Zeitschrift: Candollea: journal international de botanique systématique =

international journal of systematic botany

Herausgeber: Conservatoire et Jardin botaniques de la Ville de Genève

Band: 39 (1984)

Heft: 2

Artikel: Etude biosystématique du Silene vulgaris s.l. (Caryophyllaceae) dans le

domaine alpin : traitement numérique des populations des Alpes et de

quelques chaînes voisines

Autor: Aeschimann, David

DOI: https://doi.org/10.5169/seals-879918

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Etude biosystématique du Silene vulgaris s.l. (Caryophyllaceae) dans le domaine alpin.

Traitement numérique des populations des Alpes et de quelques chaînes voisines

DAVID AESCHIMANN

RÉSUMÉ

AESCHIMANN, D. (1984). Etude biosystématique du Silene vulgaris s.l. (Caryophyllaceae) dans le domaine alpin. Traitement numérique des populations des Alpes et de quelques chaînes voisines. *Candollea* 39: 399-415. En français, résumé anglais.

Quatre groupements naturels sont mis en évidence parmi 198 individus du Silene vulgaris s.l., au moyen de l'analyse factorielle des correspondances. Les échantillons proviennent de populations des Alpes, des chaînes dinariques, des Abruzzes, de la Bourgogne, du Mont-Lozère et des Pyrénées. Trois groupements naturels correspondent aux subsp. vulgaris, glareosa et prostrata, tandis que le quatrième est à rapporter au subsp. marginata (Kit.) Hayek, des chaînes dinariques et des Abruzzes. Le "portrait-robot" de l'individu moyen de ce dernier groupement est donné. Les populations inféodées aux éboulis des Alpes orientales sont identifiées au subsp. glareosa, mais la variabilité est plus importante que dans le Jura et en Bourgogne. Plusieurs individus de la zone charnière entre les Alpes occidentales et orientales sont interprêtés comme introgressifs entre les subsp. glareosa et prostrata. Les plantes des éboulis des Pyrénées montrent des liens de parenté soit avec le subsp. glareosa, soit avec le subsp. prostrata.

ABSTRACT

AESCHIMANN, D. (1984). Biosystematical studies on Silene vulgaris s.l. (Caryophyllaceae) in the alpine region. Numerical treatment of the populations of the Alps and of some neighbouring ranges. *Candollea* 39: 399-415. In French, English abstract.

Four natural groups are emphasized among 198 individuals of *Silene vulgaris* s.l., by means of factorial analysis of correspondence. The samples come from populations of the Alps, dinaric ranges, Abruzzi, Bourgogne, Mont-Lozère and Pyrenees. Three natural groups correspond to subsp. *vulgaris, glareosa* and *prostrata*, whereas the fourth is to be linked to subsp. *marginata* (Kit.) Hayek, from the dinaric ranges and Abruzzi. The "composite-picture" of the medium-sized individual of this last group is given. The populations related to the eastern Alps screes are identified to subsp. *glareosa*, but the variability is more important than in Jura and Bourgogne. Several individuals from the junction zone between western and eastern Alps are interpreted as introgressive between subsp. *glareosa* and *prostrata*. The plants from the Pyrenean screes show parental links, either with subsp. *glareosa* or with subsp. *glareosa*.

Introduction

L'étude d'échantillons représentatifs de populations des Alpes occidentales (à l'ouest du Simplon) et de la Bourgogne à fait l'objet d'un précédent travail (AESCHIMANN, 1983a). Le traitement numérique a permis de mettre en évidence trois sous-espèces dans le domaine considéré, tout en éprouvant la méthodologie proposée (AESCHIMANN, MASCHERPA & BOCQUET, 1981).

Dans cette seconde phase, nous intégrons à l'analyse une série d'individus provenant des Alpes orientales, pour les confronter à notre premier modèle. Simultanément, nous traitons aussi quelques échantillons de populations inféodées aux éboulis provenant de chaînes voisines, pour préciser leur parenté avec les sous-espèces considérées dans l'arc alpin.

La méthodologie, les programmes et l'organigramme général utilisés ci-dessous sont rigoureusement les mêmes que précédemment.

CODEN: CNDLAR ISSN: 0373-2967 39(2) 399 (1984) © CONSERVATOIRE ET JARDIN BOTANIQUES DE GENÈVE 1984

Etude des populations et production de la matrice des données originales

Le domaine considéré a été parcouru de façon détaillée lors de plusieurs campagnes de récoltes intensives, au cours des étés 1979 à 1983. Pour confronter les nouveaux échantillons au modèle élaboré dans les Alpes occidentales et la Bourgogne, nous avons conservé les 67 individus de l'échantillon de base défini précédemment pour les subsp. vulgaris, glareosa et prostrata (AES-CHIMANN, 1983a: 157-159), en y ajoutant le lectotype du subsp. vulgaris. Les nouveaux individus considérés (au nombre de 130) proviennent principalement des Alpes, mais à l'est d'une ligne Berne — Zermatt et jusqu'au Schneeberg, non loin de Vienne. 13 individus proviennent des Abruzzes et des chaînes dinariques, 5 des Pyrénées françaises et 1 du Mont-Lozère (AESCHIMANN, 1983b).

La matrice des données originales comprend donc 198 individus sur lesquels 57 caractères ont été observés. Toutefois, les caractères concernant le carpophore et la capsule, souvent manquants, n'ont pas été inclus pour la recherche des axes factoriels. On trouvera ci-dessous (fig. 1) la liste des nouveaux individus considérés dans ce travail, ordonnés selon les échantillons "de base" et "anonyme" définis pour l'analyse discriminante (ROMEDER, 1973; voir plus bas: hiérarchisation des caractères).

Fig. 1. — Liste des 130 nouveaux échantillons étudiés. Les numéros (tout à gauche) correspondent aux numéros d'accès enregistrés sur l'ordinateur. Les localités sont données de façon très succincte et les altitudes sont en mètres. En l'absence d'une précision (fournie entre parenthèses), l'herbier de dépôt du matériel est Genève (G). Les échantillons désignés "ZT" se trouvent en prêt à Genève.

			Echantillon de base pour le subs	p. marginata	
Nº	Pays	Province	Localité	Alt.	Collecteur et nº
2718	YU	Croatie	Buljma (Paklenica)	1200	D. Aeschimann 4022
2719	YU	Croatie	Buljma (Paklenica)	1050	D. Aeschimann 4040
2722	YU	Croatie	Solilo (Vaganski)	1450	D. Aeschimann 4079
2738	YU	Bosnie- Herzégovine	Vrh Šator	1600	D. Aeschimann 4164
2741	YU	Bosnie- Herzégovine	Vrh Šator	1600	D. Aeschimann 4168
2746	YU	Bosnie- Herzégovine	Velika Vlajna	1600	D. Aeschimann 4200
2759	I	Chieti	Valle di Taranta (Maiella)	1480	D. Aeschimann 4302
2768	Î	Chieti	Valle di Taranta (Maiella)	1800	D. Aeschimann 4356
2771	Î	L'Aquila	Guado di Coccia (Maiella)	1400	D. Aeschimann 4370
2782	Î	L'Aquila	Montagna della Scindarella (Gran Sasso)	2050	D. Aeschimann 4407
2787	I	L'Aquila	Montagna della Scindarella (Gran Sasso)	2030	D. Aeschimann 4424
2790	I	Rieti	Monte Terminillo	2000	D. Aeschimann 4455
2801	Ι	Ascoli	Sasso Borghese (Monti Sibillini)	1900	D. Aeschimann 4485
			Individus anonymes	<u> </u>	
Ν°	Pays	Province	Localité	Alt.	Collecteur et nº
1322	Ď	Bavière	Wimbachtal (Berchtesgaden)	930	P. Schönau s.n. (M)
1343	I	Bolzano	Jaggl (S. Curon Venosta)	2300	C. Correns s.n. (M)
1344	I	Bergamo	Pizzo Arera	1600	H. Merxmüller & W. Wiedmann 326c/56 (M)
1360	CH	Uri	Ober Lamersbach	2200	C. Correns s.n. (M)
1383	A	Basse- Autriche	Schneeberg		K. Ronniger s.n. (WU)
1448	Α	Basse- Autriche	Oetschergraben	650	K. Rechinger s.n.
1467	I	Bergamo	Pizzo della Presolana	2200	P. Chenevard s.n.
1481	CH	Grisons	Schafrüchen (Arosa)		P. Chenevard s.n.
1492	A	Tirol	Kranabitter Klamm (Innsbruck)	1000	Sarnthein s.n. (ZT)

