	1															
225	Grewia malacocarpa Mast.	1	Гш														
226	Grewia mollis Juss.	≓	Ë														
227	Griffonia simplicifolia (DC.) Baill.	FAB (CsI)	Ē.	က	91	9	18 15	19	F	9	ო	6	9 12	12	16	œ	69
228	Guarea cedrata (A. Chev.) Pellegr.	MEL	вш														
229	Guarea thompsonii Sprague & Hutch.	MEL	ше	2		-	7	8	_	Ξ	0		-2		8	-	œ
230	Guibourtia ehie (A. Chev.) J. Léonard	FAB (CsI)	mg	က	က		-2		~	15	ო	ဗ		8	ო	7	13
231	*Gymnostemon zaizou Aubrév. & Pellegr.	SMR	mg														
232	Harrisonia abyssinica Oliv.	SMR	Ē														
233	Heinsia crinita (Afzel.) G. Tayl.	RUB	Ē				_			-				-			-
234	Heteranthera callifolia Kunth	PON	Hyd Se-Aq				_										
235	Heterotis rotundifolia (Sm.) Jacq Fél.	MLS	5														
236	Hibiscus panduriformis Burm. f.	MLV	na													F	
237	Holarrhena floribunda (G. Don) Dur & Schinz	APO	me														
ı																	

* Espèces sassandriennes

ž	Espèces	Familles	TYPE	QN	de po	ints	de	onta	ctre	Nb de points de contact recensés	S	Z	lb d'i	ndiv	Nb d'individus recensés	ecer	sés		ï
			BIOL		. ns	es	sur les relevés linéaires	és lin	éaire	S		S	ur le	s re	sur les relevés linéaires	linéa	ires		
				4	В	ပ	۵	ш	ш	5	Tot	A	B	۵	Ш	щ	g	Tot	بد ا
238	Homalium africanum (Hook. f.) Benth.	FLC	Ë						-		_					-		-	ſ
239	Hugonia platysepala Oliv.	N	Lmi		-			-		-	ဗ	_			_		_	ო	
240	Hunteria ghanensis Hall & Leeuwenberg	APO	Ë	-		-						_	_					7	
241	Hymenocardia lyrata Tul.	EUP	Ē					-											
242	Hymenocoleus hirsutus Benth.	RUB	5	-							_	_						-	
243	Hymenocoleus neurodictyon (K. Schum.) Robbr.	RUB	ర						-										
244	Hypselodelphys violacea (Ridl.) Milne-Redh.	MRN	Lmi	2	23	4				4	4	4	4	0			7	30	
245	Idertia morsonii (Hutch. & Dalz.) Farron	ОСН	Ē		-		7		_	_	0	_	_	9		_	_	6	
246	Iodes liberica Stapf	20	Lmi	-	9	7			20 1/01		6	- 2	2					œ	
247	Irvingia gabonensis (O'Rorke) Baill.	IRV	mg																
248	_	ANN	Ë							-									
249	Ixora laxiflora Sm.	RUB	Ë.	-	N			_			4	- 2			_			4	
250	Keetia venosa (Oliv.) Bridson	RUB	Lme																
251	Klainedoxa gabonensis Pierre	IRV	mg	우						_	<u>.</u>	_						-	
252	Kolobopetalum chevalieri (Hutch. & Dalz.) Troupin	MNS	Lmi																
253	Laccosperma opacum (Mann & Wendl.) Drude.	ARE	<u>Ш</u>	7								_						-	
254	Landolphia foretiana (Jumelle) Pichon	APO	<u>Ш</u>		0							0		,				7	
255	Landolphia incerta (K. Schum.) Pers.	APO	_				-	က			_			_	က			4	
256	Landolphia membranacea (Stapf) Pichon	APO	Lmi			N				7	-		N	-			7	4	
257	Landolphia owariensis P. Beauv.	APO	Lme		-			_	_			_			_	_		က	
258	Lecaniodiscus cupanioides Planch.	SAP	Ë		-	-				7 7	_	_	_				7	4	
259	Leea guineensis G. Don	出	Ē																
260	Leptaspis zeylanica Steud.	POA	na		-	_			7	_	-	_	_	_		7		4	
261	Leptoderris cyclocarpa Dunn	FAB (Fab)	Ľ E				-				_			_				-	
262	Leptoderris sp. D030	FAB (Fab)	<u>im</u>				-				_							-	
263	Licania sp. 1	CHB	me																
264	Licania elaeosperma (Mildbr.) Prance & White	CHB	me			8				N	20	_	7	-				7	
265	Lindernia exilis Philcox	SCR	ţ																
266	Loeseneriella apocynoides var. guineensis																		
	(Hutch. & Moss) N. Hallé	CEL	Lme			8	-		160-101-1-1	-	ဗ		2	_				ო	
267	Loeseneriella clematoides (Loes.) N. Hallé	CEL	Lme																
268	Lomariopsis guineensis (Underw.) Alston	MOJ	Se-Ep		-			_			2	_			_			7	
269	_	LOM	£	-						•	_	_						-	
270	Lonchocarpus sericeus (Poir.) H. B. & K.	FAB (Fab)	Ë	_									_		_				

271	Lychnodiscus reticulatus Radlk.	SAP	Ē		-					_		-						_
272	Macaranga barteri Müll. Arg.	EUP	Ē					-	<u>۔</u>	4						7	_	ဗ
273	Macaranga heterophylla (Müll. Arg.) Müll. Arg.	EUP	im															
274	Macaranga hurifolia Beille	EUP	im															
275	Maesobotrya barteri (Baill.) Hutch.	EUP	iE.	7	က	=	0	4	<u>б</u>	88	9	8	∞	8	4	-	2	88
276	Maesopsis eminii Engl.	RHM	me	-						_								_
277	Majidea fosteri (Sprague) Radlk.	SAP	me															
278	Mallotus oppositifolius (Geiseler) Müll. Arg.	EUP	Ē															
279	Mammea africana Sabine	CLU	mg															
280	Mangenotia eburnea Pichon	ASC	Lmi															
281	Manniophyton fulvum Müll. Arg.	EUP	Ē	22	53	8	12	15	6 4	106	6 12	4	14	6	F	2	8	89
282	*Manotes expansa Planch.	CNN	<u>m</u>	-		_				7			-					7
283	Mansonia altissima (A. Chev.) A. Chev.	STR	me						- 2	2							_	_
284	Maranthaceae sp. 1	MRN	ğ															
285	Maranthes aubrevillei (Pellegr.) Prance	CHB	me			-				_			-					_
286	Maranthes chrysophylla (Oliv.) Prance	CHB	me		-					_		-						_
287	Maranthes glabra (Oliv.) Prance	CHB	me		-			_	_	0		-				_		8
288	Marantochloa congensis (K. Schum.)												ő					
	J. Léonard & Mullend.	MRN	na				_		_	7				-			_	7
289	Marantochloa leucantha (K. Schum.) Milne-Redh.	MBN	na					_		_					-			_
290	Marantochloa sp. 1	MRN																
291	Marattia fraxinea Sm.	MTT	na															
292	Mareya micrantha (Benth.) Müll. Arg.	EUP	Ë															
293	Mariscus dubius (Rottb.) C. Fischer	CYP	I															
294	Massularia acuminata (G. Don) Hoyle	RUB	Ē				-			_				-		-		_
295	Megaphrynium distans Hepper	MRN	na															
296	Melastomataceae sp. B086	MLS	Ë		8					7		-						_
297	Meliaceae sp. F039	MEL	mg					_		_						-		-
298	Memecylon afzelii G. Don	MLS	na						_	_						-		_
299	Mendoncia combretoides (A. Chev.) Benoist	ACA	Lme		က					က		7						7
300	Mezoneuron benthamianum Baill.	FAB (CsI)	E													-		
301	Microdesmis keayana Léonard	PDA	Ē	4	7	က	က	5 1	13 12	2 47	2	9	က	က	2	=	<u>،</u>	4
302	Microgramma owariensis (Desv.) Alston	PLP	_															
303	*Mildbraedia paniculata Pax	EUP	Ē	우	_		4	٠ ٣	4	56	9	_		4	ო	4	4	56
304	Millettia dinklagei Harms	FAB (Fab)	Ęw.															
305	*Millettia sanagana Harms	FAB (Fab)	im			-	\neg	-	-	_	_		-					-
,																		

