Zeitschrift: Chronique archéologique = Archäologischer Fundbericht

Herausgeber: Service archéologique cantonal

Band: - (1987-1988)

Artikel: Anthropologische Bearbeitung der Skelette des römischen

Reihengräberfeldes von Tafers/Windhalta

Autor: Kaufmann, Bruno / Schoch, Willi

DOI: https://doi.org/10.5169/seals-388969

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ANTHROPOLOGISCHE BEARBEITUNG DER SKELETTE DES RÖMISCHEN REIHENGRÄBERFELDES VON TAFERS/WINDHALTA

Bruno Kaufmann/Willi Schoch

Einleitung

Die hier vorliegende Arbeit befasst sich mit den menschlichen Skelettresten, die anlässlich der Grabung in Tafers/Windhalta (LK 1185, Fribourg, ca. 582 850/185 350) in den Jahren 1986 und 1987 bei Bauarbeiten zum Vorschein gekommen sind. Die Bestattungen wurden vom Kantonalen archäologischen Dienst Freiburg, damals noch unter der Leitung von Frau Prof. H. Schwab, freigelegt und mehrheitlich von uns (W. Schoch und B. Kaufmann) selbst geborgen. Zeitweilig weilte auch der inzwischen leider verstorbene Pathologe Prof. S. Scheidegger auf dem Grabungsplatz und konnte so an den Bestattungen in situ Befunde erheben, die beim Bergen der Gebeine infolge der extrem starken Korrosion verloren gegangen wären.

Herr W. Schoch, lic.phil., verfasste 1989 den Gräberkatalog, der als Grundlage für diese Arbeit eingesetzt worden ist. Die Morphognostischen Befunde und die Anatomischen Varianten wurden im Herbst 1989 von Frau V. Trancik, dipl. natw., aufgenommen; Herr Prof. S. Scheidegger untersuchte das Skelettmaterial im Frühjahr 1989 und erstellte einen schriftlichen Bericht.

Es erstaunt vielleicht in diesem Zusammenhang, wenn wir hier trotz dieser weitreichenden Vorarbeiten nicht die vollständige Bearbeitung vorlegen. Die intensive Materialdurchsicht hat mich aber in meiner während der Grabung entstandenen Ansicht bestärkt, dass wir es in Tafers/Windhalta mit einer kel-

tischen (bzw. keltoromanischen) «Schlüsselbevölkerung» zu tun haben, die einer minutiösen Auswertung unterzogen werden muss. Hinzu kamen extrem seltene Sonderbildungen im Gebissbereich (sehr häufige Mikrodontie im Frontgebiss; Mikrodontie ist extrem selten und dann normalerweise im Bereich der Prämolaren angesiedelt), seltene Bestattungssitten und das extrem hohe Sterbealter der Erwachsenen. Wir sind daher institutsintern zur Auffassung gekommen, dass wir den Sonderfragen dieses Gräberfeldes intensiver als üblich nachgehen und die Ergebnisse als Nachtrag publizieren sollten.

Es bleibt mir somit noch die Pflicht zu Danken: Der archäologischen Bearbeiterin und vormaligen Kantonsarchäologin Frau Prof. H. Schwab für die Erlaubnis, die Bestattungen selber zu bergen und hier zu publizieren sowie für zahlreiche, freundlich erteilte Auskünfte. Ihr Nachfolger, Herr Dr. F. Guex, ermöglichte die Finanzierung der Bearbeitung mit Hilfe des stark erweiterten Freiburger IAG-Kredites und stand dem Projekt mit Interesse, Wohlwollen und mannigfacher Hilfe bei. Intensiv mitgearbeitet haben in unserem Aescher Institut die Herren Prof. S. Scheidegger, W. Schoch und M. Schneider sowie die Damen V. Trancik und L. Häusler. Ihnen, aber auch vielen nicht namentlich aufgeführten Personen in Freiburg und Aesch bin ich zu tiefem Dank verpflichtet.

Aesch, Ende April 1990

Material und Methodik

Material

Aus den beiden Grabungskampagnen stammen rund 70 Bestattungen aus 68 Gräbern, wie der Tabelle 1 entnommen werden kann. (siehe Anhang)

Erhaltungszustand der Knochen

Infolge ihrer Einlagerung in Moränenschutt unterschiedlichster Zusammensetzung ist die Erhaltung der Knochen ebenfalls äusserst unterschiedlich. Generell scheint aber der Kalkgehalt deutlich vermindert zu sein, wie dies aus dem geringen Gewicht der Knochen geschlossen werden kann. Ebenfalls sind

ein Grossteil der alten Knochenoberflächen (Compactaschicht) stark korrodiert und täuschen so pathologische Veränderungen vor, wodurch bei fast allen Skeletten Lupenuntersuchungen erforderlich wurden. Dies umso mehr, als es nicht nur zum Abbau von Knochenmasse kam, sondern teilweise auch Kalk aufgelagert worden ist und beide Prozesse auf engstem Raum – beispielsweise am Hand- oder Fussskelett – wirksam wurden.

Methodik

Die Mehrzahl der Skelette wurde von uns geborgen und nach dem sorgfältigen Trocknen maschinell gewaschen und anschliessend zusammengesetzt. Das Erstellen des Gräberkataloges durch Herrn W. Schoch geschah nach den internen Richtlinien unseres Institutes; die dabei angewendete Methodik ist in der «Einleitung zum Katalog» beschrieben. Die paläopathologische Begutachtung des Materials geschah durch Herrn Prof. S. Scheidegger, der leider den Abschluss der Arbeit nicht mehr erleben durfte. Die besondere Problematik der Gebisse dieses Gräberfeldes machte eine Spezialuntersuchung erforderlich, die infolge ihrer speziellen Fragestellungen und ihres Umfanges aber gesondert erscheinen wird

Ebenfalls nach den internen Richtlinien wurden die Anatomischen Varianten und die Morphognostischen Befunde erhoben; beide Aufnahmen verdanke ich Frau V. Trancik. In Zweifelsfällen zogen wir auch die Arbeiten von Czarnetzki (1971), Rösing (1984), Reinhard und Rösing (1985) und Hauser/De Stefano (1989) zu Rate. Die Richtlinien unseres Institutes (Kaufmann u.A., in Vorbereitung) werden wir vermutlich im Herbst dieses Jahres (1990) veröffentlichen.

Grabbau, Bestattungslage und Belegung des Friedhofs

Grabbau

Der Grabbau wird im Einzelnen im Archäologischen Teil abgehandelt. Hier nur der kurze Hinweis, dass alle Bestattungen in einem lang-schmalen, nordwest-südost orientierten Gräberfeld lagen. Eine Ausnahme davon macht möglicherweise Grab 1, das nach Aussagen des Baggerführers rechtwinklig über Grab 2 lag. Es kann aber nicht ausgeschlossen werden, dass diese Richtungsabweichung durch die Baggerschaufel bedingt worden ist und auch diese Bestattung ursprünglich gleich orientiert war.

Bestattungslage

Wie aus den Grabzeichnungen und dem Skelettplan (Abb. im archäologischen Teil) hervorgeht, waren alle Toten in Rückenlage bestattet worden. Die Haltung der Unterarme ist dabei sehr variabel von «gestreckt» (parallel zur Körperachse) bis «rechtwinklig abgebogen», wie dies bei keltoromanischen Gräberfeldern, nicht aber bei alamannischen Bestattungsplätzen üblich ist. Genauere Informationen über die Bestattungslage finden sich im archäologischen Teil.

Belegung des Friedhofes

Anhand der anthropologischen Befunde ist es nicht möglich, die Reihenfolge der Bestattungen festzustellen, da Überschneidungen der Gräber fehlen. Lediglich Grab 1 muss jünger sein als Grab 2, da es nach Aussagen des Baggerführers quer über dem Beinskelett von Bestattung 2 lag.

Bezüglich der Altersverteilung lässt sich ebenfalls keine Gliederung feststellen. Kinder und Erwachsene wurden offensichtlich ohne bestimmtes System - also wohl nach ihrer Sterbefolge - bestattet (Abb. 1 und 2). Das einzige Problem bilden die fehlenden Säuglingsskelette. Von der Bodenbeschaffenheit her (und anhand der bodenbedingten starken Korrosion der erhaltenen Bestattungen) wäre es durchaus möglich, dass diese zarten Knochen restlos aufgelöst worden wären. Da sich die Grabgruben aber durch Verfärbung des Bodens deutlich abzeichneten, dürfte diese Möglichkeit hier entfallen. Wir haben somit eher damit zu rechnen, dass die Neugeborenen und Säuglinge an einer besonderen, uns noch nicht bekannten Stelle bestattet worden sind.

Auch bezüglich der Geschlechter lassen sich keine bevorzugten Areale erkennen (Abb.3). Männer, Frauen und Kinder sind vielmehr fast gleichmässig verteilt, sodass auch diesbezüglich der Eindruck

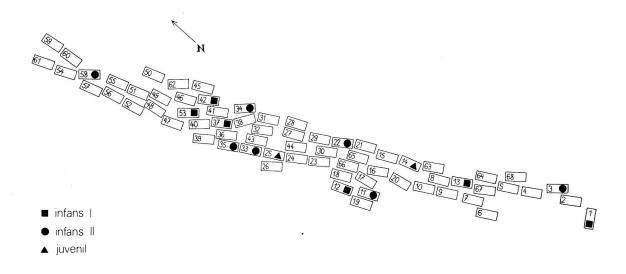


Abb. 1 Altersverteilung: Nichterwachsene

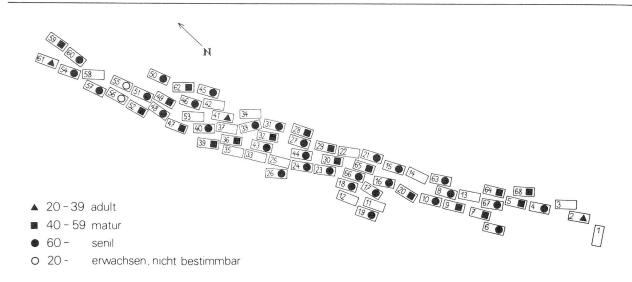


Abb. 2 Altersverteilung: Erwachsene

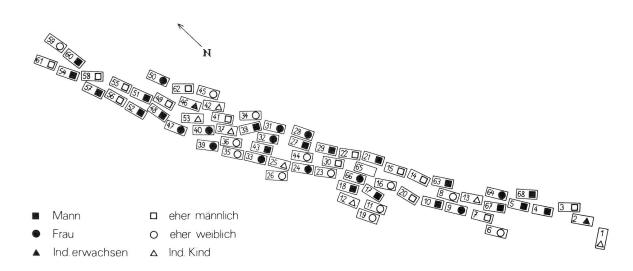


Abb. 3 Geschlechtsverteilung

entsteht, die Individuen seien ihrem Todeszeitpunkt Demographische Befunde nach bestattet worden.

Gräber mit zusätzlichem Inventar

Nur ausnahmsweise wurde in den Gräbern zusätzliches Material gefunden (Abb. 4). So lag in Grab 36 ein Keramikfragment und in Grab 47 ein vollständig korrodierter (Eisen-)Rest. An Tierknochen lagen wenige Fragmente von Schaf oder Ziege in Grab 18, Rinderknochen (?) befanden sich bei den Bestattungen 46 und 34.

Auch zusätzliche menschliche Skelettreste sind extrem selten: Vermutlich gehören die extrem kräftig gebauten Knochen aus den Bestattungen 26, 39 und 40 zum gleichen erwachsenen Mann, während in Grab 54 verschiedene Gebeine eines etwa 14jährigen Kindes lagen.

Altersverteilung

Ein wesentliches Merkmal der Bevölkerung von Tafers/Windhalta ist ihr extrem hohes mittleres Lebensalter, das vermutlich von keiner anderen Bevölkerung der Schweiz in vorrömischer, römischer und frühmittelalterlicher Zeit erreicht worden ist. Dazu beigetragen hat sicher das Fehlen der Säuglinge und die Unterbelegung der Altersstufen infans I und II, also der Kleinkinder und Kinder. Aber wenn wir diese Unterbelegung sicher auch als Korrektur auffassen müssen, ist doch keine andere Bevölkerung bekannt, bei welcher die Altersstufe «senil» (60 und mehr Lebensjahre) sowohl bei Männern wie auch bei Frauen die mit Abstand stärkste Altersgruppe

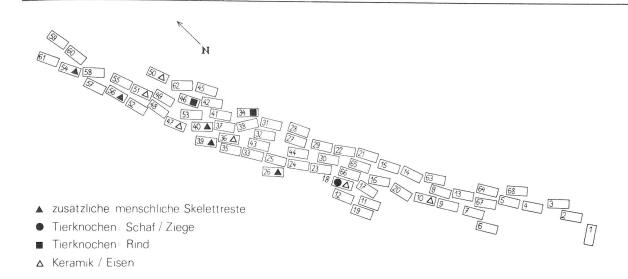


Abb. 4 Beigaben. Grab 26: 2 Hand- und 9 Fussknochen, männl., erw.; Grab 39: OC sin., männl., erw.; Grab 40: Clav. dext., männl., erw.; Grab 54: Zahn, Ulna dext., 6 Rippenfragmente, 7 Hand- u. Fussknochen, unbest., juv.; Grab 56: 3 Schädelfragmente und ein Prämolar

darstellt. Es stellt sich in diesem Zusammenhang sogar die Frage, ob die «fehlenden» Säuglings- und Kinderbestattungen wirklich fehlen, oder ob wir beim hier vorherrschenden sehr guten Gesundheitszustand einfach keine den sonst herrschenden Verhältnissen entsprechende Kindersterblichkeit hatten. Wenn wir beim Altersaufbau der Erwachsenen Verhältnisse vorfinden, wie sie in der ersten Hälfte des 20. Jahrhunderts bei uns üblich waren, wieso sollten dann bei den Säuglingen und Kleinkindern andere Verhältnisse vorherrschen? Es ist zudem nicht einzusehen, warum nur gerade ein Teil der Kleinkinder und Kinder im eigentlichen Friedhofsareal bestattet worden sein sollte. Für Neugeborene und Säuglinge (hier wohl bis zum 2. Lebensjahr) dagegen ist ein eigener Bestattungsplatz teilweise bis heute noch üblich.

Zur Untermauerung der Befunde sollen die Daten der folgenden Übersicht dienen:

Bei den 4 Frauen dürfen wir diese Todesfälle mit Komplikationen der Geburten in Zusammenhang bringen, obwohl wir gerade bei Frauen diesen Anstieg sonst erst im frühadulten Lebensalter (20. bis 30. Lebensjahr) vorfinden. Wir dürfen somit davon ausgehen, dass die Geschlechtsreife relativ früh eingetreten ist und die ersten Geburten somit deutlich vor dem 20. Lebensjahr stattgefunden haben.

Schwieriger gestaltet sich die Erklärung für die frühen Todesfälle der Jünglinge. Da mit einer Ausnahme (Grab 26, eine alte Frau) weder ein Unfall noch eine sonstige Gewalteinwirkung festgestellt werden konnte, fallen diese Möglichkeiten (Kriegsdienst; Raufhändel) wohl weg. Zudem wurden bei der Landbevölkerung normalerweise schon die Kinder zu harten Arbeiten beigezogen, sodass wir auch nicht mit körperlicher Überforderung beim Eintritt ins «Erwerbsleben» argumentieren können. Auch scheint die Ernährung durchaus ausreichend gewe-

Altersstufe		Männer	Frauen	Sex indet.	Total	%_
Infans I	*- 5	00	00	4	4	5.9
Infans II	6-14	1	00	3	4	5.9
Juvenil	15-19	3	4	0	7	10.3
Adult	20-39	2	0	1	3	4.4
Matur	40-59	11	8	0	19	27.9
Senil	60-	15	13	1	29	42.6
Erwachsen	20-	2	0	0	2	2.9

Knapp ein Viertel aller Bestattungen (15 oder 22.2%) waren nicht erwachsen; normalerweise rechnen wir mit einem Drittel. Auffälliger ist aber der Umstand, dass vor allem im Jugendalter (15. bis 19. Lebensjahr) sehr viele Verstorbene zu finden sind, während normalerweise in dieser kurzen Altersphase nur wenige Todesfälle verzeichnet werden.

sen zu sein (vgl. dazu das Kapitel «Pathologische Befunde»). Die relativ hohe Sterblichkeit der Männer im jugendlichen Alter ist zur Zeit somit noch nicht erklärbar.

Eine erste leichte Zunahme der Sterblichkeit beginnt etwa mit dem 45. Lebensjahr und setzt mit dem 50. Altersjahr dann verstärkt ein und dauert

anschliessend gleichmässig fort bis zum Erlöschen der älteren Menschen spätestens im 75. Lebensjahr. Dieser Tod darf wohl mit den Abbauerscheinungen in Verbindung gebracht werden, die durch die harte körperliche Arbeit bedingt waren. Die Körperkräfte waren verbraucht und Abwehrkräfte gegen Infektionen kaum mehr vorhanden, sodass schon geringfügige Einflüsse zum Tode führen konnten.

Mittlere Lebenserwartung

Die mittlere Lebenserwartung eines Neugeborenen (n= 66) betrug genau 48 Jahre und war somit fast doppelt so hoch wie sonst üblich. Ein erwachsener Mann (n = 28) konnte mit insgesamt 58,3 Lebensjahren rechnen, eine gleichaltrige Frau (n = 21) sogar mit 61,1 Jahren. Die Lebenserwartung der Männer lag somit gut 10, die der Frauen sogar um 15 Jahre über den allgemeinen Erwartungen. Die Ursachen dieser hohen Lebenserwartung sind mir nicht bekannt; es muss aber eine allgemeine (vererbte) Veranlagung zu hohem Alter bei gleichzeitig gutem Ernährungszustand und einer friedfertigen Umgebung geherrscht haben. Möglicherweise handelte es sich bei den Toten um Angehörige einer oder einiger weniger Grossfamilien, die abseits der grossen Durchgangsstrassen ein ruhiges, arbeitsames Leben als Landwirte führten.

Geschlechtsverteilung

Bei der Geschlechtsverteilung sind 34 Individuen als Männer erkennbar, was genau 50% der Bevölkerung entspricht. Ihnen stehen 25 Frauen (36.8%) gegenüber und 9 Personen (13.2%) unbekannter Geschlechtszugehörigkeit, davon 7 Kleinkinder und Kinder.

Der Anteil der Männer ist somit auch in Tafers höher als der der Frauen; ein Befund, den wir im prähistorischen und historischen Zeitraum immer wieder antreffen. Als Ursachen werden das primäre und das sekundäre Frauendefizit angeführt; primär, weil normalerweise mehr Knaben als Mädchen geboren werden (Verhältnis ca. 103 zu 100), sekundär, weil die Frauen häufig im gebärfähigen Alter wegsterben, besonders bei der ersten Schwangerschaft und dann wieder bei Spätgeburten. Da aber die Knaben in der Kindheit generell gefährdeter und gegen Krankheiten weniger immun sind, dürfte mindestens das primäre Frauendefizit schon bei Beginn der Jugendzeit (15. Lebensjahr) wieder ausgeglichen sein. Auch das sekundäre Frauendefizit dürfte normalerweise durch die erhöhte Männersterblichkeit durch Arbeitsunfälle, Raufhändel, Kriegs- und Söldnerwesen ausgeglichen werden. Wenn durch einen starken Sexualdimorphismus am Skelettbau zudem Fehlbestimmungen weitgehend ausgeschlossen werden können, bleibt die Frage nach den fehlenden Frauen offen. Möglich bliebe eine Kindsaussetzung (die ja normalerweise die Mädchen stärker betroffen hat als die Knaben) oder ein Wegzug

der heiratsfähigen Mädchen in benachbarte Gebiete. Zumindest beim letzten Vorschlag wird das Problem aber nur verschoben und nicht gelöst. Da der Friedhof von Tafers/Windhalta vermutlich vollständig ausgegraben ist, scheint mir das Fehlen von 5 bis 10 Frauen nicht erklärbar.

Körperhöhe

Die mittlere Körperhöhe von 32 Männern lag bei 168.0 cm, die Streuung ging von 159 bis 177 cm. Mit diesem Mittel liegen die Männer deutlich im «keltischen» Bereich, der etwa 3 bis 5 cm unter den «germanischen» Mittelwerten liegt. Dies umso mehr, als wir hier auch die grossgewachsenen Keltoromanen vorfinden (Gräber 15, 17, 18, 29), die den Mittelwert ja deutlich nach oben korrigieren. Ausser in Tafers finden wir sie auch im Berner und Freiburger Seeland, sie sind aber beispielsweise auch im keltischen Basel (Gasfabrik, Fabrikstrasse) belegt.

Im Gegensatz zu den Männern kann die Körperhöhe bei den Frauen nicht als Trennfaktor zwischen Keltoromanen und Germanen eingesetzt werden. Möglicherweise liegt die Erklärung darin, dass wir es bei zahlreichen «alamannischen» Frauengruppen gar nicht mit germanischen Zuzügerinnen, sondern mit einheimischen keltoromanischen Frauen zu tun haben, die freiwillig oder unter Druck die Ehe mit den zugezogenen Germanen eingegangen sind. Beispiele für solche Mischgruppen (Alamannische Männer und keltoromanische Frauen) finden wir etwa in der Ostschweiz (Hallau-Bergkirche, Hasenfratz/Bänteli 1986), vermutlich werden aber noch mehrere solcher Verbindungen erkannt werden, sobald die anthropologischen Untersuchungen sich intensiver mit diesen Fragen befassen. Mit einer mittleren Körperhöhe von 160,5 cm liegen die 25 Taferser Frauen jedoch aut im mittleren Körperhöhenbereich, auch die Variationsbreite von 156 bis 167 cm entspricht derjenigen der Vergleichsbevölkerungen.

Metrische Auswertung

Die Skelette wurden nach den Vorschriften von Martin/Saller (1957ff) bzw. Martin/Knussmann (1988ff) vermessen; die Individualdaten sind auf Tab. 1 (Anhang) aufgeführt. Für die Einteilung der Kategorien benutzte ich die Angaben von Martin u.A. (1957ff, 1988ff), Hug (1940); für die Schädelkapazität folgte ich der Einteilung von Sarasin (1892/93).

Der Schädelbau der Männer (Tabelle 2a, im Anhang)

Der männliche Hirnschädel ist mittellang bei mittellanger Basis; alle Breitenmasse liegen ebenfalls im mittleren Bereich, ebenso die ganze Schädelhöhe

(M 17) und die Ohrhöhe (M 20). Diesen Massen entsprechend sind auch der Horizontalumfang und der Mediansagittalbogen mittellang, während der Transversalbogen knapp im hohen Bereich zu liegen kommt.

Den Indexwerten nach ist der Schädel knapp brachycran (kurz/breit), dem Längenhöhenverhältnis nach mittelhoch, im Verhältnis zur Breite aber niedrig. Die Kapazität liegt im unteren Drittel der Variationsbreite der grossen (aristencephalen) Schädel. Den Massen des Gesichtsschädels nach sind die Männer mittelbreit, ihre Gesichtshöhe sowie Obergesichtshöhe je knapp mittelhoch, die Augenhöhlen niedrig und mittelbreit, die Nase schmal und mittelhoch. Trotz der kurzen Schädelbasislänge ist der Gaumen lang, aber ebenfalls mittelbreit. Mittelbreit ist auch der Unterkiefer.

Im Verhältnis zur Höhe sind das Gesicht wie auch das Obergesicht somit knapp mittelbreit; ebenfalls ausgewogen (mittelbreit und mittelhoch) sind Augenhöhle und Nase.

Beim Vergleich von Hirn- und Gesichtsschädel sind alle Breitenmasse ausgeglichen; die Schädel erwecken einen harmonischen Eindruck.

Der Schädelbau der Frauen (Tabelle 2b)

Der weibliche Hirnschädel unterscheidet sich nur geringfügig vom männlichen. Die Grösste Länge wie auch die Schädelbasislänge sind mittellang, die Schädelbreite wie die Kleinste Stirnbreite mittelbreit, nur die Grösste Stirnbreite (M10) liegt knapp im breiten Bereich. Schädel- wie Ohrhöhe sind wie bei den Männern mittelhoch. Im mittleren Bereich liegen auch der Horizontalumfang und der Mediansagittalbogen, lediglich der transversale Umfang ergibt einen hohen Wert. Wie bei den Männern ist auch bei den Frauen die Schädelkapazität gross, sie liegt hier aber schon im mittleren Drittel der Variationsbreite. Der weibliche Schädel ist somit relativ leicht geräumiger als der männliche.

Den Indexwerten nach unterscheiden sich männliche und weibliche Hirnschädel kaum; beide liegen in den gleichen Kategorien: relativ breite (brachycrane) Schädel im Verhältnis zur Länge, bei ausgewogenem Längen-Höhenverhältnis. Nur im Vergleich zur Breite erscheint der Schädel als niedrig.

Dem Gesichtsschädel nach sind die Frauen mittelbreit bei mittelhohem Ganz- und Obergesicht. Knapp weit sind die mittelhohen Augenhöhlen, die Nase mittelbreit und mittelhoch; mittellang und mittelbreit auch der Gaumen. Ein mittelbreiter Unterkiefer schliesst das Gesicht nach unten ab.

Wenn wir die Verhältniswerte betrachten, liegen alle Relationen (Gesichts-, Obergesichts- und Orbitalindex) im mittleren Bereich, nur die Nase erscheint als relativ breit. – Beim Vergleich von Hirnund Gesichtsschädel sind Schädel- und Gesichtsbreite und Stirn- und Gesichtsbreite ausgeglichen, im Verhältnis zum Gesicht erscheint der Unterkiefer aber als schmal.

Der Schädelbau der Gesamtbevölkerung (Tabelle 2c)

Die (erwachsene) Gesamtbevölkerung setzt sich aus Männern, Frauen und Personen unbekannter Geschlechtszugehörigkeit zusammen. Aus diesem Grunde müssen die Gesamtbefunde nicht in allen Einzelheiten den beiden geschlechtsmässig getrennten Bevölkerungsgruppen entsprechen.

Der Hirnschädel der Taferser ist kurz bei knapp mittellanger Basis und mittleren Breitenmassen von Hirnschädel und Stirn. Beide Höhenmasse liegen ebenfalls im mittleren Bereich. Entsprechend sind der Schädelumfang und der Transversalbogen mittelgross, nur der Mediansagittalbogen bleibt infolge des kurzen Schädels im kleinen Bereich. Ihrer Kapazität nach müssen die Schädel dem mittelgrossen Bereich zugeordnet werden. Auch bei den Indices wirkt sich der kurze Schädel deutlich aus, indem die Breite stark betont und der Schädel somit brachycran wird. Kein Einfluss macht sich im ausgewogenen (orthocranen) Längenhöhenindex bemerkbar, hingegen erscheint der Schädel im Verhältnis zu seiner Breite als niedrig (tapeinocran).

Mittelbreit ist auch der Gesichtsschädel, bei knapp mittelhohem Ganzgesicht und (sehr) niedrigem Obergesicht. Trotzdem sind Augen- und Nasenhöhe mittelhoch und je mittelbreit, auch die Gaumenmasse sind ausgeglichen. Dies führt beim Ganzgesicht, beim Obergesicht, bei Augen und Nase zu Indexwerten, die je im mittleren Bereich liegen. Ebenfalls durchwegs ausgeglichen (also mittelgross) sind Hirn- und Gesichtsbreite, Stirn- und Gesichtsbreite und Unterkiefer und Gesichtsbreite. Zur besseren Übersicht, Tabelle 3 im Anhang.

Nichtmetrische Befunde

Ziel der Erhebung der nichtmetrischen Befunde ist das Erkennen von eventuellen Ähnlichkeiten bzw. Verwandtschaften. Dass sich dafür diese Merkmalsgruppe besser eignet als die metrischen Daten, ist vor allem durch die zahlreichen Untersuchungen von Czarnetzki, Rösing und unseres Institutes (Kaufmann, Schoch, Trancik) im Verlauf der letzten Jahre erhärtet worden.

Nichtmetrische Befunde: Morphognostische Befunde, Funktionelle Merkmale und Anatomische Varianten

Morphognostische Befunde und Funktionelle Merkmale

Unter «Morphognostischen Befunden» verstehen wir einerseits Merkmale des Schädels und des Skelettes, die zwei- oder dreidimensional sind und metrisch daher nur schwer erfasst werden können (z.B. die Form der Augenhöhle oder der Nase). Diese

Merkmale werden für die Erhebung natürlich auch genormt erfasst (z.B. «rechteckige» oder «runde» Augenhöhle). Durch diese Normierung erhält allerdings der Bearbeiter einen relativ grossen individuellen Spielraum, sodass es wichtig ist, dass alle Individuen eines Gräberfeldes von der gleichen Person beurteilt werden. Noch besser wäre es, wenn in jedem Institut nur eine (immer die gleiche) Person für die Erhebung dieser Befunde (dies gilt auch für die Anatomischen Varianten) zuständig wäre.

