Zeitschrift: Bauen + Wohnen = Construction + habitation = Building + home :

internationale Zeitschrift

Herausgeber: Bauen + Wohnen

Band: 16 (1962)

Heft: 11: Planen und rationelles Bauen = Planning et construction rationnelle

= Planning and rational building

Rubrik: Résumés

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Jacques Henry

Planning d'exploitation - Planning général - Entreprise générale (pages 442-445)

Planning général et planning d'exploitation

En Europe, également, le planning gé-néral cesse d'être purement spéculatif pour jouer un rôle pratique de plus

en plus important. Les idées telles que collectivisme, économie planifiée etc. sont des concepts attitrés à tort à ce terme de planning général qui, du reste, quali-fierait plus judicieusement même que

flerait plus judicieusement même que la puissance atomique notre époque (UNO, UNESCO, EWG). Contrairement à la prospection à terme restraint, comme on la pratiquait dans l'industrie autrefois, on prévoit facilement aujourd'hui des programmes pour 20 ans qui demandent une toute autre échelle de co-ordination d'organisation et de compression d'organisation et de compression d'organisation de compression de com ordination, d'organisation et de combinaisons.

La planification moderne est souple

La prafficiation moderne est soupre et adaptable; elle n'est surtout pas rigide, car ses données essentielles sont la liberté d'échange commercial et une flexibilité maxima dans la gestion. L'évolution rapide du planning général d'avalique par les récultats equipat L'évolution rapide du planning général s'explique par les résultats souvent peu satisfaisants qui provenaient de la méthode appliquant le «libre jeu des forces»; en ôutre, l'accroissement extraordinaire des populations exige un planning généralisé de l'économie mondiale (marché international, exploitation de l'énergie etc.). Le problème de «l'existance» est devenu plus actuel avec l'évolution des pays sousdéveloppés. Le besoin d'organisation augmente avec l'importance

ganisation augmente avec l'importance des investissement et des stocks des grandes entreprises et conduit forcément à un planning d'une puissante envergure, voir d'une échelle internationale:

on aboutit au planning général. Le résultat d'un tel planning est basé essentiellement sur une certaine éthique qui, dans ce cas, implique un sens des responsabilités et une assurance infaillible dans le choix du but poursuivre.

Dans l'intervalle d'une génération, notre époque a connu un changement fondamental économique, culturel, sorondamental economique, culturel, so-cial, politique et spacial qui s'est ma-nifesté dans notre entourage, dans nos villes et métropoles, dans l'indus-trie et dans tout le déroulement de notre existance. Or, tandis que les moyens connaissent un état de perfection toujours grandis-sant, nos raisons d'être deviennent de

plus en plus insaisissables. C'est cette incertitude, cette hantise du doute qui engendre ce qu'il y a de tragique dans notre époque. Comme nous sommes précisément incapables d'émettre un jugement dans

incapables d'émettre un jugement dans les questions essentielles, nous nous engloutissons dans des difficultés presqu'insurmontables pour atteindre le moindre résultat.
Pour parer à cela, les problèmes de la recherche, de l'organisation et du planning doivent être remis en question de fond en comble et réétudiés soigneusement. Seulement une coordination systématique nous permet de maîtriser cette situation confuse.

Le schéma no 1 est une représentation simplifiée de la position du planning général qui devient un moteur actif pour l'ensemble de l'entreprise géné-

Le triangle extérieur définit les con ditions maîtresses dictées à l'activité industrielle.

2. Le triangle intermédiaire montre les activités purement matérielles, voire industrielles.

3. Le triangle intérieur symbolise l'activité rationnelle et intellectuelle. Le planning général, dans cette classification, est alors compris dans le triangle intérieur; il s'occupe de la projection et de l'ensemble des activités intellectuelles, tandis que l'entreprise générale se charge de la réalisation et de l'exécution des projets prévus par le planning général.

production analyse planning général entreprise générale organisation

distribution

planning consommation demande

Trois Methodes:

Il est déjà difficile d'expliquer l'essence du planning général; il sera d'autant plus complexe d'en éclaircir les méthodes:

nous nous hornerons à la seule dés-cription de quelquel méthodes de cription de quelquel méthodes de procedure. Il s'agit tout d'abord de répondre aux

estions suivantes:

Quels sont les motifs d'un planning

Quels sont les motifs d'un planning général?
Qui donne le mandat d'un planning général?
Qui fait le planning?
De quelle nature sont les contrats conclus en faveur d'un planning, lors d'un contact avec des tiers?
Comment se déroule le planning, comment se déroule l'exécution.

continent se déroule l'exécution?
Nous choisissons un exemple dans la construction rationnelle pour illustrer le planning d'exploitation proprement dit, ses origines et ses causes.

1. L'entrepreneur - ou le maître de l'œuvre - et ses collaborateurs sont

l'œuvre – et ses collaborateurs sont entièrement absorbés par leur activité productive régulière. Ils manquent d'expérience dans le domaine de la construction, puisque ces questions ne le touchent que sporadiquement.

2. Quoique le bon sens soit un facteur primordial dans la construction et dans la prospection de chantier, lui seul ne suffit pas pour assurer une réussite.

3. Une certaine cécité dans l'entre-prise, une inertie intellectuélle égale-ment, s'opposent volontiers à toute novité. Ainsi, il semble plus facile de conserver les méthodes anciennes que de mener à bout une conception nou-velle et dépourvue d'expérience.

4. Les architectes qui dans ce cas-là se chargent des projets et de la direction chargent des projets et de la direction du chantier ne sont pas conscient, d'habitude, des vrais problèmes du planning de l'exploitation, puisqu'ils s'intéressent avant tout aux côtés artistiques de leur tâche.

Dans la construction rátionnelle, les données primordiales sont de l'ordre technique et économique. D'ailleurs, ces conditions fonctionnelles ne s'opposent nullement aux exigeances

posent nullement aux exigeances esthétiques.

55. Or, le but à envisager dont nous parlions plus haut n'est souvent pas présent, ni à l'architecte, ni au maître de l'œuvre, ni à l'entrepreneur.

6. Dans les régions alémaniques, le team-work est encore utopique, car la structure de leur économie ne sem-ble prêter que des conditions défavo-rables à la fondation et à l'existance de bureaux de planning qui permet-traient de réunir dans la même maison les spécialistes indispensables dont le planning général d'entreprise aurait besoin.

7. Le manque de temps – effectif ou virtuel – empêche le planning d'attein-dre un aboutissement satisfaisant.

are un apoutissement satisfaisant.

8. Les bureaux et les instituts de planning général les plus importants ont rédigé un fil conducteur à l'intention des entrepreneurs et de leurs spécialistes qui comprend tous les facteurs devant être éclaircis par les entrepreneurs eux-mêmes avant que les travaux de l'institut ne puissent les travaux de l'institut ne puissent

Voici sommairement un exemple de fil conducteur (Kidde Constructors York):

1. Quantité de production (définie par les secteurs de la distribution et de la recherche commerciale ainsi que par les statistiques de distribution) en tenant compte des bénéfices et des pertes par rapport à chaque produit et

de la capacité maxima de chaque machine productrice existante.

2. Le plan d'opération établi par la 2. Le plan d'operation établi par la direction d'entreprise détermine la quantité de fabrication pour chaque produit en tenant compte des installa-tions actuelles aussi bien que des inventionments révus. investissements prévus.

3. L'analyse de rentabilité des pro-duits et de leurs éléments constituants définira quels seront les produits à fabriquer sur place et quels seront les éléments à acquérir de l'extérieur et quelles en seront les conditions d'acquisition; tout ceci sera étudié par les ingénieurs de la production et par la section chargées des achats.

4. La direction d'entreprise fait la synthèse des données citées plus

5. On tâche de perfectionner le flux du travail et celui des matériaux selon les conclusions qui résultent de l'étude du travail lui-même en vue d'une simplification croissante et d'une diminution de pertes en déchets.

Ensuite, on compare les résultats annuels des gains par rapport aux frais d'investissement.

alors le projet basé sur les données préliminaires et en détermine les li-mites concernant la suite des recherches du bureau de planning.

7. La section des ingénieurs de pro-duction coordonne les plans concer-nant le flux du travail avec les exi-geances commerciales de qui permet de déterminer un plan de base pour l'achat des outils pour les installations à prévoir et pour l'acquisition de ma-

8. Après l'élaboration d'une disposition optima des machines (Layout) en vue d'une production rationnelle, les trois sections-calcul des frais d'investissement, achat, ingénieurs de production - donnent leur accord définitif fondé sur une étude commune des propositions précédentes. Ils optent alors pour une politique commerciale qui précise les proportions parts les qui précise les proportions entre la distribution immédiate et le stockage de la production.