* Espèces sassandriennes

ž	Fspèces	Famillec	TVPF	Ž	9	ic	مام	out.	Nh de points de contact recepsés) do	jác		N N	Z'ind	Nh d'individue receneée	S ro	Suc	,	
:				2	3	r	rele	ije li	sur les relevés linéaires	,	3			90	no d'individus recenses eur les relevés linéaires	1 1	ásire Ásire	3 4	
				4	B	ပ	٥	ш	ш		걸	4	B	ပ		ш	ı.		Tot
306	Millettia zechiana Harms	FAB (Fab)	ш		-			-		-	က		-			-		-	က
307	Momordica charantia L.	cnc	돈																
308	Momordica cissoides Benth.	cnc	lna																
309	Monocot sp. E048		h					-			-					_			-
310	Monodora myristica (Gaertn.) Dunal	ANN	me																
311	Monodora tenuifolia Benth.	ANN	Ë																
312	Morinda cf. Iucida Benth.	RUB	ш	7							7	8							8
313	Morinda longiflora G. Don	RUB	Lmi																
314	Morus mesozygia Stapf	MOR	me																
315	Motandra guineensis (Thonn.) A. DC.	APO	Lmi		7		-				က		7		-				က
316	Musanga cecropioides R. Br.	MOR	me																
317	Mussaenda erythrophylla Schumach. & Thonn.	RUB	Ē																
318	Mussaenda grandiflora Benth.	RUB	Lmi																
319	Myrianthus arboreus P. Beauv.	mor	ш		0						8		-						_
320	Myrianthus libericus Rendle	MOR	Ē							-	-							_	-
321	Napoleonaea vogelii Hook. & Planch.	LCY	Ē	7	16	2	7	2	8	-	5	9	9	က	9	2	8	-	ဗ္ဗ
322	Nauclea diderrichii (De Wild. & T. Durand) Merr.	RUB	mg																
323	Neostenanthera hamata (Benth.) Exell	ANN	Ē			_					-			_					_
324	Nephrolepis biserrata (Sw.) Schott	DAV	НБр																
325	Nephrolepis undulata (Sw.) J. Sm.	DAV	Hep		8			-			က		0			_			က
326	Nesogordonia papaverifera (A. Chev.) N. Hallé	STR	mg	-	7	9	7	က	2	က	32	-	9	9	7	က	က		22
327	Neuropeltis acuminata (P. Beauv.) Benth.	CNV	Lmg	<u>გ</u>	46	6	8	36	39	9	583	88	8	28		98	37	19	564
328	Neuropeltis prevosteoides Mangenot	CNV	Lmg	က	က	4			-	-	12	က	က	က			_	_	Ξ
329	Neuropeltis velutina Hallier f.	CNV	Lme	6	9	우	8	17	7	4	20	7	4	œ	8	F	7	8	36
330	Newbouldia laevis (P. Beauv.) Bureau	BIG	Ë		•	8	-				4		-	8	-				4
331	Newtonia aubrevillei (Pellegr.) Keay	FAB (Mim)	me							6	6							_	-
332	Octoknema borealis Hutch. & Dalz.	OCT	Ë		-					7	N							-	_
333	Oeceoclades maculata (Lindl.) Lindl.	ORC	웃																
334	Olyra latifolia L.	POA	na																
335	Omphalocarpum pachysteloides Hutch. & Dalz.	SPT	Ë		-		7		Service Service		8		-		က				4
336	Oncinotis gracilis Stapf	APO	Ĺmi		က				VA		က		N						7
337	*Oncinotis pontyi Pichon var. pontyi	APO	Гm		7	က		-			9		_	_		_			ဗ
338	Oncoba dentata Oliv.	FLC	Ē																
339	Ongokea gore (Hua) Pierre	OLC	me				က	œ		4	15				_	_		_	က

	POA RUB	ΈŞ							~ ~ ~					- 1		
M M		na na	_				-							-		
MM :		I										1				
		na m	14		0	-	_			24		•	•	٣		
o e			•			•						•	•	•		
RS		ح					_		_					-		
里		mg	7							2						
AB (Mim)		шg	5				20		7					ო		
nB		Ē			-		-		_			-				
Ճ		I														
AB (Mim)		me			9		-					-		-		
SC		Ē	-													
ς		mg	25	83	6	œ	2		5 7	75 4	4	-	-	-		-
P.		na														
₽.		na														
UP D		na														
0		me	13	ო	F	2	œ	8	12 87	7 7	-	7	8	ო	19	7
Ъ		ebi														
AB (Fab)		ЕЩ			5.1920											
APO		Ē						7							-	
۵		Se-Ep				4	-			2			4	-		
AB (Mim)		mg	∞		9		22	53	9	-		8		2	4	
ANN		mg			-				_	_		-				
AP		Ē	8	2	က	6	4	ဗ	1 37	7	2	ო	^	7	7	-
Ъ		h(Ep)		œ		0	7	-	1 4	4	œ		8	8	-	-
FAB (Fab)		Lme	24	45	19	32	6		7-	15		16	24	7	7	7
CMM		na			22.11.22.0											
ANN		Ē	42	13	29	9	8	4	43 24	245 28	우	39	7	ន	83	၉
ပ္ပ		Гш														
ANN		Ē		-			œ		-	6	-			ო		
GL		٢														
CMM		na														
22		na														

ŝ	Espèces	Familles	TYPE	Nb o	e po	ints	Nb de points de contact recensés	ntact	rece	nsés		QN C	l'indi	vidus	Nb d'individus recensés	sés	
			BIOL		sur	es re	sur les relevés linéaires	s liné	aires			sur	les re	levés	sur les relevés linéaires	ires	
				4	В	ပ	_	Н	5	Tot	۷	В	_ ပ	D	ш	g	Tot
376	Pouteria altissima (A. Chev.) Baehni	SPT	mg														
377	Pouteria aningeri Baehni	SPT	mg		8		2			7		7		_			က
378	Premna lucens A. Chev.	VRB	Lmi														
379	Protomegabaria stapfiana (Beille) Hutch.	EUP	me		-				16	17		-				4	2
380	Pseuderanthemum Iudovicianum (Büttner) Lindau	ACA															
381	Psychotria brachyantha Hiern	RUB	na														
382	Psychotria peduncularis (Salisb.) Steyerm.	RUB										Callector					
383	Psychotria subobliqua Hiern	RUB	na	7				_	7	2	8	,			_	7	2
384	Psydrax cf. horizontalis (Schumach.) Bridson	RUB	na														
385	Psydrax manensis (Aubrév. & Pellegr.) Bridson	RUB	Ë			9				9			_				-
386	Pteleopsis hylodendron Mildbr.	CMB	me														
387	Pteris burtonii Baker	PTR	I														
388	Pterydophyta sp. 1	PT	٦														
389	Pterygota bequaertii De Wild.	STR	mg			_				-			_	-			-
390	Ptychopetalum anceps Oliv.	OLC	na														
391	Pycnanthus angolensis (Welw.) Warb.	MYS	me	-		F		7 16	3 12	49	-		ო	2	4	8	4
392	Pycnanthus dinklagei Warb.	MYS	Lme				_			-			-	_			-
393	Pyrenacantha cf. staudtii (Engl.) Engl.	20	lna					_		-					_		-
394	Pyrenacantha acuminata Engl.	20	Ĺmi			8				0			7				7
395	Pyrenacantha sp. 1	20	<u>m</u>														
396	Pyrenacantha vogeliana Baill.	20	Lmi														
397	Raphia sp. 1	ARE	Ē														
398	Raphidiocystis chrysocoma (Schumach.) Jeffrey	cnc	<u>E</u>														
399	Rauvolfia vomitoria Afzel.	APO	Ē					_	2	9				_		-	8
400	Rhaphidophora africana N. E. Br.	ARA	LmP (Se-Ep)	7						8	-						-
401	Rhaphiostylis beninensis (Planch.) Benth.	20	Ľ J	-		_				8	-		-				7
402	Rinorea ilicifolia (Oliv.) O. Ktze	VIO	na		4			9	70	9		4			9		9
403	Rinorea oblongifolia (C. H. Wright) Chipp	VIO	Е		-		m	5	_	15		-		3 5	N	-	12
404	Rinorea subintegrifolia (P. Beauv.) O. Ktze	VIO	na	-			_			7	-			_			8
405	Rinorea welwitschii (Oliv.) Kuntze	VIO	Ë				7	_		∞				4			2
406	Rothmannia hispida (K. Schum.) Fagerl.	RUB	Ë		-			—		_		-					-
407	Rothmannia longiflora Salisb.	RUB	Ē		-		_			7		-		_			7
408	Rourea minor (Gaertn.) Alston	CNN	dwl		7	_	_	_		4		7	_	_			4
409	*Rourea solanderi Baker	CNN		_				_		ო	_			_	_		က