Die zweite Gruppe umfasst funktionelle Merkmale; ihre Vertreter sind teils unter den Morphognostischen Befunden, teils unter den Anatomischen Varianten aufgeführt. Wir gehen bei dieser Gruppe (stillschweigend) davon aus, dass ihre Anlage zwar genetisch fixiert ist, dass der Ausbildungsgrad aber von individuellen Merkmalen (z.B. harte körperliche Arbeit) abhängig ist. Als Beispiel soll hier der Ansatz des M. soleus an der Tibia (Anat. Varianten, Merkmal 221) dienen. Normalerweise ist die Ansatzstelle des Muskels höchstens als Rauhigkeit der Knochenoberfläche erkennbar. In einzelnen (normalerweise äusserst wenigen) Fällen ist der Muskelansatz aber in einer Grube (Fossa) eingetieft, noch seltener (mir ist dies bisher nur von Tafers/Windhalta bekannt) ist anstelle einer Grube eine eigentliche Erhebung (= Crista) ausgebildet. Die Funktion beider Sonderbildungen – Grube wie Erhebung – ist die gleiche: die Vergrösserung des Muskelansatzes. Ob allerdings eine Grube oder eine Erhebung ausgebildet wird, ist unserer Ansicht nach eine Frage der genetischen Veranlagung. Die Ausprägung dieses Muskelansatzes gibt uns somit drei mögliche Ähnlichkeitsgruppen innerhalb unserer Bevölkerung:

- Personen mit normaler Ausprägung («Rauhigkeit» oder keine Veränderung der Knochenoberfläche)
- Personen mit eingetieftem Muskelansatz («Fossa»)
- Personen mit erhabenem Muskelansatz («Crista»)

Analog verfahren wir mit allen Morphognostischen Befunden und Anatomischen Varianten und erhalten im Gesamtvergleich dann Teilbevölkerungsgruppen, die einander mehr oder weniger stark gleichen. Teilgruppen mit vielen gleichartigen Merkmalen fassen wir etwa als «Grossfamilien» oder «Sippen» auf. Den direkten Verwandtschaftsgrad («Vater-Sohn») können wir mit diesem Verfahren allerdings nicht feststellen.

Zur Zeit sind wir aus technischen Gründen noch nicht in der Lage, alle Merkmalsgruppen auszuwerten. Wir arbeiten vielmehr nur mit den abweichenden Befunden, im obigen Beispiel also mit den Individuen mit einer Crista oder einer Fossa und lassen die Personen mit normaler Ausprägung des Muskelansatzes völlig ausser Betracht.

Anatomische Varianten

Bei der dritten und wichtigsten Gruppe, den Anato-

mischen Varianten, gehen wir ebenfalls davon aus, dass diese Merkmale im Erbgut des Menschen fixiert sind und weitervererbt werden. Im Gegensatz zu den funktionellen Merkmalen sind sie aber nicht von der Tätigkeit des Trägers abhängig und auch deutlich weniger variabel als die Morphognostischen Befunde. Für die Ähnlichkeitsanalyse stellen sie somit die wichtigsten Merkmale dar.

Morphognostische Befunde

Morphognostische Befunde des Hirnschädels

Bei der Form des Hirnschädels in der Aufsicht (Merkmal 1) kamen alle 6 möglichen Formen vor. Häufig waren die Rhombenform, die Ellipse und das Ovoid, selten die Fünfeckform, die Sphärische und die Birsoide Form. Die prozentuale Verteilung ist wie folgt:

Schädelform	Total	%	
 ellipsoid pentagonoid rhomboid ovoid spheroid birsoid 	5 14 19 10 4 4	8.9 24.8 34.0 17.9 7.2 7.2	
Total	56	100.0	

Untersucht wurden 68 Individuen, davon waren 12 (17.7%) nicht beobachtbar.

Der *Jochbogen* war nur in den seltensten Fällen in der Aufsicht erkennbar; sondern meist kaum aushenkelnd, wie die nachfolgenden Zahlen belegen:

Jochbogenform	Total	%	
kryptozygphaenozyg	54 2	96.5 3.5	

Von 68 Individuen waren 56 (82.3) diesbezüglich beobachtbar; bei 12 konnte das Merkmal nicht beurteilt werden.

Von den 6 möglichen *Pterionvarietäten* waren nur 2 gehäuft anzutreffen:

Pterionvarietät	Total	%
breite SuturStirnbeinfortsatzOs epiptericum	10 1 5	21.7 2.2 10.8
unvollst. Fortsatzschmale Sutur	30	65.3
Total	46	100.0

22 Schädel (32.3%) konnten nicht beurteilt werden.

Der *Nahtverlauf* war bis auf eine Ausnahme immer ruhig:

Nahtverlauf	Anzahl	%	
ruhigunruhig	56 1	98.3 1.7	

57 beurteilbaren Schädeln (83.8%) standen 11 nicht beobachtbare gegenüber.

Der Nahtverschluss war abgesehen von zwei Ausnahmen immer normal:

Nahtverschluss	Anzahl	%	
nicht beobachtbarnormalaberrant	7 59 2	96.7 3.3	

Beobachtbar waren 61 Individuen oder 89.7%.

Die Form des Hinterhauptes in der Occipitalansicht erbrachte etwa die erwarteten Verteilungen:

Hinterhauptsform	Anzahl	%	
nicht beobachtbarHausformZeltformKeilformBombenform	11 35 0 4 18	 61.5 0.0 7.0 31.5	

Beobachtbar waren insgesamt 57 Schädel oder 83.8%.

Ein in der Seitenansicht abstehendes Hinterhaupt (Chignon) gehörte ebenfalls zu den ganz seltenen Ausnahmen, obwohl auch hier die Anzahl der beobachtbaren Schädel mit 61 oder 89.7% recht hoch war:

Chignon	Anteil	%	
nicht beobachtbarnicht vorhandenvorhanden	7 60 1	98.4 1.6	

Eine von Auge erkennbare *Linea nuchae suprema* war dagegen relativ häufig. Es gibt zahlreiche Lokalbevölkerungen, bei welchen dieses Merkmal überhaupt nie beobachtet werden kann:

Linea nuchae suprema	Anteil	%	
nicht beobachtbarnicht ausgebildeterkennbar	8 44 16	 73.3 26.7	

Die Linea nuchae suprema ist somit bei gut einem Viertel der Bestattungen erkennbar. Der beobachtbare Anteil liegt mit 60 Individuen (88.2%) recht hoch.

Wandstärken

Die Mächtigkeit der Hirnschädelwände gibt einen Aufschluss über die Bevölkerungszugehörigkeit zum ethnischen Substrat. Bei allen keltoromanischen Gruppen können wir vereinzelt auch Frauen mit extrem dickwandigen Schädeln feststellen; wobei ihre Wandstärke oft die der Männer noch übertrifft (Kaufmann 1978). Untersucht werden nur «gesunde» Schädel, doch sind pathologische Veränderun-

gen mit Ausnahme der Osteoporose oft äusserlich nicht erkennbar. Ausgesprochen dickwandig waren folgende Hirnschädel:

-	Grab 8	69jährige Frau
_	23	61jährige, eher weibliche Person
_	45	73jährige, eher weibliche Person
_	49	40jährige, eher männliche Person
_	50	62jährige Frau
_	57	69jähriger Mann

Auch in Tafers gehören somit die dickwandigen Schädel vorwiegend zu weiblichen Personen!

Morphognostische Befunde des Gesichtsschädels

Infolge des normalerweise gegenüber dem Hirnschädel deutlich schlechter erhaltenen Gesichtsschädels liegen meist nur wenige Daten vor. Das Fehlen von Mehrfachbestattungen und die sorgfältige Bergung und Restaurierung der Skelette von Tafers führen in diesem Falle aber zu einer Ausnahme, sodass die Mehrzahl der beobachteten Merkmale gut belegt ist.

Augenachse

Bei diesem Merkmal wird untersucht, ob die horizontale Augenachse parallel zur Porion-Porion-Achse liegt oder nicht. Generell sind parallele Lagen beider Achsen äusserst selten, dies trifft auch in Tafers zu:

Augenachse	Anteil	%	
nicht beobachtbarparallel	29 1	 2.5	
 nicht parallel 	38	97.5	

Beurteilbar waren 39 Individuen oder 57.3% aller Bestattungen.

Orbitaform

Die Form der knöchernen Augenbegrenzung wurde in 4 verschiedene geometrische Figuren aufgeteilt, deren Anteile je nach ethnischer Zugehörigkeit stark variieren können. Normalerweise ist in der Schweiz die viereckige Form deutlich vorherrschend; bei Tafers/Windhalta fällt der starke Anteil der runden und quadratischen Augenhöhlen auf:

Anteil	%	
31 9 11 17	24.3 29.8 45.9	
	9	31 9 24.3 11 29.8

Für die Beurteilung konnten 37 Individuen oder 54.4% beigezogen werden.

Nasenwurzel

Auch die Einsattelung der Nasenwurzel kann sehr stark variieren; aus der Antike bekannt ist vor allem das «Griechische Profil», das sich durch das vollständige Fehlen einer eingetieften Nasenwurzel auszeichnet. Diese Form ist in der Schweiz extrem selten, doch kommen flache Nasenwurzeln relativ oft vor, so auch in Tafers:

Nasenwurzel	Anteil	%	
 nicht beobachtbar flach mittelstark eingetieft tief eingesattelt sehr tief eingesattelt 	5	 38.2 47.1 14.7 0.0	

Zur Beurteilung standen 34 Schädel (50%) zur Verfügung.

Nasenprofil

Unser Gesicht wird in der Seitenansicht stark vom Profil des Nasendaches geprägt; doch ist gerade dieses Merkmal infolge der dünnwandigen Nasenknochen meist nicht sicher beobachtbar. Nach unseren Erhebungen sind gerade Nasenrücken am häufigsten, in Tafers trifft dies aber nicht zu:

Nasenprofil	Anteil	%	
nicht beobachtbargeradekonvexkonkav	46 5 15 3	22.7 63.7 13.6	«Adlernase» «Himmelfahrtsna-
			se»

Bei diesem Merkmal konnte nur knapp ein Drittel aller Bestattungen (22 von 68) beurteilt werden, also 32.3%.

Nasenstachel

Die Ausprägung des Nasenstachels wird nach Martin/Saller in 5 Stufen unterteilt, die von 1 (kein Stachel ausgebildet) bis 5 (sehr prägnanter Nasenstachel) schrittweise zunehmen. In der Schweiz dürften die Stufen 3 und 4 am häufigsten auftreten, 1, 2 und 5 sind selten. In Tafers ist Stufe 2 aber sehr gut belegt:

Nasenstachel	Anteil	%	
 nicht beobachtbar 	38		
fehlend	0	0.0	
schwach	11	36.7	
 mittelstark 	7	23.3	
– stark	12	40.0	
sehr stark	0	0.0	

Beobachtbar waren 44.1% aller Individuen (30 Personen).

Apertura piriformis

Der Übergang vom Nasenboden zum Oberkiefer wird nach Martin in 4 Formen aufgeteilt, von denen im historischen Material aber nur 2 (Formen 2 und 3) von Bedeutung sind:

Apertura piriformis	Anteil	%	Bemerkung				
nicht beobachtbarForm 1Form 2Form 3	15 4 22 25	 7.5 41.5 47.2	infantile Form Fossa praenasalis typisch anthropine Form				
- Form 4	2	3.8	Sulcus praenasalis				

53 Individuen (77.9%) waren klassifizierbar.

Fossa canina

Die Ausbildung der Eckzahngrube spielt eine grosse Rolle für die äussere Gesichtsform. In Tafers/Windhalta ist die Tiefe dieser Grube äusserst variabel:

Fossa canina	Anteil	%	
 nicht beobachtbar flache Grube mitteltiefe Grube tiefe Grube sehr tiefe Grube 	28 10 12 12 6	25.0 30.0 30.0 15.0	

Zur Beurteilung standen 40 Gesichtsschädel (58.8%) zur Verfügung.

Morphognostische Befunde von Kiefer und Gebiss

Unterschiedlich hoch ist der Anteil der beobachtbaren Merkmale an Kiefer und Gebiss; doch scheinen gerade diese Merkmale von relativ grosser Bedeutung zu sein, da einerseits ein grosses Merkmalspektrum vorhanden ist und anderseits diese Merkmale im Erbgang ausserordentlich konservativ sein können.

Form des Zahnbogens

Erwartungsgemäss hoch ist der Anteil der ovalen Zahnbogen, doch scheinen die runden eher zu schwach vertreten, während u-förmige generell zu den grossen Seltenheiten gehören:

Form des Zahnbogens	Anteil	%	
nicht beobachtbarrundovalu-förmig	35 5 27 1	 15.2 81.8 3.0	

Beobachtbar waren 33 Schädel (48.5%).

Alveoläre Prognathie des Oberkiefers

Die Prognathie des Oberkiefers weist in der Schweiz deutliche Schwankungen auf; doch ist normalerweise eine deutliche Mehrheit der Befunde nicht prognath. Dies trifft auch in Tafers zu:

Alveoläre Prognathie	Anteil	%	
nicht beobachtbarnicht prognathprognath	22 33 13	 71.7 28.2	

Beurteilt wurden 46 Oberkiefer (67.6%).

Kinnbildung

Auch die Stärke der Kinnbildung ist im historischen Schweizer Skelettmaterial äusserst variabel und offensichtlich vom Bevölkerungssubstrat abhängig. Für gesicherte Aussagen liegen aber noch zu wenig Daten vor.

Kinnbildung	Anteil	%	
nicht beobachtbarschwachmittelstarkstark	12 5 22 24	8.9 39.4 42.8	
sehr stark	5	8.9	

Zur Untersuchung gelangten 56 Unterkiefer, was 82.3% entspricht.

Durchbruchsfolge

Bis auf eine Ausnahme zeigten alle diesbezüglich beobachtbaren Gebisse die alte Durchbruchsfolge. Das hier angeführte Gebiss dürfte eines der frühesten der Schweiz sein, das die neue Durchbruchsfolge aufweist.

Unterkieferwinkel

Die Orientierung des Unterkieferwinkels ist zwar einerseits durch das Geschlecht bedingt (Männer zeigen viel häufiger eine Orientierung nach aussen [lateral] als Frauen), doch dürfte auch die genetische Anlage eine nicht unerhebliche Rolle spielen.

iteil	%	
7 16 36	26.2 59.0	
	7 16	7 –– 16 26.2

Zur Verfügung standen 61 Unterkiefer (89.7%).

Anatomische Varianten

Die Anatomischen Varianten wurden von Frau V. Trancik aufgenommen; wir möchten die Liste aber erst im Nachtrag publizieren, da wir uns über den genetischen Aussagewert einiger Merkmale (z.B. Mikrodontie, pathologische oder genetische Ursache einiger Wirbelbefunde) nocht nicht im klaren sind

Die Taferser Bevölkerung zeichnet sich generell durch ein ausserordentlich breites Spektrum an seltenen Varianten aus. Gerade dieser Formenreichtum verunmöglichte aber eine vernünftige Auswertung. Gesamthaft entsteht jedoch der Eindruck, dass alle Bestatteten zu einer oder zu einigen wenigen Grossfamilien gehören und miteinander mindestens weitläufig verwandt sind.

Beobachtungen zur ethnischen Stellung der Bestattungen von Tafers/Windhalta

Auch wenn das Gräberfeld allein von anthropologischen Gesichtspunkten aus nicht datiert werden kann, gibt es doch zahlreiche Hinweise für die ethnische Stellung der Bestatteten. Die geringe mittlere Körperhöhe der 32 Männer (knapp 168 cm) bei gleichzeitigem Auftreten grossgewachsener Typen spricht für eine keltische Bevölkerung (vgl. dazu die Befunde von Basel/Gasfabrik bzw. Basel/Fabrikstrasse oder Kerzers/Herrli [beide Kaufmann], aber auch Befunde aus dem Berner Seeland [Ulrich, mündl. Mitteilung]). Als weitere Hinweise für das autochthone, keltoromanische Substrat dürfen auch die relativ grosse Anzahl von Bestattungen mit (sexuell) disharmonischem Skelettbau gelten (Becken männlich, Schädel weiblich oder umgekehrt, vgl.

dazu im Katalog den Abschnitt «Bestimmungen») und die konstitutionelle (also nicht pathologisch bedingte) Dickwandigkeit mancher (besonders weiblicher) Schädel und die grosse Variabilität der Armstellungen in einem Gräberfeld, das vermutlich nur relativ kurze Zeit belegt worden ist. Ebenfalls erwähnenswert sind die meist extrem kräftigen Muskelmarken an Schädeln und Langknochen, die beispielsweise schon Schenk (in Naef, 1902/03)am autochthonen Skelettmaterial von Vevey aufgefallen sind, sowie die Breitschädligkeit (Brachycranie) der meisten Schädel, die im germanischen Siedlungsbereich in dieser Stärke erst im 2. nachchristlichen Jahrtausend beobachtet werden kann. Diesen zahlreichen keltoromanischen Merkmalen stehen keine Befunde gegenüber, die einen deutlichen Hinweis auf germanisches - alamannisches oder burgundisches – Erbgut ermöglichen könnten. Wir dürfen die Taferser somit mit guten Gründen als Nachfahren der alten Siedlerschicht bezeichnen, die möglicherweise schon seit der Jungsteinzeit den Voralpenraum und das Mittelland besiedelt haben und deren Spuren sich erst zu Beginn unseres Jahrtausends langsam verlieren.

Die Bevölkerung von Tafers/Windhalta im räumlich-zeitlichen Vergleich

Wie aus dem Mittelwertsvergleich der Männer (Tab. 4, im Anhang) hervorgeht, bestehen engere Verbindungen vor allem zu ebenfalls keltoromanischen Bevölkerungen der Westschweiz, während die Anzahl der Übereinstimmungen mit germanischen Serien der Westschweiz und Frankreichs nur unbedeutend ist. Auffallend ist jedenfalls die gute Übereinstimmung mit den Bestattungen von Domdidier/NDC und Kerzers/Herrli als räumlich und zeitlich benachbarten Fundorten, sowie mit der hochmittelalterlichen Bevölkerung von Genf, die vermutlich wie in Basel/Münsterplatz auf eine starke keltoromanische Restbevölkerung zurückzuführen ist. Die Übereinstimmungen mit den (alamannischen) Siedlern von Württemberg beruhen dagegen ausschliesslich auf den Indexwerten und sind daher von geringerem Aussagewert, da bei den absoluten Massen deutliche Unterschiede bestehen.

Generell scheint auch bei der Bevölkerung von Tafers die Tendenz erkennbar, dass bei gleicher Bevölkerungszugehörigkeit räumliche Nachbarschaft wichtiger ist als die zeitliche Distanz. Auffallend gegenüber anderen keltischen Bevölkerungen ist vor allem das Fehlen von grazilmediterranen Schädeltypen, die sonst fast immer eine kleine, aber nicht unbedeutende Minderheit darstellen.

Paläopathologische Befunde

Vorbemerkung

Die hier vorgelegte Zusammenstellung der paläopa-

thologischen Befunde hat nur vorläufigen Charakter und soll lediglich die Feststellung untermauern, dass es sich bei der Bevölkerung von Tafers/Windhalta um körperlich hart arbeitende Menschen – wahrscheinlich Bauern – gehandelt hat. Aus zeitlichen und methodischen Gründen wurden die Gebissuntersuchungen ganz zurückgestellt, da zahlreiche äusserst seltene Befunde erkannt werden konnten, deren genaue Abklärung komplizierte und aufwendige Untersuchungen erfordern. Hier werden somit nur die Befunde zusammengefasst, die W. Schoch bei der Katalogsaufnahme erkannte und die von mir überprüft worden sind ; während die genaue Analyse durch Prof. S. Scheidegger erst nächstes Jahr zusammen mit den Gebissbefunden und den Beobachtungen zur Bestattungslage – als Nachtrag erscheinen soll.

Krankheiten und Gebrechen als Folgen harter körperlicher Arbeit («Abnutzungserscheinungen»)

Der überwiegende Anteil aller krankhaften Erscheinungen sind dem «rheumatischen Formenkreis» zuzuschreiben. Dieser Formenkreis umfasst nach Pedroni/Zweifel (1986) eine Vielzahl verschiedener Krankheiten, die als Gemeinsamkeit eine schmerzhafte Erkrankung haben, sei es der Wirbelsäule, der Gelenke, der Muskeln oder anderer Teile des Bewegungsapparates und die zu Funktionsstörungen und Deformierungen des betroffenen Körperteiles führen können. Im allgemeinen werden drei Formen unterschieden:

- entzündlicher Rheumatismus: Es sind Entzündungen, die zur Schwellung der Gelenkkapsel und anschliessend zur Zerstörung des Knorpel- und (später) des Knochengewebes führen. Wichtigste Beispiele sind die Arthritis, das rheumatische Fieber, die chronische Polyarthritis und schliesslich der Morbus Bechterew (Spondylitis ankylosans). Mit Ausnahme des Morbus Bechterew können diese entzündlichen Rheumatismen am Skelett nicht eindeutig festgestellt werden. In der Schweiz erreicht diese Gruppe einen Anteil von etwa 10% der Bevölkerung; bei Landwirten ist der Anteil aber wesentlich geringer (ca. 2.5%).
- degenerativer Rheumatismus: Diese Rheumaform entsteht durch einen krankhaften Abnutzungs- und Abbauprozess der Gelenkknorpel, wobei die Gelenke mit der Zeit deformiert werden. Es können alle Gelenke des Körpers befallen werden; die Krankheit wird generell als Arthrose bezeichnet, hat aber je nach betroffener Gelenkregion spezielle Namen. Die Arthrose ist die häufigste rheumatische Erkrankung und umfasst etwa 40% aller Rheumakranken, besonders stark betroffen sind die Landwirte (58%).

Als Sonderform behandelt werden die degenerativen Erkrankungen der Wirbelsäule (Spondylose, Spondylarthrose und Osteochondrose). Ihr Anteil liegt bei 48% aller rezenten Rheumaerkrankun-

- gen in der Schweiz; bei den heutigen Bauern beträgt ihr Anteil 37%.
- Weichteilrheumatismus: Mechanische und statische Fehlbelastungen, Überlastungen, Fehlhaltungen, degenerative Veränderungen und Entzündungen können zu rheumatischen Erkrankungen von Muskeln, Sehnenscheiden, Bändern und Schleimbeuteln führen. Man spricht dann von Weichteilrheumatismus. Am Skelettmaterial kann diese dritte Rheumaart normalerweise nicht nachgewiesen werden; auch rezent spielt sie mit einem Anteil von 2.3% (Landwirte: 1.8%) nur eine untergeordnete Rolle.

Rheumatische Erkrankungen bei der Bevölkerung von Tafers/Windhalta

Wie zu erwarten war, konnten weder entzündliche Rheumatismusformen noch Weichteilrheumatismus nachgewiesen werden; hingegen ist der Anteil der Individuen mit degenerativem Rheumatismus extrem hoch. Dies mag einerseits mit der äusserst hohen Lebenserwartung zusammenhängen, sicher aber spielen auch Veranlagung und Arbeitsweise eine nicht unbedeutende Rolle.

Spondylosis deformans

19 Personen wiesen an einem oder meist an zahlreichen Wirbeln Anzeichen einer leichten Spondylose auf, bei je weiteren 4 waren mittelstarke und starke Anzeichen erkennbar. Der Anteil der Betroffenen erreichte somit 39.7%. Bezüglich der betroffenen Wirbelarten (Hals-, Brust- und Lendenwirbel) konnte keine Bevorzugung erkannt werden.

Spondylarthrosis

Ebenfalls 27 Personen (meist – aber nicht immer – die gleichen Individuen wie bei der Spondylose) litten an Spondylarthrosis. Der Krankheitsgrad war aber leicht stärker, so wiesen 13 Personen Anzeichen leichter, 2 mittelschwerer und 12 Personen schwerer Erkrankungen auf.

Osteochondrosis intervertebralis

Ebenfalls stark vertreten war die Degeneration der Zwischenwirbelscheiben und der Wirbelkörper, die bei insgesamt 19 Personen (27.9%) auftraten. Bei 2 weiteren Bestattungen (Gräber 27 und 46) konnten Schmorl'sche Knötchen gefunden werden.

Übrige Wirbelsäulenveränderungen

Bei 3 Individuen stellten wir Keilwirbel fest, wobei sie vermutlich bei Bestattung 31 als Folge einer Luxation des Hüftgelenkes zu deuten sind, während bei den Individuen 40 und 58 die Ursache noch unklar ist. Als Folge einer Fraktur im Achselbereich sehen wir auch das Verwachsen des 2. und 3. Halswirbels bei Bestattung 62 an. Die Veränderungen am Epistropheus (2. Halswirbel) der Bestattung 61 dürfte dagegen auf einen Verknöcherungsfehler (genetischer Defekt) zurückzuführen sein.

Arthrose

Arthrose konnte an allen Gelenken festgestellt wer-

den, in der Regel aber nur in schwacher Ausprägung. Am Schädel war das Kiefergelenk bei Bestattung 40 beidseitig arthrotisch verändert; vom Rumpfskelett waren besonders die Rippen (6 Individuen, davon 1 schwer) betroffen, weniger die Schlüsselbeine (4 Fälle, alle leicht), nie die Brustbeine. Vom Armskelett waren die meisten Fälle am Schultergelenk erkennbar (12 leichte, 1 schwerer Befall), ebenso häufig die Hand (Handwurzel, Mittelhand- und Fingergelenke, davon ebenfalls 1 schwerer Fall) und weniger häufig der Ellbogen (5 Fälle, davon 1 schwer). Erwartungsgemäss am häufigsten manifestierte sich die Coxarthrose (Arthrose des Hüftgelenkes): 16 leichte und 3 schwere Fälle, während die Gonarthrose (Arthrose des Kniegelenkes) nur dreimal nachweisbar war. Beim Fussskelett waren arthrotische Veränderungen vor allem am Grundgelenk der Zehen erkennbar, 2 mittelschwere Fälle standen hier 8 leichten gegenüber. Gesamthaft gesehen, dürfte somit kaum ein Erwachsener ohne Anzeichen dieser meist recht schmerzhaften Krankheiten gewesen sein!

Entzündliche Prozesse

Entzündliche Prozesse unbekannter Ursache waren an 8 Skeletten erkennbar. Bei Bestattung 7 war der rechte Mittelfussknochen betroffen, bei den Bestattungen 15, 40 und 49 waren an den Unterschenkelknochen Anzeichen einer Knochenhautentzündung (Periostitis) nachweisbar, bei Grab 40 zusätzlich noch Veränderungen an beiden Schlüsselbeinen und einigen Fingerknochen. Die Knochen der grossen Zehe waren bei Individuum 38 verändert, bei Bestattung 68 waren es beide Oberarmknochen, bei 39 die Unterarmknochen und bei 52 schliesslich die Fingerknochen.

Ernährungsstörungen

Auf Folgen einer Mangel- oder Fehlernährung dürfte das Auftreten der sogenannten «Cribra orbitalia» zurückzuführen sein, in der Regel nimmt man einen Eisenmangel an. Ebenfalls auf Nahrungseinflüsse kann die Ausbildung von Steinen (vermutlich Nierensteine) bei Grab 49 hinweisen, doch sind auch andere Ursachen nicht auszuschliessen.

Frakturen und Luxationen

6 Skelette wiesen eine oder mehrere Frakturen auf, die meist nicht richtig zusammengewachsen waren und daher zusätzliche pathologische Veränderungen zur Folge hatten. Festgestellt wurden 2 Rippenbrüche an Skelett 18, ein Bruch der linken Tibia bei Bestattung 19 und der linken Clavicula bei Individuum 34. Bei Grab 40 war der linke Oberarm gebrochen; bei Bestattung 54 der rechte Radius. Sehr wahrscheinlich hängt die Versteifung des rechten Ellbogens ebenfalls mit diesem Unfall zusammen, doch lässt der schlechte Erhaltungszustand der

Knochen keine eindeutige Aussage zu. Einen direkten Zusammenhang können wir jedoch bei Individuum 63 erkennen, bei dem 4 (rechte?) Rippen und das rechte Schlüsselbein gebrochen sind. – Ob die Exostosenbildung an einer Rippe von Bestattung 35 auf einen Riss oder einen Bruch zurückzuführen ist, kann zur Zeit ebenfalls nicht entschieden werden.

Deutliche Veränderungen für das Rumpfskelett hatte die Luxation des rechten Schultergelenkes zur Folge; ebenso führte die Luxation des rechten Hüftgelenkes von Bestattung 31 zu starken Umbauerscheinungen der unteren Wirbelsäulenhälfte.

Anzeichen von tödlichen Schädelverletzungen sind bei Grab 26 erkennbar, doch kann nicht entschieden werden, ob es sich um Folgen eines Unfalles oder um eine beabsichtigte Gewalteinwirkung handelt. Tödliche Unfälle sind im bäuerlichen Leben schon immer nachgewiesen; zu denken wäre etwa an einen Sturz vom Pferd, an einen Huftritt oder auch an einen Unfall beim Holzfällen. Da es sich beim Opfer aber um eine ältere Frau handelt, ist am ehesten an einen Sturz zu denken.

Übrige pathologische Befunde

Bei 3 Individuen waren die Mastoidfortsätze stark aufgedunsen, doch ist nicht sicher, ob es sich hier um einen pathologischen Befund handelt oder ob nicht eine anatomische Variante vorliegt (Gräber 8, 33 und 46). Auch die Röntgenbilder erbrachten hier keine Klarheit. Nicht geklärt sind auch die Natur der zystenartigen Lochbildung am linken Femur von Bestattung 9 (Parasitenbefall?) und der poröse Bau des Gaumens bei Bestattung 36.

Zusammenfassung

Anhand der hier vorliegenden pathologischen Befunde – vorwiegend Erkrankungen des degenerativen rheumatischen Formenkreises – darf auf eine körperlich hart arbeitende, aber allgemein gut ernährte und gesunde bäuerliche Bevölkerung geschlossen werden. Damit stimmen auch die relativ zahlreichen, meist nicht gut verheilten Knochenbrüche überein wie auch das Fehlen von Kriegsverletzungen. Nähere Aufschlüsse wird erst die genaue Analyse der definitven Bearbeitung erbringen.

Zusammenfassung der Ergebnisse

Im Verlauf der Jahre 1986 und 1987 wurde in der Gemeinde Tafers auf der Flur «Windhalta» ein mittelgrosses Gräberfeld ausgegraben, das aus 68 Gräbern bestand. Die Datierung erfolgte anhand archäologischer Kriterien, als wahrscheinlichste Bestattungszeit wird die römische Epoche angenommen. Infolge des relativ guten Erhaltungszustandes der Skelette konnten von den meisten Bestattungen die wichtigsten Befunde abgenommen werden. Die Totengemeinschaft setzt sich aus 50% Männern,

37% Frauen und 13% Personen unbekannter Geschlechtszugehörigkeit – meist Kindern – zusammen. Erstaunlich ist vor allem das extrem hohe Lebensalter der Taferser; rund 60% aller Toten hatten das 50. Lebensjahr erreicht, über 40% sogar die Schwelle zum 7. Lebensjahrzehnt überschritten. Uns ist keine mittelalterliche oder frühere Bevölkerung aus dem Gebiet der heutigen Schweiz bekannt, die ein ebenso hohes Sterbealter erreicht hätte.