La synthèse de ces études détermine Inalement un organigramme construc-tif: hauteur du volume vide, installa-tions, pont roulants, quantité d'éner-gie, fabrications secondaires et auxi-liaires etc. (=adaptation définitive du Lavout).

9. La direction d'entreprises - de direction d'entreprises – après l'adaptation définitive à leur politique d'extension de toutes les données préliminaires – établit un inventaire des compléments nécessaires pour la fabrication actuelle (machines, installations supplémentaires etc.) et d'autre part un programme, l'empla-cement, l'importance et les frais d'investissement pour l'usine future.

Ce fil rouge détermine toutes les questions techniques et économiques; il constitue également la barrante de la constitue de la consti il constitue également la base des instruments de travail pour la prospec-tion générale du chantier.

Première phase du planning général: projet d'ensemble complet de l'ex-ploitation.

Les principes de ce planning:

1. Organisation et planning parfaits.

2. Détermination judicieuse du lieu d'implantation.

3. Exécution rationnelle du problème posé.

Une bonne organisation de la prospection de chantier demande des programmes précis de chaque étappe. Un planning général sérieux exige beaucoup de temps, car il doit coor-donner chacune des composantes qui, au fond, constitue un domaine particulier.

culjer.

Seulement une vue d'ensemble, donc une évolution comperative des problèmes et non uniquement un développement simultané conditionne les découvertes nouvelles et le progrès; pour cette raison, on a tâché de réunir le maximum de domaines particuliers au sein d'une seule organisation qui est le planning général.

qui est le planning general.

Aujourd'hui encore, lors d'une autocritique postérieure d'un ouvrage important dans un pays germanique, par
exemple, on doit avouer que le manque de coordination résulte bien moins
des circonstances extérieures que
d'une absence de compréhension,
d'une certaine inertie, d'un refus de

collaboration rationnelle et d'un programme insuffisant

La rentabilité effective d'un team de planning dépend beaucoup de la per-fection des programmes.

Ce team comprend:

1. Le maître de l'œuvre, ses financiers, ses spécialistes.

2. L'architecte en tant qu'organisateur, technicien et constructeur.

3. L'ingénieur civil en tant que spécialiste des sols de construction et du calcul statique, en tant que cons-

4. Les spécialistes du chauffage, de la ventilation, de la climatisation, de l'éclairage, des installations sanitaires, de l'acoustique et des problèmes d'isolation.

5. Le spécialiste des questions d'éner-

6. L'entreprise chargée des travaux avec ses expériences particulières concernant l'exécution des construc-

Le planning de l'exploitation comprend actuellement les personnes suivantes:

1. Le projeteur d'exploitation.

2. L'architecte ou l'ingénieur civil.

Un représentant de la direction d'entreprise pour l'usine à projeter.

La direction du team est secondaire. Ce qui importe, c'est un but infaillible et la coordination de tous les efforts du team.

Les phases essentielles du planning général pour le projet d'ensemble complet de l'exploitation sont:

1. Détermination de l'emplacement de

2. Projet d'ensemble constructif.

3. Planning sommaire de l'exploita-

4. Planning différencié de l'exploitation.

5. L'exécution de l'ouvrage (direction du chantier).

6. Planning très différencié traitant les problèmes d'un changement des dispositions internes.

En rapport avec ce dernier point, nous signalons l'importance de l'application d'un module, car seul un système modulaire permet une souplesse très grande qui s'adapte aux circons-tances nouvelles.

Le Layout sommaire définira, s'il est judicieux ou non de construire en

Il faut également réaliser l'importance des problèmes de surcharge, de la nappe phréatique et des cotes de

Cette prospection générale pour le projet d'ensemble peut se résumer comme suit:

1. Plan de situation (cadastre etc.).

2. Zoning grossier.

3. Détermination des axes principaux de transport et de circulation.

4. Détermination d'un module.

5. Détermination des zones avec leurs différentes hauteurs des constructions.

6. Question spéciales (p. ex. est-ce que la cote de niveau d'entrée est favorable etc.).

7. Planning des étapes de construc-tion avec leurs axes d'extension.

Voici un schéma qui illustre cette idée:

implantation

plan de situation plan des zones axes des transports module hauteur des questions spéciales bâtiments

planning sommaire planning différencié

Ce schéma prouve la grande importance du choix de l'implantation. Comme les questions de transport, Comme les questions de transport, d'énergie et de finances sont pour ainsi dire équivalentes dans les régions plates, la question primordiale devient alors celle du marché du travail. Il faut en tenir compte, lorsqu'on décide une décentralisation brusque, car si les liaisons sont mauvaises, le choix du personnel qualifié est très limité

En rapport avec ceci, on peut signaler la ressemblance entre l'urbanisme ou l'aménagement du territoire et le planning général ou la planning d'exploi-tation.

Urbanisme:

- 1. Problème démographique, problè-me de l'habitat.
- 2. Activités.
- 3. Circulation et transports.
- 4. Zones vertes et espaces libres.
- 5. Services publics.

Planning d'exploitation:

- 1. Personnel.
- 2. Production, stocks, bureau.
- 3. Transports.
- 4. Zones du libre développement.
- Administration.

Ces exemples démontrent l'importance des relations qui existent entre le déroulement de l'entreprise, le transport et l'utilisation des espaces. Ces éléments du planning ne sont pas additifs mais corrélatifs (voir schéma

no 3). Bien entendu, les concept tels que «déroulement de l'entreprise» sont à considérer dans leur sens le plus large; ce terme implique aussi bien la production, le stock, l'administration ou la cantine de l'usine.

On peut citer deux principes d'organisation et de déroulement du travail:

1. Groupement des places de travail strictement selon le déroulement de la production.

Groupement des places de travail strictement selon le procédé du travail.

Schéma no 4:

déroulement de la fabrication

schéma des surfaces (volumes)

distribution et répartition des espaces

relations planning de transport différencié besoin spacial principe de structuration destination des installations

procédés machines installations déroulement du travail

planning des changements exécution de la construction

activité de l'exploitation

Le schéma no 4 sert à démontrer les Le schéma no 4 sert à démontrer les rapports constants qui existent entre le planning de l'exploitation et celui de la construction. Chaque problème ne peut trouver sa meilleure solution qu'a travers de nombreuses expériences basées sur des possibilités différentes. On pourrait comparer ces essais divers aux travaux d'un ingénieur civil vers aux travaux d'un ingenieur civil qui calcule son système statique selon différents cas de charge. Il s'agit de définir les relations principales des transports et d'éliminer les relations secondaires; il faut également définir la hauteur sous plafond adaptée et une unité pour la quantité des ma-tériaux à transporter en une fois. Ces

teriaux a transporter en une fois. Ces considérations expliquent l'importance du flux des matériaux. « Le flux des matériaux » signifie dans ce cas l'ensemble des mouvements effectués par les matériaux » au sens le plus large du terme. Ces mouvements ne sont capables de couler vraiment qu'au moment où les chemins de transport sont horés et chemins de transport sont brefs et facilement contrôlables.

Première méthode

La première méthode du planning La première méthode du planning d'exploitation suppose des bases prècises qui permettent d'établir un plan d'opération définitif.
On obtient alors un plan parfait « pour une suite des opérations » (Durchlaufplan) (voir schéma no 5).
Il détermine l'ordre et les rapports entre les différentes opérations de la februarie pour souvoir so faire un

ntre les différentes opérations de la fabrication. Pour pouvoir se faire un jugement du déroulement de ces opérations, il faut choisir différents « cas de charge » selon une unité de transport qui comprend la quantité de matériau transporté en une seule fois. On charge le nombre des liaisons de transport par cette unité. Comme les données résultant de l'analyse prèliminaire de l'exploitation donnent des indications précises concernant la quantité à produire etc., il sera facile – à l'aide d'un système de cartes perforées –, d'établir une sorte de tableau, où l'on lira les relations de transport qui indiqueront le nombre de liaisons que chaque section possède avec toutes les autres.

En appliquant à ces liaisons différents cas de charge, on obtient un tableau pour les capacités de transport dans toute l'exploitation (voir schéma no 6).