411	Ruthalicia longipes (Hook. f.) Jeffrey Rutidea smithii Hiern	SUC BIR	E E		-		_				_			_				-
412	Rytigynia canthioides (Benth.) Robyns	RUB	Ē	_							-	_		8				_
413	Sabicea calycina Benth.	RUB	lna															
414	Sabicea discolor Stapf	RUB	Ē						1									
415	Salacia debilis (G. Don) Walpers	Œ	Γm	- 8	<u> </u>						8	_						
416	Salacia erecta (G. Don) Walpers	딩	Lmi								-	_						
417	Salacia lateritia N. Hallé	Œ	Lm		က	_	-	4	_	8	=		7	_	4	-	8	
418	Salacia lehmbachii Loes.	GEL	Ē	- 7	-	_					က	7	_					
419	Salacia lehmbachii var. leonensis																	
	(Hutch. & M. B. Boss) N. Hallé	CEL	Ë	_	_		-				7	_		_				
420	Salacia miegei N. Hallé	GEL	Lm					-		-	8				-		-	
421	Salacia nitida (Benth.) N. E. Br.	Œ	Lmi		0	2	7				4		2	2				
422	Salacia owabiensis Hoyle	GEL	Γm					-			-				_			
423	Salacia togoica Loes.	CEL	Lmi			-												
424	Salacighia letestuana (Pellegr.) Blakel.	Œ	Lme	Φ				-			-				-			
425	Santiria trimera (Oliv.) Aubrév.	BRS	mg	00	_	7					F		_					
426	Sarcophrynium brachystachyum (Benth.) K. Schum.	MBN	na					-			_				_			
427	Scadoxus multiflorus (Martyn) Raf.	AML	U							-	-						-	
428	Scleria distans Poir.	CYP	I															
429	Scleria naumanniana Böck.	CYP	G	_	_						-	_						
430	Scottellia klaineana Pierre	FLC	mg			_	7	9		-	48	4	_	0	2		-	
431	Secamone afzelii (Schult.) K. Schum.	ASC	Lmi						7		7					7		
432	Selaginella myosurus (Sw.) Alston	SEL	lna															
433	Selaginella vogelii Spring	SEL	na	_	_						-	_						
434	Sherbournia calycina (G. Don) Hua	RUB	Lmi															
435	Sida acuta Burm. f.	MLV	na															
436	Simicratea welwitschii (Oliv.) N. Hallé	GEL	<u>II</u>		0	_			350		6	-	_					
437	Siphonochilus aethiopicus (Schweinf.) B. L. Burtt	ZIN	I															
438	Solanum erianthum D. Don.	SOL	Ē															
439	Solenostemon graniticola A. Chev.	LAM	na									-						
440	Sorindeia warneckei Engl.	ANA	Lm							9	9						-	
441	*Soyauxia sp. F022	MDA	me						9		9					4		
442	Spathandra sp. 1	MLS	4															
443	Spathodea campanulata P. Beauv.	BIG	me		_	-					-		_					
444	Spermacoce ivorensis Govaerts	RUB	도			_												

°	Espèces	Familles	TYPE	qN	de po	ints	Nb de points de contact recensés	ntac	rec	ensés	_	ž	ď	divid	Nb d'individus recensés	Sense	şè	
			BIOL		sur	les r	sur les relevés linéaires	s liné	aires			sn	r les	relev	sur les relevés linéaires	éaire	S	
				4	В	ပ	Δ	ш	ъ Б	Tot	t A	8	ပ	۵	ш	ш	5	<u>To</u>
445	Spondianthus preussii Engl.	EUP	me															
446	Stephania dinklagei (Engl.) Diels	MNS	Lmi						- A									
447	Sterculia tragacantha Lindl.	STR	ïĘ			-	8		2 20	0 28			-	-		-	2	œ
448	Sterculiaceae sp. G036	STR	Ē						_	_							_	_
449	Stereospermum acuminatissimum K. Schum.	BIG	mg												-			
450	Streblus usambarensis (Engl.) C. C. Berg	MOR	na															
451	Streptogyna crinita P. Beauv.	POA	ğ	0	-	6		_	6 23	3 55	7	_	19		4	9	23	22
452	Strombosia pustulata Oliv. var. pustulata	OLC	me	စ္တ	5	45	8	33	4 8	35 190		6	88	24	8	4	29 1	152
453	Strophanthus preussii Engl. & Pax	APO	Lmi															
454	Strychnos splendens Gilg	T06	Lmi															
455	Strychnos usambarensis Gilg	TOG	Lme															
456	Tapinanthus bangwensis (Engl. & Krause) Danser	LOR	Ep Par		_					_		-						_
457	Tarenna vignei Hutch. & Dalz.	RUB	Ē															
458	Tarrietia utilis (Sprague) Sprague	STR	me	2			8		4	=	7			-			8	2
459	Telosma africanum (N. E. Br.) N. E. Br.	ASC	Lmi		-					•		_						_
460	Terminalia ivorensis A. Chev.	CMB	mg															
461	Terminalia superba Engl. & Diels	CMB	mg					7	4	9					-		_	7
462	Tetracera potatoria G. Don	DLL	Lme															
463	Tetrapleura tetraptera (Schumach. & Thonn.) Taub.	FAB (Mim)	me															
464	Tetrorchidium didymostemon (Baill.) Pax & K. Hoffm.	EUP	Ē															
465	Thaumatococcus daniellii (Bennet) Benth.	MRN	ğ	-						_	_							_
466	Thaumatococcus sp. E064	MRN	ප්					_		_					_		-	_
467	Thonningia sanguinea Vahl	BLN	G Par															
468	Thunbergia chrysops Hook.	ACA	Ľmi		-0000000													
469	Tieghemella heckelii A. Chev.	SPT	mg	9						9	-							_
470	Tiliacora dinklagei Engl.	MNS	Ē.	æ	11	9	9	=	9	95	8	4	9	16	우	9	~	₩
471	Tragia tenuifolia Benth.	EUP	lna		-					_		_						_
472	Trema orientalis (L.) Blume	NLM	Ë															
473	Tricalysia biafrana Hiern	RUB	Е			-	8		~	9			_	0		7	_	9
474	Tricalysia pallens Hiern	RUB	ïĒ.						-									
475	Trichilia monadelpha (Thonn.) De Wilde	MEL	Е															
476	Trichilia sp. B099	MEL	mi/me		7					7		_						_
477	Trichomanes guineense Sw.	PT	na															
478	Trichoscypha lucens Oliv.	ANA	Ē					_			_					_	_	