Den metrischen Daten nach fügen sich die Bestattungen deutlich in den keltischen Rahmen ein; doch ist erstaunlicherweise die Bevölkerung rein brachycran; grazilmediterrane Vertreter fehlen. Bezüglich der Körperhöhe ist bei den Männern auch die grossgewachsene Keltengruppe vertreten, die bisher vor allem aus dem Berner und dem Freiburger Seeland bekannt ist, aber auch in Basel/Gasfabrik einzelne Vertreter hat.

Bei den nichtmetrischen Befunden fällt besonders der Variationsreichtum an seltenen Merkmalen auf, der besonders bei der keltoromanischen Bevölkerung der Schweiz belegt ist und als weiterer Hinweis auf das keltische Substrat dienen kann. Gut belegt sind auch die Gruppe mit dem «disharmonischen Skelettbau» und die Frauen mit dickwandigen Schädeln, die beide schon aus vorrömischer Zeit bekannt sind. Generell weisen die Merkmale aber auf eine kleine, geschlossene Gruppe von einer oder einigen Grossfamilien, die untereinander aber wieder Verwandtschaftsbeziehungen aufweisen. Alle Merkmale deuten somit auf eine kleine Keltengruppe, die ihre körperlichen Merkmale fast unverändert erhalten hat und abseits von grossen Verkehrswegen ihrer bäuerlichen Arbeit nachgegangen ist.

Anhand der Krankheitsspuren am Skelett werden vor allem Krankheiten des rheumatischen Formenkreises erkennbar, die ihrerseits Zeugnis ablegen für eine harte körperliche – wohl bäuerliche – Arbeitsweise. Für eine solche Arbeitsweise sprechen auch die relativ häufigen Frakturen und Luxationen; dagegen treten Ernährungsstörungen, entzündliche Prozesse und übrige pathologische Befunde deutlich in

den Hintergrund.

Drei Befundgruppen wurden aus methodischen Gründen zurückgestellt: Die Bestattungssitten, das Problem der Mikrodontie und die eigentliche paläopathologische Untersuchung. Sie werden als Nachtrag im nächsten Jahr vermutlich in dieser Zeitschrift vorgestellt werden.

Literaturverzeichnis

ACSADI G. und J. NEMESKERI (1970); History of Human Life Span and Mortality. Budapest.

BACH H. (1965); Zur Berechnung der Körperhöhe weiblicher Skelette. In: Anthrop. Anz. 29: 12–21.

BAY R. (1976); Die anthropologische Bearbeitung des menschlichen Skelettmaterials des fränkischen Friedhofes am Bernerring. In: M. Martin, das fränkische Gräberfeld von Basel -Bernerring. Basler Beiträge zur Ur- und Frühgeschichte, 1: 317-368. Basel.

- BERGMAN P. und G. AUE-HAUSER (1980); Methodische Beiträge zu kraniometrischen Studien einer Frühmittelalterlichen Population des oberen Donauraumes. In: Anthrop. Anz. 14: 249-274
- BERRY A.C. und R.J. BERRY (1967); Epigenetic Variation in the Human Cranium. In. J. Anat., 101: 361-379. London.
- BREUL D. (1974); Methoden der Geschlechts-, Körperlängenund Lebensalterbestimmung von Skelettfunden. Arbeitsmethoden der med. und naturwiss. Kriminalistik Bd. 12
- BRUNNER J.A. (1972); Die frühmittelalterliche Bevölkerung von Bonaduz. Schriftenreihe des Rätischen Museums Chur, Heft
- CESNYS G. (1984); Discrete Cranial Traits in the 13th 17th CC. Craniological Sample from Grodek nad Bugiem. In: Materialy i Prace Anthropologiczne 105: 137-146
- CESNYS G. und S. PAVILONIS (1982); On the Terminology of Nonmetric Cranial Traits (Discreta). In: Homo, 33, 125-
- CZARNETZKI A. (1971); Epigenetische Skelettmerkmale im Populationsvergleich. I. Rechts-Links-Unterschiede bilateral angelegter Merkmale. Z. Morph. Anthrop. 63, 238-254
- DEGENHARDT A., LANGENFELD W. und H.W. JÜRGENS (1986); Die Bedeutung aktueller Körperhöhenmessdaten für die Definition von Hochwuchs. In: Z. Morph. Anthrop. 76: 131 - 137
- DOKLADAL M. (1976); Human Growth and Physical Development. Papers Presented at the Symposia on Living Man of the XIII. Czechoslovak Anthropological Congress 1975
- FUCHS U. (1980); Anthropologische Untersuchungen der Bajuwarischen Skelettserie von Rudelsdorf (Oberösterreich). Unter besonderere Berücksichtigung chemischer Verfahren zur Alters- und Geschlechtsbestimmung. Diplomarbeit Mainz.
- GILES E. und O. ELLIOT (1963); Sex Determination by Discriminant Function Analysis of Crania. In: Am. J. Phys. Anthrop. 21, 53-68
- GILES E. (1964); Sex Determination by Discriminant Function Analysis of the Mandible. In: Am. J. Phys. Anthrop. 22: 129-135
- (1966); Statistical Techniques for Sex and Race Determination. Some Comments in Defence. In: Am. J. Phys. Anthrop. 25:85-86
- GILES E. (1968); Effects of Age and the Number of Variables. In: Proc. VIIIth Intern. Congr. Anthrop. Ethnol. Sci. Tokyo and Kyoto I: 59-61
- GOMBAY F. (1976); Die frühmittelalterliche Bevölkerung des schweizerischen Mittellandes. Diss. Zürich, 117 S
- GRUPE G. (1986); Multielementanalyse: Ein neuer Weg für die Paläodemographie. Materialen zur Bevölkerungswissenschaft, Sonderheft 7
- GUNN Michael C. und K. RICHARD MC WILLIAMS (1980); A Method for Estimating Sex of the Human Skeleton from the Volume of the Patella, Talus and Calcaneus. In: Homo, 31: 189-198.
- GÜVENER M., KOREL N. und F. REIMANN (1984); Kann die Entwicklung und Reifung der Beckenknochen zur Unterstützung und Erweiterung der Bestimmung des Knochenalters von Jugendlichen herangezogen werden? In: Röntgenpraxis 37: 264 - 268
- HASENFRATZ A. und K. BÄNTELI (1986); Die archäologischen Untersuchungen in der Bergkirche Hallau. Mit einem Beitrag von B. Kaufmann. In: Schaffhauser Beiträge zur Geschichte, Bd. 63: 8-125
- HAUSER G. und G.F. DE STEFANO (1989); Epigenetic Variants of the Human Skull. Stuttgart, 301 S.
- HERMANN H. und U. REMPE (1968); Über den Geschlechtsdimorphismus des Epistropheus beim Menschen. In: Z. Morph. Anthrop. 59: 300-321
- HUG E. (1940); Die Schädel der frühmittelalterlichen Gräber aus dem solothurnischen Aaregebiet in ihrer Stellung zur Reihengräberbevölkerung Mitteleuropas. In: Z. Morph. Anthrop. 38: 359-528.
- HUNGER H. und D. LEOPOLD (1978); Identifikation. Berlin, Heidelberg, New York: 520 S.
- KAUFMANN B. (1976); Die menschlichen Skelettreste aus dem

- frühmittelalterlichen Friedhof von Gelterkinden-Eifeld (BL). Manuskript Basel: 20 S.
- (1978); Die hallstattzeitlichen Leichenbrände von Tamins GR, Unterm Dorf (Grabungen 1964 und 1966). JbSGUF 61: 157–161.
- (1983); Stein am Rhein SH, «Auf Burg». Die römischen, frühmittelalterlichen und mittellaterlichen Bestattungen. Manuskript, 203 S.
- (Hrsg.; 1984); Diagnose am Skelett. Ausstellungsführer, Naturhistorisches Museum Basel: 75 S.
- (1988); Anthropologische Bearbeitung und Auswertung der menschlichen Skelettreste aus der Grabung Pratteln-Pfarreizentrum «Romana» 1976/77, in: Jber. Augst/Kaiseraugst 7, 1988: 177–242.
- KAUFMANN B., MEYER L. und S. SCHEIDEGGER (1981); Ferenbalm BE Die menschlichen Skelettreste aus dem Areal der ehemaligen Kapelle St. Radegundis. In: JbSGUF 64.
- KAUFMANN B. und M. SCHOCH (1983); Ried/Mühlehölzli Ein Gräberfeld mit früh- mittelalterlichen und hallstattzeitlichen Bestattungen. Anthropologie. Freiburg, Universitätsverlag (Archéologie fribourgeoise, 1b).
- KAUFMANN B., SCHOCH W., MORGENTHALER P.W. und S. SCHEIDEGGER (1988); Anthropologische Bearbeitung der menschlichen Skelettreste aus dem spätrömischen Gräberfeld von Kerzers/Herrli, 1965. In: Archéologie fribourgeoise/Freiburger Archäologie, Fundbericht 1985: 177–193.
- KISZELY I. (1974); On the Possibilities and Methods of the Chemical Determination of Sex from Bones. In: Ossa 1: 51–62
- LANGENSCHEIDT F. (1983); Diskriminanzanalytische Geschlechtsbestimmung anhand von Zahnmassen unter Verwendung von Verfahren zur angenähert unverzerrten Schätzung der Trennstärke. In: Homo 34: 22–26.
- (1985); Methodenkritische Untersuchung zur Paläodemographie am Beispiel zweier fränkischer Gräberfelder. Materialien zur Bevölkerungswissenschaft, Sonderheft 2.
- LENGYEL I. (1969); Bestimmung der Geschlechtszugehörigkeit im Laboratorium. In: Wiss. Z. Humboldt-Univ. Berlin, Math.-Nat. R. 18: 977–979.
- LEROI-GOURHAN A. (1949); Etudes des squelettes recueillis dans la nécropole Saint-Laurent à Lyon. In: Vuilleumier P., A. Audin und A. Leroi-Gourhan, L'Eglise de la nécropole Saint-Laurent dans le quartier lyonnais de Choulans. Etude archéologique et étude anthropologique. Inst. des Etudes Rhodaniennes de l'Uni. de Lyon: 4.
- MARTIN R. und H. SALLER (1957 ff); Lehrbuch der Anthropologie, 4 Bände, München.
- MARTIN R. und R.KNUSSMANN (1988); Anthropologie. Handbuch der vergleichenden Biologie des Menschen. Bd. I, 1. Stuttgart, New York: 743 S.
- MASSET C. (1982); Estimation de l'âge au décès par les sutures crâniennes. Dissertation Paris.
- (Hrsg., 1985); Méthode d'étude des sépultures. Compterendu de la table ronde tenue à Saint-Germain en Laye des 11 et 12 mai 1985. R.C.P.: 742.
- MERY A. (1968); Le cimetière mérovingien de Blussangeaux (Doubs). Etude anthropologique. In: Ann. Lit. Univ. Besançon, 94 (Archéol. 21).
- MOOSBRUGGER-LEU R.(1971); Die Schweiz zur Merowingerzeit. In: Abderhalden E., Handb. der biologischen Arbeitsmethoden 7: 523–682.
- NAEF A. (1902/03); Le cimetière gallo-helvète de Vevey. In: ASA NF IV: 18–44 und 260–270.
- NEMESKERI J., HARSANYI L. und G. ACSADI (1960); Methoden zur Diagnose des Lebensalters von Skelettfunden. In: Anthrop. Anz. 24: 70–95.
- PEDRONI G. und P. ZWEIFEL (1986); Die sozialen Kosten von Rheuma in der Schweiz. Studien zur Gesundheitsökonomie 9:
- PERIZONIUS W. R. K. (1983); Reconstructing the Living from the

- Dead. Some Human Osteological Observations. Dissertation Utrecht
- REIMANN F. und E. CELIK (1982); Zur röntgenologischen Untersuchung des Schädels und der Schädelknochen von anatomischen Skeletten und archäologischen Funden. In: Röntgenpraxis 35: 146–148.
- REINHARD R. und F.W. RÖSING (1985); Ein Literaturüberblick über Definitionen diskreter Merkmale anatomischer Varianten am Schädel des Menschen. Ulm, 142 S.
- RÖSING F. W. und I. SCHWIDETZKY (1977); Vergleichend-statistische Untersuchungen zur Anthropologie des frühen Mittelalters. In: Homo 28: 65–115.
- RÖSING F. W. (1982); Discreta des menschlichen Skelettes ein kritischer Überblick. In: Homo 33: 100–124.
- (1982); Merovingian Germanic Crania a Comparison of the Wanke and Penrose Methods. In: Homo 33, 214–219.
- (1984); Discreta, Beispiele in Bildern. Ulm, o.S.
- SARASIN P. F. (1892/93); Ergebnisse naturwissenschaftlicher Forschungen auf Ceylon in den Jahren 1884–86, Bd. 3. Wiesbaden.
- SAUTER M.-R. und F. PRIVAT (1955); Sur un nouveau procédé metrique de détermination sexuelle du bassin ossueux. In: Bull. Schw. Ges. Anthrop. und Ethn. 31, 60–84.
- SAUTER M.-R. (1990); Description anthropologique des restes squelettiques humains du pont des Sauges à Cornaux NE. In: Schwab H., Archéologie de la 2e correction des eaux du Jura. Les Celtes sur la Broye et la Thielle. Archéologie Fribourgeoise, vol. 5.
- SCHOCH W. (1990); Die Skelette aus der Kirche Notre-Damede-Compassion in Domdidier FR. Manuskript Aesch, 61 S.
- SCHUTKOWSKI H. (1986); Geschlechtsdifferente Merkmale an kindlichen Skeletten Kenntnisstand und diagnostische Bedeutung. In: Z. Morph. Anthrop. 76, 149–168.
- SCHWAB H. (1978); Gräberfelder der Völkerwanderungszeit. Ausstellungskatalog, Naturhistorisches Museum Basel. 17 S
- SCHWERZ F. (1912); Die Alamannen der Schweiz. Z. Morph. Anthrop. 14.
- SCHWIDETZKY I. und W. RÖSING (1975); Vergleichend-statistische Untersuchungen zur Anthropologie der Römerzeit. In: Homo 26, 192–218.
- SCHWIDETZKY I. u.a. (1979); Empfehlungen für die Alters- und Geschlechtsdiagnose am Skelett. In: Homo 30, Anhang.
- SZILVASSY J. (1978); Eine Methode zur Altersbestimmung mit Hilfe der sternalen Gelenkflächen der Schlüsselbeine. In: Mitt. Anthrop. Ges. Wien 108, 165–168.
- UYTTERSCHAUT H.T. (1985); Determination of Skeletal Age by Histological Methods. In: Zs. Moprh. Anthrop. 75, 331–340.
- VLCEK E. ed. (1971); Symposium über die Alters- und Geschlechtsbestimmung am Skelettmaterial. Narodni Muzeum v Praze. 175 S.
- WOLFF-HEIDEGGER G. (1954); Atlas der systematischen Anatomie des Menschen, Band 1, Basel.
- WURM H. (1972); Über die Schwankungen der durchschnittlichen Körperhöhe im Verlauf der deutschen Geschichte und die Einflüsse des Eiweissanteiles der Kost. In: Homo 33, 21–
- (1983); Sozialschichtenspezifische K\u00f6rperh\u00f6henentwicklung von der V\u00f6lkerwanderung bis zum 17. Jh. im Bereich des deutschen Reiches unter besonderer Ber\u00fccksichtigung der Adelsschicht. In: Homo 34, 177–193.
- (1985); Über die durchschnittlichen K\u00f6rperh\u00f6hen der sozialen Mittel- und Unterschichten im mitteleurop\u00e4ischen germanischen Siedlungsraum vom Fr\u00fchmittelalter bis zur Neuzeit. In: Anthrop. Anz.43, 11–30.
- (1986); Zur Geschichte der K\u00f6rperh\u00f6hensch\u00e4tzung nach Skelettfunden. Vorschl\u00e4ge zur K\u00f6rperh\u00f6hensch\u00e4tzung nach Skelettfunden bis zur Mitte des 20. Jahrhunderts. In: Anthrop. Anz. 44, 149–167.

ANHANG Tabellen

Allgemeine Angaben

```
Grab
         = Grab- und Individuen-
                                             M61
                                                        = OK-Breite
                                                                                     TOA
                                                                                                 = Foramentransversal-Durchm.
           nummerierung
                                             M62
                                                        = Gaumen länge
                                                                                     T10B
                                                                                                 = Schaftumfang
PDE
         = Periodeneinteilung nach
                                             M63
                                                        = Gaumenbreite
                                                                                     TQM
                                                                                                 = Querschnittsindex Mitte
           Stufen der SGUF
                                             M65
                                                        = UK-Breite
                                                                                     TQF
                                                                                                 = Querschnittsindex Foramen
AER
         = Alter in Jahren
                                             M66
                                                        = UK-Winkelbreite
STF
         = Altersstufen
                                             M69
                                                        = Kinnhöhe
           1 = infans I
                          (bis 6 Jahre)
                                             M70
                                                        = Asthöhe
           2 = infans II (bis 14 Jahre)
                                             M71
                                                        = Astbreite
           3 = juvenil
                          (bis 20 Jahre)
                                                        = Ganzprofilwinkel
                                             M72
           4 = adult
                          (bis 40 Jahre)
                                             M72
                                                        = UK-Winkel
           5 = matur
                          (bis 60 Jahre)
           6 = senil
                         (über 60 Jahre)
                                             Indices:
           7 = erwachsen
                                             LBI
                                                        = Längen-Breiten-Index
           8 = nicht erwachsen
                                             LHI
                                                        = Längen-Höhen-Index
SEX
         = Geschlecht
                                             BHI
                                                        = Breiten-Höhen-Index
            1 = männlich
                                             GI
                                                        = Gesichts-Index
            2 = eher männlich
3 = weiblich
                                             OHI
                                                        = Obergesichts-Index
                                             01
                                                        = Orbital-Index
            4 = eher weiblich
                                                        = Nasal-Index
            5 = Geschlecht unbekannt
                                             CFI
                                                        = Craniofacial-Index
KH
         = Körperhöhe in cm
                                             JF I
                                                        = Jugofrontal-Index
                                             JMI
                                                        = Jugomandibular-Index
Masse (nach MARTIN/KNUSSMANN)
                                             KAP
                                                        = Kapazität
Schäde1:
                                             Humerus:
M1
          = Schädellänge
                                                        = Grösste Länge
                                             H1
M5
            Basislänge
                                                        = Grösster Durchmesser
                                             H5
M7
          = Foramenlänge
                                             H6
                                                        = Kleinster Durchmesser
M8
            Schäde lbreite
                                             H7
                                                        = Kleinster Umfang
            Stirnbreite min.
M9
                                                        = Ouerschnitts-Index
                                             HQI
M10
            Stirnbreite max.
                                                        = Längendicken-Index
                                             HLI
M11
          = Biauricularbreite
                                             Radius:
M12
          = Hinterhauptsbreite
                                                        = Grösste Länge
                                             R1
          = Mastoidbreite
M13A
                                             RIB
                                                        = Parallele Länge
M17
            Bas ionhöhe
                                             R3
                                                        = Kleinster Umfang
M19A
          = Mastoidhöhe
                                             R4
                                                        = Transdurchmesser
M20
            Ohrhöhe
                                             R5
                                                        = Sagitaldurchmesser
M23
          = Horizontalumfang
                                             ROI
                                                        = Querschnitts-Index
M24
            Transversa lbogen
                                             RDI
                                                        = Längendicken-Index
M25
          = Mediansagittaler Bogen
                                             Ulna:
M26
          = Frontalbogen
                                             U1
                                                         = Grösste Länge
          = Parietalbogen
M27
                                             U3
                                                         = Umfang
M28
          = Occipitalbogen
                                             U11
                                                         = Durchmesser dorsovolar
M29
          = Frontalsehne
                                             U12
                                                         = Durchmesser transversal
M30
          = Parietalsehne
                                                         = Querschnitts-Index
M31
          = Occipitalsehne
                                             UDI
                                                         = Längendicken-Index
M40
            Oberges ichts länge
                                             Femur:
M42
          = Untergesichtslänge
                                                         = Grösste Länge
                                             F1
M43
            Oberges ichtsbreite
                                                         = Umfang Schaftmitte
                                             F8
M44
          = Biorbitalbreite
                                             F9
                                                         = Transdurchmesser oben
M45
            Jochbreite
                                             F10
                                                         = Sagitdurchmesser oben
M46
          = Mittelgesichtsbreite
                                             F20
                                                         = Kopfumfang
M47
          = Ganzgesichtshöhe
                                                         = Platymerie-Index
                                             FPI
M48
          = Oberhöhe
                                             Tibia:
M51
            Orbitalbreite
                                                         = Grösste Länge
                                             T1
M52
            Orbitalhöhe
                                             T<sub>1</sub>B
                                                         = Parallele Länge
          = Nasenbreite
M54
                                                         = Grösster Durchmesser
                                             T8
M55
          = Nasenhöhe
                                             T8A
                                                         = Foramendurchmesser
          = OK-Länge
                                             T9
                                                         = Transversaldurchmesser
```

Abkürzungen:

— Inv. Inventarnummer der Anthropologischen Sammlung des Kantons Freiburg

M, F Geschlecht sicher männlich bzw. weiblich

M? F? Geschlecht eher männlich bzw. weiblich erwichsen, Lebensalter nicht näher bestimmbar ind. (Alter bzw. Geschlecht) nicht bestimmbar

Tabelle 1Übersicht über das menschliche Skelettmaterial von Tafers/Windhalta

Inv.	Grab	Alter	Sex	KH	Bemerkungen
588	1	6	ind.	ind.	Skelett unvollständig
589	2 3	20	ind.	166	Gestört durch Grab 1
590 501		18	M?	167	
591	4 5	63	M	171	
592		52	M	164	
593	6 7	66	F?	166	
594		52	M?	164	
595	8 9	69	F?	160	
596		58	F	160	
597	10	62	M	168	
598 599	11 12	18	F?	167	
	13	6	ind.	ind.	Kleinkind
600 601	14	4	ind.	ind.	Kleinkind
602	15	14	M?	ind.	
603	16	61 66	M?	174	
604	17	63	F?	156 176	
605	4.0	65	M	176	Tuestalish Tiedershar Calafada 7
606	18 19	64	M F?	177	zusätzlich: Tierknochen, Schaf oder Ziege
607	20	58	Г? М?	158	
608	21	68	M	165 162	
609	22	15	M?		
610	23	61	F?	ind. 162	
611	23	69	F,	160	
612	25	9	ind.	ind.	
613	26	68	F?	158	zusätzlich: Hand und Fuss eines Mannes
614	27	63	M M	167	zusatzlich. Hand und Fuss eines Mannes
615	28	46	F	161	
616	29	46	M	176	
617	30	48	M?	170	
618	31	71	F	161	
619	32	57	F	156	
620	33	18	F	160	
621	34	19	F?	157	zusätzlich: 2 Tierknochen, Rind?
622	35	15	F?	ind.	Zusatzlicit. Z Herkilochen, filliu!
623	36	58	F?	164	zusätzlich: gebranntes Tonfragment
624	37	2	ind.	ind.	zusatzlieri. gebrarintes formagment
625	38	63	M	169	
626	39	45	F	160	zusätzlich: Hüftbein, erw. Mann
627	40	60	F	160	zusätzlich: Schlüsselbein, erw. Mann
628	41	20	M?	160	Zasatziion. Soniassonsoni, orvi. Wariin
629	42	3	ind.	ind.	
630	43	66	M	167	
631	44	68	F?	163	
632	45	73	F?	160	
633	46	65	ind.	165	zusätzlich: 1 Tierknochen, Rind?
634	47	54	F	161	zusätzlich: 1 korrodierter Eisenrest
635	48	64	M	169	
636	49	40	M?	160	
637	50	62	F	163	
638	51	65	M	172	
639	52	57	M	169	
640	53	3	ind.	ind.	
641	54	70	M	169	zusätzlich: div. Reste eines 14jährigen Kindes
642	55	erw.	M?	168	,
643	56	erw.	M?	169	
644	57	69	M	171	
645	58	18	M?	161	
646	59	58	F?	160	
647	60	65	M	167	
648	61	27	M?	166	
649	62	45	M?	169	
650	63	66	М	172	
651	64	41	F	161 .	
652	65	59	M?	168	
653	66	68	F	159	
654	67	67	M	163	
655	68	53	M	164	

Grab	PDE	AER	SFE	SEX	KKH	MO1	M05	M07	M08	M09	M10	M11	M12	МЗА	M17	М9А	M20	M23	M24	M25
1 2 3 4 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 13 2 33 34 35 36 37 38 39 40 41 42 43 44 45 6 46 47 48 49	7.0 7.0	6.0 22.0 18.0 63.0 65.0 66.0 69.0 18.0 61.0 66.0 63.0 64.0 65.0 68.0 68.0 68.0 68.0 68.0 68.0 68.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69	14365656563112666666563662665555653333516564166665565	5521142431455222411421243541312333344451332514453312	0 166 167 171 164 166 167 171 164 166 167 171 168 167 0 0 0 175 165 165 165 165 165 166 165 166 166 16	0 178 0 185 157 169 0 180 168 183 0 0 0 180 178 186 181 171 175 173 180 0 181 174 192 168 173 164 0 178 185 175 186 170 182 181 184 175 186 170	0 94 0 0 0 94 0 0 0 94 101 0 0 0 99 94 102 102 98 95 113 99 101 107 93 93 0 99 0 0 0 0 98 6 0 0 95 99 0 0 0 0 98 96 0 0 95 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 3 4 0 0 0 0 6 3 4 0 0 0 0 0 6 3 4 7 3 6 2 2 3 6 3 3 0 0 0 0 2 2 6 6 6 4 6 3 3 5 3 4 2 0 5 0 4 3 6 0 3 5 3 4 0 0 0 3 6 6 3 6 6 6 6 6 6 6 6 6 6 6 6 6	0 155 0 149 145 145 146 136 0 0 0 0 158 146 151 146 153 141 0 151 0 151 153 143 146 153 141 15	0 100 0 0 100 0 93 91 87 94 0 0 102 99 96 104 0 97 97 0 0 0 92 98 97 100 93 91 100 93 91 100 93 94 95 96 96 97 97 97 97 97 97 97 97 97 97 97 97 97	0 127 0 128 0 117 0 118 122 114 0 0 0 133 129 120 126 120 0 0 0 114 116 120 126 117 0 116 121 121 121 121 121 116	0 132 0 118 127 125 125 117 121 120 0 0 123 129 124 133 125 137 118 0 0 127 0 116 118 129 129 129 129 129 129 129 129 129 129	0 116 0 108 109 110 107 108 110 106 0 0 0 108 120 112 114 108 117 0 103 1112 109 113 1111 114 107 116 106 0 117 0 116 107 117 117 117 117 117 117 117 117 117	000000000000000000000000000000000000000	0 125 0 0 168 121 0 0 117 134 0 0 139 121 122 128 129 116 129 130 0 0 131 135 124 120 127 126 127 127 128 129 129 120 127 127 128 129 129 120 120 120 120 120 120 120 120 120 120	000000000000000000000000000000000000000	0 113 0 0 0 0 105 0 0 0 0 117 119 110 117 111 115 111 106 0 107 0 0 0 0 0 116 0 113 0 0 113 0 0 113 0 0 113 0 0 113 0 0 113 0 0 113 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 3 2 9 0 3 4 4 3 5 4 3 1 3 3 0 3 2 4 3 3 6 3 1 4 3 3 6 3 1 5 3 3 4 3 1 5 3 3 4 3 1 5 3 2 7 3 2 1 1 2 3 2 8 3 3 4 3 2 9 3 2 3 3 2 2 2 3 3 2 4 3 2 9 3 2 3 3 2 2 3 3 2 2 3 3 2 1 2 2 2 3 2 1 2 3 2 1 2 2 2 2	0 372 0 0 346 368 343 368 365 365 365 365 365 372 371 364 368 372 371 364 368 372 371 364 368 370 372 371 364 367 376 377 376 377 376 377 376 377 376 377 376 377 377
44 1 45 1 46 1 47 1 48 1	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	68.0 73.0 65.0 54.0 64.0	6 6 5 6	4 4 5 3 1	163 160 165 161 169	181 184 175 180 186	96 0 95 99	36 0 33 35 34	142 135 133 147 146	98 97 0 104 94	124 0 119 127 121	123 0 114 120 126	114 0 96 109 114	0 0 0 0	135 0 0 128 126	0 0 0 0	116 0 112 0 113	523 0 0 529 530 496 514 528	323 322 312 334 321 312 309	377 0 0 362 367 334
57 58 59 60 61 62 63 64 65 66 67 68	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	69.0 18.0 58.0 65.0 27.0 45.0 66.0 41.0 59.0 67.0 53.0	635645655665	1 2 4 1 2 2 1 3 2 3 1 1	171 161 160 167 166 169 172 161 168 159 163	193 176 169 187 0 184 170 184 176 0	91 94 102 0 95 0 100 98 0	0 33 35 39 0 0 37 0 37 32 35	156 145 141 154 0 146 160 147 141	114 0 93 96 0 108 0 99 98 0	137 121 120 129 0 0 127 131 126 121 0	140 126 118 128 0 0 137 125 118 119 127	124 110 106 107 119 0 116 114 113 109 106 110	000000000000000000000000000000000000000	0 126 134 143 0 0 135 0	000000000000000000000000000000000000000	0 0 115 128 0 0 124 0 117 110	573 518 489 540 0 545 0 529 517	353 318 322 355 0 351 328 323 312 343	397 374 353 388 0 0 379 0 367