Dans un schéma à base de triangles, (schéma no 7), on groupe les relations de transport selon leur densité, en rapprochant les liaisons les plus fréquentées et en plaçant les autres de plus en plus loin selon leur importance. Le schéma permet de lire quel-les seront les liaisons les plus char-gées et déterminera ainsi les distan-

gées et déterminera ainsi les distances entre les différentes sections.

Avec le schéma à triangles le plus favorable, on établit alors un schéma des surfaces ou des volumes nécessaires (voir schéma no 8) où l'on attribue à chaque section l'espace correspondant à sa fonction en m² tout en conservant leurs positions les unes par rapport aux autres, comme on les a trouvées dans le schéma

no 7.

A l'aide de ce schéma des surfaces et d'un projet élaboré en parallèle par un architecte, on établit un Layout des surfaces qui tient compte des propositions architecturales. Ensuite le schéma et ce Layout des surfaces servent de base pour le planning différencié férencié.

En voici les facteurs essentiels:

1. Surface (ou volumes) pour chaque section selon le Layout des surfaces.

Maquettes (des machines, des personnages, des véhicules etc.).

Et on cherche:

1. La meilleure exploitation des surfaces qui peut éventuellement con-duire à une correction du Layout sommaire.

2. Le flux le plus rationnel des matériaux à une échelle différenciée (d'homme à homme, de machine à machine

Les moyens en sont:

1. Essayer différentes variantes en maquette.

2. Différentes possibilités pour la réalisation des maquettes et des reproductions.

En voici les critères: Clarté dans la représentation. Facilité du maniement.

Possibilité aisée de copie ou de re-production de chacune des variantes (pour ne pas les perdre). Dépense minima en travail et en ma-tière. Echelle normale: 1:50.

Voici les types principaux des maquettes pour un Layout:

1. Layout en carton

2. procédé de collage à double face

3. procédé Magnétofix

4. maquette spaciale.

La maquette tridimensionnelle est la plus coûteuse, mais la plus représen-tative, sourtout pour une personne non-initiée. Le spécialiste se contente d'une maquette collée ou en Magnétofix.

est intéressant, toutefois, de constater que les solutions les plus ration-nelles au point de vue de l'économie spaciale ne diffèrent que très peu des solutions issues d'autres critères.

Deuxième méthode

La deuxième méthode ne suppose connu ni le type, ni la quantité des différentes opérations. Elle s'appuie airrerentes operations. Elle s'appule sur des résultats provenant des mesu-res prélevées pendant la fabrication. Ensuite, elle se sert des mêmes types de schémas que la première méthode pour la définition d'un Layout.

Voici le résumé des principes des-quels dépend un bon Layout:

1. L'exécution la plus favorable selon une économie de temps, des frais d'in-vestissement et du travail.

vestissement et du travall.

2. L'exécution la plus favorable selon les possibilités d'un développement futur et selon ses frais d'exploitation.

3. Détermination des surfaces d'entrepôt pour les matières premières, les matériaux secondaires et les éléments achetés du dehors.

4. Etablissement d'un Layout prélimi-naire en utilisant des extraits de machines, des échantillons ou des ma-quettes et en se basant sur des plans concernant le flux du travail.

concernant le flux du travali.

5. Détermination locale des surfaces d'entrepôt et des installations de stockage en tenant compte d'une possibilité de contrôle léger mais constant de l'inventaire.

6. Détermination des installations d'une propositions des installations des controls d'une proposition de la control de la control de la control d'une proposition de la control d'une proposition de la control de la control de la control d'une proposition de la control de la control

d'entrepôt en tenant compte d'une bonne vue d'ensemble ainsi que d'un moyen économique permettant facile-ment la charge et la décharge.

7. Disposition des installations de fabrication selon une suite logique du déroulement du travail en tenant spé-cialement compte des dépôts intermédiaires.

8. Suppression des transport inutiles et tendance vers des chemins de transports aussi courts que possible.

9. Groupement des installations secondaires: distribution des outils, vestiaires et toilettes, ateliers de réparation, administration, rampes d'accèss, stations de transformation etc., en vue de les rendre facilement accessibles.

10. Tenir compte des possibilités fu-tures pour une extension des diffé-rents secteurs ou de toute l'exploita-

Organisation du planning

Si nous considérons les entreprises de planning américaines et leurs or-ganisations, nous devons reconnnaître que ces bureaux ne fonctionnent ni d'une manière orthodoxe ni schématique.

Aux USA, il existe pourtant ce genre de bureau d'architectes qui est cou-rant en Europe, mais il s'associe vo-lontiers avec d'autres institutions libérales pour l'élaboration d'une tâche particulière.

On rencontre plus souvent, cependant, une association permanente de quatre spécialistes: architecte, ingénieur ci-vil, ingénieur mécanicien, ingénieur électricien.

Si le team se décide pour la spécialisation, il peut s'associer par exemple avec des ingénieurs versés dans la production qui s'occupent aussi de Layouts.

Il se peut que ces Layouts soient rédigés par les maîtres de l'œuvre eux-mêmes qui s'associent alors avec des ingénieurs spécialistes de la rationa-

L'entreprise générale qui est chargée de l'exécution des travaux et qui se trouve en face d'une institution pour le planning général d'exploitation est en principe seule responsable devant le maître de l'œuvre pour une exécution de la company de la c tion correcte et maintenue dans les délais. Cette entreprise est chargée de la

commande entière, même si, généra-lement, elle d'exécute que le grosœuvre.

Pour les autres travaux, elle engage des entreprises subordonnées, mais c'est elle qui se porte garant pour tout, c'est elle qui s'occupe de toute la surveillance du chantier et de la coordination de l'exécution.

Cette entreprise se charge donc de pas mal de travaux qui entrent dans domaine des architectes des pays germaniques.

germaniques. Aux USA, il existe également des institutions qui s'occupent aussi bien de l'entreprise générale que du plan-ning d'exploitation. Lorqu'elles s'as-socient encore à d'autres spécialistes. elles peuvent se charger d'un type suivant de contrat:

Nous disposons de 8 millions de Dollars; proposez-nous une production lucrative; cherchez une implantation adéquate et construisez-y une usine; indiquez-nous quelles machines nous devons commander; montez-les et trouvez-nous des cadres capables de diriger cette exploitation. Remettez-nous enfin une exploitation prête à fonctionner selon un programme de fabrication et de vente déterminé.

Ce genre de contrat s'appelle «turn-key project » ou «package project ». Aux USA, le planning peut englober des dimensions qui sont impensables en Europe. Il commence par l'étude du marché et par la détermination de l'ampleur de la production prévue, et il se termine par un projet de construction et par son exécution.

Comment peut-on caractériser le type de contrat qui se fait avec les entreprises générales?

- Contrats à prix-unitaires: il s'applique rarement (fouilles; commandes de l'Etat: écoles, hôpitaux etc.).
- 2. Contrat à base de frais d'investis-sement avec un supplément calculé en %.
- 3. Contrat à base des frais d'investissement avec un supplément global.

4. L'un des contrats à base des frais d'investissement avec une somme fi-nale garantie et dont le surplus se partage entre le maître de l'œuvre et l'entrepreneur (habituellement 75 %

pour le maître de l'ouvrage et 25 % pour l'entrepreneur).

5. Contrat global.

Il est rare de rencontrer des changements ultérieurs dans ce genre de travaux, car les plans sont poussés à une très grande précision. D'ailleurs, pour un contrat du type 5, un changement pourrait créer des difficultés. Ils doivent donc être fondés par une commande spéciale qui comprend toutes les conditions pour l'entreprise.

Quelle est la composition d'un team d'une entreprise générale ou d'un planning d'exploitation?

Voici quelques possibilités d'organi-sation pour de telles équipes:

1. Architectes, projeteurs et ingénieurs en libre collaboration.

Ils ne sont liés ni par contrat ni par un lieu commun de leurs activités. 2. De Grande bureaux d'ingénieurs avec leurs spécialistes. Pour d'autres occupations: libre collaboration.

3. Des études de managers avec un personnel de direction minimum. Elles prennent des collaborateurs soit sous forme d'une institution soit en un personnel engagé pour une seule tâche selon l'importance de leurs mandats.

4. Les entreprises géantes pour le planning général avec leurs propres employés (mille et plus). Elles disposent de tous les spécialistes et se chargent également de la direction de chartier. Les cuit les controls de la direction de chartier. chantier, lorsqu'elles ont un mandat d'entreprise générale.