-	12		-								7	_		က	_	_						_		_	6	ဗ	9	2	6	16	က	_	-
Tripipochalization Caselly Statement and Sta	ო													-											-				-	_	-		
Trippochation solurous of SCAN may STAN MAY may STAN STAN may STAN MAY MAY STAN MAY MAY MAY STAN STAN MAY MAY MAY MAY MAY STAN STAN MAY MAY MAY MAY MAY STAN MAY MAY MAY STAN MAY MAY S	-										-	-				-						-				က		8		7	_		-
Trigopochion scleensylonk Cashum. STR mg mg mg mg mg mg mg m	-										-			8											-		က	8	0	8		-	
Trightoping parameter School STR	0										8				-										7		က		7	8			
Trightoping production Sciency of Mestern a feet season lace, Fe			-																0.00000					-						7			
Triple control of the control of t	5										က														ო				-	N			
Triplocyprium propertion (1997) Trip																									0			-	က		_		
Triphorphory in Polaton II. A STR mg STR mg STR mg Triphorphory in Polaton II. A STR mg MEL me Uapaca escular Aubrev. & Léandri EUP me Uapaca esculared Aubrev. & Léandri EUP me Uara a pricana G. Dol. Aug. EUP me Uapaca esculared Aubrev. & Léandri EUP me EUP me Uara a pricana G. Dol. Aug. EUP me EUP me EUP me EUP me epi Urrer a repeat Willer Meay URT epi Imi Imi Urrer a repeat Willer Meay URT epi Imi Imi Urrer a repeat Willer Meay URT epi Imi Imi Uara a robusta A. Chev. URT epi Imi Imi Uara a robusta A. Chev. URT emi Imi Imi Uara a robusta A. Chev. URT emi Imi Imi Uara a robusta A. Chev. ANN mi Imi Imi Uara a robusta A. Chev. ANN mi Imi Imi Uara a robusta Stricana Engl. E. Fr. ANN mi Imi Imi Imi Imi Imi Imi Imi Imi Imi	29		_								ω	-		ო	_	က						9		-	우	ო	23	9	Ξ	27	က	-	8
Triphorphory in Polaton II. A STR mg STR mg STR mg Triphorphory in Polaton II. A STR mg MEL me Uapaca escular Aubrev. & Léandri EUP me Uapaca esculared Aubrev. & Léandri EUP me Uara a pricana G. Dol. Aug. EUP me Uapaca esculared Aubrev. & Léandri EUP me EUP me Uara a pricana G. Dol. Aug. EUP me EUP me EUP me EUP me epi Urrer a repeat Willer Meay URT epi Imi Imi Urrer a repeat Willer Meay URT epi Imi Imi Urrer a repeat Willer Meay URT epi Imi Imi Uara a robusta A. Chev. URT epi Imi Imi Uara a robusta A. Chev. URT emi Imi Imi Uara a robusta A. Chev. URT emi Imi Imi Uara a robusta A. Chev. ANN mi Imi Imi Uara a robusta A. Chev. ANN mi Imi Imi Uara a robusta Stricana Engl. E. Fr. ANN mi Imi Imi Imi Imi Imi Imi Imi Imi Imi	=													-											-				-	-	_		
Triptrophylarin Polatorin Villaria STR mg mg ST Triptrophylarin Polatorin Villaria STR mg mg ST Triptrophylarin Polatorin Villaria STR mg mg ST Triptrophylarin Polatorin Villaria STR mg mg MEL me Uapaca eculoria Autrieva & Léandri EUP me Upera socioria Autrieva & Léandri EUP me Upera socioria Autrieva & Léandri EUP me Upera coulomphilaria Benth. Upera reporta Aricana G. Don URT epi Upera robusta A. Chev. URT epi limi Upera robusta A. Chev. ANN mi limi Wariodendron asio-phyllum R. E. Fr. ANN mi limi Wariodendron asio-phyllum R. E. Fr. ANN mi limi Wariodendron socio-phyllum R. E. Fr. ANN mi limitasi Engl. & Diels Wild, Waterman Wallendron ellevation Delicit Polyvild, Waterman elloch Wild. Materman Rantifica Chipp. Mild. R. Pich. Benth. R. Hurth R. ANN mi libra Chipp. Wild. Materman Rantifica Polyvild. Waterman Rantifica Polyvil	_										-	-				ო						9				က		9		12	_		7
Tripinopytanian yalanan yang maga maga maga maga maga maga maga m	4										_			8											_		16	ო	8	4		_	
Triplochiton sclenoxylon K. Schum. Triplochiton school Benth. Triplochiton school Be	2										ო				_										0		7		ო	ß			
Tripry propries and the person of the person			_																					_						0			
Trippoportion Scleroxylor & Schum. Turaeanthus africanus (C. DC.) Pellegr. Ugacca esculenta Aubrev. & Léandri Urera repens (Willd.) Rendle Urera oblorgifolia Benth. Urera repens (Willd.) Rendle Urera oblorgifolia Benth.) Urera spens (Willd.) Rendle Urera oblorgifolia Benth.) Urera spens (Willd.) Rendle Urera oblorgifolia Benth.) Urera spens (Willd.) Rendle Urera spens (Will.) Rendle Urer	8										က														က				_	က			
Triplochiton scleroxylon & Schum. Ureac acuineensis Müll. Arg. Urear approach Willd.) Rendle Urear acplacia Banth. Urear acplacia Benth.) Keay Urear acplacia Bence Benth. Urear acplacia Bence Benth. Urear acplacia Bence Benth.) Wangueriel Schillot Uvariodendron calophyllum R. E. Fr. Uvariodendron schophyllum Gilletti (De Wild.) Waterman Ruthoxylum Gilletti (De Wild.) Waterman Ruthoxylum Gilletti (De Wild.) Waterman																									က			_	4		_		
Triplochiton scleroxylon & Schum. Ureac acuineensis Müll. Arg. Urear approach Willd.) Rendle Urear acplacia Banth. Urear acplacia Benth.) Keay Urear acplacia Bence Benth. Urear acplacia Bence Benth. Urear acplacia Bence Benth.) Wangueriel Schillot Uvariodendron calophyllum R. E. Fr. Uvariodendron schophyllum Gilletti (De Wild.) Waterman Ruthoxylum Gilletti (De Wild.) Waterman Ruthoxylum Gilletti (De Wild.) Waterman																																	
Tripochiton scleroxylon K. Schum. Tripochiton scleroxylon K. Schum. Tristemma akeassii JacqFeli. Turaeanthus africanus (C. DC.) Pellegr. Uapaca esculenta Aubrév. & Léandri Uapaca guineensis Müll. Arg. Uncaria africana G. Don Urera oblongifolia Benth. Urera repens (Willd.) Rendle Urera repens (Willd.) Resy Urera repens (Willd.) Resy Urera repens (Willd.) Rendle Urera sp. 1 Uvariodendron calophyllum R. E. Fr. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Vepris suaveolens (Engl.) Verdoorn Vigna gracilis (Guill. & Perr.) Hook. f. Vismia guineensis (L.) Choisy Vitex micrantha Gürke Vitex hyrsiflora Baker Warneckea cinnamomoides (G. Don) JacqFél. *Warneckea golaensis (Baker f.) JacqFél. *Whitfieldia lateritia Hook. Xylopia aethiopica (Dun.) A. Rich. Xylopia quintasii Engl. & Diels Xylopia quintasii Engl. & Diels Xylopia villosa Chipp. Zanthoxylum gilletii (De Willd.) Waterman	mg na	me	e e	Lme	Lmi		ebi	ebi	Ē	Ē	Œ.	Ē	Ē	Ē		Ē	Ē	Ina	모	Ē	Ē	Ē	Ē	Ë	na	na	me	me	Ē	me	me	me	md
Tripochiton scleroxylon K. Schum. Tripochiton scleroxylon K. Schum. Tristemma akeassii JacqFeli. Turaeanthus africanus (C. DC.) Pellegr. Uapaca esculenta Aubrév. & Léandri Uapaca guineensis Müll. Arg. Uncaria africana G. Don Urera oblongifolia Benth. Urera repens (Willd.) Rendle Urera repens (Willd.) Resy Urera repens (Willd.) Resy Urera repens (Willd.) Rendle Urera sp. 1 Uvariodendron calophyllum R. E. Fr. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Vepris suaveolens (Engl.) Verdoorn Vigna gracilis (Guill. & Perr.) Hook. f. Vismia guineensis (L.) Choisy Vitex micrantha Gürke Vitex hyrsiflora Baker Warneckea cinnamomoides (G. Don) JacqFél. *Warneckea golaensis (Baker f.) JacqFél. *Whitfieldia lateritia Hook. Xylopia aethiopica (Dun.) A. Rich. Xylopia quintasii Engl. & Diels Xylopia quintasii Engl. & Diels Xylopia villosa Chipp. Zanthoxylum gilletii (De Willd.) Waterman																																	
Tripochiton scleroxylon K. Schum. Tripochiton scleroxylon K. Schum. Tristemma akeassii JacqFeli. Turaeanthus africanus (C. DC.) Pellegr. Uapaca esculenta Aubrév. & Léandri Uapaca guineensis Müll. Arg. Uncaria africana G. Don Urera oblongifolia Benth. Urera repens (Willd.) Rendle Urera repens (Willd.) Resy Urera repens (Willd.) Resy Urera repens (Willd.) Rendle Urera sp. 1 Uvariodendron calophyllum R. E. Fr. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Vepris suaveolens (Engl.) Verdoorn Vigna gracilis (Guill. & Perr.) Hook. f. Vismia guineensis (L.) Choisy Vitex micrantha Gürke Vitex hyrsiflora Baker Warneckea cinnamomoides (G. Don) JacqFél. *Warneckea golaensis (Baker f.) JacqFél. *Whitfieldia lateritia Hook. Xylopia aethiopica (Dun.) A. Rich. Xylopia quintasii Engl. & Diels Xylopia quintasii Engl. & Diels Xylopia villosa Chipp. Zanthoxylum gilletii (De Willd.) Waterman																																	
Tripochiton scleroxylon K. Schum. Tripochiton scleroxylon K. Schum. Tristemma akeassii JacqFeli. Turaeanthus africanus (C. DC.) Pellegr. Uapaca esculenta Aubrév. & Léandri Uapaca guineensis Müll. Arg. Uncaria africana G. Don Urera oblongifolia Benth. Urera repens (Willd.) Rendle Urera repens (Willd.) Resy Urera repens (Willd.) Resy Urera repens (Willd.) Rendle Urera sp. 1 Uvariodendron calophyllum R. E. Fr. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Vepris suaveolens (Engl.) Verdoorn Vigna gracilis (Guill. & Perr.) Hook. f. Vismia guineensis (L.) Choisy Vitex micrantha Gürke Vitex hyrsiflora Baker Warneckea cinnamomoides (G. Don) JacqFél. *Warneckea golaensis (Baker f.) JacqFél. *Whitfieldia lateritia Hook. Xylopia aethiopica (Dun.) A. Rich. Xylopia quintasii Engl. & Diels Xylopia quintasii Engl. & Diels Xylopia villosa Chipp. Zanthoxylum gilletii (De Willd.) Waterman																		g)									<u>i</u>						
Tripochiton scleroxylon K. Schum. Tripochiton scleroxylon K. Schum. Tristemma akeassii JacqFeli. Turaeanthus africanus (C. DC.) Pellegr. Uapaca esculenta Aubrév. & Léandri Uapaca guineensis Müll. Arg. Uncaria africana G. Don Urera oblongifolia Benth. Urera repens (Willd.) Rendle Urera repens (Willd.) Resy Urera repens (Willd.) Resy Urera repens (Willd.) Rendle Urera sp. 1 Uvariodendron calophyllum R. E. Fr. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Uvariodendron sp. Vepris suaveolens (Engl.) Verdoorn Vigna gracilis (Guill. & Perr.) Hook. f. Vismia guineensis (L.) Choisy Vitex micrantha Gürke Vitex hyrsiflora Baker Warneckea cinnamomoides (G. Don) JacqFél. *Warneckea golaensis (Baker f.) JacqFél. *Whitfieldia lateritia Hook. Xylopia aethiopica (Dun.) A. Rich. Xylopia quintasii Engl. & Diels Xylopia quintasii Engl. & Diels Xylopia villosa Chipp. Zanthoxylum gilletii (De Willd.) Waterman	5 E S	岀♀	- 트	8	눈	⊭	₽	₽	⊱	z	z	z	z	z	В	В	5	B (F	В	P	9	9	9	တ	တ	Ϋ́	B (M	z	z	z	Z	5	5
	3 12 ₹	Σū		ద	5	5	5	5	5	A	A	A	A	¥	ద	ద	ద	Ā	ద	Î	¥	₹	₹	Ξ	Ξ	Ą	Æ	A	A	A	A	ద	ద
	2																																
	0 B																							- -									
	Ž																							qFé	_:								
	alz.)	gr.																						Jac	I-Fé							nan	
	אַ כּ כ	elle	5									Ψ.					rı	ť.	٠)ou	Jaco				<u>.</u>			aterr	
	. shur	C.) F	Lea									Ä.					do	90	me					G.L	÷			3ich	enth	, 0		× ×	ri
	E.S. in	×	Arg. &	1		ə	_				Eng	III		ay		Þ.	Ve	r.) +	Bre	oisy				es (aker	٠.		A.	ı.) B)iek		/ild	⋚
	S P E	s (C	<u>.</u> ≡	o	uţ.	Ren	(ea)	>		_	- ur	JIK		χe		Š	ngl.	Pe	šm.)	ပ်	m			noic	(B)	%		Un.	Rich	∞.)e \	B
	oxyle ii Ja	ann	Z Z	0	Be	d.)	h.)	She		9	anı	dol		nsis		Sa	s (E	≈.	3 (S	Ē	ürke	é	ake	non	nsi	a H	۲.	<u>Q</u>	₹	ing	pp.	tii (C	airei
	slerc sass	afric	ensi	na (folia	X	Sent	Ą.		Sc. E	ierre	n ca	n Sp	nee	_	pinc	olen	(Gui	iflo	nsis	a G	Gür	a B	ınaı	olae	erit	lutc	pic	ora	sii E	ರ	gille	emi
	ake ake	Sn	ine	rica	ingi	SUS	/a (E	ısta	_	3 116	пρ	dro	dro	gu	Sp.	la s	эле	ills	muli	nee	anth	sris	iflor	a cii	a g	a lai	Sii H	thio	rvifl	inta	osa	m.	m
	thito	anth	a a	aat	oldc	epe	rigia	robl	sb.	afze	stru	den	den	psis	eria	erie	SSU	grac	ıria	gui	nicr	ivul	hyrs	cke	ecke.	eldi	van.	a ae	э ра	nb E	a Vill	xylt	JVXC
	Sten	rae	pac	cari	era (era	era	era	era	aria	aria	ario	ario	ario	ngu	ngn	spris	ma	ecta	mia	ex n	ex r	ex t	ırne	arn,	/hitf	lia e	lopi	lopi	lopi	lopi	nthc	nthc
4 480 488 488 488 488 488 488 488 488 48	三河河	101 61	s S							S					-						2.000										•		
						_	m	0		_	OI	3	4	2	CO	1	3	0		-	CI	3	4	2	(0)	1	\sim	0	0	-	01	3	_