	1.00	ndualda		1100				1470			510						
Grab	M63	M65	M66	M69	M70	M71	M72	M79	LBI	LHI	BHI	GGI	OGI	001	NNI	CFI	JFI
1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 40 1 0 1 0 1 1 33 1 35 1 36 1 0 1 35 1 0 1 35 1 0 1 35 1 0 1 0 1 35 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0 123 0 0 124 127 0 0 123 116 125 0 0 111 115 119 130 116 128 112 120 0 118 105 119 120 111 111 120 111 112 120 111 112 120 111 112 120 111 112 120 111 112 113 114 115 117 119 120 111 110 111 110 110 110 110 110 110	0 99 114 85 98 94 108 97 105 112 106 97 107 107 108 109 109 109 109 109 109 109 109	0 31 0 0 33 30 0 0 0 36 28 29 30 33 29 31 0 0 0 35 32 7 31 33 0 34 29 31 38 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 29 0 0 30 28 0 32 29 26 29 0 0 0 31 26 28 28 29 31 0 0 0 30 28 31 0 0 0 0 28 31 0 0 0 0 0 0 32 35 31 0 28 32 32 0 6 0 0 0 0 32 35 31 0 28 32 32 0 6 0 0 0 0 32 35 31 0 28 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 128 0 0 104 127 0 125 124 123 127 131 120 125 126 123 127 131 120 125 126 123 131 0 131 127 118 0 0 123 127 128 127 128 127 128 129 129 129 129 129 129 129 129 129 129	0.0 87.0 87.0 80.5 82.3 85.7 92.8 85.7 91.8 83.8 91.8 83.9 84.7 91.8 83.8 91.8 83.9 84.7 91.8 85.8 87.8 87.8 87.8 87.8 87.8 87.8 87	0.0 70.2 0.0 70.2 0.0 107.0 71.5 0.0 0.0 69.6 73.2 0.0 0.0 77.2 62.0 68.5 68.8 71.2 67.8 73.1 0.0 0.0 72.3 70.1 75.0 0.0 71.6 73.1 0.0 69.7 74.5 0.0 0.0 71.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 80.6 0.0 0.0 115.8 83.4 0.0 0.0 99.2 87.6 85.4 77.2 87.6 85.4 79.4 84.3 92.1 0.0 0.0 97.0 100.7 94.4 86.3 0.0 90.0 97.0 97.0 97.0 97.0 97.0 97.0	0.0 84.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 50.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 80.0 0.0 0.0 71.4 0.0 84.6 0.0 85.3 75.5 0.0 0.0 75.0 0.0 0.0 75.0 0.0 0.0 75.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 89.0 91.0 91.0 91.0 95.5 0.0 0.0 95.5 0.0 0.0 95.5 0.0 0.0 95.5 0.0 0.0 95.5 0.0 0.0 95.5 0.0 0.0 95.5 0.0 0.0 95.5 0.0 0.0 95.5 0.0 0.0 0.0 95.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 72.4 0.0 0.0 0.0 75.7 0.0 0.0 0.0 66.9 0.0 0.0 72.2 0.0 73.4 77.0 0.0 71.8 73.5 77.1 0.0 0.0 74.1 70.0 73.2 0.0 74.0 75.0 76.0 77.0 77.0 77.0 77.0 77.0 77.0 77

		KAP	HO1	LOE	LINE	шот	LIDI	1.111	DO1	D10	DOG	DC 4	DOT.	DD:			
Grab	JMI		H01	H05	H06	H07	HRI	HII	RO1	R1B	RO3	RO4	R05	RRI	RII	U01	U03
1 2	1 0.0 1 71.7	0.0 1481.4	0 317	0 21	0 16	0 60	0.0 76.1	0.0 18.9	0	0	0	0	0	0.0	0.0	0	0
3	1 0.0	0.0	310	0	0	0	0.0	0.0	O	238	0	0	0	0.0	0.0	O	0
4 5	1 89.7 1 0.0	0.0 0.0	326 307	21 25	17 18	61 66	80.9 72.0	18.7 21.4	251 228	0 226	43 45	18 18	14 12	77.7 66.6	17.1 19.7	270 247	38 39
6	1 74.2	1298.0	315	24	18	62	75.0	19.6	239	0	41	17	11	64.7		254	41
7	1 0.0	0.0	0	0	0	61	0.0	0.0	240	238	38	15	13	86.6		260	35
8 9	1 0.0	0.0 1280.7	0	0	0	58 59	0.0	0.0 0.0	222 220	220 217	37 38	16 16	11 11	68.7 68.7		244 238	34 35
10	1 83.0	0.0	0	0	0	71	0.0	0.0	242	O	41	16	13	81.2	16.9	O	39
11 12	1 0.0	0.0 0.0	331 0	20 0	15 0	54 0	75.0 0.0	16.3 0.0	0	0	0	0	0	0.0	0.0 0.0	0	0
13	1 0.0	0.0	Ο	0	0	0	0.0	0.0	O	O	0	ŏ	0	0.0	0.0	Ö	ő
14 15	1 0.0 1 66.9	0.0 1594.1	0 340	0 22	0 18	0 63	0.0 81.8	0.0 18.5	0 266	0 265	0 41	0 14	0 13	0.0 92.8	0.0	206	0 34
16	1 70.2	1566.1	283	21	17	50	80.9	17.6	216	215	38	15	10		17.5	286 233	36
17	1 76.6	1433.1	359	24	16	66	66.6		261	260	47	17	13	76.4		286	44
18 19	1 77.7 1 70.7	1511.0 1353.2	356 291	24 19	19 15	67 53	79.1 78.9		276 220	275 219	44 35	19 16	13 10	68.4 62.5		291 244	37 30
20	1 75.1	1467.1	306	22	19	64	86.3	20.9	231	229	44	15	12	80.0	19.0	252	36
21 22	1 70.6 1 0.0	1329.6 0.0	298 260	23 0	18 0	62 0	78.2 0.0	20.8	228 195	227 0	42 0	17 0	12 0	70.5 0.0	18.4 0.0	243 0	39 0
23	1 0.0	0.0	296	23	17	60	73.9		227	225	39	15	11	73.3		250	34
24	1 0.0	0.0	293	18	16			17.7	225	0	33	15	10	66.6	14.6	0	0
25 26	1 0.0 1 77.3	0.0 1349.4	0 288	0 22	0 17	0 58	0.0 77.2	0.0 20.1	0 212	0	0 38	0 16	0 11	0.0 68.7	0.0 17.9	0 240	0 34
27	1 78.8	1451.9	314	27	20		74.0		240	238	53	20	14	70.0		263	45
28 29	1 65.9 1 71.3	1404.5 1433.1	303 365	21 23	16 18	57 64	76.1 78.2		234 261	233 260	40 44	16 17	11 15	68.7 88.2		252 274	36 37
30	1 76.0	1409.9	320	23	18	64	78.2	20.0	250	O	42	16	12	75.0	16.8	274	39
31 32	1 70.5 1 75.6	1494.2 1291.9	301 281	21 18	15 15	54 50	71.4 83.3	17.9 17.7	229 201	228 200	37 37	17 15	10 10	58.8 66.6	16.1 18.4	248 221	33 31
33	1 67.4	1414.9	313	19	15		78.9	16.6	0	0	42	15	11	73.3	0.0	246	33
34	1 72.8	1221.9	286	18	15	51 0	83.3	17.8 0.0	204 195	203 0	35 0	14 0	10 0	71.4 0.0	17.1 0.0	222 0	34 0
35 36	1 0.0 1 72.4	0.0 1321.4	280 319	0 23	0 18	61	0.0 78.2		244	242	41	15	12	80.0	16.8	260	39
37	1 0.0	0.0	0	0	0	0	0.0	0.0	0	0	0	0	0	0.0	0.0	0	0
38 39	1 71.7 1 72.3	1574.0 0.0	321 310	22 20	18 15	61 55	81.8 75.0	19.0 17.7	242 215	241 0	39 38	16 17	12 10	75.0 58.8	16.1 17.6	251 245	34 30
40	1 0.0	0.0	310	0	0	0	0.0	0.0	220	0	36	15	11	73.3	16.3	245	33
41 42	1 0.0 1 0.0	0.0 0.0	301 0	19 0	14	53 0	73.6 0.0	17.6 0.0	222 0	220 0	37 0	12 0	10 0	83.3	16.6 0.0	0	30 0
43	1 74.6	0.0	321	23	18	63	78.2		241	240	42	17	12	70.5	17.4	265	37
44	1 71.9	1430.9	316	22 22	16 16	58 50	72.7 72.7	18.3	240 212	239 210	40 35	16 16	11 10	68.7 62.5	16.6 16.5	259 230	34 0
45 46	1 0.0 1 71.5	0.0 1292.3	308 325	24	17		70.8		236	234	40	17	12		16.9	255	40
47	1 0.0	0.0	308	23	17		73.9		230	241	42 41	10		110.0 68.7		251	47
48 49	1 78.0 1 0.0	1463.2 0.0	330 290	22 20	17 16		77.2 80.0		243 0	241 0	0	16 16	11 11	68.7	0.0	260 0	34 33
50	1 79.5	0.0	323	22	17	57	77.2	17.6	229	227	38	18	12	66.6		251	35
51 52	1 83.3 1 81.9	0.0 1347.4	340 324	25 22	18 17		72.0 77.2		244 247	242 0	41 30	19 16	14 13	73.6 81.2		0 266	0 35
53	1 0.0	0.0	0	0	0	0	0.0	0.0	0	Ο	0	0	0	0.0	0.0	O	0
54 55	1 0.0	0.0	323	23 0	19 0	63 0	82.6 0.0	19.5 0.0	245 0	243 0	44 0	18 0	13 0	72.2 0.0	17.9 0.0	0	0
55 56	1 0.0	0.0 0.0	0	0	Ö	0	0.0	0.0	0	O	0	0	0	0.0	0.0	0	0
57	1 76.4	0.0	330	26	20		76.9 80.0		260 0	256 0	47 41	21 15	15 13	71.4 86.6	18.0 0.0	0	0 36
58 59	1 0.0 1 73.6	0.0 1341.7	282 301	20 23	16 16		69.5		223	222	41	16	17	106.2	18.3	245	37
60	1 0.0	1691.7	312	23	17	63	73.9	20.1	242	241	39	16	13	81.2	16.1	266	38
61 62	1 0.0 1 0.0	0.0 0.0	309 325	21 0	17 0	60 0	80.9	19.4 0.0	234 0	232 0	4 0 0	15 0	14 0	93.3	0.0	262 0	34 0
63	1 81.1	1678.5	342	24	20	69	83.3	20.1	250	248	44	18	13	72.2	17.6	275	43
64 65	1 0.0	0.0	315	21 24	18 17		85.7 70.8		225 241	0 239	39 40	17 15	11 12	64.7 80.0	17.3 16.5	0 259	0 37
65 66	1 73.0 1 77.4	1450.9 1345.0	328 302	21	16	59	76.1	19.5	223	221	37	16	12	75.0	16.5	243	33
67	1 0.0	0.0	303	23	19	66	82.6	21.7	229	227	44	19	12	63.1		254	48
68	1 0.0	0.0	316	21	18	67	85.7	19.3	228	226	37	16	11	68.7	10.2	250	35

Grab	U11	U12	URI	UII	F01	F08	F09	F10	F20	FMI	T01	T1B	T08	T8A	T09	Т9А	TOB	TIM	TIF
1 2 3 4 5 6 7 8 9 10 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 14 17 14 16 11 17 0 0 0 0 0 12 13 15 15 12 14 16 0 13 12 0 14 12 13 12 0 16 13 11 13 15 15 15 15 15 15 15 15 15 15 15 15 15	16 15 17 0 0 0 0 17 17 15 16 15 19 15 18 16 14 16 16 0 16 16 16 16 16 16 16 16 16 16 16 16 16	82.3 100.0 68.7 73.3 100.0 0.0 0.0 0.0 0.0 76.4 88.2 100.0 75.0 93.3 94.1 0.0 76.4 92.3 85.7 78.5 68.7 78.5 68.7 75.0 100.0 100.0 85.7 76.4 80.0 100.0 80.0 80.0 80.0 80.0 80.0 80.	$\begin{array}{c} 15.7 \\ 16.1 \\ 13.4 \\ 9.7 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 15.4 \\ 15.7 \\ 2.2 \\ 2.2 \\ 0.00 \\ 14.1 \\ 13.5 \\ 2.3 \\ 0.00 \\ 13.1 \\ 0.00 \\$	0 0 446 4472 4366 4449 457 0 0 0 82 4008 493 4312 4366 429 429 429 429 429 429 429 429 429 429	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 3 & 2 & 2 & 3 \\ 3 & 3 & 1 \\ 3 & 1 & 2 & 6 \\ 0 & 0 & 0 & 3 \\ 2 & 2 & 3 \\ 3 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3$	$\begin{smallmatrix} 0 & 0 & 0 & 28 & 26 & 22 & 28 & 24 & 0 & 0 & 0 & 24 & 28 & 22 & 22 & 22 & 22 & 22 & 22$	138 7 126 7 130 7 144 7 0 149 6 133 7 145 7 145 7 140	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 353 360 380 365 0 0 0 390 327 411 406 347 363 328 365 328 365 328 365 328 365 328 365 328 366 354 395 0 363 355 320 375 0 382 0 375 0 37	0 0 354 380 344 0 366 0 0 0 378 317 404 396 338 355 345 30 366 347 338 353 345 367 336 369 373 344 358 337 369 373 344 358 337 366 369 373 344 358 337 366 369 373 344 358 337 366 369 373 344 358 337 366 369 373 344 358 337 366 369 378 378 378 378 378 378 378 378 378 378	$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 3 & 2 & 6 & 0 \\ 3 & 2 & 5 & 3 \\ 2 & 2 & 2 \\ 3 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 &$	$\begin{smallmatrix} 0 & 0 & 0 & 358 & 369 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$\begin{smallmatrix} 0 & 0 & 0 & 22 & 24 & 0 \\ 2 & 2 & 4 & 0 & 0 \\ 2 & 2 & 4 & 0 & 0 \\ 2 & 2 & 1 & 0 & 0 \\ 2 & 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \\ 2 & 2 &$	$\begin{smallmatrix} 0 & 0 & 0 & 23 & 8 & 0 & 22 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$	77 0 3 4 0 9 7 6 3 0 0 0 7 3 5 0 8 7 8 0 0 6 7 8 7 0 0 6 6 4 6 6 0 0 0 0 0 6 7 6 5 7 0 8 7 8 6 7 8 7 8 6 7 8 7 8 6 7 8 7 8 6 7 8 7 8	$\begin{array}{c} 0.00 \\ 777.068 \\ 0.00 \\ 0.03.4 \\ 0.00$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabelle 2 Statistik der metrischen Daten

a) alle Männer

	n	Mittel	Varianz	Sigma	Streuung 95%	Streuung 68%	Max.	Min.
KH	32	167.96	19.25	4.38	159.3/176.5	163.5/172.3	177.0	159.0
MO1	25	181.12	70.36	8.38	164.6/197.5	172.7/189.5	195.0	157.0
M05	17	99.70	33.72	5.80	88.3/111.0	93.8/105.5	113.0	90.0
M07	21	35.09	3.99	1.99	31.1/ 39.0	33.0/ 37.0	39.0	31.0
M08	29	146.13	45.90	6.77	132.8/159.4	139.3/152.9	160.0	135.0
M09	20	98.65	31.92	5.65	87.5/109.7	92.9/104.3	114.0	87.0
M10	22 25	123.00 125.72	48.85 48.71	6.98 6.97	109.3/136.6	116.0/129.9	137.0	108.0
M11 M12	27	111.51	29.41	5.42	112.0/139.3 100.8/122.1	118.7/132.6 106.0/116.9	140.0 124.0	116.0 104.0
M13A	0	0.00	23.41	5.42	0.0/ 0.0	0.0/ 0.0	124.0	104.0
M17	21	132.33	93.13	9.65	113.4/151.2	122.6/141.9	168.0	121.0
M19A	0	0.00	33.13	3.00	0.0/ 0.0	0.0/ 0.0	100.0	121.0
M20	14	116.21	24.79	4.97	106.4/125.9	111.2/121.1	128.0	110.0
M23	22	528.72	282.30	16.80	495.7/561.6	511.9/545.5	573.0	496.0
M24	25	329.76	213.60	14.61	301.1/358.4	315.1/344.3	355.0	309.0
M25	21	369.47	255.26	15.97	338.1/400.7	353.4/385.4	397.0	334.0
M26	22	127.72	52.20	7.22	113.5/141.8	120.5/134.9	139.0	116.0
M27	28	125.50	76.33	8.73	108.3/142.6	116.7/134.2	150.0	111.0
M28	27	115.07	47.76	6.91	101.5/128.6	108.1/121.9	131.0	102.0
M29	22	111.04	26.04	5.10	101.0/121.0	105.9/116.1	122.0	103.0
M30	28	111.25	50.63	7.11	97.3/125.1	104.1/118.3	131.0	102.0
M31	27	94.85	18.36	4.28	86.4/103.2	90.5/99.1	103.0	84.0
M40	12	93.83	44.69	6.68	80.7/106.9	87.1/100.5	105.0	81.0
M42	0	0.00			0.0/ 0.0	0.0/ 0.0		
M43	19	106.84	54.14	7.35	92.4/121.2	99.4/114.2	128.0	98.0
M44	15	98.86	7.55	2.74	93.4/104.2	96.1/101.6	103.0	93.0
M45	19	135.36	59.24	7.69	120.2/150.4 87.2/105.7	127.6/143.0	153.0 103.0	123.0 87.0
M46	16	96.50 114.73	22.13 38.20	4.70 6.18	102.6/126.8	91.7/101.2 108.5/120.9	126.0	102.0
M47 M48	15 15	68.66	15.23	3.90	61.0/ 76.3	64.7/ 72.5	76.0	63.0
M51	16	43.43	3.19	1.78	39.9/ 46.9	41.6/ 45.2	46.0	40.0
M52	16	33.93	3.79	1.94	30.1/ 37.7	31.9/ 35.8	38.0	30.0
M54	17	24.58	5.00	2.23	20.2/ 28.9	22.3/ 26.8	28.0	19.0
M55	16	51.00	8.40	2.89	45.3/ 56.6	48.1/ 53.8	57.0	46.0
M60	15	54.33	16.23	4.02	46.4/ 62.2	50.3/ 58.3	59.0	46.0
M61	16	61.06	16.46	4.05	53.1/ 69.0	57.0/ 65.1	68.0	53.0
M62	13	40.92	15.41	3.92	33.2/ 48.6	36.9/ 44.8	46.0	34.0
M63	16	42.12	64.25	8.01	26.4/ 57.8	34.1/ 50.1	71.0	36.0
M65	20	121.30	46.01	6.78	108.0/134.5	114.5/128.0	133.0	108.0
M66	23	102.65	94.05	9.69	83.6/121.6	92.9/112.3	117.0	85.0
M69	19	32.26	12.76	3.57	25.2/ 39.2	28.6/ 35.8	41.0	26.0
M70	21	63.76	38.49	6.20	51.6/ 75.9	57.5/ 69.9	73.0	51.0
M71	21	29.76	3.79	1.94	25.9/ 33.5	27.8/ 31.7	35.0	26.0
M72	14	87.64	12.24	3.49	80.7/ 94.5	84.1/ 91.1	93.0	82.0
M79	21	122.09	43.59	6.60	109.1/135.0	115.4/128.6 75.2/ 86.0	131.0 92.3	104.0 69.5
LBI	25	80.61	29.23	5.40	70.0/ 91.2	64.5/ 81.8	107.0	62.0
LHI	20	73.19	74.41	8.62	56.2/ 90.0	82.9/ 99.2	115.8	79.8
BHI	21	91.09	65.82 52.30	8.11 7.23	75.1/106.9 70.3/ 98.7	77.3/ 91.7	98.3	76.6
GI	14	84.56	18.37	4.28	42.1/ 58.9	46.2/ 54.8	58.4	44.1
OGI	14	50.51 78.12	18.81	4.20	69.6/ 86.6	73.7/ 82.4	90.4	72.0
OI	16 16	48.16	27.97	5.28	37.8/ 58.5	42.8/ 53.4	56.0	35.1
NI CFI	16 19	92.43	16.30	4.03	84.5/100.3	88.3/ 96.4	101.4	85.2
JFI	18	72.86	12.85	3.58	65.8/ 79.8	69.2/ 76.4	79.6	66.9
JMI	18	76.98	30.17	5.49	66.2/ 87.7	71.4/ 82.4	89.7	66.9
KAP	14	1488.25	2129.48	110.13	272.3/704.1	378.1/598.3	1691.7	1329.6

191

b) alle Frauen

KH M01 M05 M07	n 25 23	Mittel 160.44	Varianz	Sigma	Streuung 95%	Streuung 68%	Max.	Min.
M01 M05		160.44						
M05	23		7.75	2.78	154.9/165.8	157.6/163.2	167.0	156.0
		175.13	33.48	5.78	163.7/186.4	169.3/180.9	185.0	164.0
MO7	16	95.56	7.59	2.75	90.1/100.9	92.8/ 98.3	99.0	91.0
	17	33.82	3.15	1.77	30.3/ 37.3	32.0/ 35.5	36.0	30.0
M08	23	144.65	41.96	6.47	131.9/157.3	138.1/151.1	158.0	135.0
M09	19	96.15	16.36	4.04	88.2/104.0	92.1/100.2	105.0	91.0
M10	19	122.15	30.14	5.49	111.3/132.9	116.6/127.6	132.0	114.0
M11	21	122.04	23.84	4.88	112.4/131.6	117.1/126.9	129.0	109.0
M12	21	110.85	18.42	4.29	102.4/119.2	106.5/115.1	120.0	103.0
M13A	O	0.00			0.0/ 0.0	0.0/ 0.0		
M17	16	125.62	34.91	5.90	114.0/137.2	119.7/131.5	135.0	116.0
M19A	O	0.00			0.0/ 0.0	0.0/ 0.0		
M20	14	111.78	21.87	4.67	102.6/120.9	107.1/116.4	119.0	105.0
M23	18	511.50	173.20	13.16	485.7/537.2	498.3/524.6	534.0	485.0
M24	23	320.00	113.27	10.64	299.1/340.8	309.3/330.6	337.0	305.0
M25	18	357.44	143.67	11.98	333.9/380.9	345.4/369.4	377.0	336.0
M26	20	122.50	43.00	6.55	109.6/135.3	115.9/129.0	133.0	109.0
M27	24	120.41	55.03	7.41	105.8/134.9	112.9/127.8	137.0	108.0
M28	21	115.71	43.41	6.58	102.7/128.6	109.1/122.3	130.0	102.0
M29	20	106.15	22.45	4.73	96.8/115.4	101.4/110.8	113.0	95.0
M30	24	107.66	37.36	6.11	95.6/119.6	101.5/113.7	123.0	98.0
M31	21	94.57	19.55	4.42	85.9/103.2	90.1/ 98.9	107.0	85.0
M40	14	90.85	18.13	4.25	82.5/ 99.2	86.5/ 95.1	99.0	83.0
M42	0	0.00			0.0/ 0.0	0.0/ 0.0		
M43	20	102.95	15.31	3.91	95.2/110.6	99.0/106.8	112.0	97.0
M44	13	97.23	9.35	3.05	91.2/103.2	94.1/100.2	104.0	92.0
M45	15	128.86	33.26	5.76	117.5/140.1	123.0/134.6	138.0	118.0
M46	14	92.50	17.96	4.23	84.1/100.8	88.2/ 96.7	101.0	87.0
M47	14	109.14	55.20	7.43	94.5/123.7	101.7/116.5	119.0	92.0
M48	15	65.53	18.69	4.32	57.0/ 74.0	61.2/ 69.8	73.0	56.0
M51	15	41.40	2.11	1.45	38.5/ 44.2	39.9/ 42.8	44.0	39.0
M52	14	32.14	3.97	1.99	28.2/ 36.0	30.1/ 34.1	36.0	30.0
M54	15	24.40	2.97	1.72	21.0/ 27.7	22.6/ 26.1	28.0	22.0
M55	15	47.73	6.06	2.46	42.9/ 52.5	45.2/ 50.1	53.0	44.0
M60	14	51.92	6.99	2.64	46.7/ 57.1	49.2/ 54.5	58.0	50.0
M61	13	58.38	19.75	4.44	49.6/ 67.0	53.9/ 62.8	66.0	50.0
M62	11	41.00	6.00	2.44	36.1/ 45.8	38.5/ 43.4	46.0	36.0
M63	13	37.23	3.35	1.83	33.6/ 40.8	35.3/ 39.0	40.0	33.0
M65	20	119.00	38.31	6.18	106.8/131.1	112.8/125.1	131.0	105.0
M66	21	94.57	22.35	4.72	85.3/103.8	89.8/ 99.2	107.0	86.0
M69	17	29.47	8.26	2.87	23.8/ 35.1	26.5/ 32.3	35.0	23.0
M70	19	57.57	7.36	2.71	52.2/ 62.8	54.8/ 60.2	63.0	54.0
M71	20	29.50	4.47	2.11	25.3/ 33.6	27.3/ 31.6	33.0	26.0
M72	14	85.50	16.26	4.03	77.5/ 93.4	81.4/ 89.5	92.0	78.0
M79	19	126.26	25.98	5.09	116.2/136.2	121.1/131.3	139.0	116.0
LBI	23	82.64	22.79	4.77	73.2/ 92.0	77.8/ 87.4	91.8	73.3
LHI	16	72.32	11.04	3.32	65.8/ 78.8	69.0/ 75.6	79.2	67.8
BHI	16	86.91	39.57	6.29	74.5/ 99.2	80.6/ 93.2	97.0	77.2
GI	13	85.07	34.80	5.89	73.5/ 96.6	79.1/ 90.9	96.6	74.8
OGI	13	51.16	13.75	3.70	43.8/ 58.4	47.4/ 54.8	59.6	46.6
OI	14	77.87	24.95	4.99	68.0/ 87.6	72.8/ 82.8	85.3	70.4
NI	15	51.14	11.02	3.32	44.6/ 57.6	47.8/ 54.4	56.8	46.8
CFI	15	89.28	9.37	3.06	83.2/ 95.2	86.2/ 92.3	94.8	84.3
JFI	14	74.77	5.38	2.32	70.2/ 79.3	72.4/ 77.0	79.0	71.7
JMI	15	72.78	13.65	3.69	65.5/ 80.0	69.0/ 76.4	79.5	65.9
KAP	14	1365.27	8166.84	90.37	188.1/542.3	274.9/455.6	1566.1	1221.9