Les méthodes de travail de ce genre d'institution se ressemblent toutes plus ou moins. Pour les conditions européennes, ce

sont les types 2 ou 3 qui s'adapte-

sont les types 2 ou 3 qui s'adapteraient le mieux.
Le schéma no 10 illustre une telle institution de planning général.
Cette forme d'organisation reste toujours souple, simplifie la tâche du maître de l'œuvre pour son planning tel lui accorde la garantie d'un travail bien fait.

bien fait.
L'avantage d'une telle solution réside dans son économie qu'elle offre à tous les partenaires. Cette solution permet aussi bien une organisation stricte qu'une grande souplesse d'adaptation. Cette institution de planning général peut endosser les responsabilités d'une entreprise générale, si elle dispose de contrats-cadres avec les exécutants. Ainsi nous retrouvons le principe d'un planning d'exploitation général total.

Maître de l'œuvre.

Rapport exclusif avec le planning général basé sur un contrat

Planning général avec architectes et ingénieurs

Contrats-cadres (à long ou à court terme).

Etude du marché.

Organisateur d'exploitation. Géographe de l'économie etc.

Franz Füeg, Soleure

Le projet de l'Université de Punjab au Lahore

(pages 446-455)

Projeteur et architecte: Doxiades Associates, Athènes

Direction du planning: Dr. C. A. Doxia-Chef du groupe du planning: C. Crantonellis, architecte

Projet commencé en 1958, construc-tion 1959

L'Université de Punjab au Lahore (Pakistan), fondée en 1882, fut la première école supérieure du pays. Elle prit particulièrement de l'importance quand le Lahore, après la séparation du Pakistan et de l'Inde, devint la capitale de l'Ouest du pays et un centre culturel de la nouvelle nation. centre culturel de la nouvelle nation. Les anciens bâtiments de l'Université sont situés près du centre de Lahore et entourés de quartiers commerciaux. L'agrandissement de l'Université n'aurait été possible que sur un terrain environné d'une animation intense. Les autorités compétentes et l'Université jugèrent l'emplacement inapt comme centre académique. En outre, le prix du terrain était trop élevé. L'Université de Punjab décida donc de fonder une nouvelle cité universitaire dans une autre partie de la ville. C'est l'agence Doxiades Associates à Athènes qui fut chargée du projet. Les Athènes qui fut chargée du projet. Les travaux de planning furent exécutés

par un groupe au Lahore, et celui du projet par un autre groupe à Athènes. Le premier rassembla les éléments nécessaires à l'établissement du programme; le second présenta le projet définitif de construction.

Histoire et tradition de l'architecture

Le Punjab est situé dans la partie nord-ouest du continent indien. Entre l'Asie centrale et occidentale il a con-tinuellement connu les invasions, d'Alexandre le Grand à la reine Victod'Alexandre le Grand à la reline Victoria. C'est à la suite de ces influences culturelles constantes que le Punjab est devenu l'un des centres académiques les plus importants de l'Asie. Il a principalement subit la culture islamique et surtout le règne du Grand Mogule.
L'architecture islamique provenait prin

cipalement de la Perse. Le Lahore fut fondé vers la fin du premier siècle après J. C. et prit rapidement de l'im-portance à l'intérieur du royaume. Il y fut construit des mosquées et palais

L'architecture indo-islamique est con-nue pour sa sublime disposition d'es-paces ouverts recouverts et clos; halls et tours limitent l'intérieur de l'ex-

L'aspect filigrané de la structure des façades se reflète en surface dans un rythme géométrique parmi les salles, jets d'eau, gazons, ainsi que les allées et places pavées. L'architecture des espaces ouverts a subit l'influence islamique. Non seu-

subit l'influence islamique. Non seu-lement les constructions importantes ou princières, toutes situées à l'in-térieur de forteresses, mais aussi de simples édifices en ville, portent le signe d'une tradition architectonique.

signe d'une tradition architectonique. Il existe également des bâtiments à plusieurs étages, dont le squelette de construction est en bois. Le climat du Lahore est semi-tropical avec de grandes différences entre les mois chauds et froids. La température journalière varie de 11° C; la saturation maximale de l'air atteint 66 %.

Les facteurs précités ont joué un rôle important lors du planning de la nouvelle université. Les locaux fermés ont une aération transversale. Les coront une aeration transversale. Les cor-ridors sont, en général, ouverts. Les allées et vérandas sont très souvent aménagées au devant des locaux et protègent ces derniers contre le so-

Les classes d'enseignement sont ouvertes au vent (nord-ouest et sud-est) pour faciliter l'aération. D'autres pièces, telles que la bibliothèque ou les bureaux, sont aérées et ventilées mécaniquement, et en partie climatisées. Les cours întérieures et les stoas ne sont pas seulement des éléments de liaison entre les différents bâtiments, mais servent aussi comme lieu com-mun de rassemblement en plein air.

Situation de l'Université

Situation de l'Université sera située à 8 km du centre de la ville sur un terrain en amont. La cité sera accessible de toutes les parties de la ville. Le terrain de 1000 hectares, que traverse le canal Bari-Doab du nord-est au sudouest, est bordé d'arbres. Il a été prévu quelques transformations des rives du canal pour protéger la végétation existante. tation existante.

Disposition générale

L'université est prévue pour 10.000 étudiants avec possibilités d'expansion pour 10.000 autres étudiants.

Elle comprenda des habitations pour 5.000 professeurs et leur famille, ainsi que pour 5.000 étudiants.

que pour 5.000 etudiants.

La cité universitaire se composera de divers groupes de bâtiments (direction, administration, auditoires, sénat, imprimerie, bibliothèque, musées, toutes les ciasses de divertions plusieurs. tes les sciences, éducation physique, jardins, écoles de commerce, beaux arts, architecture, restaurants, hotels etc.). En bordure de ces bâtiments se trouvent les terrains de sport et 32 foyers pour 5.000 étudiants.

foyers pour 5.000 étudiants.
Le quartier des habitations sera exécuté en dernier lieu, et comprendra différents types de maisons pour revenus moyens et supérieurs (en tout 430 maisons) avec les bâtiments communs nécessaires ainsi qu'une école primaire. Les maisons pour revenus minima (au total 1.400 maisons) recevront les mêmes bâtiments communs que le quartier précité. En outre, chaque école primaire aura son jardin d'enfants. Le centre de ravitaillement comprendra les ateliers, les magasins, buanderies, garages, stations d'essence, service du feu et ferme lai-

tière. La cité pourra héberger en tout 15,000 habitants

La disposition des différents bâtiments et autres instituts sépare l'activité académique de la vie privée. La différence s'étend aussi dans la conception des bâtiments et de leurs locaux. Même la vie privée des professeurs et des étudiants sera soumise a ce

principe.
Tous les édifices sont accessibles aux piétons et véhicules par des voies bien définies qui ne se croisent pas. Le canal Bari-Doab limite le centre académique des habitations privées. Le long de ce canal a été emménagé l'allée principale qui représente le promenoir reliant les différentes fa-

Facultés

Les entrées principales aux différents instituts s'effectuent par le côté du canal. Ces derniers peuvent être indépendamment agrandis vers le nordouest. Au nord-est ont été prévu les édifices des facultés classiques, et au sud-ouest de l'acutes classiques, et au sud-ouest celles pour les sciences naturelles. Les constructions comprennent un à trois étages. Les bureaux et l'administration sont, en général, au rez-de-chaussée du côte du canal; les classes sont orientées vers le nordest. Les locaux des professeurs sont à l'étage supérieur. Les laboratoires et les locaux de service sont rassem-blés au nord-ouest, au rez-de-chaus-sée ou à l'étage supérieur.

Le côut total de la construction fut estimé à environ 200 millions de

Fritz Haller

Solutions générales pour la technique de construction

(pages 456-475)

Développement de certains types de construction:

L'histoire nous montre que les hommes de chaque époque ont trouvé des solutions spécifiques pour leurs problèmes: l'habillement, leurs outils, leurs méthodes pour bâtir. Dans la construction, les principes de base se sont conservés pendant des siècles ne différant que dans les détails et nous en appliquons encore aujourd'hui.

Depuis cinquante ans, cependant, la révolution industrielle et l'influence de la machine ont rendu méconnaissables les traditions anciennes.

C'est à partir des possibilités innom-brables que la technique moderne nous offre qu'il faut soulever la question, si notre époque aboutira à des solutions générales ou si elle est caractérisée précisément par le nombre de solutions qu'elle ouvre à chacun de ses problèmes.