° Z	Espèces	Familles	TYPE	g	Nb de points de contact recensés	ints	de co	ntac	t rec	ensés		욷	Nb d'individus recensés	DIVID.	us re	cens	és
			BIOL	-	sur	les r	sur les relevés linéaires	s liné	aires			ns	r les	sur les relevés linéaires	és li	néail	es
				4	В	ပ	۵	ш	<u>5</u>	Tot	4	В	ပ	۵	ш	ш	G
515	Rubiaceae sp. 2	RUB	Ē			\vdash	\vdash		-								
516	Rubiaceae sp. B084	RUB	na		-					_		-					
517	Tiliaceae sp. E007	1	Ē					7		7					-		
518	A013			7						7	7						
519	A014			-						_	-						
520	A153		E	_						_	_						
521	C036		드			-				_			-				
522	E060		Ē					_		-					-		
523	E063		Ē					_		-					-		
524	F021		lna					_		_						-	
525	F029							_	_	_						-	
526	F038							_	_	_						-	
527	G009		na						_	-							-
528	G010		me						~	7							-
529	G011								_	_							-
530	G026								4	4							_
531	G040								2	7							7
532	G059								<u>ო</u>	က							-
533	G063		me						_	-							-
534	6905								_	-							-
TOTAL	Ļ			712	712 672 629 591 562 571 516 607 458 430 422 406 383 358 316	329	391 5	32 57	7 51	9 607	458	430	422	406	383	358	316 396