c) alle Individuen

M01 M05 M07 M08 M09 M10 M11 M12 M13A M17 M19A M20 M23 M24 M25	53 46 31 37 50 37 40 45 47 0 34 0 28 38	Mittel 165.05 178.60 97.90 34.59 145.52 97.75 122.72 124.17 111.04 0.00 129.55 0.00 114.28	Varianz 27.05 58.24 24.62 3.85 48.05 25.30 40.05 38.83 29.12 78.55	5.20 7.63 4.96 1.96 6.93 5.02 6.32 6.23 5.39	Streuung 95% 154.8/175.2 163.6/193.5 88.1/107.6 30.7/ 38.4 131.9/159.1 87.8/107.6 110.3/135.1 111.9/136.3 100.4/121.6	Streuung 68% 159.8/170.2 170.9/186.2 92.9/102.8 32.6/36.5 138.5/152.4 92.7/102.7 116.3/129.0 117.9/130.4	Max. 177.0 195.0 113.0 39.0 160.0 114.0 137.0 140.0	Min. 156.0 157.0 90.0 30.0 133.0 87.0 108.0 114.0
M01 M05 M07 M08 M09 M10 M11 M12 M13A M17 M19A M20 M23 M24 M25	46 31 37 50 37 40 45 47 0 34 0 28 38	178.60 97.90 34.59 145.52 97.75 122.72 124.17 111.04 0.00 129.55 0.00	58.24 24.62 3.85 48.05 25.30 40.05 38.83 29.12	7.63 4.96 1.96 6.93 5.02 6.32 6.23 5.39	163.6/193.5 88.1/107.6 30.7/38.4 131.9/159.1 87.8/107.6 110.3/135.1 111.9/136.3 100.4/121.6	170.9/186.2 92.9/102.8 32.6/ 36.5 138.5/152.4 92.7/102.7 116.3/129.0 117.9/130.4	195.0 113.0 39.0 160.0 114.0 137.0 140.0	157.0 90.0 30.0 133.0 87.0 108.0
M05 M07 M08 M09 M10 M11 M12 M13A M17 M19A M20 M23 M24 M25	31 37 50 37 40 45 47 0 34 0 28 38	97.90 34.59 145.52 97.75 122.72 124.17 111.04 0.00 129.55 0.00	24.62 3.85 48.05 25.30 40.05 38.83 29.12	4.96 1.96 6.93 5.02 6.32 6.23 5.39	88.1/107.6 30.7/ 38.4 131.9/159.1 87.8/107.6 110.3/135.1 111.9/136.3 100.4/121.6	92.9/102.8 32.6/ 36.5 138.5/152.4 92.7/102.7 116.3/129.0 117.9/130.4	113.0 39.0 160.0 114.0 137.0 140.0	90.0 30.0 133.0 87.0 108.0
M07 M08 M09 M10 M11 M12 M13A M17 M19A M20 M23 M24 M25	37 50 37 40 45 47 0 34 0 28 38	34.59 145.52 97.75 122.72 124.17 111.04 0.00 129.55 0.00	3.85 48.05 25.30 40.05 38.83 29.12	1.96 6.93 5.02 6.32 6.23 5.39	30.7/ 38.4 131.9/159.1 87.8/107.6 110.3/135.1 111.9/136.3 100.4/121.6	32.6/ 36.5 138.5/152.4 92.7/102.7 116.3/129.0 117.9/130.4	39.0 160.0 114.0 137.0 140.0	30.0 133.0 87.0 108.0
M08 M09 M10 M11 M12 M13A M17 M19A M20 M23 M24 M25	50 37 40 45 47 0 34 0 28 38	145.52 97.75 122.72 124.17 111.04 0.00 129.55 0.00	48.05 25.30 40.05 38.83 29.12	6.93 5.02 6.32 6.23 5.39	131.9/159.1 87.8/107.6 110.3/135.1 111.9/136.3 100.4/121.6	138.5/152.4 92.7/102.7 116.3/129.0 117.9/130.4	160.0 114.0 137.0 140.0	133.0 87.0 108.0
M09 M10 M11 M12 M13A M17 M19A M20 M23 M24 M25	37 40 45 47 0 34 0 28 38	97.75 122.72 124.17 111.04 0.00 129.55 0.00	25.30 40.05 38.83 29.12	5.02 6.32 6.23 5.39	87.8/107.6 110.3/135.1 111.9/136.3 100.4/121.6	92.7/102.7 116.3/129.0 117.9/130.4	114.0 137.0 140.0	87.0 108.0
M10 M11 M12 M13A M17 M19A M20 M23 M24 M25	40 45 47 0 34 0 28 38	122.72 124.17 111.04 0.00 129.55 0.00	40.05 38.83 29.12	6.32 6.23 5.39	110.3/135.1 111.9/136.3 100.4/121.6	116.3/129.0 117.9/130.4	137.0 140.0	108.0
M11 M12 M13A M17 M19A M20 M23 M24 M25	45 47 0 34 0 28 38	124.17 111.04 0.00 129.55 0.00	38.83 29.12	6.23 5.39	111.9/136.3 100.4/121.6	117.9/130.4	140.0	
M12 M13A M17 M19A M20 M23 M24 M25	47 0 34 0 28 38	111.04 0.00 129.55 0.00	29.12	5.39	100.4/121.6			114 0
M13A M17 M19A M20 M23 M24 M25	0 34 0 28 38	0.00 129.55 0.00				105 6/116 4		
M17 M19A M20 M23 M24 M25	34 0 28 38	129.55 0.00	78.55	0.00	00:00	105.6/116.4	124.0	96.0
M19A M20 M23 M24 M25	0 28 38	0.00	78.55	0 0 0	0.0/ 0.0	0.0/ 0.0		
M20 M23 M24 M25	28 38			8.86	112.1/146.9	120.6/138.4	168.0	116.0
M23 M24 M25	38	114.28			0.0/ 0.0	0.0/ 0.0		
M24 M25			24.95	4.99	104.4/124.0	109.2/119.2	128.0	105.0
M25		522.55	286.57	16.92	489.3/555.7	505.6/539.4	573.0	489.0
	46	325.76	184.23	13.57	299.1/352.3	312.1/339.3	355.0	305.0
1400	37	365.02	218.52	14.78	336.0/394.0	350.2/379.8	397.0	334.0
M26	39	125.61	54.19	7.36	111.1/140.0	118.2/132.9	139.0	109.0
	50	123.48	68.94	8.30	107.2/139.7	115.1/131.7	150.0	109.0
M28	47	115.82	40.62	6.37	103.3/128.3	109.4/122.2	131.0	102.0
	39	109.02	29.97	5.47	98.2/119.7	103.5/114.5	122.0	95.0
	50	109.76	46.55	6.82	96.3/123.1	102.9/116.5	131.0	98.0
	47	95.14	16.56	4.06	87.1/103.1	91.0/ 99.2	107.0	84.0
	25	92.48	32.67	5.71	81.2/103.6	86.7/ 98.1	105.0	81.0
M42	0	0.00			0.0/ 0.0	0.0/ 0.0		
	37	105.29	36.15	6.01	93.5/117.0	99.2/111.3	128.0	98.0
	27	98.33	8.30	2.88	92.6/103.9	95.4/101.2	104.0	92.0
	34	132.73	54.20	7.36	118.3/147.1	125.3/140.0	153.0	119.0
	29	94.86	23.40	4.83	85.3/104.3	90.0/ 99.7	103.0	87.0
	27	113.70	31.67	5.62	102.6/124.7	108.0/119.3	126.0	102.0
	28	67.96	13.29	3.64	60.8/ 75.1	64.3/ 71.6	76.0	63.0
	29	42.51	3.90	1.97	38.6/ 46.3	40.5/ 44.4	46.0	39.0
	28	33.00	4.51	2.12	28.8/ 37.1	30.8/ 35.1	38.0	30.0
	29	24.55	4.25	2.06	20.5/ 28.5	22.4/ 26.6	28.0	19.0
	28	49.89	8.39	2.89	44.2/ 55.5	46.9/ 52.7	57.0	46.0
	27	53.51	13.02	3.60	46.4/ 60.5	49.9/ 57.1	59.0	46.0
	27	59.96	20.72	4.55	51.0/ 68.8	55.4/ 64.5	68.0	50.0
	22	41.27	10.39	3.22	34.9/ 47.5	38.0/ 44.4	46.0	34.0
	27	40.18	44.38	6.66	27.1/ 53.2	33.5/ 46.8	71.0	33.0
	38	120.63	36.34	6.02	108.8/132.4	114.6/126.6	133.0	108.0
	42	99.40	72.88	8.53	82.6/116.1	90.8/107.9	117.0	85.0
	34	31.55	9.04	3.00	25.6/ 37.4	28.5/ 34.5	41.0	27.0
	38	61.42	33.11	5.75	50.1/ 72.7	55.6/ 67.1	73.0	51.0
	39	29.41	3.45	1.85	25.7/ 33.0	27.5/ 31.2	33.0	26.0
	26	86.69	14.62	3.82	79.1/ 94.1	82.8/ 90.5	93.0	78.0
	38	124.42	39.43	6.28	112.1/136.7	118.1/130.7	139.0	104.0
	46	81.43	27.55	5.24	71.1/ 91.7	76.1/86.6	92.3	69.5
	33	72.66	49.05	7.00	58.9/ 86.3	65.6/ 79.6	107.0	62.0
	34	89.14	59.44	7.71	74.0/104.2	81.4/ 96.8	115.8	77.2
	26	85.45	37.62	6.13	73.4/ 97.4	79.3/ 91.5	98.3	76.6
	26	51.11	14.99	3.87	43.5/ 58.7	47.2/ 54.9	59.6	44.1
	28 28	77.64	18.34	4.28	69.2/ 86.0	73.3/ 81.9	90.4	70.4
	28	49.20	21.19	4.60	40.1/ 58.2	44.5/ 53.8	56.5	35.1
	20 34	91.29	14.07	3.75	83.9/ 98.6	87.5/ 95.0	101.4	84.3
	31	73.58	10.19	3.19	67.3/ 79.8	70.3/ 76.7	79.6	66.9
	33	75.16	25.26	5.02	65.3/ 85.0	70.1/ 80.1	89.7	65.9
	28	1431.65	2889.09	113.53	209.1/654.1	318.1/545.1	1691.7	1280.7

Tabelle 3

Mass/	/Merkmal	Männer	Frauen	Erwachsene		
1	Gr. Schädellänge	mittel	mittel	kurz		
5	Schädelbasislänge	mittel	mittel	mittel		
8	Grösste Schädelbreite	mittel	breit	mittel		
9	Kleinste Stirnbreite	mittel	mittel	mittel		
10	Grösste Stirnbreite	mittel	breit	mittel		
17	Basion-Bregmahöhe	mittel	mittel	mittel		
20	Ohrhöhe	mittel	mittel	mittel		
23	Horizontalumfang	mittel	mittel	mittel		
24	Transversalbogen	gross	gross	mittel		
25	Mediansagittalbogen	mittel	mittel	klein		
38	Kapazität	gross	gross	mittel		
45	Jochbogenbreite (Gesichtsbr.)	mittel	mittel	mittel		
47	(Ganz-)Gesichtshöhe	mittel	mittel	mittel		
48	Obergesichtshöhe	mittel	mittel	sehr niedrig		
51	Orbitalbreite	mittel	gross	breit		
52	Orbitalhöhe	niedrig	mittel	mittel		
54	Nasenbreite	schmal	mittel	mittel		
55	Nasenhöhe	mittel	mittel	mittel		
60	Gaumenlänge	lang	mittel	lang		
61	Gaumenbreite	mittel	mittel	mittel		
66	Unterkieferbreite	mittel	mittel	mittel		
Index		Männer	Frauen	Erwachsene		
Länge	enbreitenindex	breit	breit	breit		
Länge	nhöhenindex	mittel	mittel	mittel		
Breite	nhöhenindex	niedrig	niedrig	niedrig		
Gesicl	htsindex	mittel	mittel	mittel		
Oberg	gesichtsindex	mittel	mittel	mittel		
Orbita	lindex	mittel	mittel	mittel		
Nasali	index	mittel	breit	mittel		
Cranic	ofazialindex	mittel	mittel	mittel		
Jugofi	rontalindex	mittel	mittel	mittel		
Jugon	nandibularindex	mittel	schmalkiefrig	rig mittel		

Tabelle 4

RÄUMLICH-ZEITLICHE VERGLEICHE II Angaben in Millimetern. Domdidier: FMA1: ohne Dolichocrane, FMA2 – nur Dolichocrane; SPÄTRÖMISCH: Kerzers/Herrli (Kaufmann 1988); Tafers/Windhalta (Kaufmann 1990); FRÜHMITTELALTER: Solothurn 1 – dolichocrane Gruppe, Solothurn 2 – Keltoromanen (beide Schoch 1990); Weingarten – Alamannen (Rösing/Schwidetzky 1977); Alamannen Württemberg (op. cit.); Choulans – Burgunder bei Lyon (op.cit.); HOCHMITTELALTER/SPÄTMITTELALTER: Pfyn (Brukner-Schoch 1988); Genf (Rösing/Schwidetzky 1981); Lausanne (op. cit.); FRÜHE NEUZEIT: Westschweiz – Mittelwerte von 8 Serien (Schwidetzky/Rösing 1984, Serien 140–147).

			Domo FMA		FMA 1	FMA2	Kerz. Herrli 3	Tafers Wind. 4	So 1 9	lothurn II 12		FMA Alam. Württ. 8	FMA Chou- lans 10	Pfyn 16	HMA b Genf	is SMA Lau- sanne 18	NZ West- Schweiz 19
1	grösste	m	184.3	178.5	181.8	193.0	177.8	181.9	186.0	177.0	189.1	192.0	188.1	178.0	180.5	179.5	178.5
ο	Schädellänge	W	176.0 151.0	169.3 151.1	152.8	1422	172.0 148.6	175.5 146.2	136.0	177.0 146.0	141.4	142.3	143.9	171.0 149.0	143.7	146.9	150.4
8	grösste Schädelbreite	m w	146.8	145.6	102.0	143.3	132.0	144.9	130.0	141.0	141.4	142.3	143.9	154.3	143.7	140.9	150.4
9	kleinste	m	101.6	100.2	101.4		103.5	98.9	_	-	96.7	98.1	97.4	105.3	98 2	100.8	99.8
Ü	Stirnbreite	W	98.3	98.3	-	-	93.0	96.2	_	_	-	-	-	98.2	-	-	-
17	Basion-Breg-	m	133.1	134.3	130.9	138.5	127.0	130.1	140.0	131.0	135.7	137.5	133.2	138.0	130.6	131.1	132.9
	ma-Höhe	W	128.0	125.1	-	_	-	125.3	_	120.0	-	_	-	130.3	_	_	_
20	Ohr-Bregma-	m	0.000	120.4	119.0	122.0	116.0	116.2	-	-	_	_	_	_	-	_	_
4.5	Höhe	W	115.3	113.5	100.0	107.0	112.0	111.6	_	_	105.0	104 5	100 4	1000	100.0	1040	100 5
45	Jochbogen-	m	137.9 130.2	136.6 128.0	138.2	137.0	127.8	135.9 128.9	_	_	135.0	134.5	133.4	122.0 128.3	133.3	134.3	136.5
47	breite Gesichtshöhe	m	122.6	116.8	120.8	127.0	114.0	114.2	_	_	_	_	_	119.5	_	_	_
4/	desicilisitorie	W	112.4	110.9	120.0	127.0	110.0	109.7	_	_	_	_	_	111.0	_	_	_
48	Obergesichts-	m	72.6	71.6	70.8	77.0	69.0	68.2	_	_	72.6	71.7	70.2	74.0	69.9	69.3	70.5
	höhe	W	67.7	68.4	_	_	69.0	66.1	_	_	_	_	_	67.3	_	_	
51	Orbitabreite	m	41.6	43.3	40.3	45.5	40.0	43.5	-	_	42.2	44.6	39.0	42.0	41.6	41.9	38.7
		W	42.5	40.6	_	_	42.0	41.4	_	_	_	_	-	41.2	_	_	
52	Orbitahöhe	m	34.3	33.5	33.8	35.5	32.5	33.7	_	_	34.0	34.6	33.3	34.0	33.6	34.6	32.8
г.4	NI	W	33.9	33.1	25.0	25.5	33.0	32.2	_	_	24.9	25.2	24.9	35.0 22.0	24.3	23.0	24.0
54	Nasenbreite	m	25.1 24.4	24.8 24.0	25.0	25.5	24.0 23.0	24.9 24.7	_	_	24.9	25.2	24.9	26.0	24.3	23.0	24.0
55	Nasenhöhe	w m	52.1	51.8	52.3	51.5	51.5	50.8	_		53.0	52.9	51.8	61.9	51.3	51.7	50.0
00	Nasemione	W	49.7	48.0	-	-	50.0	48.0	_	_	-	-	-	51.7	-	-	-
66	UK-	m	106.8	103.3	106.6	109.0	111.0	103.7	_	_	106.8	102.7	106.1	97.5	_	_	_
	Winkelbreite	W	96.8	95.5	_	_	-	94.9	_	_	_	_		98.2	-	_	-
69	Kinnhöhe	m	32.8	32.2	32.3	37.5	29.7	32.8	-	-	_	_		33.0	-	-	_
		W	28.8	29.7	-	-	27.0	29.8	_	_				28.4		_	
Lär	genbreiten-	m	82.3	84.7	84.7	74.2	83.8	80.4	72.0	82.0	74.8	74.1	76.5	83.7	79.6	81.8	84.3
1.0.	Index	W	83.2	86.0	72.2	71.7	76.7 71.6	82.6 71.5	_	81.0	71.8	71.6	70.8	91.6 77.1	72.4	73.0	74.5
Lar	igenhöhen-	m	72.1 72.7	75.5 74.2	12.2	/ 1./	71.0	71.5	_	_	/ 1.0	71.0	70.0	77.5	12.4	/3.0	74.5
Bro	Index itenhöhen-	w m	88.7	88.9	85.5	96.7	81.9	89.0	_	_	95.7	94.5	95.7	93.9	90.9	89.2	88.4
Die	Index	W	87.3	85.9	-	-	-	86.5	_	_	-	-	-	85.4	-	-	-
Ge	sichtsindex	m	87.7	85.8	86.1	91.7	93.4	84.0	_	_	-	-	-	95.9	_	_	-
		W	85.4	88.6	-	_	-	85.1	_	_	_	_	_	86.5	_	_	_
Ob	ergesichts-	m	51.9	52.5	50.4	55.6	56.6	50.2	-	_	53.8	53.3	52.6	61.5	52.4	51.6	51.6
	Index	W	51.6	54.8				51.3	-	_	_	-	-	52.7	-	-	-
Ort	oitaindex	m	83.2	80.8	84.9	78.0	81.2	77.5	-	_	80.6	77.6	85.4	85.0	80.8	82.6	84.8
т		W	79.6	81.6	- 00 F	OF 1	78.6	77.8	_	_	95.5	94.5	92.7	84.9 83.0	92.8	91.4	90.8
Ira	ns. Cranio-	m	91.7	90.6	90.5	95.1	87.7	93.0 89.0	_	_	90.0	54.5	32.7	83.9	32.8	31.4	90.8
lice	facial-Index	W	89.1 73.2	87.1 73.4	72.2	75.6	77.7	72.8	_	_	71.6	72.9	71.6	03.9	73.7	75.1	73.1
าน(jofrontal- Index	m w	75.5	77.1	12.2	75.0	//./	74.6	_	_	7 1.0	72.0	7 1.0	76.1	, 0.7	70.1	70.1
Jur	jomandibular-	m	77.0	75.2	76.6	77.0	78.1	76.3	_	_	79.1	76.4	79.1	72.9	_	_	_
Jul	Index	w	74.8	73.5	-	_	_	73.6	-	-	_	_	_	77.7	_	_	_

KATALOG DER GRÄBER

Willi Schoch

Legende zum Katalog

Der Individualtitel besteht aus der Inventarnummer der Anthropologischen Sammlung des Kantons Freiburg sowie aus der Grabnummer. Auf weitergehende Bezeichnungen konnte verzichtet werden, da die Gräber nur einmal belegt worden sind und auch Streufunde kaum vorkommen.

Kurzbeschrieb

Der Kurzbeschrieb soll dem Leser die Möglichkeit geben, in einem Satz alle wichtigen Angaben zur Bestattung zu finden.

Erhaltung

Der Erhaltungszustand wird generell beschrieben ohne auf Details einzugehen. Schädel und postkraniales Skelett werden jeweils einzeln aufgeführt; etwas ausführlicher wird nur der Gebisszustand behandelt.

Bestimmungen

Altersbestimmung:

Bei Kleinkindern und Kindern wird das Alter anhand der Längenmasse der Röhrenknochen angeführt sowie anhand des Zahndurchbruches. Bei Jugendlichen und Frühadulten (ca. 16. bis 25. Lebensjahr) anhand des Verwachsens (Synostose) der Gelenke. Bei Personen über dem 25. Lebensjahr erfolgt die Bestimmung anhand der sogenannten «Kombinierten Methode», die auf folgenden vier Merkmalen basiert:

- 1) Schädel: Nahtverwachsen im Schädelinnern
- 2) Hüftbein: Oberflächenrelief der Schambeinfuge
- 3) Humeruskopf: Spongiosarelief (anhand Schnitt- oder Röntgenbild)
- 4) Femurkopf: Spongiosarelief (anhand Schnittoder Röntgenbild)

Diese Reihenfolge wird immer eingehalten; bei nicht beobachtbaren Einzelmerkmalen ist deren Stelle durch Querstriche gekennzeichnet. («4/5/–/4») bedeutet z.B., dass das 3. Merkmal (Humeruskopf) nicht beobachtet werden konnte. Der Abkauungsgrad des Gebisses wird normalerweise nicht berücksichtigt; nur bei unklarer Bestimmung wird er zum Auf- oder Abrunden der Lebensjahre eingesetzt.

Geschlechtsbestimmung

Die Geschlechtsbestimmung erfolgt nach den in den «Empfehlungen....» von Ferembach/Schwidetzky 1972 angeführten Merkmalen für Schädel und Hüftbeine getrennt. Eine Bestimmung ist umso sicherer, je besser die Merkmale übereinstimmen und je grösser die Anzahl der beobachtbaren Merkmale ist (am Schädel maximal 13, am Becken 8). Negative Werte bezeichnen weibliches, positive männliches Geschlecht. Die Werte liegen zwischen –2 und +2;

Angaben zwischen -0,3 und +0,3 gelten als «nicht bestimmbar», zwischen +/- 0,4 und +/- 0,8 als «eher weiblich» bzw. «eher männlich», über +/- 0,8 als «weiblich» bzw. «männlich». Falls die Vorzeichen bei Schädel und Becken in unterschiedlichen Bereichen liegen (Schädel -, Becken +, oder umgekehrt), gilt das Individuum geschlechtsmässig als nicht bestimmbar, obwohl dem Becken ein grösserer diagnostischer Wert zugemessen werden darf.

Körperhöhenbestimmung

Die Berechnung der Körperhöhe beruht auf den Tabellen von Bach (1965) für weibliche und von Breitinger (1938) für männliche Individuen. Zu beachten ist, dass die berechneten Masse die Körperhöhe im frühadulten Alter (20. bis 30. Lebensjahr) wiedergeben, sodass diese Angaben beträchtlich von der Skelettlänge abweichen kann, die im Grabe gemessen worden ist.

Auch bei der Körperhöhe wird im Katalog eine feste Reihenfolge eingehalten; die den Berechnungen von Humerus, Radius, Femur und Tibia folgen. Fehlende Masse werden ebenfalls durch einen Querstrich (–) bezeichnet; (z.B. 170/168/–/169: 169 cm. Hier fehlt also das Femurmass); gelegentlich werden die Knochen auch mit ihrem Anfangsbuchstaben (H,R,F,T) bezeichnet (z.B. H 170, R 168, T 169: 169 cm). Alle Massangaben sind in cm angeführt.

Besonderheiten / Pathologica

- Besonderheiten: Unter dieser Rubrik werden auffallende nichtpathologische Merkmale aufgeführt; Anatomische Varianten aber nur, wenn sie für das weitere Verständnis der Arbeit von Bedeutung sind. Festgehalten sind auch technische Hinweise (z.B. Skelett sehr stark verzogen, nicht zusammensetzbar), wenn sie für die Interpretation der Befunde erforderlich sind, sowie funktionelle Merkmale (z.B. «starke Crista interossea»).
- Pathologica: Die im Katalog angeführten Pathologica sind Beobachtungen der anthropologischen Bearbeiter und stellen nur eine vorläufige Diagnose dar. Bei unterschiedlichen Befunden im Katalog und im Auswertungstext ist der Diagnose durch den Fachpathologen (im Textteil) der Vorzug zu geben.

Zusätzliches Material

Hier werden Streufunde einzelner menschlicher Skelettelemente angeführt, sofern sie nicht altersund/oder geschlechtsmässig ausgewertet werden können. Auch Tierknochen, Keramikfunde und andere Objekte sind unter dieser Bezeichnung aufgeführt, sofern sie in einer Beziehung zur Bestattung stehen.

Grab 1

Kurzbeschrieb:

Bestattung eines 6-jährigen Kleinkindes Erhaltung:

- Schädel: nicht vorhanden
- Postkraniales Skelett: Lediglich die beiden Femora sowie ein Lendenwirbel sind erhalten.

Bestimmungen:

- Alter: Länge der Femora 6 Jahre
- Geschlecht: indet.
 Besonderheiten:
- beide Femora mit Trochanter tertius

Grab 2

Kurzbeschrieb:

Bestattung eines knapp über 20-jährigen Individuums unbestimmbaren Geschlechts von 166 cm Körperhöhe. Erhaltung:

- Schädel: Ziemlich intaktes Cranium. Gebiss: ausser den oberen Schneidezähnen sind alle Zähne vorhanden; leichte Abkauung, Parodontose und Zahnsteinbildung, mittlere Karies.
- Postkraniales Skelett: Es fehlen etwa die H\u00e4lfte der Wirbel, Teile des Sternums, der Scapulae und der H\u00fcftbeine, praktisch alle Hand- und Fussknochen sowie die Unterarme, die rechte Tibia und die Fibulae.

Bestimmungen:

- Alter: Sphenobasilarfuge verwachsen, ca. 25 Jahre; Gebiss 18- 20 Jahre; Wirbel 23–25, Clavicula 18–20: etwa 22 Jahre
- Geschlecht: Schädel –0.23 (n=13): indet. (gegensätzliche Merkmale)
- Körperhöhe: Humerus 166 cm

Besonderheiten:

- Tibia mit sehr tiefer Fossa M. solei

Pathologica:

- beidseitig Cribra orbitalia
- Tibia mit entzündlichem Prozess (periostales Knochenwachstum)

Grab 3

Kurzbeschrieb:

Bestattung eines etwa 18-jährigen, eher männlichen Individuums von 167 cm Körperhöhe.

Erhaltung:

- Schädel: Calvarium ohne Frontale mit dem ziemlich vollständigen Gesicht und dem intakten Unterkiefer. Gebiss: Bei 28 beobachtbaren Alveolen sind 2 Zähne intravital und 3 postmortal ausgefallen; die beiden unteren dritten Molaren sind nicht angelegt; zwei obere Molaren sind isoliert vorhanden. Sehr leichte Parodontose, leichte Karies und Abkauung, mittlere Zahnsteinbildung.
- Postkraniales Skelett: Bis auf die Kniescheiben ist es praktisch vollständig.

Bestimmungen:

- Alter: Humerus und Femur 18, Radius und Ulna 18–20, Tibia 16: etwa 18 Jahre.
- Geschlecht: Schädel +0.22 (n=8), Becken +0.82 (n=8): eher männlich
- Körperhöhe: 165/168/168/166 cm: 167 cm (noch nicht ausgewachsen!)

Besonderheiten:

- abnormer Zahnbefund im Unterkiefer: beide I 2 stehen schief im Kiefer, der linke I 1 scheint nicht angelegt zu sein. Im Oberkiefer sind zwischen den zentralen Schneidezähnen und je zwischen I1 und I2 sehr grosse Lücken. Rechts ist zudem zwischen I1 und I2 eine kleine Alveole ausgebildet (retardierter Milchschneidezahn?)
- beide Femora mit deutlicher Fossa MM. adductorum brevis et magni

Grab 4

Kurzbeschrieb:

Bestattung eines 63-jährigen, 171 cm hohen Mannes. Erhaltung:

- Schädel: Defekte Calotte mit Partien des Gesichtes und dem leicht beschädigten Unterkiefer. Gebiss: Bei 24 beobachtbaren Alveolen sind 6 Zähne intravital und 12 postmortal ausgefallen; leichte Zahnsteinbildung, mittlere Karies (1 Zahn stark kariös), starke Parodontose und Abkauung; Zysten bei C sup.sin. und 12 inf.sin.
- Postkraniales Skelett: Praktisch alle Teile sind vorhanden, doch weisen einige Knochen Defekte auf.

Bestimmungen:

- Altersstufen 3-4/4/2/mind.3: mindestens 63 Jahre
- Geschlecht: Schädel +0.75 (n=11), Becken +1.22 (n=4): männlich
- Körperhöhe: H 169, R 171, F 172, T 171: 171 cm
 Besonderheiten:
- der Schädel und der Rumpf sind stark zerstückelt
- Mikrodontie des P1 sup. dext. (nur an der Alveole beobachtbar)

Pathologica:

- Osteom neben dem rechten Nasenflügel, oberhalb von P1
- einige Wirbel mit leichter Spondylosis deformans
- Arthrose am linken Handgelenk (Articulatio radio-ulnaris distalis sin.)
- leichte Periostitis an allen Unterschenkelknochen

Grab 5

Kurzbeschrieb:

Bestattung eines 52-jährigen, 164 cm hohen Mannes. Erhaltung:

- Schädel: Calvaria ohne Frontale mit defektem Gesicht und intaktem Unterkiefer. Gebiss: 5 Zähne intravital und 4 postmortal ausgefallen; leichte bis mittlere Karies (1 Zahn stark kariös), mittlere Parodontose und Zahnsteinbildung, starke Abkauung.
- Postkraniales Skelett: Es fehlen lediglich die meisten Fussknochen.

Bestimmungen:

- Altersstufen (2)/3/2-3/3-4: 52 Jahre
- Geschlecht: Schädel +0.95 (n=9), Becken +0.94 (n=8): männlich
- Körperhöhe: H 164, R 164, F 166, T 164: 164 cm
 Besonderheiten:
- sehr enge Zahnstellung im unteren Frontgebiss (C I1 inf sin)
- Fehlstellung des C sup.dext., die vermutlich noch verstärkt wurde durch das Fehlen des I2 (congenital oder intravital)
- die Unterkieferwinkel sind nach innen gebogen
- partielle Caudalisation des 12. Brustwirbels

Pathologica:

- Wirbel mit Schmorl'schen Knötchen und Spondylosis deformans bei L 1/2
- Arthrose an den Hüftgelenken
- Fibula dext. mit Exostose beim proximalen Gelenk

Grab 6

Kurzbeschrieb:

Bestattung eines 66-jährigen Individuums eher weiblichen Geschlechts von etwa 166 cm Körperhöhe. Erhaltung:

- Schädel: Praktisch intaktes Cranium. Gebiss: 2 Zähne intravital und 3 postmortal ausgefallen, der M3 inf. dext. ist nicht angelegt; mittlere Parodontose und Zahnsteinbildung, mittlere bis starke Abkauung und Karies (2 Zähne stark kariös).
- Postkraniales Skelett: Es ist ziemlich vollständig ausser den Fibuln und den Fussknochen.

Bestimmungen:

- Altersstufen 5/4/2/3-4: 66 Jahre
- Geschlecht: Schädel –0.20 (n=13), Becken –0.47 (n=8).
 Schambeinwinkel und Sulcus praeauricularis aber eindeutig weiblich ausgebildet, daher eher weiblich
- Körperhöhe: H 165/167, R 163/167, F 165/168: ca. 166 cm

Besonderheiten:

- Mikrodontie des M3 sup.dext.
- Verwachsung des Manubriums mit dem Corpus sterni
- Cranialisation des 1. Lendenwirbels
- der 1. Steisswirbel ist am Sacrum angewachsen

Pathologica:

- Beginnende Osteochondrosis intervertebralis an den unteren Halswirbeln und den Brustwirbeln
- Femur: die Kompacta ist beidseitig im Grenzbereich von Kopf und Hals eindeutig (intravital) aufgelöst und stark vaskularisiert

Grab 7

Kurzbeschrieb:

Bestattung eines 52-jährigen Individuums eher männlichen Geschlechts von etwa 164 cm Körperhöhe.

Erhaltung

- Schädel: Calotte ohne Frontale mit Resten des Gesichtes und dem unvollständigen Unterkiefer. Gebiss: Bei 18 beobachtbaren Alveolen sind 13 Zähne intravital und 3 postmortal ausgefallen. Sehr starke Abkauung, Zyste bei C sup.dext.
- Postkraniales Skelett: Ausser dem Sternum sind alle Teile belegt, doch sind die meisten Knochen defekt oder nur teilweise erhalten.