La machine sert à produire en série: elle-même est fabriquée en série et par élément qui eux sont produits dans des lieux différents, et serviront à l'assemblage de différents types de machines

machines. Il s'agit de trouver un terrain d'entente qui mène forcément vers une normalisation. Or, ces normes s'établissent à une époque, où les éléments des machines n'ont pas encore atteint leurs stade de perfection. Un changement ultérieur devient alors difficile voire impossible à cause de l'interdépendance des différents éléments. Ainsi, le développement des machines et des produits industriels subit une inertie et conduit à des lois générales.

Pour la construction, on constate cette évolution pour les installations ména-gères, où l'influence de la machine se manifeste le mieux; il en résulte un meuble type qui varie peu.

meuble type qui varie peu.

Le climat intérieur dépend toujours plus des installations techniques qui, elles, demandent une modification de la conception des structures (parois, plafonds, portes et fenêtres). D'autre part, les exigeances nouvelles du planning moderne demandent des disposition nouvelles, une flexibilité plus grande réalisée par des cloisons mobiles; aussi, le manque de main-d'œuvre et l'industrialisation croissante dans le domaine de la construction dans le domaine de la construction contribuent également à des méthodes de travail et de construction nouvelles. Tous ces facteurs constituent le changement fondamental dans la construction: elle deviendra

normée, typée ou standardisée. Quoique tout le monde puisse se rendre compte de cette nécessité, la

prise de conscience des conséquences et des relations qui en découlent reste excessivement limitée parmi les constructeurs.

Les exemples exposés plus loin désirent exprimer un effort vers cette prise de conscience.

ll s'agit de travaux qui étaient exécu-tés consécutivement dans le même cabinet et pour lesquels on cherche des solutions qui s'améliorent les unes par rapport aux autres.

par rapport aux autres.

Il est quasiment impossible d'aboutir à la perfection du détail même pour une seule tâche, et un changement dans les données empêchera peut-être complètement une maturité satisfaisante de ce type de construction. Le perfectionnement des machines pour la production métallique aux nes pour la production métallique ou la découverte de nouveaux matériaux ouvrent de nouvelles possibilités à la construction. Ainsi, aux USA, ces influences ont permis un développement plus poussé des cloisons transparentes extérieures que chez nous. Or, il faut se demander, à quel point une recherche individuelle se justifie.

Nos conclusions résultant de ces quatre travaux présentés plus loin

sont les suivantes: C'est seulement par une application

Cest seufement par une application concrète que l'on peut prendre conscience des lois et des origines de ces problèmes. Cela permet également de mieux comprendre d'autre types de construction et leur domaine d'application. Il nous semble primordial, toutefois, de reconnaître assez vite les liens entre les différents problèmes partiels de la construction et leurs influences relatives lors de la modification de l'un d'entre eux pour obtenir des solutions relativement abouties. Les nouvelles possibilités que l'industrie nous offre sans cesse, que l'industrie nous offre sans cesse, nous obligent de remettre tout en question continuellement; c'est la raison pour laquelle nous demandons, si l'établissement de normes rigides se justifie en ce moment, où le développement ne fait que rejeter ses propres solutions intermédiaires. C'est seulement, lorsque les possibilités de la machine même se seront stabilisées qu'il sera judicieux d'ancrer les solutions pour les problèmes de construction. Il nous semble moins important de savoir, si le créateur des espaces se nomme technicien ou artiste que de lui connaître les capacités de sailui connaître les capacités de sai-ces rapports et d'en tenir compte dans ses recherches pour aboutir à une synthèse.

Celui que s'occupe de l'art de bâtir doit aussi bien en connaître les tech-niques, s'il n'en veut pas ignorer

l'essentiel.

l'essentiel.

Ainsi la machine le concernera en tant qu'outil et partie intégrante de la construction et il devra en reconnaître la beauté comme faisant partie de l'art de notre époque.

Ecole de quartier à Soleure

Construction 1958-59 (pages 460-461)

La construction des deux bâtiments est supportée par un système de rideaux en béton horizontaux et verticaux. Le bâtiment principal est supporté par des piliers DIN, et pour ne pas surcharger les éléments statiques, il fut adopté une construction légère pour les parois extérieures ouvertes. L'aération et la lumière des locaux s'effectuent par ces vides.

Les dimensions irrégulières des pièces provoquèrent des ouvertures identiques, d'où la recherche de mesures unitaires. Toutes les surfaces sont vitrées en verre double.

vitrees en verre double.
La charpente métallique a été soudée en atelier jusqu'à 3,40 m de haut et 8,30 m de long, puis posée et fixée entre les rideaux de béton. Les raccords au béton sont ainsi disposés, de sorte que les éléments exposés aux intempéries aient suffisamment de jeur les cadres de la parci de verre jeu. Les cadres de la paroi de verre de la salle de gymnastique sont ren-forcés contre les pousées du vent par des supports NP. Les pièces sont chauffées à l'eau chaude en spirale au plafond et au plancher.

Ecole à Bellach près de Soleure

Construction 1959-60 (pages 462-465)

Après l'école de Soleure, nous avons tenu compte de certains détails de planning concernant le plan ainsi que

les façades de verre. C'est ainsi que les problèmes de fabrication, de montage, de dilatation et les questions statiques furent solutionnés d'après notre expérience à Soleure. Les parois vitrées spécialement, avec leurs tubes de squelette métallique étaient très sensibles aux différences de tempérasersioles aux differences de tempera-ture et provoquaient des mouvements désagréables dans les joints. Pour y remédier, la façade vitrée a été amé-nagée en porte-à-faux de l'élément portant. C'est ainsi que la façade est indépendante des autres mesures du bâtiment. Les cotes de tolerance, entre les cloisons extérieures et la partie portante, peuvent être mieux adap-

Le squelette métallique se compose de fer T espacé de 1.13 m chacun. Les dalles sont recouvertes d'un bandeau en tôle. Le vitrage est en verre double. en tôle. Le vitrage est en verre double. Selon les nécessités il a été aménagé des vantaux de ventilation. Le tout est suspendu dans sa partie horizontale à des profils U. Ces derniers sont fixés à la construction de béton. Un joint de dilatation a été prévu tous les 25 mètres. Les différentes parties de cette construction furent fabriquées en atelier, puis montées sur le chantier et maintenues par des points de soudure. Toutes les pièces métalliques sont galvanisées et recouvertes d'une peinture synthétique. tique

Les locaux sont chauffés par chauffage à radiation au plafond et au plancher. Certains de ces locaux ont été dotés de stores à lamelles.

Ecole secondaire Wasgenring à Bâle

Construction 1960-62

(pages 466-469)

Les problèmes de cette construction ont été les mêmes que ceux des exemples précédents.

L'expérience a démontré que les cons-L'expérience a démontré que les constructions de squelette métallique sont limitées aux profils usuels. L'assemblage de profils L, U et Z n'a pas donné les résultats espérés. D'un autre côté, les profils en aluminium, quoique plus chers, offrent de plus grands avantages. En coordination avec les expériences de Bellach, il a été essayé de développer une paroi vitrée avec ces profils d'alu. Les profils verticaux sont aménagés

Les profils verticaux sont aménagés d'étage en étage. Les ceintures hori-zontales se composent d'une partie zontales se composent d'une partie inférieure et supérieure, et sont fixées à fleur à chaque profil vertical. Il en résulte ainsi des éléments simples qui peuvent être montés sans difficulté. Tous les éléments ont été fabriqués en atelier avec des machines couran-tes. Le travail sur le chantier ne fut plus qu'une question de montage.

plus qu'une question de montage.
La question du chauffage et des parois vitrées fut soumise a plusieurs études. Le chauffage par convecteur se révéla le plus efficace et le meileure marché. Il fut ainsi possible de vitrer les fênetres avec un verre de 6 a 7 mm au lieu du verre double. Un calcul comparatif révéla que les plus-values des frais de chauffage étaient balancés par la moins value des frais de vitrage. Dans la partie sud du bâtiment les radiateurs forment un bâtiment les radiateurs forment un groupe indépendant avec thermostat ce qui permet, en hiver, d'utiliser au maximum les rayons du soleil. D'autre part, pour se protéger de la chaleur d'été, il a été emménagé des stores à lamelles.

Les différentes études concernant le Les différentes études concernant le parti de construction à adopter ont révélé qu'une allège pleine simplifiait beaucoup les points de détail. Lors du projet de l'école pour Soleure, il a été objecté qu'une paroi complètement vitrée n'était pas souhaitable, la température en été étant trop élevée, et celle en hiver n'étant pas en rapport avec les frais d'entretien. L'enseignement dans ces locaux de verre dimiment dans ces locaux de verre dimi-nue la concentration de l'élève. En fin de compte, nous sommes de l'ayis fin de compte, nous sommes de l'avis que chaque novum entraîne naturelle-ment une opposition. Dans les cas particulier elle disparaîtra avec le temps et fera place à une nouvelle conception pédagogique.