1494	Α	Styrie	Trenchtling	2000	E. Sulger-Büel s.n. (ZT)
1499	I	Udine	Monte Canin	1900	G. Grichiutti s.n. (ZT)
1516	CH	Grisons	Schiahorn (Davos)		I. Brockmann 23041 (ZT)
1518	CH	Grisons	Salezer Horn (Davos)	2300	I. Brockmann 23043 (ZT)
1530	I	Trento	Monte Baldo	1600	G. Bocquet 9258 (ZT)
1603	A	Styrie	Hochschwab		Peyritsch s.n. (GJO)
1604	Α	Basse- Autriche	Raxalpe		K. Richter s.n. (GJO)
1683	YU	Slovénie	N. Triglav	1250	T. Wraber s.n. (GZU)
1689	A	Tirol	Landeck — Lötz	1230	A. Polatschek s.n. (W)
1695	A	Haute-	Traunsee		K. Ronniger s.n. (W)
10,5		Autriche	Thumber		it. Rominger sin. (11)
1703	Α	Haute-	Hinterstoder		H. Metlesics s.n. (W)
		Autriche			
1728	I	Bolzano	Ortler	3000	K. Ronniger s.n. (W)
1735	CH	Unterwald	Pilate	2000	W. Koch s.n. (ZT)
1940	Ī	Como	Grigna septentrionale	1700	D. Aeschimann 2941
1950	I	Como	Grigna septentrionale	1700	D. Aeschimann 2951
1952	I	Como	Grigna septentrionale	1700	D. Aeschimann 2953
1953	I	Bergamo	Monte-Arera (S. E. Corna Piana)	1900	D. Aeschimann 2976
1966	I	Bergamo	N. Passo della Presolana	1000	D. Aeschimann 3004
1968	Î	Bergamo	N. Passo della Presolana	1000	D. Aeschimann 3006
1972	î	Bergamo	S. W. Passo di Campelli	1800	D. Aeschimann 3010
1973	Ī	Bergamo	S. W. Passo di Campelli	1800	D. Aeschimann 3011
1974	I	Bergamo	S. W. Passo di Campelli	1800	D. Aeschimann 3012
1980	I	Brescia	Passo di Croce Dominii	1880	D. Aeschimann 3025
1982	I	Brescia	Passo di Croce Dominii	1880	D. Aeschimann 3027
1984	I	Brescia	Passo di Croce Dominii	1880	D. Aeschimann 3029
1986	I	Brescia	Passo di Croce Dominii	1880	D. Aeschimann 3031
1988	I	Trento	Val Prigoni	950	D. Aeschimann 3040
1001		Vicenza	(S.W. Monte Pasubio)	1400	D. Assahimana 2059
1991 1996	I I	Vicenza Vicenza	Passo di Lora Passo di Lora	1400 1400	D. Aeschimann 3058 D. Aeschimann 3063
2004	I	Trento	S. E. Caldonazzo	650	D. Aeschimann 3082
2007	Ī	Bolzano	S. W. Gruppo del Latemar	2300	D. Aeschimann 3086
2014	Î	Bolzano	S. W. Gruppo del Latemar	2100	D. Aeschimann 3094
2019	Î	Bolzano	W. Gruppo del Catinaccio	2300	D. Aeschimann 3100
2022	I	Bolzano	W. Gruppo del Catinaccio	2300	D. Aeschimann 3103
2027	I	Bolzano	S. E. Sasso Lungo	2350	D. Aeschimann 3110
2029	I	Bolzano	S. E. Sasso Lungo	2350	D. Aeschimann 3112
2039	I	Bolzano	S. E. Sasso Lungo	2350	D. Aeschimann 3122
2040	I	Belluno	N. E. Passo di Valparola	2250	D. Aeschimann 3131
2043	I I	Belluno	N. E. Passo di Valparola	2250 2200	D. Aeschimann 3134 D. Aeschimann 3140
2046 2048	I	Belluno Belluno	Passo di Valparola Passo di Valparola	2200	D. Aeschimann 3142
2051	Ī	Belluno	E. Passo Falzarego	2050	D. Aeschimann 3147
2057	Î	Bolzano	N. W. Tre Cime di Lavaredo	2350	D. Aeschimann 3161
2059	I	Bolzano	N. W. Tre Cime di Lavaredo	2350	D. Aeschimann 3163
2071	Α	Tirol-	S. W. Rauchkofel	1600	D. Aeschimann 3175
		oriental			
2077	Α	Tirol-	S. W. Rauchkofel	1600	D. Aeschimann 3181
2001		oriental	N. F. W. III.	2200	D 4 1: 2104
2081	Α	Tirol-	N. E. Kerschbaumertörl	2200	D. Aeschimann 3194
2092	Α	oriental Carinthie	S. Spitzegel	1100	D. Aeschimann 3205
2092	I	Udine	W. Lago del Predil	970	D. Aeschimann 3214
2100	Î	Udine	Canale Bartolo (W. Tarvisio)	820	D. Aeschimann 3223
2104	A	Carinthie	Bleiberg-Kreuth	950	D. Aeschimann 3227
2114	A	Carinthie	N. W. Vertatscha	1550	D. Aeschimann 3249
2122	Α	Carinthie	Windisch-Bleiberg	950	D. Aeschimann 3261
2123	Α	Basse-	Schneeberg	1400	D. Aeschimann 3262
2012 00 00		Autriche		Parcer	
2133	Α	Basse-	Schneeberg	1350	D. Aeschimann 3279
2.42		Autriche		1050	D 4 1: 2201
2137	Α	Basse-	Schneeberg	1250	D. Aeschimann 3291
2138	٨	Autriche Styrie	Weichselboden — Höll	780	D. Aeschimann 3293
2153	A A	Styrie	S. S. W. Hochtor	1100	D. Aeschimann 3293 D. Aeschimann 3310
2166	A	Styrie	N. Rössing Berg (Schladming)	1040	D. Aeschimann 3323
2173	A	Styrie	S. W. Niederer Türlspitz	1850	D. Aeschimann 3330
			(Dachstein)		
			*		