Bestimmungen

- Altersstufen (2)/-/-/5: (52) Jahre
- Geschlecht: Schädel +0.94 (n=7), Becken -0.17 (n=5): Die wichtigsten Beckenmerkmale sind aber eindeutig männlich, sodass das Geschlecht mit «eher männlich» angegeben werden kann
- Körperhöhe: H-, R 168/163, F 167/165, T 158/166: ca. 164 cm

Besonderheiten:

- Knochenmaterial brüchig
- Metopie
- distales Radiusgelenk mit sehr starkem Ansatz des M. brachioradialis (wird beim Aufheben schwerer Lasten besonders beansprucht)
- Patella dext. emarginata

Pathologica

- Zyste bei C sup.dext.: durchgehende Öffnung bis zum Gaumen
- Spondylarthrose (teilweise stark) vom 4. bis zum 6. Halswirbel
- linkes Schlüsselbein am sternalen Ende verändert: vermutlich entzündlicher Prozess
- Femora: zwischen den Condylen (distal) beidseitig Exostosen (arthrotischer Ursprung?); rechtes distales Gelenk mit starker Arthrose (zur Patella hin)
- Arthrose an der rechten Patella
- Rechtes Os cuboideum und (wesentlich leichter) Metatarsale I dext. mit entzündlichem Prozess
- Langknochen des Beinskelettes mit Längsrillen; Femurkopf mit verstärkter Gefässversorgung: vermutlich Hinweise auf einen generellen entzündlichen Prozess

Grab 8

Kurzbeschrieb:

Bestattung eines 69-jährigen, eher weiblichen Individuums von knapp 160 cm Körperhöhe.

Erhaltung:

 Schädel: Calotte mit dem unvollständigen Gesicht und dem leicht defekten Unterkiefer, Gebiss: 8 Alveolen sind nicht beob-

- achtbar; 10 Zähne intravital und 13 postmortal ausgefallen (nur 1 erhaltener Zahn); Zyste bei P1 sup.dext.
- Postkraniales Skelett: Es fehlen das Sternum sowie die meisten Hand- und Fussknochen; praktisch alle Knochen sind defekt oder nur noch fragmentär erhalten.

Bestimmungen:

- Altersstufen 5/-/-/4: 69 Jahre
- Geschlecht: Schädel –0.03 (n=13), Becken –1.0 (n=3): eher weiblich
- Körperhöhe: H-, R 162/160, F 164/156, T 163/159: 158 cm (weiblich)

Besonderheiten:

- Schädel postmortal leicht verzogen
- die Nasalia sind mit der Glabella verwachsen
- Material ziemlich brüchig
- Geschlecht: postkranial deutlich weiblich, besonders das Bekken; der Schädel weist jedoch stark gegensätzliche Merkmale auf. Anhand des Beckenbaus ist die Bestattung eher weiblich.
- distales Radiusgelenk mit sehr starkem Ansatz des M. brachioradialis (wie Skelett 7)
- Patella emarginata (links; rechte Patella nicht erhalten)
 Pathologica:
- leichte Spondylosis deformans an einigen Brustwirbeln; möglicherweise auch unvollständige Verknöcherung

Grab 9

Kurzbeschrieb:

Bestattung einer 58-jährigen, 160 cm hohen Frau. Erhaltung:

- Schädel: Leicht defektes Cranium. Gebiss: 13 Zähne intravital und 12 postmortal ausgefallen. Leichte bis mittlere Karies und Zahnsteinbildung, mittlere bis starke Parodontose, starke Abkauung; Zysten bei I1+2 inf.dext. und I2 inf. sin.
- Postkraniales Skelett: Es fehlen eine Fibula und die Füsse; einige der Knochen, v.a. im Rumpfbereich, sind defekt.

Bestimmungen:

- Altersstufen 1/4/–/4: 58 Jahre
- Geschlecht: Schädel -0.92 (n=12), Becken -1.08 (n=5): weiblich
- Körperhöhe: R 159, F 162: 161 cm

Besonderheiten:

- Schädel asymmetrisch, evtl. postmortal zusätzlich noch etwas verzogen
- Fehlstellung des I2 sup.sin. (Drehung der Achse)
- Lendenwirbel (L 1–5) mit gelenkartigen Bildungen an den Spinosumfortsätzen

Pathologica:

- Processus mastoideus dext. aufgedunsen
- starke Osteochondrosis intervertebralis und Spondylarthrose an den Lendenwirbeln 3 bis 5 sowie am obersten Sacralwirbel
- der unterste Lendenwirbel ist als Keilwirbel ausgebildet
- Spondylosis deformans und Spondylarthrose an einigen Brustwirbeln Arthrose: an einigen Tuberculi costae (bei einem noch zusätzlicher Gefässaustritt), Articulatio radio-ulnaris dext. (Handgelenk), starke Arthrose und Exostosen an einer Phalanx proximalis (distales Gelenk), an zwei Carpalia und am Metacarpale II sin. (proximales Gelenk); leicht an beiden Hüftgelenken
- Femur sin. mit zystenartiger Lochbildung (glatte Wände) im Caput

Grab 10

Kurzbeschrieb:

Bestattung eines 62-jährigen, 168 cm hohen Mannes. Erhaltung:

Schädel: Calvaria mit Teilen des Gesichtes und dem vollständigen Unterkiefer. Gebiss: 16 Zähne intravital und 3 postmortal ausgefallen; leichte bis mittlere Karies, mittlere bis schwere

- Parodontose und Zahnsteinbildung, starke Abkauung, Zysten bei C und P1 sup. sin. und P1+2 inf.dext
- Postkraniales Skelett: Es ist ziemlich vollständig bis auf Defekte an einigen Knochen.

Bestimmungen:

- Altersstufen 4/-/-/3-4: 62 Jahre
- Geschlecht: Schädel +1.24 (n=13), Becken +0.9 (n=4):
- Körperhöhe: R 169, F 168, T 168: 168 cm

Besonderheiten:

- Schädel postmortal etwas verzogen
- verknöcherter Kehlkopfknorpel
- der zentrale untere linke Schneidezahn ist nur als kleiner Schmelzsplitter erkennbar; möglicherweise Anzeichen für Microdontie
- Verwachsung des Corpus sterni mit dem Processus xiphoideus, das Corpus sterni ist unten stark verbreitert und weist ein Foramen auf
- Radius mit kräftigem Ansatz des M. brachioradialis (wie Gräber 7 und 8)

Pathologica:

- Osteochondrosis intervertebralis an den unteren Lendenwirbeln und am obersten Sacralwirbel
- Spondylosis deformans an allen Lendenwirbeln
- Spondylarthrose an den meisten Brust- sowie an den Lendenwirbeln
- Arthrose an der linken Schulter (rechts nicht beobachtbar), an den Hüftgelenken und (nur leicht) an den distalen Femurge-

Grab 11

Kurzbeschrieb:

Bestattung eines etwa 18-jährigen Individuums eher weiblichen Geschlechts von 167 cm Körperhöhe.

Erhaltung

- Schädel: Gesicht mit Frontale und linker Calottenhälfte ohne Occipitale; der Unterkiefer ist intakt. Gebiss: Alle Zähne vorhanden, die dritten Molaren sind im Durchbruch; Keine Parodontose, leichte Abkauung, leichte bis mittlere Karies und Zahnsteinbildung.
- Postkraniales Skelett: Es fehlen einige Wirbel, die rechte Clavicula und die rechte Scapula, die Radii sowie die meisten Hand- und Fussknochen. Praktisch alle Knochen weisen Defekte auf.

Bestimmungen:

- Alter: Sphenobasilarfuge verschlossen (über 20), Gebiss über 15, Wirbel 18-19, Rippen < 20, Becken 20-24,
- Humerus 20-22, Femur/Tibia > 20: ca. 18 Jahre
- Geschlecht: Schädel -0.04 (n=11), Becken -1.5 (n=4): eher weiblich, da die aussagekräftigsten Merkmale der Hüftbeine eindeutig im weiblichen Bereich liegen
- Körperhöhe: H 169, F 167, T 165: 167 cm (Wachstum abgeschlossen)

Besonderheiten:

- Geschlecht: gegensätzliche Merkmale am Schädel, Becken eindeutig weiblich, Langknochen mit nur schwachen Muskelmarken
- linkes Schlüsselbein äusserst abgeflacht (rechtes nicht erhal-
- Brustbein: Sternebra nur teilweise zusammengewachsen

Grab 12

Kurzbeschrieb:

Bestattung eines 6-jährigen Kleinkindes

Erhaltung:

- Schädel: Calotte mit dem vollständigen Gesicht und dem intakten Unterkiefer.
- Postkraniales Skelett: Es ist ziemlich vollständig

Bestimmungen

Alter: Gebiss 5–6, Humerus, Radius und Tibia 6, Femur 6–7:

- 6 Jahre
- Geschlecht: indet.

Besonderheiten:

- Schädel postmortal verzogen
- Gebiss mit alter Durchbruchsfolge
- beim untersten Lendenwirbel (L 5) und bei den Sacralwirbeln ist die Wirbelspalte offen

Grab 13

Kurzbeschrieb:

Bestattung eines 4-jährigen Kleinkindes

Erhaltung:

- Schädel: Calotte mit dem leicht defekten Gesicht und dem vollständigen Unterkiefer.
- Postkraniales Skelett: Es fehlen die meisten Fussknochen. Bestimmungen:
- Alter: Gebiss und Humerus 4-5, übrige Langknochen 4: 4 Jahre
- Geschlecht: indet.

Besonderheiten:

- Schädel postmortal verzogen
- viele grössere Schaltknochen im Lambdabereich
- linkes Schlüsselbein mit deutlicher sternaler Impression (rechts nicht ausgebildet)

Grab 14

Kurzbeschrieb:

Bestattung eines 14-jährigen Kindes, vermutlich eines Knaben. Frhaltung

- Schädel: Nicht ganz zusammensetzbares Cranium. Gebiss: geringe Abkauung, leichte Karies, leichte bis mittlere Zahnsteinbilduna.
- Postkraniales Skelett: Bis auf die rechte Ulna ist es ziemlich vollständig.

Bestimmungen:

- Alter: Humerus, Femur und Tibia 14, Radius 13: 14 Jahre
- Geschlecht: die wichtigsten Merkmale am Becken sind eindeutig männlich (z.B. Schambeinwinkel und Inc. ischiadica maior)

Besonderheiten:

- Schädel postmortal verzogen
- alte Durchbruchsfolge
- Zungenbein liegt vollständig vor (verknöchert oder dann knorpelig erhalten)
- 3. Brustwirbel mit offenem Wirbelbogen
- rechtes Schlüsselbein sternal mit tiefer Impression (links nicht ausgebildet)
- Langknochen teilweise mit Verfärbungen

Grab 15

Kurzbeschrieb:

Bestattung eines 61-jährigen, eher männlichen Individuums von 174 cm Körperhöhe.

Erhaltung

- Schädel: Praktisch intaktes Cranium. Gebiss: 11 Zähne intravital und einer postmortal ausgefallen; mittlere Parodontose und Zahnsteinbildung, starke Abkauung und Karies (5 Zähne mit sehr starker Karies); 3 Zysten im linken Oberkiefer, von 12 bis P1
- Postkraniales Skelett: Ausser kleineren Defekten ist es vollständig.

Bestimmungen:

- Altersstufen 5/3-4/2-3/3: 61 Jahre
- Geschlecht: Schädel +0.48 (n=13), Becken +0.94 (n=8): eher männlich
- Körperhöhe: H 173, R 176, F 174, T 171: 174 cm Besonderheiten:
- Material allgemein fragil, vor allem der Schädel
- verknöcherter Kehlkopfknorpel

- Processus supracondylaris am linken Humerus
- verknöcherte Sehnenansätze an den Patellae und Calcanei
- Patella emarginata (beidseitig)

- starke Osteochondrosis intervertebralis vom 4. bis zum 7. Halswirbel
- starke Spondylarthrose 7. Hals-/1. Brustwirbel
- Spondylosis deformans an den unteren Brust- und an den Lendenwirbeln
- Arthrose: Schultern, linkes Handgelenk (Articulatio radioulnaris distalis sin.), Hände (einige Carpalia und Phalanges media-
- beide proximalen Tibia-/Fibula-Gelenke mit Exostosen an allen Knochen, v.a. rechts; dazu an beiden Fibuln Verdickungen und entzündliche Prozesse im oberen Fünftel. Vermutlich generelle Entzündung des Beinskelettes.

Grab 16

Kurzbeschrieb:

Bestattung einer 66-jährigen, eher weiblichen Person von 156 cm Körperhöhe.

Erhaltung:

- Schädel: Fast intaktes Cranium. Gebiss: 2 Zähne intravital und einer postmortal ausgefallen; mittlere Parodontose und Abkauung, mittlere bis starke Zahnsteinbildung, starke Karies (4 Zähne mit Totalkaries); Zysten bei M2 sup. dext. et sin. sowie bei M1 inf dext
- Postkraniales Skelett: Es sind praktisch alle Knochen vorhanden, doch sind einige davon defekt.

Bestimmungen:

- Altersstufen 3/5/4/3-4: 66 Jahre
- Geschlecht: Schädel -0.31 (n=13), Becken -1.11 (n=8): eher weiblich
- Körperhöhe: H 158, R 158, F 158, T 151: 156 cm Besonderheiten:
- Schädel nur schwach weiblich
- C2 (Axis) mit kräftigen verfärbten Kalkauflagerungen (postmortal; wenig Eisen (ca. 25 ppm Fe3+), kein Mangan nachweisbar
- Ulna dext. mit grossem Gefässaustritt beim Olecranon
- Patella dext. emarginata

Grab 17

Kurzbeschrieb:

Bestattung eines 63-jährigen, 176 cm hohen Mannes.

- Schädel: Fast intaktes Cranium. Gebiss: 4 Zähne intravital ausgefallen; leichte bis mittlere Parodontose, mittlere Zahnsteinbildung, Abkauung und Karies (3 Zähne stark kariös), Zysten bei M2+3 sup.sin.
- Postkraniales Skelett: Es ist nahezu vollständig.

Bestimmungen:

- Altersstufen 3/4/2-3/3-4: 63 Jahre
- Geschlecht: Schädel +1.62 (n=13), Becken +0.94 (n=8): männlich
- Körperhöhe: H 178, R 174, F 174, T 176: 176 cm Besonderheiten:
- Zungenbein und Kehlkopfknorpel verknöchert
- grosse Lücken zwischen den einzelnen Zähnen des Frontgebisses im Ober- und Unterkiefer
- Brustbein: Manubrium und Sternebra verwachsen

Pathologica

leichte Spondylosis deformans an wenigen Brustwirbeln

Grab 18

Kurzbeschrieb:

Bestattung eines 65-jährigen, 177 cm hohen Mannes. Erhaltung:

- Schädel: Intaktes Cranium. Gebiss: 9 Zähne intravital und 8 postmortal ausgefallen; mittlere Zahnsteinbildung, starke Parodontose, Abkauung und Karies (1 Zahn mit sehr starker Karies), Zysten bei 12 sup.dext., C sup.sin., 11 und C inf.sin.
- Postkraniales Skelett: Es ist nahezu vollständig.

Bestimmungen:

- Altersstufen 5/4/2/3: 65 Jahre
- Geschlecht: Schädel +0.96 (n=13), Becken +1.35 (n=8): männlich
- Körperhöhe: H 178, R 179, F 175, T 174: 177 cm

Besonderheiten:

- Plagiocephalie
- verknöcherter Kehlkopfknorpel
- Radien: kräftige Ansätze des M. brachioradialis
- beide Ossa navicularia pedis zweigeteilt mit Synarthrose (nicht verwachsene Knochenkerne)

Pathologica:

- Spondylarthrose 2. bis 4. Halswirbel
- Spondylosis deformans an den unteren Brust- und an den Lendenwirbeln sowie am Sacrum
- 5. Lendenwirbel mit unverwachsenem Wirbelbogen
- Arthrose: Schultern, Hüften, beide Ellenbogengelenke (rechts stark)
- Lochbildungen in der Scapulae im Corpus, links stärker; rechts vermutlich ein entzündlicher Prozess
- 2 Rippenfrakturen (eine ventral, die andere beim Tuberculum)

Zusätzliches Material:

2 Phalangen von Schaf oder Ziege

Grab 19

Kurzbeschrieb:

Bestattung einer 64-jährigen, eher weiblichen Person von 158 cm Körperhöhe.

Erhaltung

- Schädel: Cranium, die Orbitalregion ist nur teilweise vorhanden. Gebiss: 15 Zähne intravital und 7 postmortal ausgefallen; mittlere Zahnsteinbildung, mittlere bis starke Karies (1 Zahn stark kariös), starke Parodontose und Abkauung; Zysten bei P2 und M2 sup.dext., C sup.sin sowie I2 inf.dext.
- Postkraniales Skelett: Bis auf wenige Defekte ist es vollständig.

Bestimmungen:

- Altersstufen 3/4-5/2-3/3-4: 64 Jahre Geschlecht: Schädel -0.53 (n=12), Becken -0.88 (n=8): eher weiblich
- Körperhöhe: H 160, R 159, F 160, T 155: 158 cm Besonderheiten:

Schädel asymmetrisch

- Metopie, grösstenteils verwachsen
- starke Atrophie des Oberkiefers
- beide Femora mit leichtem Trochanter tertius

Pathologica

- Spondylarthrose: 3./4. Halswirbel, 2 Brust- und untere Lendenwirbel, stark bei L5/S1
- Spondylosis deformans an einigen Brust- und den unteren Lendenwirbeln
- Arthrose (meist leicht): einige Tuberculi costae, Schulter- und Hüftgelenke, Hand (einige Carpalia und Phalanges mediales), Phalanx medialis pedis (die übrigen Zehenknochen fehlen)

Grab 20

Kurzbeschrieb:

Bestattung eines 58-jährigen, eher männlichen Individuums von 165 cm Körperhöhe.

Schädel: Praktisch intaktes Cranium. Gebiss: 7 Zähne intravital und 3 postmortal ausgefallen. Die oberen, eventuell auch die unteren dritten Molaren, sind nicht angelegt. Leichte bis mittlere Karies (4 Zähne stark kariös), mittlere Zahnsteinbildung, mittlere bis starke Parodontose, starke Abkauung; Zysten bei I1 bis C sup.sin., P2 inf.dext. und P2 inf.sin.

Postkraniales Skelett: Es ist vollständig bis auf kleinere Defekte; dazu fehlen die meisten Fussknochen.

Bestimmungen:

- Altersstufen 3/3-4/3/3: 58 Jahre
- Geschlecht: Schädel +0.48 (n=13), Becken +1.23 (n=8): eher männlich
- Körperhöhe: H 164, R 165, F 166, T 166: 165 cm
 Besonderheiten:
- das Geschlecht ist am Schädel nicht eindeutig festzustellen
- Unterkiefer stark abgebaut
- ein zusätzlicher Lendenwirbel mit ausgebildeten Lendenrippen
- Processus costarius sin. beim 5. Lendenwirbel vergrössert, liegt auf der Ala maior des Sacrums auf
- Corpus sterni mit Linksbiegung im unteren Teil
- vereinzelt sehr leichte Grünfärbung an den Knochen
- am rechten Humerus deutliche Grube für den M. pectoralis maior

Pathologica:

- Leichte Spondylarthrose an einigen Brust- und Lendenwirbeln
- leichte Spondylosis deformans bei Th 9/10
- Tibia sin.: verheilte Fraktur am Condylus medialis (Absprengung, Stauchung), Exostose an der oberen Gelenkfläche zur Fibula (das proximale Fibulagelenk fehlt)

Grab 21

Kurzbeschrieb:

Bestattung eines 68-jährigen, 162 cm hohen Mannes. Erhaltung:

- Schädel: Intaktes Cranium. Gebiss: 10 Zähne intravital und 5 postmortal ausgefallen; die oberen dritten Molaren sind nicht angelegt; mittlere Zahnsteinbildung und Karies (2 Zähne stark kariös), starke Parodontose und Abkauung; Zysten bei P1 bis M1 sup.dext.
- Postkraniales Skelett: Es ist ziemlich vollständig.

Bestimmungen:

- Altersstufen 5/4–5/2/4: 68 Jahre
- Geschlecht: Schädel +1.0 (n=13), Becken +1.17 (n=8): männlich
- Körperhöhe: H 162, R 164, F 163, T 159: 162 cm Besonderheiten:
- verknöcherter Kehlkopfknorpel

Pathologica:

- leichte Spondylosis deformans an 3 Brust- und 4 Lendenwirbeln
- Arthrose: Metacarpale I dext. sowie an mindestens 2 äusseren Fingergliedern; dazu Metatarsale I dext.

Grab 22

Kurzbeschrieb:

Bestattung eines 15-jährigen juvenilen, eher männlichen Individuums

Erhaltung:

- Schädel: Nicht zusammensetzbarer Schädel, dessen Teile alle vorhanden sind. Gebiss: 1 Alveole ist nicht beobachtbar, sonst alle Zähne erhalten; der M3 inf.sin. ist nicht angelegt. Leichte Zahnsteinbildung und Abkauung, mittlere Karies (P2 inf.dext. mit Totalkaries).
- Postkraniales Škelett: Es ist ziemlich vollständig erhalten.
 Bestimmungen:
- Alter: Gebiss 14–15, Langknochen 15: 15 Jahre
- Geschlecht: wichtigste Beckenmerkmale sind eindeutig männlich: eher männlich

Besonderheiten:

- Schädelteile postmortal verzogen
- Mikrodontie des M3 sup.dext.

Grab 23

Kurzbeschrieb:

Bestattung eines 61-jährigen Individuums eher weiblichen Geschlechts von etwa 162 cm Körperhöhe.

Erhaltung

- Schädel: Defekte Calotte mit Partien des Gesichtes und dem intakten Unterkiefer. Gebiss: 4 Zähne intravital und 2 postmortal ausgefallen; die oberen dritten Molaren sind nicht angelegt; leichte bis mittlere Zahnsteinbildung und Karies (1 Zahn stark kariös), mittlere Parodontose, starke Abkauung; keine Zysten.
- Postkraniales Skelett: Es ist ziemlich komplett bis auf einige Defekte.

Bestimmungen:

- Altersstufen 2/4/3/3: 61 Jahre
- Geschlecht: Schädel +0.19 (n=9), Becken –1.06 (n=8). Das Becken ist in allen Merkmalen eindeutig weiblich; als Geschlecht kommt somit nur «eher weiblich» in Frage.
- Körperhöhe: H 161, R 160, F 164, T 158: etwa 162 cm Besonderheiten:
- Schädel und Skelett z.T. fragmentiert (Wurzeln)
- Schädel postmortal verzogen und nur teilweise zusammensetzbar
- Schädel dickwandig
- verknöcherter Kehlkopfknorpel
- sehr lange Zahnwurzeln im Oberkiefer, einige auch im Unterkiefer
- Caudalisation des 12. Brustwirbels
- Geschlecht: postkranial weiblich, am Schädel jedoch gegensätzliche Merkmale

Pathologica:

- Spondylarthrose am 2. und 3. Halswirbel, leicht auch an einigen Lendenwirbeln
- leichte Spondylosis deformans an 2 Lenden- und einigen Brustwirbeln

Grab 24

Kurzbeschrieb:

Bestattung einer 69-jährigen, 160 cm hohen Frau. Erhaltung:

- Schädel: Defekte Calotte mit Partien des Gesichtes und dem unvollständigen Unterkiefer. Gebiss: Bei 25 beobachtbaren Alveolen sind 5 Zähne intravital und 14 postmortal ausgefallen; starke Zahnsteinbildung und Abkauung, extreme Karies und Parodontose; Zysten bei allen oberen Schneidezähnen, I1+2 und P1+2 inf.dext., I1 inf.sin.
- Postkraniales Skelett: Alle Teile sind vorhanden, doch sind die meisten Knochen defekt.

Bestimmungen:

- Altersstufen 4-5/-/3-4/5: 69 Jahre
- Geschlecht: Schädel 1.19 (n=12), Becken 1.6 (n=4) weiblich
- Körperhöhe: H 161, R 160, F 162, T 155: 160 cm
 Besonderheiten:
- ganzes Skelett fragil und fragmentiert vermutlich Kombination von Osteoporose und postmortale Korrosion
- Schädel postmortal etwas verzogen, die Calotte ist nicht ganz zusammensetzbar, starke Korrosion am Frontale.
- Atrophie des Unterkiefers

Pathologica:

- Gebiss: extrem schlechter Zustand 8 isolierte Z\u00e4hne k\u00f6nnen infolge von Zysten, Parodontose und Karies (7 davon mit Totalkaries) nicht in die Alveolen eingesetzt werden. Die Zyste bei I2 sup.sin. ist durchgehend bis zur Kieferh\u00f6hle.
- starke Arthrose am rechten Kiefergelenk (links nicht beobachtbar)
- starke Spondylarthrose beim 3. und 4. Halswirbel, etwas weniger bei C 4/5

Grab 25

Kurzbeschrieb:

Bestattung eines 9-jährigen Kindes

Erhaltung

- Schädel: Die meisten Schädelteile sind vorhanden. Gebiss: Alle Zähne vorhanden bis auf den c sup.sin
- Postkraniales Skelett: Es ist komplett bis auf die Patellen, einige Hand- und Fussknochen sowie einige Epiphysen.

Bestimmungen

- Alter: Gebiss 8-9, Humerus 10, Radius und Tibia 91/2, Femur 9: 9 Jahre
- Geschlecht: indet.

Besonderheiten:

alte Durchbruchsfolge

Grab 26

Kurzbeschrieb

Bestattung einer 68-jährigen, eher weiblichen Person von 158 cm Körperhöhe.

Erhaltung

- Schädel: Leicht defektes Cranium. Gebiss: 15 Zähne intravital und 2 postmortal ausgefallen; mittlere Karies (1 Zahn stark kariös), starke Abkauung, sehr starke Parodontose und Zahnsteinbildung; Zysten bei I1+2 und M1 sup.dext. sowie P1 inf.
- Postkraniales Skelett: Beim Rumpfskelett fehlen einige Wirbel und Rippen sowie das Sternum, sonst ist es ziemlich vollständig.

Bestimmungen:

- Altersstufen 4/5/3-4/4: 68 Jahre
- Geschlecht: Schädel -0.89 (n=13), Becken -1.0 (n=6): weiblich
- Körperhöhe: H 160, R 157, F 162, T 153: 158 cm Besonderheiten:
- Gefässimpressionen auf dem Os frontale (rechts stark)
- bei den Humeri angedeutete Processus supracondylares Pathologica:
- nach dem Untersuchungsbericht von Prof. Scheidegger liegt eine tödliche Schädelverletzung vor
- kleines Osteom auf dem Frontale
- stark entzündlicher Prozess an der rechten Maxilla mit Reaktion bis in die Fossa canina und Sinus maxillaris. Die äussere Alveolarwand ist völlig abgebaut, die Zähne hielten nur noch am inneren Rand
- M2 sup.dext. mit extremer Zahnsteinbildung in Form eines Knotens, der fest mit der Wurzel verbunden ist.
- Tabula interna mit tiefen Sulci arteriosi (hinter der Sutura sagittalis) und vielen Foveolae Pacchioni, v.a. im Frontalbereich
- Osteochondrosis intervertebralis bei 3 Halswirbeln
- sehr leichte Spondylarthrose an den Lendenwirbeln

Zusätzliches Material:

2 Hand- und 9 Fussknochen von einem erwachsenen Mann

Grab 27

Kurzbeschrieb:

Bestattung eines 63-jährigen, 167 cm hohen Mannes. Erhaltung:

- Schädel: Ziemlich intaktes Cranium. Gebiss: Alle Zähne sind vorhanden; Karies leicht bis mittel, mittlere Parodontose, Zahnsteinbildung und Karies, keine Zysten.
- Postkraniales Skelett: Bis auf wenige Defekte ist es komplett.

Bestimmungen:

- Altersstufen 3-4/4/2-3/2-3: 63 Jahre
- Geschlecht: Schädel +0.72 (n=13), Becken +1.13 (n=7): männlich
- Körperhöhe: H 166, R 168, F 167, T 166: 167 cm Besonderheiten:
- der Gebisszustand ist für das Alter sehr gut, ebenso die

Gelenke und die Wirbelsäule

- tiefe Rinne oberhalb der Ohröffnungen (ausgeprägte Foveolae suprameaticae
- sehr kräftiges Skelett mit ausgeprägten Muskelmarken, v.a. bei den Humeri

Pathologica

wenige Schmorl'sche Knötchen an den Wirbelkörpern

Grab 28

Kurzbeschrieb:

Bestattung einer 46-jährigen Frau von 161 cm Körperhöhe. Erhaltung

- Schädel: Cranium mit nur geringfügigen Defekten. Gebiss: 1 Zahn intravital und 7 postmortal ausgefallen; die beiden unteren dritten Molaren sind nicht angelegt. Leichte Parodontose, leichte bis mittlere Zahnsteinbildung, Karies und Abkauung, keine Zysten.
- Postkraniales Skelett: Es ist praktisch komplett.

Bestimmungen:

- Altersstufen 1/3(?)/2/3: 46 Jahre
- Geschlecht: Schädel -0.93 (n=13), Becken -1.26 (n=7): weiblich
- Körperhöhe: H 163, R 162, F 163, T 156: 161 cm Besonderheiten:
- Schädel postmortal leicht verzogen
- Metacarpale III sin. ohne Processus am proximalen Gelenk während er auf der rechten Seite deutlich ausgebildet ist. Pathologica:
- feine querverlaufende Gefässimpressionen an der rechten Tibia

Grab 29

Kurzbeschrieb:

Bestattung eines 46-jährigen, 176 cm hohen Mannes Erhaltung

- Schädel: Leicht defektes Cranium. Gebiss: 6 Zähne intravital und 8 postmortal ausgefallen. Leichte bis mittlere Zahnsteinbildung, mittlere Parodontose und Karies (4 Wurzeln mit Totalkaries, die vermutlich zu den Molaren gehören), mittlere bis starke Abkauung; Zysten bei M1 sup.sin. und M3 inf. dext.
- Postkraniales Skelett: Bis auf wenige Defekte ist es komplett.