Usine à Münsingen Projet: 1961

(pages 470-475)

Pour ce projet, on a tenté de résoudre un problème actuel de la construction industrielle:

La construction doit être constituée par des éléments préfabriqués et montés sur place de manière à permettre des agrandissements et des changements ultérieurs sans complications. Il s'agit de trouver un type d'élément universel qui offre des locaux à utilisation diverse par ses possibilités d'assemblage multiples. Cet essai pourrait servir de base pour

Cet essai pourrait servir de base pour l'étude d'un type d'élément de construction fabriqué industriellement et par ce fait économique et qui limiterait le temps de construction.

D'abord, on a analysé les avantages et les défauts des constructions actuelles. Les tendances du développement de la production doivent constituer d'autre part les directives pour projeter un hall de fabrication qui saisfait à une utilisation généralisée

On a comparé les mesures prises sur divers types d'éclairage (sheds, lanterneaux à deux pans ou en coupole). On a opposé les modules unités issus de la prospection de fabrication à ceux qui découlent des lois constructions. tives. Ces analyses ont servi de base pour le projet présenté ici. L'élément de base est formé d'un

Leiement de base est forme d'un champ carré sans appui intermédiaire d'un côté de 14,40 m. Une série de poutres à treillis en acier soudé de 1,20 m de haut transmettent les charges aux appuis d'angle; la couverture

ges aux appuis d'angle; la couverture est formée de plaques en béton armé de 4,80 m de longueur.

Les efforts du vent latéraux sont repris par la toiture et transmis aux appuis. Ces éléments peuvent s'assembler librement pour former des espaces à points porteurs peu nombreux et régulièrement répartis dans les deux sens. Ainsi, la direction de fabrication n'est pas conditionnée par la construction. Les ponts roulants peuvent s'appliquer dans n'importe quel sens, les canaux de ventillation, les conduites etc. sont logés dans l'épaisseur des poutres à treillis et la hauteur effective reste dégagée.

Les parois extérieures sont composées d'un squelette de montage en poutrel-

Les parois exterieures sont composees d'un squelette de montage en poutrelles à T verticales qui servent de contreventement et qui reprennent les efforts du vent. Les panneaux de remplissage vitrés ont 2,40 m de long et 1,20 de haut. Ces éléments sont interchangéables avec des portes etc. et démontables pour former le nouveur mu extérieur après agradises. et démontables pour former le nou-veau mur extérieur après agrandisse-ment. Pour empêcher l'aveuglement aux places de travail et la transmission de chaleur, on s'est servi de verre iso-lant opaque doublé d'une couche inter-médiaire de fibres de verre. Seule-ment la bande horizontale à la hau-teur des yeux est en verre transparent. Dans certaines conditions, on peut remplacer ces éléments par des panneaux pleins isolants.

Craig Ellwood Collaborateur J. E. Lomax Ingénieur-conseil: Mackintosh et Mackintosh

Squelette de construction en

(pages 476-478) Edifice de bureaux de la firme Acme-Arcadia à Los Angeles

Projet 1960-61

Projet 1960-61

Les firmes Acme Metal Molding Company et Arcadía Metal Products fabriquent des produits en aluminium pour l'industrie de la construction.

A notre connaissance, c'est la première fois qu'un bâtiment emploie uniquement un squelette d'aluminium. Pour les calculs statiques de la construction du toit, il a été fait appel à la formule de l'ingénieur russe S. Timoschenko. On avait d'abord prévu des profils standards. Les essais sur maquette aboutirent au développement de nouveaux profils en aluminium. comprimé, ce qui rendit la construction plus légère, meilleure marché et plus élégante.

Les maquettes démontrent la construction avec les profils de série. Grâce aux travaux de recherches et de développement, il est à prévoir que l'effet esthétique du squelette de la construction correspondra au premier projet de 1960 (photo). Ce premier projet avait été exécuté pour Acme Molding Company, Ouand l'Arcadia Metal Products fusionna avec celle sus-mentionnée, l'édifice se révéla trop restreint. Il fut cependant possible de l'agrandir aux dimensions voulues pour l'adjonction de deux axes supplémentaires.

Kajima Construction Co., Ltd.

Unité de construction métallique pour bâtiments industriels (pages 479-482)

Les éléments portants de la construc-

Les éléments portants de la construc-tion mesurant 24×24 sont appropriés aux bâtiments d'un étage. Sur la surface d'un toit de 576 m², un seul pilier, celui du milieu, suffit a supporter la couverture. Les quatre poutres I de 25 cm et la construction secondaire dans la zone de 4 trian-gles, complètent l'élément statique et gres, compresent retenient statique et révèlent un poids propre minimum. La forme du champignon renversé a un effet semblable à une construction précontrainte. Les éléments sont assemblés par vis à l'extrémité de chaque poutre.

Cedric Guhl

Norme de construction aux Etats-Unis (pages 486-494)

Importance du module

Importance du module
Il est primordial pour l'avenir de l'architecte dans la fabrication, et pour l'entrepreneur, d'établir un ordre de mesures a l'échelle de la construction. Il sera ainsi possible de renoncer à des mesures intermédiaires superflues au profit d'un ensemble plus précis. Le module devra être le trait de liaison entre les différents membres intéressés, de facon à pouvoir coordiner les différents travaux.

Désavantage d'une mesure libre Jusqu'alors il était d'usage de con-struire et de coter les bâtiments d'après des mesures individuelles. Ceci entraînait une exécution spéciale non en proportion de sa rentabilité.

Industrialisation de la construction
Les avantages de l'industrialisation de
la construction atteindront leur point
culminant quand celle-ci n'aura plus
besoin d'être adaptée sur place. Afin
d'utiliser le développement de détail
longuement étudié pour la fabrication,
il a été institué un nouvel ordre de
module. Cette mesure permet, sans
étude particulière de la part du projeteur, d'exécuter tous les travaux de
finition. Elle est, de ce fait, la clé
principale pour une fabrication industrielle rationnelle. Elle permet d'employer tous les matériaux, tout en
restant très flexible. Industrialisation de la construction

Le module
La mise en vigueur d'un ordre de module dans la construction, exclut la libre mesure de centimètre ou de pouce, pour faire place à une dimension adéquate permettant l'échange d'idées entre architectes, fabricants et entrepeneurs. Les Etats-Unis ont pour mesure de base 4 pouces (10,16 cm) qu'ils utilisent dans les trois dimensions. Lors de la construction, la coordination s'effectue par cette trame (Fig. 1).

Emploi du module lors du planning Lors de son application pratique, l'ar-chitecte doit respecter trois règles:

chitecte doit respecter trois règles:

1. Application du module dans les trois dimensions. La trame divise chaque élément de la construction. Les mesures du module comprennent l'ensemble des éléments y compris la moitié des joints de chaque côté (Fig. 2). Les plans de détail (Fig. 3), ainsi que les plans 1:50 (Fig. 4) ne contiennent pas de trame détaillée, tout au plus, selon la nécessité, la trame principale (Fig. 5).

2. Les cotes qui correspondent au module sont indiquées avec des flèches (Fig. 2).

3. Les cotes pointillées sont celles non comprises dans l'ordre du mo-dule (Fig. 2). Elles indiquent les ex-ceptions que l'architecte a jugé nécessaire d'employer.

saire d'employer.

Lors du projet, la trame est une aide très utile. Frank Lloyd Wright l'utilisait déja depuis le début de ce siècle (Fig. 6). Aux Etats-Unis, la dimension de 4 pieds (121,92 cm) est très répandue. 4' correspondent à 12 unités de module de 4". Il est probable qu'aujourd'hui, les architectes américains préfèrent la mesure de 4' à celle de 4", parce que les machines correspondent à cette dimension. Par ailleurs, dans les constructions de logements en bois, il est utilisé une trame de 2'. Une trame de 3' pour les habitations courantes et une de 5' pour les cons-

tructions spéciales sont également en

vigueur. Il n'est peut-être par superflus de remarquer que la dimension de 4' (121,92 cm) représente pour nous euro-péens une mesure de 120 ou 125 cm. Comp. E. Neufert, Les Eléments de Projet de Construction, 1961.