2200	Α	Salzburg	Gramler (Lofer — Saalfelden)	700	D. Aeschimann 3361
2203	D	Bavière	W. N. W. Thumsee	530	D. Aeschimann 3364
2208	D	Bavière	W. Vorderer Rauschberg	800	D. Aeschimann 3371
			(S. Ruhpolding)		
2215	D	Bavière	S. E. Seehauser Kienberg	780	D. Aeschimann 3379
2220	Α	Tirol	Kaiserbach Tal	950	D. Aeschimann 3386
			(N. Mitter Kaiser)		
2223	Α	Tirol	Kundler Klamm	550	D. Aeschimann 3389
2238	Α	Tirol	N. N. E. Gramaialm	1260	D. Aeschimann 3405
			(Falzthurntal)		
2240	Α	Tirol	S. Dalfazer Wände	1930	D. Aeschimann 3408
			(Sonnwendgebirge)		
2242	Α	Tirol	S. Dalfazer Wände	1930	D. Aeschimann 3410
			(Sonnwendgebirge)		
2246	Α	Tirol	S. Dalfazer Wände	1930	D. Aeschimann 3414
			(Sonnwendgebirge)		
2251	Α	Tirol	E. N. E. Rotspitze	1850	D. Aeschimann 3423
			(Sonnwendgebirge)		
2253	Α	Tirol	E. N. E. Rotspitze	1850	D. Aeschimann 3425
			(Sonnwendgebirge)		
2260	Α	Tirol	N. E. Tribulaunhütte	2000	D. Aeschimann 3432
			(Gschnitztal)		
2263	Α	Tirol	N. E. Tribulaunhütte	2000	D. Aeschimann 3435
			(Gschnitztal)		
2271	Α	Tirol	N. E. Tribulaunhütte	2000	D. Aeschimann 3443
2271	7.1	11101	(Gschnitztal)	2000	D. Accellman 3443
2276	Α	Tirol	W. Kreuzjöchl (Gschnitztal)	1700	D. Aeschimann 3458
2279	A	Tirol	Stempeljoch (Halltal)	1800	D. Aeschimann 3461
2282	A	Tirol	E. Wildangerspitze (Halltal)	1750	D. Aeschimann 3464
2285	A	Tirol	N. Nassereith	850	D. Aeschimann 3467
2292	A	Tirol	N. Nassereith	850	D. Aeschimann 3474
2297	A	Tirol	Gamskar (W. Zugspitze)	2000	D. Aeschimann 3491
2298	A	Tirol	Gamskar (W. Zugspitze)	2000	D. Aeschimann 3492
2302	A	Tirol	Gamskar (W. Zugspitze)	2000	D. Aeschimann 3496
2312	A	Tirol	E. Hahntennjoch	1600	D. Aeschimann 3506
2312	A	11101	(Lechtaleralpen)	1000	D. Aeschillann 5500
2317	Α	Tirol		1110	D. Aeschimann 3512
2329	I	Bolzano	Sulzbachtal (Lechtal) S. W. Jaggl	1550	D. Aeschimann 3524
2329	1	Boizano	(S. Curon Venosta)	1550	D. Aeschillann 5524
2335	СН	Grisons		1050	D. Assahimann 2522
2349	CH	Grisons	Ruinas (Val Müstair)	1850 2220	D. Aeschimann 3533 D. Aeschimann 3549
2349	СП	Grisons	Alp Praveder — Lai da Rims (Val Vau)	2220	D. Aeschinann 3349
2355	CH	Grisons	,	2120	D. Aeschimann 3555
2363	CH		E. Alp Praveder (Val Vau) Las Gravas (Val d'Uina)		
		Grisons	,	1920	D. Aeschimann 3564
2378	CH	Grisons	Las Gravas (Val d'Uina)	1820	D. Aeschimann 3582
2383	CH	Grisons	S. S. E. Piz Alv (Val Minor)	2340	D. Aeschimann 3587
2388	CH	Grisons	Blaisun (Albula)	2580	D. Aeschimann 3605
2390	CH	Grisons	Blaisun (Albula)	2580	D. Aeschimann 3607
2393	CH	Grisons	Blaisun (Albula)	2580	D. Aeschimann 3610
2397	CH	Grisons	W. Albula	2250	D. Aeschimann 3619
2401	CH	Grisons	W. Albula	2250	D. Aeschimann 3623
2407	CH	Grisons	N. E. Partnunsee (Rhätikon)	1950	D. Aeschimann 3630
2409	CH	Grisons	N. E. Partnunsee (Rhätikon)	1950	D. Aeschimann 3632
2461	CH	Unterwald	Pilate	2000	W. Bernoulli s.n. (BAS)
2462	CH	Glaris	Glärnisch	2000	A. Binz 2132 (BAS)
2463	CH	Berne	Gasterntal (S. Kandersteg)	1350	P. Villaret 15301 (LAU)
2507	F	Lozère	Les Bondons (Mont-Lozère)	1000	D. Aeschimann 3725
2524	F	Hautes-	Pic du Midi	2400	D. Aeschimann 3788
	_	Pyrénées			
2529	F	Hautes-	Pic du Midi	2300	D. Aeschimann 3803
	_	Pyrénées			
2530	F	Hautes-	Pic du Midi	2300	D. Aeschimann 3804
	_	Pyrénées		191 <u>0</u> 1831183	
2538	F	Hautes-	Saint-Bertrand (Gavarnie)	1700	D. Aeschimann 3822
1_1130000000000		Pyrénées			2227
2551	F	Hautes-	Pic de Campbieil	2350	D. Aeschimann 3853
		Pyrénées			

Recherche des groupements naturels

Valeurs propres et taux d'inertie des axes factoriels

Pour chaque axe ou facteur, le programme d'analyse factorielle des correspondances donne la valeur propre (λ), le taux d'inertie ($\tau = \lambda/P$, en pourcentages, où P est l'inertie totale), ainsi que le taux d'inertie cumulé (τ cum). Ces données ont été réunies dans la figure 2, pour les axes 1 à 4.

Axes	λ	τ	τ cum
1	.0365	27.4%	
2	.0230	17.3%	44.7%
3	.0129	9.7%	54.4%
4	.0118	8.9%	63.3%

Fig. 2. — Valeurs propres et taux d'inertie pour les axes 1 à 4 de notre analyse.

Graphique des axes 1 et 2

Les axes 1 et 2 expliquent 44.7% de l'information totale contenue dans les données. L'aspect du graphique est assez semblable à celui de notre précédente étude (AESCHIMANN, 1983a: 167). Trois concentrations d'individus correspondant aux sous-espèces connues sont très évidentes; le nombre des individus intermédiaires est restreint. Les correspondances entre facteurs et variables sont similaires et les axes montrent les mêmes antagonismes.

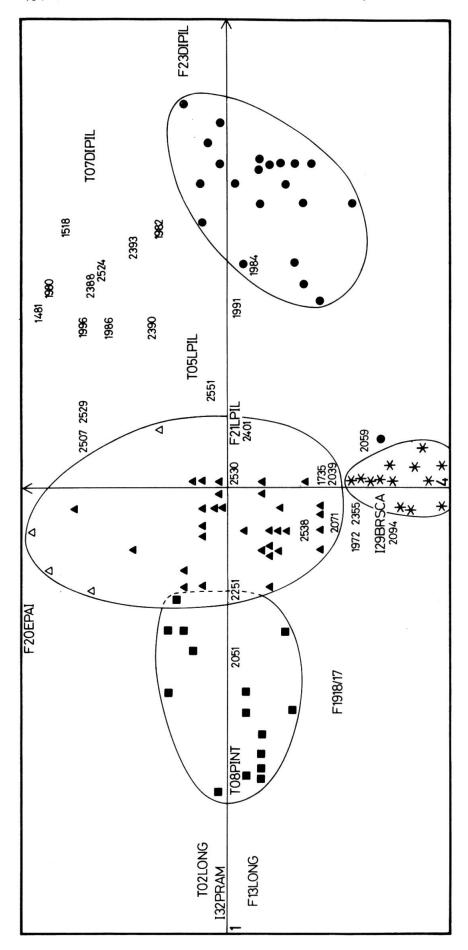
Dans leur grande majorité, les nouveaux individus (Alpes orientales, Abruzzes, chaînes dinariques) des populations inféodées aux éboulis sont concentrés au voisinage de l'échantillon de base du subsp. glareosa.

Graphique des axes 2 et 3

Ce graphique ne permet pas l'individualisation marquée d'une nouvelle concentration d'individus. Seul un antagonisme important est mis en évidence entre les individus de grande taille (aussi bien au niveau de la tige, de la feuille que de l'inflorescence), qu'on peut identifier principalement au subsp. vulgaris, et les individus plus petits, qui correspondent aux sous-espèces d'éboulis.