Bestimmungen:

- Altersstufen 2-3/2-3/2/4: 46 Jahre
- Geschlecht: Schädel +0.55 (n=13), Becken +1.12 (n=8):
- Körperhöhe: H 180, R 174, F 177, T 172: 176 cm

Besonderheiten:

Korrosion am Frontale

Pathologica:

- leichte Spondylosis deformans an den unteren Brust- und an den oberen Lendenwirbeln.
- leichte Arthrose an den Schultern

Grab 30

Kurzbeschrieb:

Bestattung eines 48-jährigen, eher männlichen Individuums von etwa 170 cm Körperhöhe Erhaltung

- Schädel: ziemlich intaktes Cranium. Gebiss: 5 Zähen intravital und 4 postmortal ausgefallen. Mittlere Parodontose, mittlere bis starke Zahnsteinbildung, starke Karies, sehr starke Abkauung; Zysten bei P1 sup.dext. sowie C, P2, M1+2 sup.sin.
- Postkraniales Skelett: Beim Rumpfskelett sind die meisten Knochen vorhanden, trotz des schlechten Erhaltungszustandes. Von den Extremitäten sind die Humeri, der linke Unterarm sowie Teile der Femora erhalten.

Bestimmungen:

- Altersstufen 2/-/-/3: 48 Jahre
- Geschlecht: Schädel +0.79 (n=13), Becken +0.57 (n=3):
- Körperhöhe: H (168), R (171): ca. 170 cm (Messungen an den Knochen in situ)

Besonderheiten:

- Schädel postmortal verzogen
- unregelmässige Abkauung: sehr stark von P2 sup. dext. bis M1 sup. sin., die übrigen Zähne sind schwächer abgekaut
- vollständig erhaltenes Zungenbein und verknöcherter Kehlkopfknorpel
- beidseitiges Os acromiale

Grab 31

Kurzbeschrieb:

- · Bestattung einer 71-jährigen, 161 cm hohen Frau. Erhaltung:
- Schädel: Intaktes Cranium. Gebiss: 9 Zähne intravital und 2 postmortal ausgefallen. Der M3 sup.sin. ist nicht angelegt. Mittlere bis starke Parodontose, Zahnsteinbildung und Abkauung, starke Karies (5 Zähne mit Totalkaries); Zysten bei I1/2 sup.dext. und bei I2 und C sup.sin.
- Postkraniales Skelett: Es ist ziemlich vollständig.

Bestimmungen:

- Altersstufen 5/5/4/4-5: 71 Jahre
- Geschlecht: Schädel –0.72 (n=13), Becken –1.25 (n=8): weiblich
- Körperhöhe: H 162, R 161, F 163, T 158: 161 cm
 Besonderheiten:
- Material allgemein fragil
- grosser Schädel für eine Frau, postmortal etwas verzogen
- Mikrodontie des M3 sup.dext.
- die beiden oberen ersten Molaren sassen nur noch locker auf den stark zurückgebildeten Alveolen
- verknöcherter Sehnenansatz an der linken Clavicula (acromial)
- Brustbein mit grossem Foramen im K\u00f6rper; Manubrium und Corpus verwachsen
- Sacrum sehr stark gebogen (atypisch für eine Frau)
 Pathologica:
- Leichte Spondylarthrose an 2 Brustwirbeln, stark bei L 2–5 (Proc. articularis rechts jeweils stark verbreitert)
- 3 Lendenwirbelkörper seitlich gequetscht (Keilwirbel)
- starke Deformation des rechten Hüftbeines: das Acetabulum fehlt oder ist stark zurückgebildet; angedeutete sekundäre Gelenkfläche an der lateralen Seite; auch Zurückbildung des Os pubis; das rechte Femur ist stark atrophiert. Beeinträchtigung der Gehfähigkeit, verm. durch Luxation des rechten Hüftgelenkes, Keilwirbel verm. verursacht durch hinkende Gehweise
- leichte Arthrose an der linken Hüfte und am linken Knie

Grab 32

Kurzbeschrieb:

Bestattung einer 57-jährigen, 156 cm hohen Frau. Erhaltung:

- Schädel: Intaktes Cranium. Gebiss: je 3 Zähne intravital und postmortal ausgefallen. Leichte bis mittlere Abkauung, mittlere Parodontose, mittlere bis starke Zahnsteinbildung und Karies (4 Zähne stark kariös); Zysten bei P1+2 sup.dext., P2 inf.dext. und M2 inf.sin.
- Postkraniales Skelett: Es fehlen der rechte Humerus sowie wenige Hand- und Fussknochen.

Bestimmungen:

- Altersstufen 1/-/3/4: 57 Jahre
- Geschlecht: Schädel –1.03 (n=13), Becken –1.47 (n=8): weiblich
- Körperhöhe: H 158, R 155, F 159, T 152: 156 cm
 Besonderheiten:

- prägnantes Kinn
- Sacrum praktisch ohne Biegung
- beide Tibien mit starken Erhebungen (Cristae) im Ansatzbereich des M. soleus (Funktion wie bei der Fossa M. solei: Oberflächenvergrösserung der Ansatzstelle)

Pathologica

- die beiden oberen Zysten (P1+2 sup.dext.) durchbrechen die Kieferwand bis zur Eckzahngrube
- M 1 und 2 inf. sin mit eigenartigen Verfärbungen («Füllungen»?)

Grab 33

Kurzbeschrieb:

Bestattung einer etwa 18-jährigen weiblichen Person von 160 cm Körperhöhe.

Erhaltung:

- Schädel: Ziemlich vollständiges Cranium. Gebiss: 1 Zahn postmortal ausgefallen; der M3 inf.sin. ist noch im Durchbruch. Leichte Parodontose und Abkauung, mittlere Zahnsteinbildung und Karies (2 Zähne stark kariös), Zysten bei den M1 inf.
- Postkraniales Skelett: Bis auf wenige Defekte ist es ganz erhalten

Bestimmungen:

- Alter: Sphenobasilarfuge verschlossen (18-), Gebiss um 15, Humerus < 19, Femur/Tibia um 20, Radius/Ulna 18–20: ca. 18 Jahre
- Geschlecht: Schädel –1.06 (n=13), Becken –1.77 (n=6): weiblich
- Körperhöhe: H 164, F 160, T 156: 160 cm

Besonderheiten

- C inf.sin. um 45° in der Achse gedreht
- vermutlich nur 11 Brustwirbel
- Füsse ziemlich korrodiert
- beide Tibien mit Fossa M. solei (links nur schwach)

Pathologica:

- leichte Cribra orbitalia
- Parietale sin. vom Vertex bis zur Sutura squamosa in gerader Linie durchschnitten. Die Ränder sind jedoch unscharf (postmortale Defekte?). Eine Verletzung durch ein scharfes Instrument ist möglich, kann jedoch nicht sicher festgestellt werden.
- Processus mastoideus dext. stark aufgedunsen entzündlicher Prozess?

Grab 34

Kurzbeschrieb:

Bestattung einer 19-jährigen, eher weiblichen Person von 157 cm Körperhöhe. Erhaltung:

- Schädel: praktisch vollständiges Cranium. Gebiss: Alle Zähne vorhanden ausser 2 postmortal ausgefallenen; der M3 inf.dext. ist nicht angelegt. Keine Zahnsteinbildung, leichte Karies, Parodontose und Abkauung.
- Postkraniales Skelett: Bis auf wenige kleine Defekte und das Fehlen der meisten Zehenknochen ist es komplett.

Bestimmungen:

- Alter: Clavicula 18–20, Wirbel 20–23, Becken < 20, Radius/Ulna < 20: ca. 19 Jahre
- Geschlecht: Schädel –1.08 (n=13), Becken –0.06 (n=8): eher weiblich. Das Becken weist gemischte Charakteristika auf, das übrige postkraniale Skelett ist jedoch eindeutig weiblich.
- Körperhöhe: H 159, R 156 (noch im Wachstum), F 160, T 151: ca. 157 cm

Besonderheiten:

- Corpus sterni nur teilweise verwachsen
- verm. Os acromiale sin. (rechts nicht beobachtbar)
- Ausbildung der Foramina transversaria äusserst vielgestaltig

bei C 4-6

 zusätzlicher Wirbel zwischen dem 5. Lendenwirbel und dem Sacrum: rechtsseitig ist er wie der 1. Sacralwirbel ausgebildet (Vergösserung des Processus costarius und Verwachsung mit der Ala maior) und linksseitig wie der 5. Lendenwirbel.

Pathologica:

- unverwachsener Wirbelbogen am 5. Lendenwirbel (Trennung zwischen den Processus articulares superiores und inferiores)
- Clavicula sin: eventuell verheilter Bruch im acromialen Drittel

Zusätzliches Material:

2 Tierknochen: Röhrenknochenfragmente, Grösse etwa wie Rind

Grab 35

Kurzbeschrieb:

Bestattung eines 15- bis 16-jährigen juvenilen Individuums eher weiblichen Geschlechts.

Erhaltuna:

- Schädel: Alle Teile eines Craniums, die jedoch nicht zusammensetzbar sind. Gebiss: 2 Alveolen sind beobachtbar; 1
 Zahn postmortal ausgefallen, 4 Molaren sind isoliert vorhanden. Keine Zahnsteinbildung, sehr leichte Parodontose, leichte Abkauung, starke Karies; Zysten bei P1+2 sup.sin.
- Postkraniales Skelett: Trotz des eher schlechten Erhaltungszustandes sind alle Teile belegt.

Bestimmungen:

- Alter: Länge der Langknochen > 14, Humerus < 19, Femur < 16-18: 15 bis 16 Jahre
- Geschlecht: Schädel indet., Becken eher weiblich: eher weiblich

Besonderheiten:

- Schädel postmortal stark verzogen
- Körper des Zungenbeines verknöchert
- wahrscheinlich neue Durchbruchsfolge (in römischer Zeit sehr selten!)
- Sternum im unteren Teil noch unvollständig verwachsen
- Langknochen sehr lang/schmal; besonders die Humeri sind extrem abgeflacht (Querschnitt flacher als Tibien)

Pathologica:

- beidseitig leichte Cribra orbitalia
- Exostose an einem Tuberculum costae

Grab 36

Kurzbeschrieb:

Bestattung einer 58-jährigen, eher weiblichen Person von 164 cm Körperhöhe.

Erhaltung:

- Schädel: Intaktes Cranium. Gebiss: 6 Zähne intravital und 3 postmortal ausgefallen. Mittlere Parodontose, Abkauung und Karies, mittlere bis starke Zahnsteinbildung; Zysten bei M1 sup. sin. und P2 bis M1 inf. dext. (durchgehend).
- Postkraniales Skelett: Es fehlen die Wirbelsäule, die Rippen, die Claviculae und das Sternum.

Bestimmungen:

- Altersstufen 1/4/3/3-4: 58 Jahre
- Geschlecht: Schädel –0.72 (n=13), Becken –1.35 (n=8): eher weiblich; die Stirnpartie ist ausgeprägt männlich, während alle übrigen Merkmale wie auch das postkraniale Skelett weiblich ausgebildet sind.
- Körperhöhe: H 166, R 164, F 166, T 159: 164 cm Pathologica:
- poröser Gaumen
- leicht aufgeworfene Ränder an den Acetabuli (Arthrose?)
- rechtes Hüftbein mit Exostose unterhalb der Facies auricularis

Zusätzliches Material:

- 1 Fragment aus gebranntem Ton (Ziegelrest?)

Grab 37

Kurzbeschrieb:

Bestattung eines zweieinhalbjährigen Kleinkindes. Erhaltung:

- Schädel: Bruchstücke des Hirnschädels mit dem defekten Unterkiefer (das Gesicht fehlt ganz). Gebiss: erhalten sind 4 Milchmolaren und 2 Kronen des definitiven Gebisses.
- Postkraniales Skelett: Erhalten sind der grösste Teil der Wirbel und Rippen, Teile der Scapulae und Ossa iliacae, 3 Metapodien sowie die defekten Langknochen (v.a. die rechte Seite ist sehr schlecht erhalten).

Bestimmungen:

- Alter: Gebiss, Femur und Tibia 21/2 Jahre.
- Geschlecht: indet.

Grab 38

Kurzbeschrieb:

Bestattung eines 63-jährigen, 169 cm hohen Mannes. Erhaltung:

- Schädel: Intaktes Cranium. Gebiss: je 3 Zähne intravital und postmortal ausgefallen; die dritten Molaren sind nicht angelegt (unten rechts ist es schlecht beurteilbar, da die Molaren fehlen); leichte Karies, Parodontose und Zahnsteinbildung, Abkauung mittel bis stark.
- Postkraniales Skelett: Es ist praktisch vollständig bis auf die meisten Zehenknochen.

Bestimmungen:

- Altersstufen 2-3/4/3/3-4: 63 Jahre
- Geschlecht: Schädel +0.65 (n=13), Becken +1.0 (n=8): männlich
- Körperhöhe: H 168, R 169, F 169, T 168: 169 cm
 Besonderheiten:
- 12 inf.dext. ist nicht durch den Kiefer durchgebrochen (retiniert), wodurch der Eckzahn schräg in die Lücke hineinragt.
- beide Humeri mit starker Impressio M. pectoralis maior Pathologica:
- starke Spondylarthrose bei den Halswirbeln 3 bis 5 (besonders rechts); zweiter Halswirbel unvollständig verknöchert (Facies art. lat. inferior)
- beide Phalanges proximales pedis I mit Osteochondrosis intervertebralis in der proximalen Gelenkfläche

Grab 39

Kurzbeschrieb:

Bestattung einer etwa 45-jährigen Frau von 160 cm Körperhöhe.

Erhaltung:

- Schädel: Unvollständige Calvaria mit Resten des Gesichtes und dem defekten Unterkiefer. Gebiss: Bei 25 beobachtbaren Alveolen sind 8 Zähne intravital und 11 postmortal ausgefallen; der M3 inf.dext. ist eventuell nicht angelegt, 4 Zähne liegen isoliert vor. Mittlere Karies, mittlere bis starke Abkauung, die Parodontose ist nicht beurteilbar. Zysten bei P1 und I2 sup.dext.
- Postkraniales Skelett: Es fehlen das Sternum sowie einige Wirbel und Rippen; die meisten vorhandenen Knochen sind defekt.

Bestimmungen:

- Altersstufen 1/-/-/5: ca. 47 Jahre
- Geschlecht: Schädel –1.0 (n=8), Becken –2.0 (n=2): weiblich
- Körperhöhe: H 164, R 159, F 158, T 157: 159 cm
 Besonderheiten:
- das Skelett ist stark fragmentiert und teilweise auch korrodiert,
 v.a. die Tabula externa des Schädels
- die Alveolen sind zum grössten Teil postmortal zerstört Pathologica:
- Zyste bei 12 sup.dext.: Eröffnung zum Gaumen
- teilweise starke Spondylarthrose an den Halswirbeln, einem

- Brust- und an mindestens 2 Lendenwirbeln
- einige Tuberculi costae und beide Schlüsselbeine (sternal) mit Arthrose
- linke Unterarmknochen im proximalen Schaftdrittel pathologisch verändert

Zusätzliches Material

linkes Hüftbein eines kräftig gebauten Mannes (erwachsen)

Grab 40

Kurzbeschrieb:

Bestattung einer etwa 60-jährigen Frau von 160 cm Körper-

Erhaltung

- Schädel: Defekte Calotte mit Teilen des Gesichtes und dem intakten Unterkiefer. Gebiss: Im Unterkiefer sind alle Zähne intravital ausgefallen und im Oberkiefer (5 sind nicht beobachtbar) 3 intravital und 6 postmortal.
- Postkraniales Skelett: Die meisten Knochen sind vorhanden, doch sind praktisch alle defekt.

Bestimmungen:

- Alter: Verwachsung der Schädelnähte um 60 Jahre
- Geschlecht: Schädel -0.83 (n=5), Becken -1.5 (n=3): weib-
- Körperhöhe: H 164, R 159, F 163, T 155: 160 cm

Besonderheiten

- Skelett stark fragmentiert
- Frontale sehr stark korrodiert
- Atrophie des Unterkiefers
- rechtes Iliosacralgelenk stark verändert, eventuell pathologisch (links nicht beobachtbar)

Pathologica:

- Arthrose: rechtes Unterkiefergelenk, einige Wirbelgelenke, Hüftgelenke, linker Ellenbogen (rechts nicht beobachtbar)
- Osteochondrosis intervertebralis zwischen dem 3. und 4. Halswirbel
- Keilwirbel mit Osteochondrosis intervertebralis bei mindestens 2 Lenden- und 2 mittleren Brustwirbeln; dazu asymmetrische Processus articulares inferiores bei 2 Lendenwirbeln (die Wirbelsäule war in situ stark gekrümmt; wegen des schlechten Erhaltungszustandes konnten jedoch einige Wirbel nicht beobachtet werden)
- Scapulae mit entzündlichen Prozessen unterhalb der Cavitates alenoidales
- linker distaler Humerus pathologisch verändert (verheilter Bruch?)
- 2 Phalanges proximales manus mit stark verknöcherten Sehnenansätzen (palmar), eine weitere Phalanx proximalis mit entzündlichem Prozess im Schaft.
- Periostitis an der rechten Tibia (links nicht beobachtbar) Zusätzliches Material
- rechtes Schlüsselbein eines kräftigen Mannes; vermutlich gleiches Individuum wie bei Grab 39

Grab 41

Kurzbeschrieb:

Bestattung eines etwa 20-jährigen, eher männlichen Individuums von 160 cm Körperhöhe.

Erhaltung

- Schädel: Defektes Cranium. Gebiss: Alle Zähne erhalten bis auf 2 postmortal ausgefallene. Leichte Parodontose und Abkauung, mittlere Zahnsteinbildung und Karies (2 Zähne stark kariös), Zyste bei P2 inf. dext.
- Postkraniales Skelett: Es ist ziemlich vollständig erhalten. Bestimmungen:
- Alter: Sphenobasilarfuge offen, Gebiss um 20, Becken < 25, Humerus < 19, Radius < 21, Femur/Tibia > 20: ca. 20
- Geschlecht: Schädel +0.31 (n=13), Becken +0.17 (n=8): eher männlich (gegensätzliche Merkmale am Becken, Gesamtbau aber doch männlich)

Körperhöhe: H 160, R 158 (beide noch im Wachstum), F 163, T 158: 160 cm

Besonderheiten:

- Schädel postmortal verzogen, so dass das Occipitale nur teilweise angesetzt werden konnte.
- Cribra orbitalia
- anhand der Abkauung des M2 eher alte Durchbruchsfolge
- beide Fibuln mit deutlichen Nagespuren (Mäuse?)

Grab 42

Kurzbeschrieb:

Bestattung eines 3-jährigen Kleinkindes

Erhaltung

- Schädel: Ziemlich vollständiger Hirnschädel mit dem defekten Gesicht und dem fast vollständigen Unterkiefer. Gebiss: 5 Zähne des Milchgebisses sind postmortal ausgefallen.
- Postkraniales Skelett: Es fehlen Teile des Sternums, die Patellen ,viele Hand- und Fussknochen sowie die meisten Epiphysen.

Bestimmungen:

- Alter: Gebiss 3, Humerus, Radius und Tibia 21/2, Femur 3: ca. 3 Jahre.
- Geschlecht: indet. (Beckenbau eher männlich)

Besonderheiten

beide Humeri mit Proc. supracondylaris

Grab 43

Kurzbeschrieb:

Bestattung eines 66-jährigen, 167 cm hohen Mannes.

- Schädel: Cranium, Gesichtsschädel leicht defekt (nicht zusammensetzbar), und ein fast vollständiger Unterkiefer. Gebiss: 22 Zähne intravital und 2 postmortal ausgefallen. Mittlere Karies, mittlere bis starke Zahnsteinbildung, starke Parodontose und Abkauung, keine Zysten.
- Postkraniales Skelett: Bis auf wenige Defekte ist es ziemlich vollständig erhalten.

Bestimmungen:

- Altersstufen 5/4/(3)/3: 66 Jahre
- Geschlecht: Schädel +0.75 (n=11), Becken +0.87 (n=8):
- Körperhöhe: H und R 168, F 167, T 166: 167 cm Besonderheiten:
- Schädel für einen Mann zierlich
- Schädel postmortal etwas verzogen, wodurch das Gesicht nicht ansetzbar ist.
- Atrophie des Unterkiefers und des Oberkiefers (die Gesichtsknochen sind hauchdünn)
- verknöcherte Knorpel des Kehlkopfes und der Rippen
- oberster Halswirbel (Atlas, C1) beidseitig mit zusätzlichem Foramen dorsal des Foramen transversum. Rechtsseitig ist es geteilt. (Es entspricht nicht dem Canalis art. vertebralis)
- partielle Caudalisation des 12. Brustwirbels
- ausgeprägte Crista Musculi solei an den Tibien Pathologica:

- Osteochondrosis intervertebralis vom 5. bis zum 7. Halswir-
- leichte Spondylosis deformans an mindestens 2 Brustwirbel, starke am 1. Sacralwirbel
- leichte bis mittlere Spondylarthrose an den Lendenwirbeln
- leichte Arthrose an den Schultergelenken, sehr leicht an den Hüftgelenken
- Femur dext.: Condylus medialis mit kleinem Knochensporn auf der Gelenkfläche

Grab 44

Bestattung einer 68-jährigen, eher weiblichen Person von 163

cm Körperhöhe

Erhaltung

- Schädel: Fast intaktes Cranium. Gebiss: 16 Zähne intravital und 4 postmortal ausgefallen. Leichte bis mittlere Zahnsteinbildung, mittlere Karies, mittlere bis starke Parodontose, starke Abkauung. Zysten bei I1+2 inf.dext.
- Postkraniales Skelett: Bis auf wenige Defekte ist es intakt.
 Bestimmungen:
- Altersstufen 3/5/4/5: 68 Jahre
- Geschlecht: Schädel –0.48 (n=13), Becken –0.47 (n=8): eher weiblich
- Körperhöhe: H 165, R 163, F 164, T 159: 163 cm Besonderheiten:
- unregelmässige Synostosierung: hinter dem Vertex ist alles geschlossen, während davor die Nähte noch unverwachsen sind.
- Sacrum stark nach ventral gebogen (atypisch für eine Frau)
- beide Tibien mit einer Fossa M. solei

Pathologica:

- entzündlicher Prozess in der linken Orbita?
- mindestens 10 kleine Osteome über das ganze Schädeldach verteilt
- Osteochondrosis intervertebralis und teilweise starke Spondylarthrose an den Halswirbeln 3 bis 6
- leichte Spondylosis deformans an 3 Brustwirbeln, stärker vom 2. Lendenwirbel bis zum Sacrum (teilweise auch mit Spondylarthrose)
- Arthrose: beide Ellenbogengelenke, sehr leicht auch an den Hüften und an den Knien (Tibien: Tuberculi intercondylares); äussere Fingerglieder und an einigen mittleren und äusseren Zehengliedern.
- unvollständige Verknöcherung der beiden Trochleae tali

Grab 45

Kurzbeschrieb:

Bestattung einer 73-jährigen, eher weiblichen Person von 160 cm Körperhöhe.

Erhaltung

- Schädel: Defekte Calotte mit Teilen des Gesichtes und dem nicht ganz vollständigen Unterkiefer. Gebiss: 1 Alveole ist nicht beobachtbar; 16 Zähne intravital und 6 postmortal ausgefallen. Leichte bis mittlere Zahnsteinbildung, mittlere Karies und Parodontose, mittlere bis starke Abkauung.
- Postkraniales Skelett: Es ist relativ vollständig erhalten, allerdings sind die Gelenke der rechten Extremitätenseite fast alle beschädigt.

Bestimmungen

- Altersstufen 5/5/–/5: 73 Jahre
- Geschlecht: Schädel –0.48 (n=12), Becken –0.88 (n=8): eher weiblich
- Körperhöhe: H 164, R 157, F 162, T 156: 160 cm
 Besonderheiten:
- Schädel dickwandig, sehr harmonische Dolichocranie
- Sacrum stark nach ventral gebogen
- Atrophie des Oberkiefers
- Ossa navicularia pedis: die Processus sind nicht verwachsen, beide Gelenke mit Arthrose

Pathologica:

- C sup.sin. steckt schräg im Kiefer (nicht herausgewachsen), die vordere Alveole ist jedoch ganz abgebaut
- Spondylosis deformans an 2 Halswirbeln
- Osteochondrosis intervertebralis zwischen dem 4. und 5. Lendenwirbel sowie am Sacrum (mit geringer Spondylarthrose)
- starke Deformation des rechten Schultergelenkes: die Cavitas glenoidalis ist stark abgebaut, das Caput humeri wurde nur seitlich benutzt (starke Abplattung) – vermutlich durch Luxation des Schultergelenkes verursacht.
- Arthrose an den grossen Zehen (Phalanges proximales)

Grab 46

Kurzbeschrieb:

Bestattung eines 65-jährigen Individuums unbestimmbaren Geschlechts von etwa 165 cm Körperhöhe.

Erhaltung:

- Schädel: Defekte Calotte mit Teilen des Gesichtes und dem ziemlich vollständigen Unterkiefer. Gebiss: Bei 19 beobachtbaren Alveolen sind 6 Zähne intravital und 3 postmortal ausgefallen. 1 P sup. liegt isoliert vor. Leichte bis mittlere Zahnsteinbildung, mittlere Parodontose und Karies (3 Zähne stark kariös), mittlere bis starke Abkauung; Zyste bei P1 inf.sin.
- Postkraniales Skelett: Es ist praktisch vollständig erhalten.
 Bestimmungen:
- Altersstufen 4/5/2/2-3: 65 Jahre
- Geschlecht: Schädel –0.42 (n=9), Becken –0.2 (n=7): indet. (gegensätzliche Merkmale am Becken)
- Körperhöhe: H 169/167, R 166/162, F 168/165, T 168/160: ca. 165 cm

Besonderheiten

Patella dext. partita (linke nicht beobachtbar)
 Pathologica:

- leichte Spondylosis deformans und Spondylarthrose vom 11. Brust- bis zum 3. Lendenwirbel, z.T. auch mit Schmorl'schen Knötchen
- Arthrose an wenigen Tuberculi costae

Zusätzliches Material:

 1 Tierknochen: Röhrenknochenfragment, der Grösse nach vom Rind

Grab 47

Kurzbeschrieb:

Bestattung einer 54-jährigen Frau von 161 cm Körperhöhe. Erhaltung:

- Schädel: Calvaria mit den defekten Gesichtspartien. Gebiss: Bei 20 beobachtbaren Alveolen sind 8 Zähne intravital und 7 postmortal ausgefallen. 2 obere Molaren sind isoliert erhalten. Keine Zahnsteinbildung, mittlere bis starke Parodontose, starke Abkauung, sehr starke Karies (Totalkaries an 6 Zähnen, die nicht mehr in die Alveolen eingepasst werden können). Zysten bei M1+2 sup.dext., 11 sup.sin., C inf.dext. sowie 11 und P1 inf. sin.
- Postkraniales Skelett: Es sind praktisch alle Teile vorhanden, doch sind die meisten Knochen defekt.

Bestimmungen:

- Altersstufen 3-4/-/2-3/-: 54 Jahre
- Geschlecht: Schädel –0.65 (n=11), Becken –1.23 (n=6): weiblich
- Körperhöhe: H 164, R 161, F 162, T 159: 161 cm
 Besonderheiten:
- Skelett teilweise fragmentiert und korrodiert (v.a. Schädel)
- beide Femora mit Trochanter tertius

Pathologica:

- Processus mastoideus dext. mit grosser Höhlung (entzündlicher Prozess? – Diagnose schwierig, da starke Korrosion)
- Anfang von Spondylösis deformans bei 5. Lendenwirbel und beim Sacrum; dazu an einigen Wirbelkörpern noch Schmorl'sche Knötchen

Zusätzliches Material:

- ein Stück Korrosionsrest eines eisernen Gegenstandes

Grab 48

Kurzbeschrieb:

Bestattung eines 64-jährigen, 169 cm hohen Mannes. Erhaltung:

- Schädel: Praktisch intaktes Cranium. Gebiss: 4 Zähne intravital und einer postmortal ausgefallen; die beiden oberen dritten Molaren sind nicht angelegt. Leichte Parodontose und Zahnsteinbildung, mittlere Abkauung, mittlere bis starke Karies; Zyste bei P2 sup.sin.
- Postkraniales Skelett: Bei einigen Defekten v.a. im Brustbereich ist es vollständig.

Bestimmungen:

- Altersstufen 5/4-5/1-2/2: 64 Jahre
- Geschlecht: Schädel +1.03 (n=13), Becken +1.11 (n=8): männlich
- Körperhöhe: H 171, R 169, F 167, T 169: 169 cm
 Besonderheiten:
- Caudalisation der Processus articulares am 12. Brustwirbel
- an beiden Femora ist der Trochanter maior kaum entwickelt (oder eventuell nicht verwachsen)
- an der rechten Fibula ist der obere Ansatz des M. extensor digitorum longus verknöchert

- P2 sup.sin.: 2-wurzelig, wobei eine Alveole praktisch geschlossen ist und die andere eine tiefe Zyste aufweist
- leichte Arthrose an den Schultern und Hüften
- 1 Phalanx proximalis pedis mit starkem Abbau des proximalen Gelenkes (Arthrose?)

Grab 49

Kurzbeschrieb:

Bestattung eines über 40-jährigen Individuums eher männlichen Geschlechts von knapp 160 cm Körperhöhe.

Erhaltung:

- Schädel: Defekte Calotte mit Teilen des Gesichtes und dem nicht ganz vollständigen Unterkiefer. Gebiss: 17 Zähne intravital und 2 postmortal ausgefallen; die oberen dritten Molaren sind nicht angelegt. Starke Abkauung, Parodontose, Karies und Zahnsteinbildung (v.a. an den unteren Incisiven); Zyste bei P2 inf sin.
- Postkraniales Skelett: Es fehlen einige Wirbel und Rippen sowie die rechte Schulterpartie mit dem rechten Humerus. Praktisch alle vorhandenen Knochen sind defekt.