Annexe 2. – Liste floristique d'un Inselberg de la FC du Scio.

Milieu

Description et liste d'espèces

Lisière de forêt

L'humidité est nettement moins importante qu'en forêt puisque l'assèchement provoqué par la réverbération du soleil sur l'Inselberg est élevée et que le sol est constitué d'une mince couche de terre (3-15 cm) rapidement desséchée en saison sèche. Il est principalement recouvert d'herbacées (10-60 cm), parsemé de quelques arbustes (0,5-12 m) aux troncs clairs recouverts de lichens.

Les espèces recensées dans ce milieu sont: Asplenium jaundeense, Spermacoce ivorensis, Detarium senegalense, Drypetes parvifolia, Elaeophorbia drupifera, Ficus elasticoides, Ficus thonningii, Grewia carpinifolia, Holarrhena floribunda, Hymenocardia lyrata, Oplismenus burmannii, Phyllanthus amarus, Phyllanthus reticulatus, Premna lucens, Sterculia tragacantha, Stereospermum acuminatissimum, Strychnos usambarensi, LN739, LN599.

Certaines espèces de lianes rampantes (1-5 m) colonisent la pierre à partir du tapis herbeux de la lisière: Cissus diffusiflora, Cissus petiolata, Clappertonia minor, Entada mannii, Momordica charantia, Thunbergia chrysops.

Tapis suintants composés d'herbacées de petite taille et de mousses

Entre la lisière de la forêt et le roc ainsi qu'aux abords des touradons d'*Afrotrilepis pilosa* se trouvent des milieux suintants (observés en saison humide: 25.08.2001-09.09.2001) situés sur une couche de 2-4 cm de terre et recouverts de mousses et d'herbacées de petite taille.

Les espèces recensées dans ce milieu sont: *Eriocaulon plumale, Eulophia horsfallii, Abildgaardia hispidula, Lindernia exilis, Mariscus dubius, Panicum tenellum* (seconde colonisatrice après les bryophytes), *Pellaea doniana*.

Pelouses sèches d'herbacées et de mousses

Au centre de l'Inselberg se trouvent des pelouses herbeuses bordées de touradons d'Afrotrilepis pilosa qui colonisent la pierre. Des mousses tapissent le roc et les espaces encore non recouverts par les herbacées. Ces mousses semblent être les plantes ayant généré les 2-3 cm de terre sur lequel le tapis herbeux repose.

Les espèces recensées dans ce milieu sont: Aeollanthus pubescens, Afrotrilepis pilosa, Albizia ferruginea, Brillantaisia lamium, Cassia mimosoides, Cyanotis lanata, Hibiscus panduriformis, Polygala multiflora, Scleria distans, Solenostemon graniticola, Vigna gracilis, Virectaria multiflora.

Touradons à Afrotrilepis pilosa

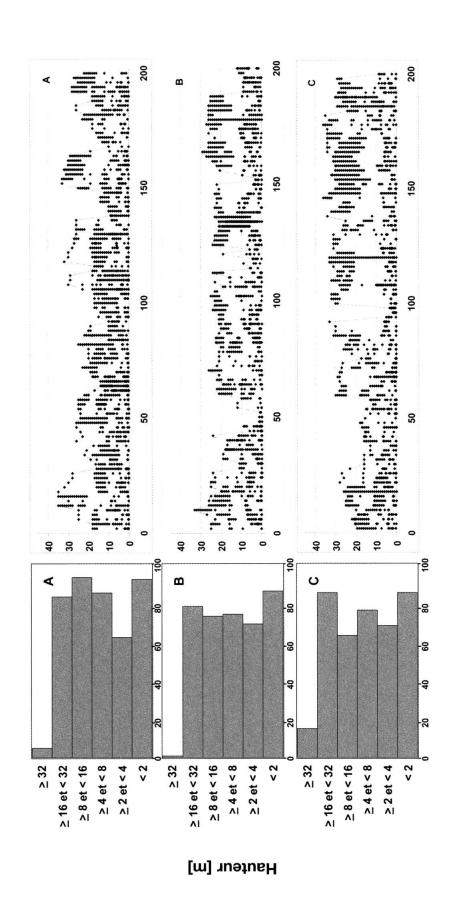
Afrotrilepis pilosa est une Cyperaceae formant des touradons qui semble coloniser la pierre. La partie basale des touradons est riche en matière organique en décomposition.

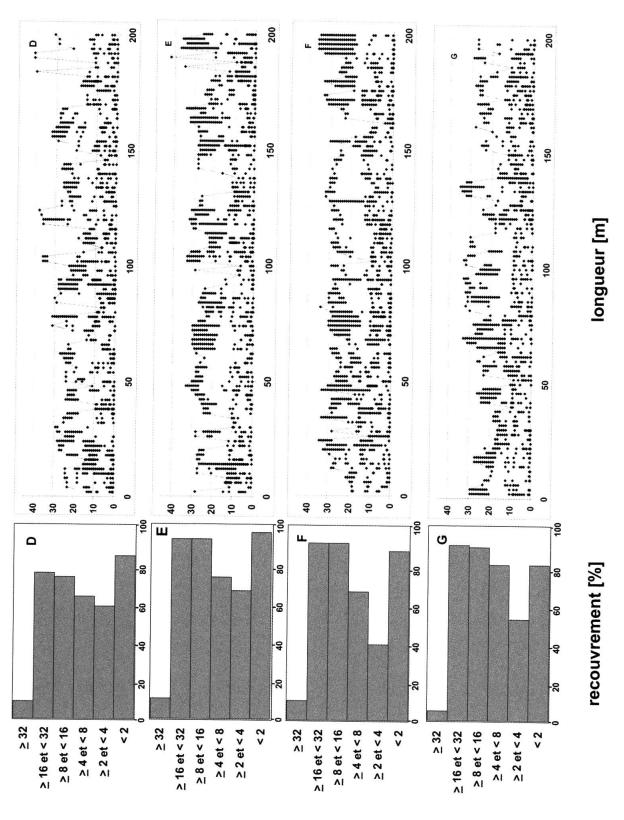
Ce milieu profite à un certain nombre d'espèces: Cyanotis lanata, Dichanthium annulatum, Nephrolepis undulata, Polystachya microbambusa.