Sans surprise, le graphique des axes 1 et 3 n'apporte que très peu d'information nouvelle.

Graphique des axes 1 et 4


Les axes 1 et 4 expliquent 36.3% de l'information. Un traitement graphique (fig. 3) a permis d'exprimer le diagramme brut fourni par l'ordinateur sous une forme plus explicite.

A l'aide du quatrième axe factoriel, nous pouvons mettre en évidence une nouvelle concentration à l'intérieur du nuage I, celui des individus. Cette concentration se situe dans la partie négative du facteur 4, non loin de l'origine des axes, occupée par le subsp. glareosa; elle est constituée des 13 individus provenant des populations d'éboulis des Abruzzes et des chaînes dinariques.

La plupart des échantillons issus d'éboulis des Alpes orientales se regroupent en revanche avec les individus de l'échantillon de base du subsp. *glareosa*; leur identité avec cette dernière sous-espèce est par conséquent établie, ce que confirme plus bas l'analyse discriminante.

Sur la gauche du graphique, on distingue l'échantillon de base du subsp. *vulgaris*. Quelques individus provenant des Alpes orientales et dont la morphologie et l'écologie sont celles du subsp. *vulgaris* se sont répartis très naturellement avec l'échantillon de base provenant des Alpes occidentales.

Sur la droite du graphique, on remarque l'échantillon de base du subsp. *prostrata*. Entre cette dernière concentration et celle correspondant au subsp. *glareosa*, plusieurs individus intermédiaires figurent avec leur numéro: leur appartenance sera discutée plus bas, avec les résultats de l'analyse discriminante (il en va de même pour les quelques autres individus situés à la périphérie

& al., 1981: 382-384). En ce qui concerne les individus, l'échantillon de base déterminé plus bas pour l'analyse discriminante a été représenté comme suit: ■ : subsp. *vulgaris*; ▲ : subsp. *glareosa*; ● : subsp. *prostrata*; * : subsp. *marginata*. Les individus de quatre échantillons situés en bordure de l'enveloppe du subsp. glareosa et symbolisés ainsi: △. La plupart des individus dont l'emplacement et le classement définitif sont discutés plus bas à la lumière des résultats de l'analyse discriminante sont Fig. 3. — Diagramme interprété d'analyse factorielle des correspondances pour les axes 1 et 4. Seules quelques variables importantes dans l'explication du graphique ont été représentées, au moyen des sigles expliqués précédemment (AESCHIMANN anonymes des Alpes orientales, concentrés pour la plupart aux alentours de l'origine, n'ont pas été représentés, à l'exception indiqués de façon numérique. Il en va de même pour les plantes des Pyrénées et du Mont-Lozère.

du groupement du subsp. *glareosa*). D'autre part, l'échantillon glabre 0979, déjà relevé précédemment (AESCHIMANN, 1983a: 190), est à nouveau décentré par rapport au nuage du subsp. *prostrata*; il se trouve proche de l'enveloppe de la nouvelle concentration d'individus au bas du graphique.

Analysons maintenant les correspondances entre facteurs et variables. Pour ce faire, nous utiliserons la figure 3, ainsi que les extraits choisis des tableaux d'aide à l'interprétation du nuage des variables (fig. 4 et 5).

En ce qui concerne le premier facteur, nous pouvons à nouveau mettre en évidence une forte contribution (CONTREL = .4159) de la variable T02LONG, attirée vers la gauche du diagramme, ainsi que de la variable F23DIPIL (CONTREL = .7889), attirée vers la droite (voir AESCHI-MANN & al., 1981: 382-384, pour la signification des sigles). Le premier facteur montre donc toujours un antagonisme entre plantes grandes et glabres d'une part, et petites et poilues d'autre part.

Pour le quatrième facteur, il faut noter une importante contribution (CONTREL = .3373) du caractère I32BRSCA (premières bractées de l'inflorescence scarieuses ou non), attiré vers le bas du diagramme. D'autre part, la contribution (CONTREL = .4023) du caractère F20EPAI (épaisseur de la feuille), attiré vers le haut du graphique, est également très élevée. Toutefois, un certain nombre d'autres variables ont une certaine importance, bien que leurs contributions soient beaucoup plus faibles (fig. 5). A l'extrémité négative, nous notons par exemple CL38LONG et CL39DIAM (taille du calice), ou encore F14LARG (largeur maximale de la feuille); tandis qu'à l'extrémité positive, nous relevons F28DIPIM et F15/1314 (rapport longueur/largeur de la feuille).

Ainsi, le quatrième facteur montre un antagonisme entre d'une part des individus à feuilles épaisses et larges, à bractées d'inflorescence foliacées ou intermédiaires et à grands calices, situés vers le bas du graphique, et d'autre part des échantillons à feuilles d'épaisseur faible à moyenne, étroites, à bractées d'inflorescence scarieuses et à calices plus petits, répartis vers le haut.

Les groupements naturels mis en évidence

Nous venons de montrer qu'ils sont au nombre de quatre. Trois d'entre eux ont déjà été mis en évidence lors d'une précédente analyse (AESCHIMANN, 1983b: 176).

Pour le quatrième groupement, comprenant les plantes des Abruzzes et des chaînes dinariques, nous avons retenu la combinaison subspécifique suivante (AESCHIMANN, 1984):

— Silene vulgaris (Moench) Garcke subsp. marginata (Kit.) Hayek.

Le lectotype n'a pu être intégré à l'analyse numérique. Toutefois, les échantillons 2718 et 2719 proviennent du col Buljma, non loin du *locus classicus*: le mont Badanj (massif du Vaganski, Velebit). Le subsp. *marginata* est très homogène et nous avons pu nous assurer que la morphologie du lectotype est rigoureusement semblable à celle de tous les individus étudiés provenant des éboulis des Abruzzes et des chaînes dinariques.

Nous avons prouvé l'existence d'une structure (composée de quatre groupements naturels). Il est donc possible de passer au point 13 de notre organigramme général: la hiérarchisation des caractères (AESCHIMANN & al., 1981: 392).

Hiérarchisation des caractères

Pour utiliser le programme d'analyse discriminante à plusieurs groupes (ROMEDER, 1973), il convient tout d'abord de définir un "échantillon de base" pour le nouveau groupement naturel, mis en évidence au moyen de l'analyse factorielle des correspondances. Nous avons tout simplement pris les 13 individus provenant des Abruzzes et des chaînes dinariques (fig. 1). En revanche, il n'était pas nécessaire de définir des "échantillons test", notre prédédente étude (AESCHI-MANN, 1983a) ayant prouvé la représentativité des "échantillons de base" choisis. Le reste des nouveaux individus, au nombre de 117, ont été portés en "individus anonymes" (fig. 1), car nous ne cherchions qu'à préciser leur position systématique.

Au pas numéro 1 (fig. 6), le programme recherche la variable la plus discriminante, ou encore celle qui permet la meilleure répartition des 81 individus de l'échantillon de base total dans les quatre groupes d'affectation correspondant aux sous-espèces délimitées. Comme en analyse factorielle, la variable F23DIPIL est très sélective et permet le classement correct de 65% des individus.