Bestimmungen:

- Altersstufen 1/-/-/mind.4: mindestens 44 Jahre
- Geschlecht: Schädel +0.15 (n=12), Becken 0 (n=1): eher männlich (gegensätzliche Merkmale am Schädel, alle wichtigen Merkmale sind aber männlich)
- Körperhöhe: H 160, F 161, T 161: 160 cm

Besonderheiten:

- Skelett in situ stark zerstückelt, schlechter Erhaltungszustand
- Schädel postmortal verzogen
- vermutlich retardierte Synostosierung der Schädelnähte
- der M3 inf.dext. ist nicht herausgewachsen und steckt noch im Kiefer (kariös)

Pathologica:

- mittelstarke Spondylarthrose an 2 Halswirbeln
- Arthrose: oberstes Wirbelgelenk (Articulatio atlanto-axialis mediana), linke Schulter (rechts nicht beobachtbar), leicht an den Carpalia und einigen Phalanges mediales et distales manus
- leichte Periostitis an der linken Tibia
- 3 verknöcherte Partikel (das grösste von etwa 15 mm im Durchmesser): Nieren-, Blasen- oder Gallensteine

Grab 50

Kurzbeschrieb:

Bestattung einer 62-jährigen, 163 cm hohen Frau. Erhaltung:

- Schädel: Leicht defekte Calvaria mit dem nicht zusammensetzbaren Gesicht und dem intakten Unterkiefer. Gebiss: Bei 27 beobachtbaren Alveolen sind 12 Zähne intravital und 2 postmortal ausgefallen. Keine Zahnsteinbildung, mittlere bis starke Parodontose, starke Abkauung und Karies (4 Zähne sehr stark kariös); Zysten bei 12 bis P1 sup.dext. und 12 bis C sup.sin. (zwei durchgehende Zysten). 2 obere Molaren liegen isoliert vor.
- Postkraniales Skelett: Es ist ziemlich komplett bis auf einige Defekte beim Rumpfskelett.

Bestimmungen:

Altersstufen 4–5/3–4/3/4: 62 Jahre

- Geschlecht: Schädel –0.92 (n=12), Becken –1.4 (n=7): weiblich
- Körperhöhe: H 167, R 161, F 165, T 157: 163 cm Besonderheiten:
- teilweise starke Korrosion, v.a. an den Langknochen Pathologica:
- leichte Spondylosis deformans an einem Brustwirbel und Spondylarthrose beim 5. Lendenwirbel und beim Sacrum
- leichte Arthrose an den Hüftgelenken

Grab 51

Kurzbeschrieb:

Bestattung eines 65-jährigen, 172 cm hohen Mannes. Erhaltung:

- Schädel: Leicht defekte Calotte mit Partien des Gesichtes und dem fast vollständigen Unterkiefer. Gebiss: 22 Zähne intravital und 9 postmortal ausgefallen – nur noch ein erhaltener Zahn. Zyste bei M1–2 sup.sin. (durchgehend).
- Postkraniales Skelett: bei mittelgutem Erhaltungszustand sind praktisch alle Knochen erhalten.

Bestimmungen:

- Altersstufen 4-5/4/-/3: 65 Jahre
- Geschlecht: Schädel +0.69 (n=12), Becken +1.17 (n=5): männlich
- Körperhöhe: H 173, R 169, F 171, T 173: 172 cm
 Besonderheiten:
- ausgeprägte Spina mentalis
- verknöcherter Kehlkopfknorpel
- Atrophie des Ober- und des Unterkiefers
- generell sehr kräftige Muskelansätze am ganzen Skelett
- Zweigeteilte Gelenkflächen an den Processus articulares sin. beim 9. und 10. Brustwirbel
- verknöcherte Rippenknorpel
- Patella emarginata dext.
- an beiden Tibien sind Cristae M. solei ausgebildet Pathologica:
- starke Spondylarthrose bei C 3/4 sin. und Th 4-6, etwas schwächer an einigen anderen Brustwirbeln
- Spondylosis deformans und Osteochondrosis intervertebralis bei den Lenden- und den unteren Brustwirbeln
- der 5. und der 6. Brustwirbel sind etwas nach ventral gequetscht, dazu beim Th 5 ein verknöchertes Ligament (Ligamentum capitis costae radiatum dext.?)
- Arthrose: leicht an den Schultern, am linken H
 üftgelenk, an den Phalanges mediales et distales manus und an einer Phalanx proximalis pedis; mittel am Os naviculare pedis dext. und am rechten Astragalus

Grab 52

Kurzbeschrieb:

Bestattung eines 57-jährigen Mannes von 169 cm Körperhöhe.

Erhaltung:

- Schädel: Nicht ganz vollständiges Cranium. Gebiss: 7 Zähne intravital und 19 postmortal ausgefallen. Mittlere Zahnsteinbildung, mittlere bis starke Abkauung und Karies, starke Parodontose; Zysten bei P2, M1 und M2 sup.dext. und P1 sowie M1-3 (durchgehend) sup.sin.
- Postkraniales Skelett: Es fehlen Teile des Sternums sowie der linke Radius. Ferner sind v.a. im Rumpfbereich einige Defekte festzustellen.

Bestimmungen:

- Altersstufen 4/3/–/4: 57 Jahre
- Geschlecht: Schädel +0.76 (n=13), Becken +0.83 (n=5): männlich
- Körperhöhe: H 169, R 170, F 168, T 170: 169 cm

Besonderheiten:

- Schädel postmortal etwas verzogen
- 5. Lendenwirbel mit verbreitertem Processus costarius sin. (partielle Caudalisation)

- Wirbel fragmentiert
- unvollständige Verknöcherung der Epiphysen von Humerus prox. und Radius distal
- kräftige Ansätze des M. brachioradialis an Humerus und Radius

- Starke Spondylarthrose bei C2/3 und C7 bis etwa Th7
- Osteochondrosis intervertebralis bei den obigen Wirbeln sowie beim 5. Lendenwirbel und beim Sacrum
- leichtere Spondylarthrose an einigen Brustwirbeln
- Spondylosis deformans, Keilwirbel und Bandscheibeneinbruch an einem unteren Brustwirbel
- Arthrose: leicht an einigen Tuberculi costae, Schultern, linkes Kniegelenk und linke Patella; stark an einer Phalanx proximalis pedis
- 1 Phalanx medialis manus mit Knochenauflagerungen und Reaktion an der zugehörigen Phalanx proximalis (verm. entzündlicher Prozess)

Grab 53

Kurzbeschrieb:

Bestattung eines 2- bis 3-jährigen Kleinkindes. Erhaltung:

- Schädel: Bruchstücke des Hirnschädels mit Teilen des Gesichtes und dem defekten Unterkiefer. Gebiss: Erhalten sind
 19 Milchzähne sowie drei Zähne des defintiven Gebisses (ohne diejenigen im Kieferknochen).
- Postkraniales Skelett: Es sind einige Wirbel und Rippen, ein Fragment des linken Os ilium und 5 Hand- oder Fussknochen erhalten sowie Reste der Langknochen – erkennbar sind ein Humerus und eine Tibia.

Bestimmungen:

- Alter: Gebiss 2 bis 3 Jahre
- Geschlecht: indet.

Besonderheiten:

- Skelett schlecht erhalten und stark zerstückelt

Grab 54

Kurzbeschrieb:

Bestattung eines etwa 70-jährigen Mannes von 169 cm Körperhöhe.

Erhaltung:

- Schädel: Hintere Hälfte der Calotte mit dem linken Os zygomaticum und einem Teil der linken Unterkieferseite. Gebiss: Lediglich 2 Alveolen sind beobachtbar, bei denen die Zähne postmortal ausgefallen sind.
- Postkraniales Skelett: Alle Skelettpartien sind belegt, doch sind praktisch alle vorhandenen Knochen defekt.

Bestimmungen:

- Altersstufen (5)/(4)/-/-: (71) Jahre
- Geschlecht: Schädel +0.83 (n=5), Becken +1.0 (n=4): männlich
- Körperhöhe: H 169, R 169, F 170: 169 cm

Besonderheiten:

- Schädel meso- bis brachycran
- Delle im hinteren Teil der Sutura sagittalis und angedeuteter Chianon
- die Rumpfpartie ist schlecht erhalten
- verknöcherter Rippenknorpel

Pathologica:

- in situ war die Wirbelsäule gebogen; aufgrund des schlechten Erhaltungszustandes konnten die Wirbel nur teilweise beobachtet werden: Osteochondrosis intervertebralis bei L5/S1; Spondylarthrose an C2, L5/S1, 2 weitere Lendenwirbel; Spondylosis deformans an mindestens 6 Brust- und Lendenwirbeln.
- rechtes Ellenbogengelenk zusammengewachsen (in situ beobachtbar) – es konnte jedoch nicht ganz zusammengesetzt werden.
- Fraktur des rechten Radius mit Verkürzung, vermutlich in

Zusammenhang mit dem verwachsenen Ellenbogen

 Arthrose: linke Schulter, beide Hüften, Radius dext. (distales Gelenk), linkes Ellenbogengelenk (Articulatio radio-ulnaris proximalis), Metacarpale I dext. (beide Gelenkflächen)

Zusätzliches Material:

von einem 14-jährigen Kind: 1 Zahn, Ulna dext., distales Radiusgelenk, 6 Rippenfragmente, 7 Hand- und Fussknochen

Grab 55

Kurzbeschrieb:

Bestattung eines erwachsenen, eher männlichen Individuums von 168 cm Körperhöhe.

Erhaltung:

- Schädel: Nicht vorhanden.
- Postkraniales Skelett: Erhalten sind die Beinpartien und die Füsse.

Bestimmungen:

- Alter: erwachsen
- Geschlecht: kräftige Knochen: eher männlich
- Körperhöhe: T 168 cm

Grab 56

Kurzbeschrieb:

Bestattung eines erwachsenen, eher männlichen Individuums von 169 cm Körperhöhe.

Erhaltung:

- Schädel: Es liegen 3 Hirnschädelfragmente (Hinterhaupt, Iniongegend) und ein Praemolar vor (nicht sicher von diesem Individuum)
- Postkraniales Skelett: Nur die Unterschenkel und Füsse sind erhalten.

Bestimmungen:

- Alter: erwachsen
- Geschlecht: Hinterhaupt mit kräftigen Muskelmarken; eher männlich auch aufgrund der Robustizität der Langknochen
- Körperhöhe: Tibia 169 cm

Pathologica:

- Periostitis im oberen Viertel von Tibia und Fibula sin.
- nicht verwachsene Processus an den Ossa naviculares pedis, beide Gelenke mit Arthrose
- Arthrose an beiden Phalanges proximales I pedis (distal)

Grab 57

Kurzbeschrieb:

Bestattung eines 69-jährigen, 171 cm hohen Mannes. Erhaltung:

- Schädel: Defekte Calotte mit dem nicht zusammensetzbaren Gesicht und dem ziemlich vollständigen Unterkiefer. Gebiss: Bei 26 beobachtbaren Alveolen sind 10 Zähne intravital und 3 postmortal ausgefallen. Mittlere Zahnsteinbildung und Karies (3 Zähne stark kariös), mittlere bis starke Parodontose, starke Abkauung, Zysten bei C sup.dext., C sup.sin., C inf.dext. und M2 inf. sin.
- Postkraniales Skelett: Alle Partien sind vorhanden, doch z.T. schlecht erhalten und fragmentiert.

Bestimmungen:

- Altersstufen 5/-/-/4: 69 Jahre
- Geschlecht: Schädel +1.73 (n=12), Becken +0.5 (n=2): männlich
- Körperhöhe: H 171, R 173, F 172, T 169: 171 cm
 Besonderheiten:
- Schädel sehr kräftig und ausgeprägt männlich
- Atlas (C1) mit zusätzlichem Foramen auf der Knochenbrücke des Arcus posterior zwischen F. transversarium und Sulcus arteriae vertebralis (wie bei Bestattung 43)
- Langknochen extrem kräftig gebaut, mit deutlichen Muskelmarken

- kleine Exostose am Rand des linken Unterkiefergelenkes (Condylus mandibularis, ventral)
- starke Beläge an den Wurzeln der unteren Molaren
- starke Spondylarthrose vom 2. bis zum 4. Halswirbel
- starke Osteochondrosis intervertebralis bei C6/7 und Th12/L1
- Spondylosis deformans an mehreren Brustwirbeln, an L1 und L5/S1
- Arthrose: linke Schulter (rechts nicht beobachtbar), Zehenknochen (1 Phalanx proximalis, 2 Phalanges mediales und 2 oder 3 distales)

Grab 58

Kurzbeschrieb:

Bestattung eines 18-jährigen, eher männlichen Individuums von 161 cm Körperhöhe (Wachstum noch nicht abgeschlossen). Erhaltung:

- Schädel: Defekte Calvaria mit dem schlecht erhaltenen Gesicht und dem ziemlich vollständigen Unterkiefer. Gebiss: 4
 Zähne postmortal ausgefallen; die oberen sind alle isoliert erhalten. Sehr leichte Parodontose, leichte Abkauung, leichte bis mittlere Zahnsteinbildung, mittlere Karies, keine Zysten (nur der Unterkiefer ist beobachtbar).
- Postkraniales Skelett: Es ist relativ vollständig erhalten.

Bestimmungen:

- Alter: Sphenobasilarfuge verschlossen (18–), Gebiss 18, Humerus < 19, Radius/Ulna 18–20, Femur/Tibia 15–17: 18
 Jahre
- Geschlecht: Schädel +0.35 (n=12), Becken +0.7 (n=8): eher männlich
- Körperhöhe: H 158, F 162, T 163: 161 cm Wachstum noch nicht abgeschlossen

Besonderheiten

- Mikrodontie des 12 sup.dext.
- Caudalisation des 12 Brustwirbels

Pathologica:

- 5. Lendenwirbel als Keilwirbel ausgebildet (nach dorsal gequetscht)
- Metacarpale I und Phalanx I,1 dext. stark verkürzt und sehr breit (verm. nicht pathologisch); übriges Handskelett aber normal ausgebildet

Grab 59

Kurzbeschrieb:

Bestattung einer 58-jährigen, eher weiblichen Person von 160

Erhaltung:

- Schädel: Ziemlich vollständiges Cranium. Gebiss: 7 Zähne intravital und 5 postmortal ausgefallen. Leichte bis mittlere Karies (2 Zähne stark kariös), mittlere Zahnsteinbildung und Abkauung, mittlere bis starke Parodontose; Zyste bei M3 inf.sin.
- Postkraniales Skelett: Es ist relativ vollständig bis auf postmortale Defekte und das fehlende Sternum.

Bestimmungen:

- Altersstufen 2/3-4/3-4/4-5: 58 Jahre
- Geschlecht: Schädel –0.55 (n=13), Becken –0.69 (n=6): eher weiblich
- Körperhöhe: H 162, R 160, F 163, T 156: 160 cm

Besonderheiten:

- mittelstarke Korrosion am ganzen Skelett
- unregelmässige Synostosierung: Sutura coronalis geschlossen, die übrigen Nähte sind unverwachsen

Pathologica:

- leichte Spondylosis deformans am 5. Lendenwirbel und am Sacrum
- Arthrose an der proximalen Gelenkfläche des Metacarpus I dext

Grab 60

Kurzbeschrieb:

Bestattung eines 65-jährigen, 167 cm hohen Mannes. Erhaltung:

- Schädel: Fast intaktes Cranium. Gebiss: 10 Zähne intravital und 11 postmortal ausgefallen. Sehr leichte Zahnsteinbildung, leichte bis mittlere Karies (1 Zahn stark kariös), mittlere bis starke Parodontose, starke Abkauung, Zysten bei P2 inf.dext. und M3 inf. sin.
- Postkraniales Skelett: Es fehlen 3 Halswirbel und der unterste Teil der Unterschenkel mit den Füssen.

Bestimmungen:

- Altersstufen 5/4/2/3: 65 Jahre
- Geschlecht: Schädel +0.7 (n=12), Becken +1.58 (n=8): männlich
- Körperhöhe: H 166, R 169, F 167, T 166: 167 cm
 Besonderheiten:
- Korrosion: stark am Hinterhaupt und ausgeprägter «Schnekkenfrass» an den Langknochen und an der rechten Scapula
- hohe Stirnwölbung im Vergleich zum eher niedrigen Gesicht
- die Unterkieferfront ist in der Basalansicht extrem eckig ausgebildet
- das Manubrium sterni ist mit dem 1. Sternebrum verwachsen, das selbst getrennt ist vom übrigen Corpus

Pathologica:

- Spondylosis deformans vom 2. bis zum 5. Lendenwirbel, sehr leicht an einigen Brustwirbeln
- Verwachsung des 5. Lendenwirbels mit dem Sacrum
- leichte Abnützungserscheinungen vom 4. bis zum 7. Halswirbel (Processi uncinati)
- Arthrose: beide Claviculae (sternal), Hüftgelenke, rechter Ellenbogen, rechtes Handgelenk (Articulatio radio-ulnaris distalis dext.)

Grab 61

Kurzbeschrieb:

Bestattung eines 27-jährigen, eher männlichen Individuums von 166 cm Körperhöhe.

Erhaltung

- Schädel: Defekte Calotte (Stirnbereich fehlt) mit Partien des Gesichtes und dem ziemlich vollständigen Unterkiefer. Gebiss: Bei 18 beobachtbaren Alveolen sind je ein Zahn intravital und postmortal ausgefallen; 3 obere Molaren liegen isoliert vor. Leichte Abkauung und Zahnsteinbildung, mittlere Parodontose und Karies (4 Zähne sind stark kariös); Zysten beim M2 inf dext. und bei allen unteren Molaren der linken Seite.
- Postkraniales Skelett: Es ist relativ vollständig bei einigen Defekten im Rumpfbereich.

Bestimmungen

- Altersstufen 1/-/1/2: 27 Jahre
- Geschlecht: Schädel +0.73 (n=6), Becken +0.41 (n=5): eher männlich
- Körperhöhe: H 165, R 166, F 167, T 165: 166 cm
 Besonderheiten:
- dünnwandiger Schädel
- zierliche H\u00e4nde und F\u00fcsse, das Metacarpale I ist extrem klein
- rechts Canalis arteriae vertebralis beim 1. Halswirbel
- offener Wirbelbogen beim 5. Lendenwirbel (unverwachsene Processus articulares inferiores)

Pathologica:

Grab 62

Kurzbeschrieb:

Bestattung eines etwa 45-jährigen, eher männlichen Individuums von 169 cm Körperhöhe. Erhaltung:

- Schädel: Defekte Calotte mit dem rechten Os zygomaticum und Teilen des Unterkiefers. Gebiss: Bei 14 beobachtbaren Alveolen (nur Unterkiefer) sind 5 Zähne intravital und 6 postmortal ausgefallen. Mittlere Zahnsteinbildung, starke Abkauung und Parodontose, sehr starke Karies (6 nicht einsetzbare Wurzeln mit Totalkaries); keine Zysten.
- Postkraniales Skelett: Es fehlen ein paar Wirbel, das Sternum, die rechte Schulterpartie sowie das rechte Femur und die untere Hälfte des linken. Alle vorhandenen Knochen sind defekt.

Bestimmungen:

- Altersstufen 1/-/-/4-5: ca. 45 Jahre (vermutlich retardierte Synostosierung der Schädelnähte)
- Geschlecht: Schädel +0.57 (n=6), Becken +0.7 (n=4): eher männlich
- Körperhöhe: Humerus 169 cm

Besonderheiten:

- allgemein schlechter Erhaltungszustand
- Schädel mesocran bis brachycran
- Verwachsung der Phalanges medialis und distalis V indet.
 Pathologica:
- Osteochondrosis intervertebralis: stark an einem Halswirbel, schwächer vom 4. Lendenwirbel bis zum Sacrum (mit Spondylosis deformans)
- leichte Spondylarthrose an einigen Brustwirbeln, stark an einem Halswirbel
- Arthrose: Hüftgelenke, 1 Phalanx proximalis pedis

Grab 63

Kurzbeschrieb:

Bestattung eines 66-jährigen, 172 cm hohen Mannes. Erhaltung:

- Schädel: Intaktes Cranium. Gebiss: 24 Zähne intravital und 2 postmortal ausgefallen. An den 5 verbleibenden Zähnen leichte Karies und Zahnsteinbildung, starke Parodontose und Abkauung; Zyste bei P2 inf. dext.
- Postkraniales Skelett: Es ist praktisch vollständig, bis auf den grössten Teil des rechten Femurs, die rechte Fibula und die Fussknochen.

Bestimmungen:

- Altersstufen 5/4/2-3/3-4: 66 Jahre
- Geschlecht: Schädel +1.10 (n=13), Becken +1.0 (n=8): männlich
- Körperhöhe: H 174, R 171, F 172, T 170: 172 cm

Besonderheiten:

- Vertexbereich des Schädels dünnwandig (verm. sekundärer intravitaler Abbau)
- Atrophie der beiden Kiefer
- verknöcherter Kehlkopfknorpel
- Atlas: beidseitig Foramen im Arcus posterior
- verknöcherter Sehnenansatz an der rechten Tibia (distaler Fibula-Ansatz)

Pathologica:

- Verwachsung des 2. und 3. Halswirbels
- Osteochondrosis intervertebralis bei den Halswirbeln 3 bis 7
 ziemlich starke Spondylarthrose vom 3. Hals- zum 1. Brustwir-
- bel sowie an 5 weiteren Brustwirbeln

 leichte Spondylosis deformans an wenigen Brust- und Len-
- leichte Spondylosis deformans an wenigen Brust- und Lendenwirbeln
- Bogen des 5. Lendenwirbels nicht verwachsen
- verwachsene Frakturen an 4 Rippen
- Fraktur und Verkürzung der rechten Clavicula Bildung einer sekundären Gelenkfläche im sternalen Drittel, die antagonale Gelenkfläche am Processus coracoideus fehlt wegen Korrosion.
- Periostitis an der linken Fibula

Grab 64

Kurzbeschrieb:

Bestattung einer 41-jährigen, 161 cm hohen Frau.

Erhaltung

- Schädel: Unvollständige Calotte mit den beiden Ossa zygomatica und dem Unterkiefer ohne Äste. Gebiss: Nur der Unterkiefer ist beobachtbar; 9 Zähne intravital und der Rest postmortal ausgefallen.
- Postkraniales Skelett: Es fehlen einige Rippen und das Sternum

Bestimmungen:

- Altersstufen 1/-/-/3: 41 Jahre
- Geschlecht: Schädel –1.0 (n=5), Becken –1.15 (n=6): weiblich
- Körperhöhe: H 165, R 160, F 165, T 156: 161 cm
 Besonderheiten:

- allgemein schlechter Erhaltungszustand

Pathologica:

- die Älveole des P1 inf.sin (evtl. auch P2) verläuft schräg in Richtung Kinnspitze
- Spondylarthrose an 3 Halswirbeln

Grab 65

Kurzbeschrieb:

Bestattung eines 59-jährigen, eher männlichen Indivdiuums von 168 cm Körperhöhe.

Erhaltung

- Schädel: Leicht defektes Cranium. Gebiss: 11 Zähne intravital und 3 postmortal ausgefallen; leichte bis mittlere Zahnsteinbildung, mittlere Karies (2 Zähne stark kariös), mittlere bis starke Parodontose, starke Abkauung; Zysten bei P1 sup.dext., P2 sup. sin. und M3 inf.sin.
- Postkraniales Skelett: Im Brustbereich und beim oberen Extremitätenskelett sind einige Knochen defekt, sonst ist es vollständig.

Bestimmungen:

- Altersstufen 4/3-4/2/3-4: 59 Jahre
- Geschlecht: Schädel +0.41 (n=13), Becken +0.73 (n=7): eher männlich
- Körperhöhe: H 170, R 168, F 168, T 167: 168 cm Besonderheiten:
- Schädel postmortal etwas verzogen
- Mikrodontie des P1 sup.dext.

Pathologica:

- Osteochondrosis intervertebralis vom 2. bis zum 7. Halswirbel (stark bei C 5–7)
- Anfang von Spondylosis deformans an einigen Brustwirbeln (es sind nicht alle beobachtbar) und etwas stärker an den Lendenwirbeln

Grab 66

Kurzbeschrieb:

Bestattung einer 68-jährigen, 159 cm hohen Frau. Erhaltung:

- Schädel: Intaktes Cranium. Gebiss: 7 Zähne intravital und 3 postmortal ausgefallen; die dritten Molaren (ausser sup.sin.) sind vermutlich nicht angelegt; leichte bis mittlere Zahnsteinbildung, mittlere Parodontose und Karies (1 Zahn stark kariös), Abkauung unten stark und oben sehr stark; Zysten bei P2 sup. dext., 12sup.sin. und P1 inf.sin.
- Postkraniales Skelett: Bis auf kleinere Defekte ist es vollständig.

Bestimmungen:

- Altersstufen 5/4/3-4/4: 68 Jahre
- Geschlecht: Schädel -0.68 (n=13), Becken -1.06 (n=8): weiblich
- Körperhöhe: H 162, R 159, F 162, T 154: 159 cm
 Besonderheiten:
- verknöcherter Kehlkopfknorpel
- Atlas rechtsseitig mit Foramen an der Basis des Arcus posterior
- Rinne zwischen Ilium und Acetabulum (dext. et sin.), laterale Seite
- beide Tibien mit Crista M. solei

- Osteochondrosis intervertebralis am 5. Lendenwirbel und am Sacrum
- leichte Spondylosis deformans an einigen Brustwirbeln
- Arthrose: Hüftgelenke (leicht) und an zwei Carpalia

Grab 67

Kurzbeschrieb:

Bestattung eines 67-jährigen, 163 cm hohen Mannes. Erhaltung:

- Schädel: Calavaria, das Frontale fehlt grösstenteils, mit dem leicht defekten Unterkiefer. Gebiss: (ohne Oberkiefer) 4 Zähne intravital ausgefallen; leichte bis mittlere Karies und Zahnsteinbildung, mittlere bis starke Parodontose, starke Ankauung, Zyste bei P2 inf. sin.; ein M3 liegt isoliert vor.
- Postkraniales Skelett: Es ist ziemlich vollständig, wenn auch mit Defekten v.a. im Brustbereich und bei den Unterschenkeln.

Bestimmungen:

- Altersstufen 4/4-5/2-3/4: 67 Jahre
- Geschlecht: Schädel +0.61 (n=7), Becken +1.11 (n=8): männlich
- Körperhöhe: H 163, R 164, F 164, T 162: 163 cm
 Besonderheiten:
- Atlas beidseitig mit Canalis arteriae vertebralis
- 5. Lendenwirbel mit verbreitertem Processus costarius sin., der durch ein Gelenk mit der Ala maior des Sacrums verbunden ist.

Pathologica:

- Arthrose: Schultern, Hüftgelenke (rechts schwer mit starken Deformierungen am Acetabulum und Caput femoris), Ellenbogen rechts stark), einige Tuberculi costae, Mittelfussknochen und Finger- und Zehenknochen
- Spondylosis deformans an allen Brust- und Lendenwirbeln, vereinzelt auch Spondylarthrose
- schwere Spondylarthrose vom 2. bis zum 5. Halswirbel, teilweise auch Osteochondrosis intervertebralis

Grab 68

Kurzbeschrieb:

Bestattung eines 53-jährigen, 164 cm hohen Mannes.

Erhaltung:

- Schädel: Defekte Calvaria mit Teilen des Gesichtes und dem intakten Unterkiefer. Gebiss: die rechte Oberkieferseite ist nicht beobachtbar; 1 Zahn postmortal ausgefallen; dazu zwei Wurzeln mit Totalkaries. Mittlere Parodontose, Zahnsteinbildung und Karies (3 Zähne stark kariös), mittlere bis starke Abkauung, Zysten bei M2 sup.sin. und M1 inf.sin.
- Postkraniales Skelett: Es ist praktisch komplett erhalten.

Bestimmungen:

- Altersstufen 4/3-4/2/-: 59 Jahre
- Geschlecht: Schädel +0.83 (n=11), Becken +1.17 (n=8): männlich
- Körperhöhe: H 167, R 164, F 163, T 162: 164 cm
 Besonderheiten:
- Schädel relativ dünnwandig
- verknöcherter Kehlkopfknorpel
- postkraniales Skelett nicht sehr kräftig
- zusätzlicher Wirbel zwischen dem 5. Lendenwirbel und dem Sacrum; rechtsseitig ist er wie ein Lendenwirbel ausgebildet und linksseitig wie ein 1. Sacralwirbel: Verbreiterung des Processus costarius zu einer Ala, die mit der Ala maior des Sacrums knöchern verbunden ist. Die daraus resultierende schiefe Achse wird durch die leicht keilförmigen L4 und L5 grösstenteils wieder ausgeglichen.
- Sternum: Körper und Proc. xiphoideus sind verwachsen
- am Metacarpus III dext. ist kein Processus ausgebildet (proximales Gelenk), während er beim linken sehr ausgeprägt ist Pathologica:
- Starke Osteochondrosis intrvertebralis bei L2/3, schwächer bei L1/2
- am 3. und 4. Halswirbel starke Spondylarthrose und Abnützung der Processus uncinati sin.
- Spondylosis deformans bei C 5/6
- Arthrose: Claviculae dext. et sin. sternal; extrem am linken Hüftgelenk: starke Deformierung am Caput femoris und am Acetabulum
- Caput femoris dext. verbreitert, jedoch nur geringe Arthrose; eventuell als Folge von Überbeanspruchung wegen der arthrotischen linken Seite
- leicht entzündliche Prozesse an den Humeri unterhalb des Tuberculum maius
- Tibia dext. mit Lochbildung im distalen Gelenk (Osteochondrosis?), keine Reaktion am Talus
- 1 Phalanx proximalis pedis stark nach plantar gebogen