Zeitschrift: Bauen + Wohnen = Construction + habitation = Building + home :

internationale Zeitschrift

Herausgeber: Bauen + Wohnen

Band: 14 (1960)

Heft: 3: Wohnhochhäuser = Maisons-tours d'habitation = High-rise apartment

houses

Artikel: Rostfreier Stahl

Autor: Menges, Georg / Zander, Anneliese

DOI: https://doi.org/10.5169/seals-330320

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bauen + Wohnen

Dr.-Ing. Georg Menges Dipl.-Ing. Annelies e Zander

Rostfreier Stahl

Die wertvollen Eigenschaften – das Aussehen, die Dauerhaftigkeit, die Beständigkeit bei chemischen Angriffen, die hohe Festigkeit und gute Verarbeitbarkeit – verschaffen dem rostfreien Stahl heute überall dort Eingang, wo Schönheit mit Zweckmäßigkeit gepaart werden soll.

Bei uns gehörten diese Legierungen vor, während und unmittelbar nach dem Kriege zu den «Sparlegierungen», so daß ihre Verbreitung bei weitem nicht so groß ist wie in anderen, an Rohstoff reichen Ländern. Die Verknappung ist heute beseitigt, und damit werden auch bei uns die Bedarfsgebiete erschlossen, auf denen sich diese Legierungen vorwiegend in den USA längst eingebürgert haben.

Seit dem Beginn der dreißiger Jahre werden in den Vereinigten Staaten von den Architekten in zunehmendem Maß einige dieser Legierungen als Baustoffe für Innen- und Außenteile verwendet. Den Anstoß gab zweifellos der große Versuch, die Spitze eines Wolkenkratzers, des Chrysler Building in New York, mit Blechen geringer Stärke aus rostfreiem Chrom-Nickel-Stahl zu verkleiden (Abb. 1). Dieses Gebäude liegt in der Nähe des Industriegebietes am East River, wo es einer recht aggressiven Industrieatmosphäre ausgesetzt ist, die, zusammen mit dem in New York herrschenden Seeklima, für alle Werkstoffe eine besonders starke Beanspruchung darstellt. Trotzdem hat sich vor einigen Jahren bei der ersten Reinigung nach mehr als zwanzig Jahren keinerlei Abnutzung gezeigt. Es erwies sich vielmehr, daß rostfreier Stahl dieser Legierungsart auch von starken Schmutzund Staubablagerungen durch Abwaschen mit warmer Seifenlauge also auf billigste Art - gereinigt werden kann und dann wieder den ursprünglichen Oberflächenzustand zeigt. Dieses Ergebnis hat in der jüngsten Zeit viele Architekten ermutigt, diesen auf lange Sicht sehr wirtschaftlichen, dauerhaften und schönen Baustoff stärker einzusetzen.

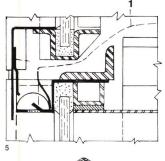
Die Werkstoffe und ihre Eigenschaften

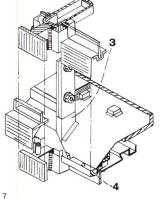
Bevor an Hand von Beispielen die Verwendungsmöglichkeiten und Vorteile der rostfreien Stahlarten aufgezeigt werden sollen, scheint es angebracht, die in Frage kommenden Legierungen näher zu betrachten. Nach den Gefügen lassen sich drei Hauptgruppen unterscheiden:

Chromstähle mit ferritischem Gefüge;

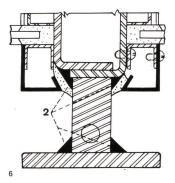
Chromstähle mit härt- oder vergütbaren, sorbitischen, troostitischen oder martensitischen Gefügen;

Chrom-Nickel- und Chrom-Mangan-Stähle mit austenitischem Gefüge. Allen Legierungen dieser Gruppen ist eine hohe Beständigkeit gegen chemische Angriffe gemeinsam. Mit zunehmendem Chromgehalt, beginnend mit 12%, wächst ihre Beständigkeit gegen Rosten und Verzunderung. Man erklärt diese Eigenschaft mit der Bildung einer molekularen Schicht von Sauerstoff an der Stahloberfläche, der sogenannten passiven Schicht, verursacht durch die hohe Affinität von Sauerstoff zu Chrom. Aus diesem Grund kommt dem Ausführungszustand der Oberfläche eine maßgebende Bedeutung zu. Die Beständigkeit wächst mit zunehmender Oberflächengüte; polierte Oberflächen garantieren eine maximale Beständigkeit.