Variables	CORRFAC	CONTRABS	CONTREL
F23DIPIL	.8882	.0170	.7889
T07DIPIL	.6070	.0039	.3685
T05LPIL	.6165	.0010	.3801
F21LPIL	.6758	.0003	.4567
I3308/31	4836	.0002	.2338
F20EPAI	—.4558	.0026	.2078
T0402/03	4127	.0003	.1703
F17PERI	—.5797	.0004	.3361
T10TINT	5617	.0005	.3155
T09SINT	5905	.0006	.3487
T08PINT	6125	.0007	.3752
13532/31	5767	.0007	.3326
T03DIAM	—.5057	.0006	.2557
I30LBRA	—.5001	.0005	.2501
T02LONG	6449	.0009	.4159
T12BASE	5672	.0008	.3217
F13LONG	5916	.0008	.3500
I32PRAM	6184	.0008	.3824
F18SURF	4769	.0009	.2275
I36NBFL	5352	.0009	.2865

Fig. 4. — Extrait choisi du tableau d'aides à l'interprétation du nuage des variables pour le premier facteur. Les trois colonnes correspondent respectivement à la corrélation avec le facteur, à la contribution absolue et à la contribution relative. Les variables sont ordonnées selon leur position sur le facteur, de droite à gauche sur la figure 3.

Variables	CORRFAC	CONTRABS	CONTREL
F20EPAI	.6343	.0050	.4023
T07DIPIL	.2577	.0007	.0664
F1513/14	.2173	.0001	.0472
T0402/03	.2389	.0001	.0571
F28DIPIM	.3162	.0008	.1000
CL41DILO	—.2136	.0001	.0456
F22DEPIL	2405	.0001	.0579
F24RIDES	—.2478	.0001	.0614
CL43HAUD	2315	.0000	.0536
CL38LONG	4363	.0001	.1904
CL42BASD	3924	.0001	.1540
CL39DIAM	4551	.0001	.2071
CL45IANT	3159	.0003	.0998
CL444243	3676	.0001	.1351
CL47ICHL	3996	.0005	.1597
I31PPED	3363	.0001	.1131
F1918/17	2089	.0001	.0436
T1108/10	2183	.0000	.0477
I29BRSCA	5808	.0028	.3373
F14LARG	—.2305	.0001	.0532

Fig. 5. — Extrait choisi du tableau d'aides à l'interprétation du nuage des variables pour le quatrième facteur. Les variables sont ordonnées selon leur position sur le facteur, de haut en bas sur la figure 3.

C'est principalement ici une distinction entre individus poilus et glabres qui est faite, le caractère F23DIPIL masque en effet F21DIPIL (AESCHIMANN, 1983a: 168).

Au pas numéro 2 (fig. 7), plus de 92% des individus sont bien classés. La variable F1918/17 (rapport aire/périmètre de la surface de la feuille) permet cette augmentation, en "triant" parmi les individus glabres des subsp. vulgaris, glareosa et marginata, selon la forme et la taille de la feuille. Comme dans notre précédente étude, les variables F23DIPIL et F1918/17 permettent à elles seules le classement correct de plus de 9 individus sur 10. Ceci prouve d'un part que les caractères de forme, taille et pilosité de la feuille sont fondamentaux, et d'autre part que la délimitation d'un quatrième groupement naturel, sous le nom de subsp. marginata, est tout à fait justifiée.

Au pas numéro 7 (fig. 8), le 100% de bien classés est atteint. Des caractères tels que la longueur et l'épaisseur de la feuille (F13LONG et F20EPAI), ainsi que la répartition de la pigmentation anthocyanique du calice (CL46RANT) permettent ce résultat.

PAS NUMERO 1

VARIABLES ENTREES . F23D

TABLEAU DE CLASSEMENT DE L'ECHANTILLON DE BASE

		GROUPE	D *AFFECTAT	ION
	1	2	3	4
GROUPE ORIGINE				
SSP. VULGARIS	2	13	0	0
SSP. GLAREOSA	C	31	0	0
SSP. PROSTRATA	1	1	20	0
SSP. MARGINATA	0	13	0	0

POURCENTAGE DE BIEN CLASSES : 65.43 %

Fig. 6. — Tableau de classement des échantillons de base au pas numéro 1 de l'analyse discriminante. Groupes d'affectation: 1 = subsp. vulgaris, 2 = subsp. glareosa, 3 = subsp. prostrata, 4 = subsp. marginata.

PAS NUMERO 2

VARIABLES ENTREES . F23D F191

TABLEAU DE CLASSEMENT DE L'ECHANTILLON DE BASE

,	GROUPE D'AFFECTATION					
	1	2	3	4		
GROUPE ORIGINE						
SSP. VULGARIS	13	0	0	2		
SSP. GLAREOSA	0	30	0	1		
SSP. PROSTRATA	0	0	20	2		
SSP. MARGINATA	0	1	0	12		

POURCENTAGE DE BIEN CLASSES : 92.59 %

Fig. 7. — Tableau de classement des échantillons de base au pas numéro 2 de l'analyse discriminante.

PAS NUMERO 7

VARIABLES ENTREES . F23D F191 F13L F27D F20E I37Z CL46

TABLEAU DE CLASSEMENT DE L'ECHANTILLON DE BASE

GROUPE D'AFFECTATION 1 2 3 GROUPE ORIGINE SSP. VULGARIS 15 0 0 0 SSP. GLAREOSA 0 31 0 0 0 SSP. PROSTRATA 22 0 SSP. MARGINATA 0 0 13

POURCENTAGE DE BIEN CLASSES : 100.00 %

Fig. 8. — Tableau de classement des échantillons de base au pas numéro 7 de l'analyse discriminante.

Moyennes sur l'échantillon de base

Sur la base des moyennes fournies pour chaque variable sur l'échantillon de base du subsp. marginata, nous avons également dessiné le "portrait-robot" de cette sous-espèce (fig. 9). Le dessin rend compte des dimensions les plus importantes au-dessus du troisième nœud sous l'inflorescence, ainsi que de de la répartition de la pigmentation anthocyanique du calice. La hauteur totale de la plante atteint environ 20 cm. La tige est glabre. La feuille est épaisse, sa surface est couverte de papilles, éparses. Le bord de la feuille, dont la marge décolorée est étroite à bien marquée, est glabre ou muni de poils courts, coniques, épars. L'inflorescence comprend en général deux fleurs, plus rarement une ou trois. La pigmentation anthocyanique du calice, d'intensité moyenne à forte, est diffuse à moyennement concentrée sur les veines.

Affectation et distance des individus

Nous ne discuterons ici que des résultats concernant les nouveaux individus étudiés, à savoir l'échantillon de base du subsp. *marginata* et les individus anonymes.

L'échantillon de base du subsp. marginata

Les distances qui séparent les individus étudiés de chacun des quatre barycentres sont calculées et données en figure 10 pour les plantes des Abruzzes et des chaînes dinariques. Nous constatons que tous les individus sont nettement plus proches du barycentre du subsp. *marginata* que de ceux des trois autres sous-espèces. Le subsp. *marginata* est un groupement naturel très homogène, dont la distinction paraît à nouveau justifiée.

L'individu le plus proche du barycentre de cette quatrième sous-espèce, portant le numéro 2741, est donné en figure 11.

Les individus anonymes

La figure 12 donne les résultats d'affectation et de distance pour l'ensemble des 117 individus anonymes, ainsi que notre propre classement. Nous avons distribué les échantillons en trois différentes catégories, reportées dans la seconde colonne de la figure 12.

A) Cette première catégorie comprend tous les individus dont l'affectation par le programme ne nécessite aucun commentaire, les individus étant suffisament "tranchés" vis-à-vis de l'un ou l'autre des quatre groupements naturels. La plupart de ces individus proviennent des éboulis des Alpes orientales et sont identifiés au subsp. *glareosa*, dont l'échantillon de base est constitué de plantes de la Bourgogne, du Jura et des Préalpes françaises. Nous arrivons donc aux mêmes conclusions qu'en analyse factorielle des correspondances.