Annexe 3. – Valeur d'Importance des familles (FIV) du relevé hectare.

N°	Familles	Nbre espèces	Nbre inds	Aire basale [m²]	Diversité relative [X 100 %]	Densité relative [X 100 %]	Domin. relative [X 100 %]	FIV [X 300 %]
1	Fabaceae	22	137	11.73	24.72	33.17	38.06	95.95
2	Annonaceae	8	93	1.65	8.99	22.52	5.35	36.86
3	Lecythidaceae	1	10	3.41	1.12	2.42	11.06	14.60
4	Combretaceae	4	11	1.57	4.49	2.66	5.08	12.24
5	Rubiaceae	4	19	0.68	4.49	4.60	2.20	11.30
6	Olacaceae	2	12	1.62	2.25	2.91	5.25	10.40
7	Apocynaceae	3	16	0.72	3.37	3.87	2.35	9.59
8	Sapindaceae	4	8	0.88	4.49	1.94	2.84	9.28
9	Sterculiaceae	3	10	0.92	3.37	2.42	2.97	8.76
10	Bombacaceae	3	6	1.04	3.37	1.45	3.37	8.19
11	Sapotaceae	5	6	0.15	5.62	1.45	0.47	7.54
12	Myristicaceae	1	5	1.60	1.12	1.21	5.20	7.53
13	Flacourtiaceae	1	16	0.75	1.12	3.87	2.44	7.44
14	Ebenaceae	5	5	0.17	5.62	1.21	0.57	7.40
15	Euphorbiaceae	4	5	0.36	4.49	1.21	1.17	6.87
16	Irvingiaceae	2	11	0.42	2.25	2.66	1.35	6.26
17	Moraceae	2	2	0.84	2.25	0.48	2.72	5.45
18	Meliaceae	3	6	0.13	3.37	1.45	0.42	5.24
19	Rhizophoraceae	1	2	0.98	1.12	0.48	3.19	4.80
20	Violaceae	1	12	0.14	1.12	2.91	0.45	4.48
21	Pandaceae	1	4	0.47	1.12	0.97	1.51	3.60
22	Rutaceae	2	2	0.21	2.25	0.48	0.69	3.42
23	Ulmaceae	2	3	0.05	2.25	0.73	0.15	3.12
24	Convolvulaceae	1	6	0.09	1.12	1.45	0.30	2.88
25	Simaroubaceae	1	2	0.16	1.12	0.48	0.52	2.13
26	Clusiaceae	1	2	0.08	1.12	0.48	0.27	1.88
27	Tiliaceae	1	1	0.01	1.12	0.24	0.04	1.40
28	Menispermaceae	1	1	0.01	1.12	0.24	0.03	1.39
	TOTAL	89	413	30.82	100	100	100	300

Annexe 4. - Indice de Valeur d'Importance des espèces (IVI) du relevé hectare.


ž	Espèces	Familles	Nbre	Nbre	Aire basale	Fra	Densité	Domin.	Σ
	-		occurrences	inds	en [m²]	relative	relative	relative	[X 300 %]
					•	[X 100 %]	[X 100 %]	[X 100 %]	
-	Calpocalyx brevibracteatus Harms	Fabaceae	43	09	1.71	11.94	14.53	5.56	32.03
7	Polyalthia oliveri Engl.	Annonaceae	38	61	0.75	10.56	14.77	2.43	27.76
က	Piptadeniastrum africanum (Hook.) Brenan	Fabaceae	80	œ	3.70	2.22	1.94	12.00	16.16
4	Petersianthus macrocarpus (Beauv.) Liben	Lecythidaceae	6	10	3.41	2.50	2.42	11.06	15.98
2	Baphia pubescens Hook. f.	Fabaceae	23	56	0.45	6.39	6.30	1.47	14.16
9	Scottellia klaineana Pierre	Flacourtiaceae	15	16	0.75	4.17	3.87	2.44	10.48
7	Erythrophleum ivorense A. Chev.	Fabaceae	5	2	2.15	1.39	1.21	6.97	9.57
80	Corynanthe pachyceras K. Schum.	Rubiaceae	13	14	0.63	3.61	3.39	2.04	9.04
6	Funtumia elastica (Preuss) Stapf	Apocynaceae	13	13	0.67	3.61	3.15	2.16	8.92
10	Strombosia pustulata Oliv. var. pustulata	Olacaceae	=	Ξ	98.0	3.06	2.66	2.80	8.52
F	Pycnanthus angolensis (Welw.) Warb.	Myristicaceae	5	2	1.60	1.39	1.21	5.20	7.80
12	Xylia evansii Hutch.	Fabaceae	9	9	1.43	1.67	1.45	4.63	7.75
13	Phyllocosmus africanus (Hook. f.) Klotzsch	Ixonanthaceae	6	9	0.38	2.50	2.42	1.24	6.16
14	Rinorea oblongifolia (C. H. Wright) Chipp	Violaceae	10	12	0.14	2.78	2.91	0.45	6.14
15	Terminalia superba Engl. & Diels	Combretaceae	4	4	1.20	1.1	0.97	3.90	5.98
16	Xylopia quintasii Engl. & Diels	Annonaceae	7	თ	0.21	1.94	2.18	0.69	4.81
17	Rhodognaphalon brevicuspe (Sprague) Roberty	Bombacaceae	4	4	0.72	1.1	0.97	2.32	4.40
9	Anopyxis klaineana (Pierre) Engl.	Rhizophoraceae	2	7	0.98	0.56	0.48	3.19	4.23
19	Aneilema umbrosum (Vahl) Kunth	Annonaceae	7	7	0.15	1.94	1.69	0.49	4.13
20	Annickia polycarpa (DC.) Setten & Maas	Pandaceae	4	4	0.47	1.1	0.97	1.51	3.59
21	Anthonotha fragrans (Baker f.) Exell & Hillc.	Fabaceae	က	က	0.58	0.83	0.73	1.88	3.44
22	Cola gigantea A. Chev.	Sterculiaceae	2	ა	0.21	1.39	1.21	0.69	3.29
23	Xylopia villosa Chipp.	Annonaceae	5	2	0.20	1.39	1.21	99.0	3.25
24	Parkia bicolor A. Chev.	Fabaceae	က	က	0.52	0.83	0.73	1.67	3.23
25	Antiaris toxicaria var. welwitschii (Engl.) Corner	Moraceae	-	-	0.81	0.28	0.24	2.64	3.16
26	Neuropeltis acuminata (P. Beauv.) Benth.	Convolvulaceae	2	9	0.09	1.39	1.45	0.30	3.14
27	Pentaclethra macrophylla Benth.	Fabaceae	4	4	0.33	1.1	0.97	1.06	3.14
28	Blighia unijugata Baker	Sapindaceae	2	7	0.64	0.56	0.48	2.08	3.12
59	Polyceratocarpus parviflorus (Baker f.) Ghesq.	Annonaceae	2	2	0.14	1.39	1.21	0.47	3.07
30	Ongokea gore (Hua) Pierre	Olacaceae	-	-	0.75	0.28	0.24	2.45	2.97
31	Combretum grandiflorum G. Don	Combretaceae	2	2	0.10	1.39	1.21	0.34	2.94


Annexe 4. - Indice de Valeur d'Importance des espèces (IVI) du relevé hectare.