Le module dans le fabrication

Le module dans le rabrication pose des problèmes beaucoup plus compliqués que pour l'architecte. Avant tout, il faudra fixer les mesures des produits. Celles-ci seront établies en divisant la mesure du module dans une dimension qui comprendra une moitié de joint de chaque côté (Fig. 7). En plus, il faudra tenir compte des moments physiques et de la tolérance de fabrication. fabrication.

fabrication.

Lorsque les dimensions seront définitivement fixées, il faudra adapter la production de fabrication aux nouveaux produits. Celà entraînera de gros frais (nouvelles machines, etc.) ainsi que des difficultés d'écoulement car la demande de produits normalisés ne s'effectue que petit à petit.

Exécution de la construction d'après le module

Sur le chantier, il faudra que les en-

Sur le chantier, il faudra que les entrepreneurs s'habituent à lire les plans avec trames.

Avantages du module

La normalisation permet une grande flexibilité dans l'emploi des éléments de construction. Des produits normalisés peuvent facilement être remplacés. En particulier, il peut être relevé les avantages suivants Pour l'architecte:

plans à coter beaucoup plus rapides (Fig. 8);

aide dans le choix de la dimension des pièces (Fig. 9);

liberté de dimensions en dehors de la trame, sans inconvénient pour le

précision et clareté dans l'exécution des plans; facilité à découvrir les erreurs;

réduction du nombre des plans de détail, raccords secondaires sont supprimés (Fig. 10);

simplification par les plans de l'idée créatrice car architecte, ingénieur et entrepreneur agissent en commun;

moins d'erreurs:

réduction du temps de dessin

(Fig. 11); la trame sert de système de coordination et remplace les dessins de détail qui, jusqu'a présent, ser-vaient à mieux faire comprendre le point de détail particulier (Fig. 10); possibilité de changer de matériaux

et de produits sans difficulté de raccord ou changement de mesure;

facilité pour l'établissement de de-

estimation plus rapide et précise;
offres plus précises;

offres meilleure marché en raison des avantages pour l'entrepreneur;

sécurité plus grande dans l'établis-sement des frais; meilleure possibilité de comparer différents produits.

Pour le fabricant:

- unité de fabrication;

simplification pour entrepôts, commandes, livraisons, contrôles, etc.

réduction des frais de transport; expansion du marché:

la concurrence s'effectue sur le plan technique et économique et non plus seulement par la publicité.

Pour l'entrepreneur:

 rapidité, simplification et précision dans l'établissement des offres; moins d'erreur dans la lecture des

plans et devis; travail rationnel et rentabilité su-

périeure; plus de déchets sur le chantier;

piquage minimum;

maçonnerie meilleure marché (économie de 7 à 10%);

diminution des problèmes sur le chantier; moins de conducteurs de chantier

facilité des métrés et travail de contrôle;

contrôle; réduction du temps de construction, chiffre d'affaires annuel plus élevé; dépots et inventaires limités, commandes simplifiées; économie de transport; simplification des plans de chantier; facilité de contrôle des matériaux.

Pour le propriétaire:

réduction de la durée de construc-

tion, diminution des intérêts; moins de travaux en régie;

qualité supérieure; raccords plus correctes (Fig. 12); avancement plus régulier de la construction indépendamment des intempéries.

Application du module

20% de toutes les agences américaines emploient le module. Plus du 50% utilise le même principe pour coter les fondations. Ceci est compréhensible du fait que les plots de ciment sont eux-mêmes normalisés.

Emploi du module d'après les constructions types

Les bâtiments suivants ont été cotés et construits d'après des mesures normalisées:

Edifices médicaux Fcoles Habitations Eglises Bâtiments industriels Bâtiments administratifs Autres constructions

Le haut pourcentage des bâtiments médicaux et des écoles concernant l'emploi d'une mesure normalisée re-pose sur les lois et réglementations se rapportant à ces constructions.

Possibilités de vente de produits nor-

malisés
Les articles de construction normalisés sont très demandés.
66% de tous les architectes commandent de tels produits pour autant qu'ils soient livrables. Il est intéressant de constater, qu'aujourd'hui, les possibilités d'écoulement de produits normalisés par rapport aux mêmes produits non normalisés, à un prix et une qualité équivalents, sont de deux contre un plus favorables.

Adaptation du module par l'architecte Adaptation du module par l'architecte Un questionnaire établi en 1959 dé-montra que parmi tous les architectes qui ont essayé de travailler avec une trame de modules, 85 % d'entre eux ont adopté ce principe. Par ailleurs, il est intéressant de constater que dans des conditions normales, les ar-chitectes ont accueilli avec enthou-siasme ce système de mesure.

Nombre de produits actuellement normalisés

Normes officielles

Actuellement, quatre mesures stan-dards officielles sont reconnues aux Etats-Unis:

le module de 4" comme mesure de base pour tous les produits du bâti-ment (1945);

des plots de ciment normalisés:

des plots de brique normalisés;

des plots de cheminée.

Produits normalisés qui ne sont pas encore reconnus officiellement

encore reconnus officiellement
En plus des normes sus-mentionnées
les travaux vont de l'avant dans tous
les corps de métiers. C'est ainsi que
le catalogue américain de la construction indiquait que 90% de tous les
produits courants étaient basés sur
des mesures normalisées. Cela ne
signifie pourtant pas que ces articles
sont meilleure marché que ceux construits selon la tradition ancestrale. Il
en résulte une période critique intermédiaire de développement.

Produits non normalisés

L'étude d'un journal de la construc-tion pendant l'automne 1959 révéla que sur 298 annonces de produits, 254 avaient les dimensions normalisées; 5 sur 6 nouveaux produits correspondaient au module.

Les articles non normalisés étaient en général les suivants:

- revêtements de planchers synthé-

tiques; catelles de céramique; installations combinées de cuisine et buanderie;

portes.

Concernant les revêtements de planchers, il est à remarquer que les plaques peuvent être commandées normalisées. Si les architectes préfèrent néanmoins pour cet article des commandes spéciales, celà provient de la difficulté d'adapter ces plaques au gros du bâtiment. Les planelles de céramique normalisées sont très rares. La technique de fabrication, ainsi que la tolerance qu'exige le matériaux lui-même, et les joints lors de la pose.

empêchent un développement précis. Le côut de transformation pour l'adaptation des appareils de cuisine et de buanderie est, à l'heure actuelle, trop élevé pour justifier cette normalisa-tion. Ce problème à résoudre est du domaine de l'avenir.

Choix d'un module approprié

Il peut étonner que seuls quatre mo-dules standards soient reconnus aux dutes standards solent reconnus aux Etats-Unis. L'importance de cette me-sure n'ait cependant pas à sous-esti-mer. L'accord sur le module « pouce » pour la construction représente un pas en avant. L'adoption unanime d'un nouveau module est la base primaire pour toute activité future. Elle est le résultat d'études très approfondies.

Normalisation des plots de construction

L'adaptation des fabriques de plots à une mesure de module a eu des ré-sultats très concrets. Cette industrie est considérée depuis toujours comme la clef de toute la fabrication du bâti-

Normes types

Le développement technique et social, l'expression architectonique, les ex-périences pratiques, les différences de climat et les détails particuliers de chaque construction, ne permettent pas de concevoir des normes types définitifs avec succès de garantie.

Histoire du développement de la normalisation

1921 Premières études avec le module de 4" par l'industriel Bemis;

1936 Publication «The Evolving House » par Bemis dans laquelle il pro-page le module de 4";

American Standard Association (ASA); fondation du Comité A-62. L'American Institute of Architects 1938 et le Producers Council devien-nent « parains » du Comité A-62

1939-1943 Normalisation de bâtiments militaires;

1945 Mise en vigueur du module de 4" comme standard américain;

La Modular Service Association est dissoute;

L'AIA fonde un bureau pour « modular coordination »

La National Association of Home Builders devient troisième « parain » du Comité A-62;

1956 AIA Bureau pour Modular Co-ordination est dissout;

1956 L'Associated General Contractors of America devient le quatrième « parain » du Comité A-62;

Fondation de la Modular buildings standards association sous le patronat de AIA, AGCA, NAHB et du PC. Bonnes organisations avec de solides finances, grands progrès.

On remarquera combien une organi-sation mal dirigée et avec des moyens financiers limités est handicapée dans son développement normal.