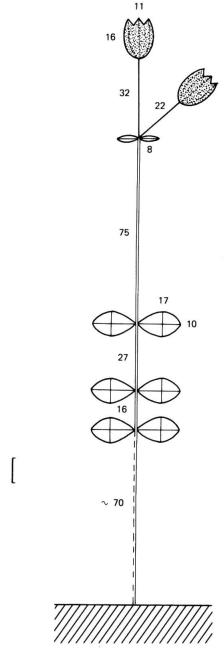


Fig. 9. — "Portrait-robot" de l'individu moyen de subsp. *marginata*. Les longueurs indiquées sont en mm. L'échelle correspond à 1 cm.

Echantillon	subsp. vulgaris	subsp. glareosa	subsp. prostrata	subsp. marginata
2718	14.443	11.601	11.955	2.353
2719	11.674	8.765	9.098	3.882
2722	13.932	11.068	11.632	2.577
2738	14.511	10.823	13.165	2.709
2741	9.429	5.538	7.932	1.957
2746	11.262	5.191	8.228	2.329
2759	13.636	11.316	11.707	2.601
2768	14.021	10.906	11.575	2.610
2771	14.752	9.929	12.738	2.673
2782	12.061	9.555	10.780	2.712
2787	16.188	14.022	15.361	3.364
2790	11.937	11.412	10.482	3.682
2801	11.290	7.672	9.524	2.298

Fig. 10. — Numéro d'individu et distances repectives aux quatre barycentres pour l'échantillon de base du subsp. *marginata*. Voir le texte et la figure 1.

- B) Cette catégorie regroupe 15 individus critiques, souvent intermédiaires (cas d'introgression), dont notre classement, qui coincide avec l'affectation du programme, nécessite un bref commentaire.
- C) La troisième catégorie compte 17 individus (14.5% des anonymes), dont notre propre classement diffère de l'affectation donnée par le programme. Tous ces individus critiques nécessitent une discussion.

Le classement des individus des catégories B) et C) est donc commenté ci-dessous. La plupart de ces plantes peuvent être repérées par leur numéro sur la figure 3 (diagramme d'analyse factorielle).

1343 (C): L'individu est excentré en raison des caractères CL45IANT à CL48MABL, tous manquants, en raison de la couleur passée des calices (code 1). D'autre part, les distances aux barycentres des subsp. glareosa et prostrata (voir chaque fois la figure 12) sont presque égales et le classement automatique par le programme de l'échantillon dans le subsp. prostrata discutable. La plante est petite et les feuilles peu étroites; elles sont toutefois glabres. L'individu est nettement situé dans l'enveloppe du subsp. glareosa en figure 3 et l'ensemble de ses caractères, ainsi que pour les autres échantillons de la population (voir le numéro 2329), nous engagent à le classer dans le subsp. glareosa.

1467 (C): Le programme affecte cet échantillon provenant du Pizzo della Presolana au subsp. marginata en raison de ses feuilles relativement larges (F1513/14 = 1.97), mais totalement glabres. Toutefois, nous verrons plus bas qu'il faut expliquer la largeur ou la pilosité des feuilles de certains individus des Alpes bergamasques ou des Grisons à des phénomènes de caractère introgressif entre les subsp. glareosa (des Alpes orientales) et prostrata. Nous classons cet individu dans le subsp. glareosa.

1481 (B): L'individu est excentré en raison de la conjonction assez rare de caractères dans les états suivants: tige et feuille poilue, mais feuille assez étroite et forte pigmentation anthocyanique du calice répartie de façon concentrée sur les veines. Toutefois, l'affectation du programme au subsp. *glareosa* est satisfaisante. La situation de cet individu est intermédiaire et c'est un bon témoin de son caractère introgressif (voir ci-dessus).

1518 (C): Les distances aux barycentres des subsp. glareosa et prostrata pour cet échantillon sont presque égales. Il est d'autre part excentré pour les mêmes raisons que l'individu précédent. En raison de ses feuilles assez étroites, nous préférons faire basculer le classsement de cet échantillon dans le subsp. glareosa. Sa situation en fig. 3 est proche de celle du 1481, pour les mêmes raisons.

1604 (C): L'individu est ici à distances presque égales des barycentres des subsp. glareosa et marginata. Il faut remarquer que les plantes du Rax et du Schneeberg (Basse-Autriche) ont généralement des feuilles plus larges que la moyenne du subsp. glareosa; nous reviendrons ultérieurement sur cette question. Nous préférons faire basculer le classement de cet individu dans le subsp. glareosa. Le programme a affecté les individus du Schneeberg au subsp. glareosa.

1735 (C): La situation de cet échantillon est comparable à celle du numéro 1467. Les conclusions sont semblables.

Fig. 11. — Echantillon 2741: le plus proche (distance = 1.957) du barycentre du subsp. *marginata*: "Yougoslavie / Bosnie-Herzégovine / Versant N du Vrh Šator / Petit éboulis naturel / Calcaire / exp. N / pente 70-80% / 1600 m", 29.7.1983, *Aeschimann 4168* (G).

Fig. 12. — Numéro d'individu, catégorie dans laquelle l'échantillon est traité dans le texte, notre propre classement, affectation du programme et distances respectives aux quatre barycentres pour les 117 individus anonymes. Groupes de classement et d'affectation: 1 = subsp. vulgaris, 2 = subsp. glareosa, 3 = subsp. prostrata, 4 = subsp. marginata.

Echantillon	Cat.	Notre class.	Aff. progr.	subsp. vulgaris	subsp. glareosa	subsp. prostrata	subsp. marginata
1322	Α	2	2	15.527	9.888	15.333	13.431
343	C	2	3	28.567	25.564	25.329	26.025
344	Α	2	2	13.513	10.371	14.595	11.304
360	Α	2	2	17.454	12.951	17.375	18.085
383	Α	2	2	12.112	10.038	13.910	10.484
448	A	2	2	14.266	8.945	14.483	13.072
467	C	2	4	10.105	4.307	7.485	2.172
481	В	2	2	32.121	26.223	30.336	40.260
492	A	2	2	8.774	1.876	7.625	.984
494	A	2	2	14.741	10.419	15.133	12.265
499	A	2	2	35.414	27.793	36.068	30.217
516		2	2	10.931	6.361	12.486	13.219
	A	2	2				
518	C	2	3	25.383	21.476	20.108	33.479
530	A	2	2	26.895	19.230	27.501	26.102
603	A	2	2	13.813	8.561	14.176	13.025
604	C	2	4	15.400	12.145	16.064	11.868
683	A	2	2	18.418	10.153	18.476	18.161
689	Α	2	2	29.669	28.347	29.448	32.207
695	Α	2	2	15.722	10.356	15.559	13.212
703	Α	2	2	14.342	8.931	14.518	13.169
728	Α	2	2	14.592	8.388	15.015	20.355
735	C	2	4	9.534	4.099	7.238	2.095
940	A	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.789	7.764	13.521	12.923
950	A	2	2	17.358	14.633	17.594	21.274
952	A	2	2	11.806	7.373	13.409	18.502
953	A	2	2	14.430	9.722	14.769	12.503
966	A	2	2	15.188	9.869	15.403	18.477
968	A	2	2	17.286	11.309	16.795	19.241
972	В	2	2	7.274	.796	5.731	4.621
973	A	2	2	12.628	8.399	13.851	17.531
		2	2	13.568	10.745	14.762	11.156
974	A	2 2 2 3 2 2 2 2	2				
980	C	2	3	26.463	22.079	20.542	33.095
982		2	3	19.388	12.643	10.795	23.524
984	В	3	3	18.275	12.961	9.799	20.082
986	C	2	3	26.414	21.940	20.547	33.420
988	A	2	2	27.305	17.938	27.429	28.018
991	В	2	2	27.094	17.495	21.232	30.139
996	В	2	2	20.713	15.523	18.109	25.525
004	Α	2	3 2 2 2 2 2 2	22.163	15.974	18.965	26.711
007	Α	2	2	12.370	7.617	13.288	12.664
014	Α	1	1	5.182	10.106	15.185	20.304
019	Α	2	1 2 2	10.651	6.307	12.334	12.976
022	Α	2 2	2	23.473	15.900	25.094	26.241
027	Α	2	2	27.536	19.737	27.693	29.842
029	A			27.444	20.301	28.106	25.850
039	В	2 2	2	27.017	19.567	27.036	20.548
040	Ā	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25.894	17.299	26.556	27.099
043	A	2	2	13.471	7.651	13.877	13.936
046	A	2	2	24.968	16.760	25.983	26.728
048	A	2	2	22.606	15.987	24.644	25.074
051	C	1	2	6.457	5.976	11.400	17.845
			2	28.874	21.482	29.175	26.430
057	A	2	2				
059	В	2 2	2	9.429	2.111	6.400	2.918
071	В	2	2	22.231	11.265	19.052	18.601
077	A	2	2	9.375	.990	6.134	4.140
081	A	2	2	13.484	7.301	13.903	14.693
092	Α	2	2	15.639	8.729	15.181	15.020
094	В	2	2	9.761	.922	6.262	4.450
100	Α	2	2	32.945	28.568	30.242	33.072
104	Α	2	2	37.546	35.418	37.730	45.672
114	Α	2	2	7.825	1.699	7.201	6.483
122	A	2	2	15.396	11.217	16.041	19.131
123	A	2 2	2	9.163	7.181	11.771	10.345
133	A	2	~		8.183	13.155	11.495
144		/.	2	11.824	X 1X4	11 177	11.495