Ferritische Chromstähle und austenitische Chrom-Mangan-Stähle mit 13% Chrom erweisen sich gegen alle Angriffe, die im Haushalt möglich sind, in polierter Form als genügend beständig; weshalb sie vor allem in der Besteckindustrie Verwendung finden. Für Teile, die mit billigerer Oberflächenausführung gleiche oder höhere chemische Beanspruchungen zu ertragen haben, werden ferritische Chromstähle mit 17% Chrom gebraucht. Ihre Beständigkeit erlaubt, wenn sie eine geschliffene oder polierte Oberfläche besitzen. einen bedenkenlosen Einsatz bei allen Anliegen der Innenraumgestaltung. In dieser Ausführung besteht für die Erhaltung ihres Aussehens auch bei wenig Pflege keine Gefahr. Es ist weitgehend die Ansicht verbreitet, daß sie atmosphärischen Bedingungen nicht ganz gewachsen seien. Trotzdem wurden in den Vereinigten Staaten mehrere Hochhäuser mit Blechen dieses Stahltyps auch außen verkleidet. Gewöhnlichen atmosphärischen Bedingungen gegenüber erweisen sich die austenitischen Chrom-Nickel-Stähle mit 18% Chrom und 8% Nickel als absolut beständig. Aus Gründen der Sauberhaltung werden hier ebenfalls geschliffene oder polierte Oberflächen vorgezogen.


Unter extremen Bedingungen, wenn man mit der Ablagerung von Chloriden, z.B. Meersalz, zu rechnen hat, wird den Chrom-Nickel-Stählen Molybdän zulegiert, das sie auch gegen diesen Angriff schützt.

Eine recht hohe Beständigkeit lassen ebenfalls die ferritischen Chromstähle mit 18 bis 20% Chrom und 1% Molybdän erwarten, mit denen amerikanische Hochhäuser verkleidet wurden. Austenitische Legierungen



. Spi<mark>t</mark>ze des mit Edelstahl «rostfrei» vom Typ 18/8 verkleideten Chrysler Building in New York.

Montage von vorfabrizierten Wandplattenelementen aus rostfreiem Edelstahl.

Socony-Mobil Building, New York.

Das Lever-House in New York. Die Fassade ist durchgehend mit rostfreiem Edelstahl verkleidet.

Konstruktionsdetails vom Lever Building.

Vertikalschnitt durch Fensterrahmen.

Horizontalschnitt durch Fensterpfeiler und Schiene für Fensterputzeinrichtung.

Isometrie des Fensterpfeilers und der horizontalen Fensterrahmen.

- Lüftung
- 2 Schweißnähte
- Manschette
- 4 Bohrung für Lüftung

mit 18% Chrom, 8% Mangan und 5% Nickel haben in den Vereinigten Staaten als Verkleidung von Eisenbahnwaggons eine zwanzigjährige Bewährungszeit erfolgreich bestanden, so daß auch sie für Außenverkleidungen verwendet werden können.

Weiteste Verbreitung finden die ferritischen 17%igen Chrom- und die austenitischen Chrom-Nickel-Stähle vom Tvp 18/8, da sie ausgezeichnete Verarbeitungseigenschaften besitzen. Legierungen beider Gefügearten werden daher in Form von Blech und besonders Feinblech verarbeitet. Die Verformungseigenschaften bei Kaltbearbeitung sind bei den ferritischen Chromstahlblechen etwa ebensogut wie bei den Tiefziehblechen: bei den austenitischen sind sie noch besser. Die Erzeugung der Feinbleche unter 2.5 mm Stärke durch Kaltwalzen mit nachfolgender Glühung garantiert gleich-Festigkeitseigenschaften mäßige und Oberflächen bei engen Toleranzen.