Organisation actuelle et son travail de normalisation

L'instance supérieure de cette orga-nisation est la American Standard As-sociation (ASA). Cette organisation nationale est financée par l'industrie. Le Committee for dimensional coordi-Le Committee for dimensional coordination of building products and materials (A-62) lui est subordonné. L'autorité exécutive du A-62 est le secrétariat de la Modular Building Standards Association (MBSA). En complément de ces organisations, I'U.S. Army Corps of Engineers et la Veterans Administration ont leur part méritoire dans ce travail d'avantgarde.

Difficultés dans l'exécution

Deux facteurs importants ont empêché un travail fructueux pendant les 35 dernières années:

le manque de movens financiers le choix d'une époque non favora-ble à l'adaptation de produits normalisés auprès des architectes et

Offres et demandes

L'index momentané de la demande de L index momentane de la demande de produits normalisés de la part des architectes et entrepreneurs d'un côté, et de l'autre l'offre de produits normalisés de la part du fabricant, est un des problèmes les plus difficiles à résoudre dans l'application de la théorie d'une norme

Conclusions Normes types et dimensions normalisées

Les normes de construction des Etats-Unis se divisent en dimensions nor-malisées et en normes types. Les di-mensions normalisées règlent les questions de mesures, c'est-à-dire de-puis le plus simple niveau jusqu'au système de module coordinateur. Les normes types spécifient la forme, les mesures, ainsi que les avantages et qualités des éléments de construc-tion.

tion. Une dimension norme correspond tou-jours à un module de 4". La norme type comprend toutes les autres nor-malisations. Si, par exemple, nous parlons d'un plot normalisé, cela veut dire que le produit est aussi normalisé dans sa forme. Autant un ordre de dimensions offre des avantages in-déniables, autant les efforts de vouloir produire à tout prix une norme type. déniables, autant les efforts de vouloir produire à tout prix une norme type ne se justifient guère. La normalisation, dans ce cas, a tendance à paraître superflue. Il est regrettable que les autorités compétentes ne discernent pas mieux les différents buts et les nécessités de ces deux genres de normes.

Alors que nous comparons un produit dans ses dimensions et ses raccords à d'autres matériaux dans le cadre du module, nous constatons, malheu-reusement, que les formes et les pro-fils standards sont sujets à un marché fils standards sont sujets à un marché dicté, ce qui empêche une concurrence libre. Le développement d'une norme type devrait être du ressort particulier de chaque fabricant. La difficulté de produire une norme type, et la réalité, qu'en dehors des briques aucun produit, dans sa forme et dans ses dimension, n'ait pu être declaré normalisé, explique clairement les inconséquences de conception entre la dimension norme et la norme type.

But de la normalisation

Le désir d'introduire dans la construc-Le désir d'introduire dans la construction un ordre de modules paraît aujourd'hui s'avérer approprié et prometteur. Le module ne définit, en fin
de compte, que les dimensions de
raccords d'éléments finis. La liberté
d'expression peut ainsi être sauvegardée. La discipline dans le choix
des dimensions extérieures ne devrait,
en aucun cas, porter atteinte à l'esthétique. Avec l'introduction d'une unité
de mesures dans la construction, on
doit pouvoir s'attendre à une rationalisation du travail, et, par conséquent, lisation du travail, et, par conséquent, à une réduction du côut de la construction. Le travail de l'architecte s'avère d'année en année plus difficile étant donné l'apparition sur le marché de nouveaux matériaux et produits. C'est avec réserve que l'on accueil-lera tout optimisme qui promet d'obtenir une réduction du prix de la construction. La création d'un ordre de module

n'est, en fin de compte, pas le moyen définitif pour parvenir à une épargne dans les méthodes de construction. La simplification du travail est, par contre, indéniable et semble aujourd'hui le facteur principal pour cette normalisation

Jacques Henry

Business Planning General Planning General Undertaking (pages 442-445)

General Planning and Business Planning

In Europe, as in other parts of the world, general planning is ceasing to be a purely speculative affair and is now assuming a more and more important role.

Ideas such as collectivism, planned economy, etc. are concepts falsely used in connection with this expression "general planning", which, by the way, describes the present period even more felicitously than one such as "the atomic age" (UNO, UNESCO,

Unlike planning, in the restricted meaning of the word, such as was carried out in the past, nowadays it is an easy matter to draw up 20-year programmes on a different level of coordination, organization and combination.

Modern planning is flexible and adaptable; of all things it is not rigid, for its essential prerequisites are free commercial exchange and maximum flexibility in management.

The rapid development of general planning is explained by the frequently

The rapid development of general planning is explained by the frequently unsatisfactory results arising from the method where the "free play of forces" is brought into application. Over and above this, the astonishing expansion there has been in the world's population makes generalised planning of the world's economy necessary (international market, exploitation of energy, etc.).

The problem as regards existence has become more acute with the development of the countries susceptible to economic advance. The need for organization is growing with the importance of investment and the stocks of large concerns and will necessarily lead to global planning, and this on an international level even. The end product is, therefore, general planning. The results of such planning are based essentially on a certain code of ethics, which, in this case, implies a sense of responsibility and infallible confidence in the choice of the aim to be pursued. In the course of one generation our age has experienced fundamental

pursued. In the course of one generation our age has experienced fundamental economic, cultural, social, political and spatial changes, which have manifested themselves in our surroundings, in our towns and cities, in industry and in the nature of our experienced life.

perienced life. But whereas the means open to us make a state of perfection possible over an increasingly great area, our "raisons d'être" are becoming more and more incapable of being fathomed. It is this – this lack of certainty, this shadow of doubt – which has created the tragic flaw in our epoch. By virtue of the very fact that we are unable to pronounce judgment upon vital matters, we are confronted by an almost overwhelming sea of difficulties if we attempt to achieve even a meagre result.

meagre result.

meagre result.

To counter this problems of research, organization and planning must be re-examined and carefully studied. Nothing other than a systematic form of coordination will make it possible for us to master this confused situation. Diagram 1 is a simplified picture of the position of general planning as a motivational force in business activity as a whole.

1. The outer triangle defines the key conditions imposed on industrial acti-

vity.

2. The middle triangle represents purely material, industrial activities.

3. The inner triangle symbolises rational and intellectual activities.

al and intellectual activities. In this classification general planning falls under the inner triangle; it is concerned with projection and intellectual activities as a whole, whereas general business activities are concerned with the realisation and execution of the projects drawn up under general planning.

needs production analysis general planning general undertaking

planning consumption demand organization distribution offers

Methods

Methods
In itself it is difficult to explain what are the essential features of general planning; it is even more difficult to elucidate its methods and we shall restrict ourselves to the description of various methods of procedure. The first thing to be done is to reply to the following questions: What are the motives underlying general planning?
Who gives the order for general planning to be undertaken?

ning to be undertaken? Who does the planning?

Who does the planning?
What sort of contracts are drawn upfor a planning programme when a contract is concluded with third parties?
How does planning evolve; what is the course taken when it is executed.
We shall take an example from rationalised buildings to illustrate business planning, its origins and its causes.

1. The entrepreneur – or the contractor – and his collaborators are entirely taken up by their normal business activities.

They lack experience in the field of construction since these questions only concern them from time to time.

2. Although common sense is a factor of primary importance in building and in planning the site, in itself it is not enough to ensure success.

3. A certain cecity in the concern or intellectual inertia creates resistance to any innovation. Thus, it seems easier to retain old methods than to carry through to the end a way of thinking that is new and has no experience behind it to back it up.

4. In these circumstances the architects in charge of the projects and the tects in charge of the profess and the building-site are, generally speaking, not aware of the real problems in the planning of the enterprise, since their principal concern is directed towards the artistic aspects of their assignments.

5. However, the ability to plan in advance mentioned earlier on is rarely given to architects, contractors and entrepreneurs.

6. In the German-speaking parts of the world teamwork is still something utopian, for the structure of their economics. utopian, for inestructure of their economies seems to lend itself only to conditions unfavourable for the founding and existence of planning offices where it would be possible to have under one roof all the indispensable experts demanded by the general planning of the enterprise.

7. Lack of time - effective or virtual - makes it impossible for the planning programme to produce satisfactory

Results.

8. The most important offices and organizations for general planning have, for the benefit of business men and the experts they employ, drawn up a set of quiding points which covers all the factors that have to be elucidated by the entrepreneurs themselves before the work of the planning organization can begin zation can begin.

Here is a summarized version of such a set of guiding points (Kiddie Constructors, New York):

 Production quantity defined by the sectors of distribution and commercial research and by the distribution statistics with consideration being paid to profit and loss as regards each product and the maximum capacity of all existing productive machines.

2. The operational plan drawn up by the management of the firm deter-mines the quantity manufactured of