2138	Α	2	2	11.254	4.219	9.154	6.223
2153	A	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	7.483	.779	5.727	4.483
2166	A	2	2 2	26.505	25.863	26.642	28.495
2173	Α	2	2	16.124	9.940	15.643	14.017
2200	A	2	2	13.849	7.848	14.100	14.089
2203	A	2	2	15.291	8.086	14.979	15.776
2208	A	2	2	14.407	8.110	14.431	14.381
2215	A	2	2	16.674	9.832	15.905	14.779
2220	Α	2	2	7.546	1.238	7.186	7.526
2223	A	2	2	12.283	6.351	13.495	15.934
2238	A	2	2	25.880	17.625	26.597	26.633
2240	Α	2	2	9.618	6.245	9.058	8.757
2242	A	2	2 2 2 2 2 2 2 2 2 2 2 2 2 4	7.010	1.135	7.000	7.448
2246	C	2	4	12.277	10.702	14.246	10.317
2251	Č	1	2	8.872	8.117	12.153	14.661
2253	Α	1	1	5.786	14.784	14.210	13.126
2260	A	2	2	12.045	6.521	13.146	14.500
2263	A	2		12.139	6.887	13.126	13.649
2271	Α	2	2	13.815	7.761	15.359	20.879
2276	A	2 2	2	25.948	17.536	26.295	30.136
2279	Α	2	2 2 2 2 2 2 2 2 4	25.835	17.784	26.605	26.388
2282	Α	2	2	14.447	8.331	14.470	14.071
2285	Α	2	2	16.012	11.515	15.659	16.679
2292	Α	2	2	15.167	8.620	14.901	14.555
2297	C	2	4	9.931	3.293	6.989	2.428
2298	Α	2	2	14.049	7.866	14.215	14.329
2302	Α	2	2	13.685	10.596	14.560	16.162
2312	Α	2 2 2 2 2 2	2	13.030	6.939	13.683	14.926
2317	Α	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	31.376	26.907	28.127	29.666
2329	Α	2 2 2 2 2 2 2 2	2	21.615	11.339	18.408	14.601
2335	Α	2	2	11.808	6.198	8.755	7.469
2349	Α	2	2	34.404	25.626	35.033	31.344
2355	В	2	2	18.718	9.601	16.834	14.343
2363	Α	2	2	11.663	6.252	13.014	14.822
2378	Α	2	2	16.151	13.767	17.102	22.047
2383	Α	2	2	34.675	33.863	35.048	40.961
2388	C	3	2	32.853	30.179	31.841	37.623
2390	В	2	2	15.141	12.064	13.134	22.574
2393	В	2 2 3	2	44.557	39.919	40.688	53.691
2397	Α	2	2	10.503	6.616	12.946	19.244
2401	C		2	39.568	37.709	38.828	39.275
2407	Α	2 2	2	11.248	6.745	12.636	12.790
2409	Α	2	2	16.341	10.363	16.101	19.224
2461	Α	2	2	14.714	10.961	15.468	16.970
2462	Α	2 2	2	15.654	10.312	15.733	18.484
2463	Α	2	2	12.375	6.000	10.631	11.880
2507	C	3	2 2 2 2 2 2 2 2 2 2 2 2 3	16.438	14.983	16.379	16.819
2524	В	3	3	24.424	23.605	19.943	29.491
2529	C	3	2 2	13.902	13.248	13.484	16.967
2530	C	3	2	14.827	12.283	14.600	16.689
2538	В	2	2	15.895	11.035	14.842	12.986
2551	В	3	3	12.799	10.147	8.978	9.971

1972 (B): Un individu très proche du barycentre du subsp. *glareosa* et correctement classé par le programme. Sa situation est toutefois très proche de l'enveloppe du subsp. *marginata* (fig. 3), en raison de la conjonction de feuilles épaisses (F20EPAI = 2) et de bractées d'inflorescence foliacées (I29BRSCA = 4); il ne montre toutefois pas de parenté avec le subsp. *marginata*.

1980 (C): Situation et conclusions comparables à celles de l'individu 1518.

1982 (C): Mêmes remarques.

1984 (B): L'individu appartient à la même population que les deux précédents (Passo di Croce Dominii, prov. Brescia). Il est toutefois plus proche du barycentre du subsp. prostrata, en raison de feuilles plus larges, épaisses (F20EPAI = 2) et poilues. Dans la zone charnière entre les Alpes occidentales et orientales, c'est un des individus introgressifs les plus proches du barycentre du subsp. prostrata que nous ayons rencontrés; son affectation par le programme est donc correcte.