ž	Espèces	Familles	Nbre	Nbre	Aire basale	Frq	Densité	Domin.	Σ
			occurrences	inds	en [m²]	relative	relative	relative	[% 300 X]
32	Baphia nitida Lodd.	Fabaceae	5	5	0.00	1.39	1.21	0.19	2.79
33	Placodiscus boya Aubrév. & Pellegr.	Sapindaceae	4	4	0.21	1.1	0.97	0.69	2.77
34	Nesogordonia papaverifera (A. Chev.) N. Hallé	Sterculiaceae	2	2	0.52	0.56	0.48	1.67	2.71
35	Triplochiton scleroxylon K. Schum.	Sterculiaceae	က	က	0.19	0.83	0.73	0.61	2.17
36	Uvariastrum pierreanum Engl.	Annonaceae	က	4	0.04	0.83	0.97	0.13	1.93
37	Turraeanthus africanus (C. DC.) Pellegr.	Meliaceae	က	က	90.0	0.83	0.73	0.18	1.74
38	Guibourtia ehie (A. Chev.) J. Léonard	Fabaceae	က	က	0.05	0.83	0.73	0.17	1.73
33	Pavetta corymbosa (DC.) F. N. Williams	Rubiaceae	က	က	0.03	0.83	0.73	0.10	1.66
40	Dialium dinklagei Harms	Fabaceae	2	2	0.18	0.56	0.48	0.58	1.62
41	Gymnostemon zaizou Aubrév. & Pellegr.	Simaroubaceae	2	2	0.16	0.56	0.48	0.52	1.56
42	Discoglypremna caloneura (Pax) Prain	Euphorbiaceae	2	2	0.14	0.56	0.48	0.47	1.51
43	Bombax buonopozense P. Beauv.	Bombacaceae	-	-	0.28	0.28	0.24	0.89	1.41
44	Dialium aubrevillei Pellegr.	Fabaceae	_	-	0.27	0.28	0.24	0.88	1.40
45	Mammea africana Sabine	Clusiaceae	2	2	0.08	0.56	0.48	0.27	1.31
46	Pteleopsis hylodendron Mildbr.	Combretaceae	-	-	0.24	0.28	0.24	9.76	1.28
47	Entandrophragma utile (Dawe & Sprague) Sprague	Meliaceae	2	5	0.05	0.56	0.48	0.17	1.21
48	Baissea leonensis Benth.	Apocynaceae	2	2	0.03	0.56	0.48	0.10	1.14
49	Zanthoxylum lemairei De Wild.	Rutaceae	-	-	0.19	0.28	0.24	0.62	1.14
20	Amphimas pterocarpoides Harms	Fabaceae	2	5	0.03	0.56	0.48	0.09	1.13
51	Pouteria altissima (A. Cheval.) Baehni	Sapotaceae	2	2	0.02	0.56	0.48	0.08	1.12
25	Celtis mildbraedii Engl.	Ulmaceae	2	5	0.02	0.56	0.48	90.0	1.10
53	Bobgunnia fistuloides (Harms)								
	J. H. Kirkbr. & Wiersema	Fabaceae	-	-	0.15	0.28	0.24	0.50	1.02
54	Uapaca guineensis Müll. Arg.	Euphorbiaceae	-	-	0.15	0.28	0.24	0.47	0.99
22	Xylopia aethiopica (Dun.) A. Rich.	Annonaceae	-	-	0.15	0.28	0.24	0.47	0.99
26	Diospyros canaliculata De Wild.	Ebenaceae	-	-	0.09	0.28	0.24	0.31	0.83
22	Spondianthus preussii Engl.	Euphorbiaceae	-	-	90.0	0.28	0.24	0.20	0.72
28	Tieghemella heckelii A. Chev.	Sapotaceae	-	-	0.05	0.28	0.24	0.16	0.67
29	Ceiba pentandra (L.) Gaertn.	Bombacaceae	_	-	0.05	0.28	0.24	0.15	0.67
9	Breviea sericea Aubrév. & Pellegr.	Sapotaceae	-	-	0.04	0.28	0.24	0.13	0.65
61	Diospyros vignei F. White	Ebenaceae	-	-	0.04	0.28	0.24	0.12	0.64

62	Klainedoxa gabonensis Pierre	Irvingiaceae	-	-	0.03	0.28	0.24	0.11	0.63
63	Celtis adolfi-fridericii Engl.	Ulmaceae	-	-	0.03	0.28	0.24	0.09	0.61
64	Albizia dinklagei (Harms) Harms	Fabaceae	-	-	0.03	0.28	0.24	0.09	0.61
65	Combretum sordidum Exell	Combretaceae	•	-	0.03	0.28	0.24	0.08	09.0
99	Funtumia africana (Benth.) Stapf	Apocynaceae	-	-	0.03	0.28	0.24	0.08	09.0
29	Lonchocarpus sericeus (Poir.) H. B. & K.	Fabaceae	-	-	0.02	0.28	0.24	0.08	09.0
89	Myrianthus libericus Rendle	Moraceae	-	-	0.02	0.28	0.24	0.08	09.0
69	Diospyros mannii Hiern	Ebenaceae	-	-	0.02	0.28	0.24	0.07	0.59
2	Chrysophyllum taïense Aubrév. & Pellegr.	Sapotaceae	.	-	0.02	0.28	0.24	0.07	0.59
71	Zanthoxylum gilletii (De Wild.) Waterman	Rutaceae	-	-	0.02	0.28	0.24	0.07	0.59
72	Trichilia monadelpha (Thonn.) De Wilde	Meliaceae	-	-	0.02	0.28	0.24	90.0	0.58
73	Copaifera salikounda Heckel	Fabaceae	-	-	0.02	0.28	0.24	0.05	0.57
74	Diospyros heudelotii Hiern	Ebenaceae	-	-	0.01	0.28	0.24	0.05	0.57
75	Daniellia ogea (Harms) Holl.	Fabaceae	-	,	0.01	0.28	0.24	0.04	0.56
9/	Aporrhiza urophylla Gilg	Sapindaceae	-	-	0.01	0.28	0.24	0.04	0.56
17	Anthonotha macrophylla P. Beauv.	Fabaceae	-	-	0.01	0.28	0.24	0.04	0.56
78	Desplatsia chrysochlamys (Mildbr. & Burret)								
	Mildbr. & Burret	Tiliaceae	-	-	0.01	0.28	0.24	0.04	0.56
79	Omphalocarpum pachysteloides Hutch. & Dalz.	Sapotaceae	-	,-	0.01	0.28	0.24	0.04	0.56
80	Millettia zechiana Harms	Fabaceae	-	-	0.01	0.28	0.24	0.04	0.56
81	Rothmannia hispida (K. Schum.) Fagerl.	Rubiaceae	-	-	0.01	0.28	0.24	0.04	0.56
85	Eriocoelum sp.	Sapindaceae	-	-	0.01	0.28	0.24	0.03	0.55
83	Newtonia aubrevillei (Pellegr.) Keay	Fabaceae	-	-	0.01	0.28	0.24	0.03	0.55
84	Platysepalum hirsutum (Dunn) Hepper	Fabaceae	-	-	0.01	0.28	0.24	0.03	0.55
82	Xylopia parviflora (A. Rich.) Benth.	Annonaceae	-	-	0.01	0.28	0.24	0.03	0.55
98	Maesobotrya barteri (Baill.) Hutch.	Euphorbiaceae	-	-	0.01	0.28	0.24	0.03	0.55
87	Cuviera acutiflora DC.	Rubiaceae	-	-	0.01	0.28	0.24	0.03	0.55
88	Diospyros ferrea (Willd.) Bakh.	Ebenaceae	-	-	0.01	0.28	0.24	0.03	0.55
88	Tiliacora dinklagei Engl.	Menispermaceae	-	-	0.01	0.28	0.24	0.03	0.55
TOTAL	AL		360	413	30.82	100	100	100	300

Pour chacun des relevés linéaires A-G sont représentés: un histogramme du profil de recouvrement vertical des states et un graphique de la distribution Annexe 5. - Profil de recouvrement des espèces sur les relevés linéaires par intervalle de hauteur et distribution horizontale des points de contact. horizontale des points de contact (avec une ligne représentant la hauteur maximale des points de contact)

Hauteur [m]