- 1986 (C): Population, situation et conclusions semblables à celles des numéros 1980 et 1982.
- 1991 (B): L'échantillon ressemble aux numéros 1518 et 1980, mais en raison de ses feuilles épaisses il attiré vers le bas du diagramme d'analyse factorielle (fig. 3). Les feuilles sont par contre plus étroites et bien qu'un peu poilu, l'individu montre une grande parenté avec le subsp. glareosa: l'affectation du programme est correcte.
- 1996 (B): Même population que l'individu précédent, mais les feuilles sont cette fois d'épaisseur intermédiaire et l'échantillon est attiré vers le haut du diagramme. Conclusions semblables.
- 2039 (B): L'individu est ici à distances presque égales entre les barycentres des subsp. *glareosa* et *marginata*. C'est dû à ses feuilles relativement larges (exemplaire de haute altitude) et à ses bractées d'inflorescence à tendance foliacée (I29BRSCA = 6); l'affectation du programme est correcte.
- 2051 (C): Les distances aux barycentres des subsp. *vulgaris* et *glareosa* sont presque égales; l'individu est typiquement introgressif entre ces deux dernières sous-espèces. Le subsp. *vulgaris* se répand depuis les régions inférieures le long de la route du Passo Falzarego et entre en contact avec le subsp. *glareosa* des éboulis. Compte tenu de la grande taille de l'échantillon (tige et feuilles), nous préférons faire basculer le classement vers le subsp. *vulgaris*.
- 2059 (B): Commentaire voisin de celui du numéro 2039. Les feuilles épaisses (F20EPAI = 2) de l'individu expliquent qu'il soit plus attiré vers le bas du graphique (fig. 3).
- 2071 (B): Exemple d'individu à classer assez nettement dans le subsp. *glareosa*, comme le prouvent les distances aux barycentres, mais qui est attiré vers le bas du diagramme d'analyse factorielle en raison des caractères F20EPAI (codé 2) et I29BRSCA (codé 6).
 - 2094 (B): Situation et commentaires semblables à ceux de l'échantillon précédent.
- 2246 (C): Situation un peu comparable à celle des individus 2039 et 2059, en raison des feuilles larges de cet échantillon. Les autres individus de la population ont des feuilles étroites (voir les numéros 2240 et 2242) et sont affectés au subsp. *glareosa*. Le classement du numéro 2246 dans le subsp. *glareosa* est plus correct.
- 2251 (C): Situation et commentaire comparables à ceux de l'échantillon 2051; l'individu est toutefois de taille légèrement inférieure. Il ne montre que peu de différences avec le numéro 2253, de la même population légèrement introgressive, et qui a été affecté au subsp. *vulgaris* par le programme.
- 2297 (C): L'individu est comparable aux numéros 2039 et 2059 et doit être classé dans le subsp. *glareosa*. Les autres échantillons de la population ont des feuilles plus étroites et d'épaisseur intermédiaire: ils sont automatiquement affectés au subsp. *glareosa*.
- 2355 (B): La distance de l'individu au barycentre du subsp. *glareosa* est plus faible qu'à celui du subsp. *marginata*, mais les commentaires sont semblables à ceux des numéros 2039 et 2059.
- 2388 (C): L'individu est intermédiaire et comme pour le numéro 1518 (ou la série 1980 à 1986), les distances aux barycentres des subsp. *glareosa* et *prostrata* sont presque égales. La plante est poilue, à feuilles assez larges et d'épaisseur intermédiaire; la pigmentation anthocyanique du calice est concentrée sur les veines. En raison de la largeur et de la pilosité des feuilles, nous préférons le classement dans le subsp. *prostrata*.
- 2390 (B): Même population que l'individu précédent; les feuilles sont toutefois plus étroites et nous préférons donner le même classement que l'ordinateur. Les populations du col de l'Albula (Grisons) sont de bons exemples pour le phénomène d'introgression mentionné plus haut.
 - 2393 (B): Mêmes remarques que pour l'individu précédent.
- 2401 (C): Echantillon d'un population voisine, comparable au numéro 2388. Nous préférons également un classement dans le subsp. *prostrata*. Les autres individus de la population sont classés dans le subsp. *glareosa* (voir le numéro 2397).
- 2507 (C): L'individu est à distances presque égales des barycentres des subsp. glareosa et prostrata. Les caractères F23DIPIL (codé 2, c'est-à-dire poils cylindriques) et F20EPAI (codé 6) éloignent fortement du subsp. prostrata. Toutefois, par sa taille réduite ainsi que ses feuilles très larges et poilues, cet échantillon du Mont-Lozère est bien à classer dans le subsp. prostrata (voir aussi AESCHIMANN, 1983b: 214).
- 2524 (B): Cet échantillon est correctement classé dans le subsp. *prostrata*; ses feuilles sont larges et poilues. Il est toutefois un peu excentré en raison de l'épaisseur intermédiaire des feuilles et de son inflorescence à 5 fleurs.
- 2529 (C): Situation et commentaires comparables à ceux du numéro 2507. L'échantillon provient en revanche de la même population que le précédent: Pic du Midi (Hautes-Pyrénées).

2530 (C): Situation comparable et même population que l'individu précédent. La plante est toutefois un plus proche du barycentre du subsp. *glareosa* car sa tige est glabre. Nous préférons le classement dans le subsp. *prostrata*.

2538 (B): Cet individu provient d'une autre population des Hautes-Pyrénées, très homogène et que nous commenterons ultérieurement. C'est tout à fait du subsp. *glareosa*.

2551 (B): L'affectation au subsp. *prostrata* est correcte. La situation de cet individu est comparable à celle du numéro 2529, mais ses feuilles un peu plus larges et épaisses le rapprochent assez nettement du barycentre du subsp. *prostrata*.

Conclusion

Au moyen de l'analyse factorielle des correspondances et de l'analyse discriminante, il est possible de montrer que les populations inféodées aux éboulis des Alpes orientales sont à classer dans le subsp. glareosa, étudié précédemment en Bourgogne, dans le Jura et les Préalpes calcaires françaises. La variabilité du subsp. glareosa est toutefois plus importante dans les Alpes orientales. Il faut expliquer cette variabilité accrue par la plus grande amplitude écologique montrée par les éboulis dans l'ensemble du domaine oriental des Alpes. A titre d'exemple, les populations d'altitude comptent parfois des individus à feuilles plus larges, que l'ordinateur peut avoir tendance à rapprocher du subsp. marginata.

Nous pouvons d'autre part établir qu'un certain nombre d'échantillons provenant notamment des Alpes bergamasques et des Grisons, c'est-à-dire de la zone charnière entre les Alpes occidentales et orientales sont de caractère introgressif entre les subsp. *prostrata* (répandu dans les Alpes occidentales) et *glareosa* (des Alpes orientales). Une hybridation introgressive au niveau régional (AES-CHIMANN, 1983a: 199) entre les deux sous-espèces peut être constatée, comparable à celles observées au sud du Vercors et dans le Dévoluy, ou dans les Alpes calcaires valaisannes. Une étude chorologique d'ensemble est en cours.

Les échantillons du subsp. *vulgaris* provenant des Alpes orientales ne montrent pas de différences significatives avec ceux des Alpes occidentales.

Au moyen des analyses mathématiques, il est également possible de classer les échantillons provenant des Hautes-Pyrénées françaises soit dans le subsp. glareosa, soit dans le subsp. prostrata.

Un quatrième groupement naturel est mis en évidence et correspond au subsp. *marginata*, dont la variabilité morphologique est faible et le domaine géographique bien isolé. Les plantes proviennent en effet des Abruzzes et des chaînes dinariques.

La hiérarchisation des caractères, par une analyse discriminante à plusieurs groupe, a permis de confirmer l'importance fondamentale des caractères de forme, taille et pilosité de la feuille.

Nous arrivons ici à nouveau au point 10 de notre organigramme général (AESCHIMANN & al., 1981: 392) qui comporte "réflexion sur les résultats obtenus". Elle est à nouveau positive et notre rédaction d'une conclusion générale pour le domaine Alpin est en cours.

REMERCIEMENTS

Nous remercions vivement le Fonds National Suisse de la Recherche Scientifique pour son généreux appui (projets n°s 3.571-0.79 et 3.278-0.82). Nous remercions également M^{me} D. Wüst-Calame qui a dessiné le graphique et le portrait-robot.

RÉFÉRENCES BIBLIOGRAPHIQUES

- AESCHIMANN, D. (1983a). Etude biosystématique du Silene vulgaris s.l. (Caryophyllaceae) dans le domaine alpin. Traitement numérique des populations des Alpes occidentales et de la Bourgogne. Candollea 38: 155-202.
- AESCHIMANN, D. (1983b). Etude biosystématique du Silene vulgaris s.l. (Caryophyllaceae) dans le domaine alpin. Nouvelles localités pour les sous-espèces glareosa et prostrata. *Candollea* 38: 211-216.
- AESCHIMANN, D. (1984). Etude biosystématique du Silene vulgaris s.l. (Caryophyllaceae) dans le domaine alpin. Typification du subsp. marginata (Kit.) Hayek. *Candollea* 39: 395-397.
- AESCHIMANN, D., J.-M. MASCHERPA & G. BOCQUET (1981). Etude biosystématique du Silene vulgaris s.l. (Caryophyllaceae) dans le domaine alpin. Méthodologie. Candollea 36: 379-396.
- ROMEDER, J. M. (1973). Méthodes et programmes d'analyse discriminante. Paris.