Beide Gefügearten, Ferrit und Austenit, lassen sich mit den konventionellen Mitteln gut schweißen und löten; neuerdings werden sie sogar mit Kunststoffbindern geklebt.

Von ganz besonderer Bedeutung ist die hohe Festigkeit der rostfreien Stähle, welche diejenige der Tiefziehstähle wesentlich übertrifft (Tabelle 1). Ferritische und austenitische Stähle erhalten durch Warmbehandlung keine höhere Festigkeit. Durch Kaltverformung hingegen kann die Streckgrenze der ferritischen Chromstähle auf etwa 50 kg/mm² und auf 80 bis 90 kg/mm² bei den austenitischen Stählen gebracht werden. Von dieser Möglichkeit kann gerade der Leichtbau noch vermehrten Gebrauch machen.

Während die ferritischen und die austenitischen Stähle durch Warmbehandlung in ihren technologischen Werten nicht verändert werden können, bewirkt bei den härtbaren Chromstählen ein erhöhter C-Gehalt ihre Härt- und Vergütbarkeit. Diese Legierungen eignen sich daher besonders für Beschläge und Schrauben. Dabei kann die Formgebung durch Schmieden und Zerspanung in ähnlicher Weise erfolgen wie bei normalen Kohlenstoffstählen.

In der Architektur haben die Wärmeeigenschaften der Baustoffe eine
große Bedeutung. Die rostfreien
Stähle verfügen über einen hohen
Schmelzpunkt von etwa 1450° C. Da
sie zudem eine außerordentlich gute
Zunderbeständigkeit besitzen, können sie einer längeren Flammeneinwirkung aut widerstehen.

Die ferritischen und die härt- und vergütbaren Chromstähle haben bis zu Temperaturen von etwa 600° C eine sehr aute Warmfestigkeit. Die austenitischen Stähle zeichnen sich durch eine besonders hohe Warmfestigkeit aus, die noch bei 800° C Beträge aufweist, wie sie von keinem anderen Metall außer einigen sehr teuren Sonderlegierungen erreicht wird. Im Vergleich zu den vielseitig eingesetzten Aluminiumlegierungen ist die Wärmeleitfähigkeit niedrig, sie erreicht bei den ferritischen Stählen etwa ein Zwölftel derjenigen von Kupfer und etwa ein Siebtel derjenigen von Aluminium, während die austenitischen Stähle um das Doppelte weniger Wärme als die ferritischen zu leiten vermögen.

Die Wärmedehnung erreicht bei den ferritischen Legierungen etwa die Werte normaler Kohlenstoffstähle, die etwa halb so groß sind wie diejenigen von Aluminium. Die Wärmedehnung von austenitischen Stählen ist um etwa 50% größer als diejenige ferritischer Stähle; ist aber immer noch wesentlich kleiner als bei Aluminium.

Für Außenverkleidungen aus rostfreiem Stahl tritt zu der relativ niedrigen Wärmeleitfähigkeit das hohe Rückstrahlungsvermögen, das wegen der hellen Farbe und der starken Spiegelwirkung in der gleichen Größenordnung wie bei Aluminium liegt und um ein Mehrfaches niedriger ist als das von Stein. Damit lassen sich zwar bei weitem nicht die sehr niedrigen Produkte aus Wärmeleitung und Strahlungsvermögen der Steine erreichen; aber es ergeben sich sehr günstige Kombinationsmöglichkeiten, auf die später eingegangen werden soll.

Schließlich darf bei einem so großen und vielfältigen Verwendungsgebiet neben all den technologischen Eigenschaften die rein optische Erscheinungsform nicht vergessen werden. Es wurde bereits ausgeführt, daß im allgemeinen aus Gründen der Sauberhaltung und Witterungsbeständigkeit eine möglichst glatte Oberfläche zu bevorzugen ist. Es empfehlen sich daher folgende Oberflächenausführungen, die nach steigenden Erzeugungskosten angeordnet sind:

walzpolierte Ausführung;

walzpolierte Ausführung mit Glanzbeizung;

fibergebürstete Oberfläche;

geschliffene Oberfläche, wobei Körnungen des Schleifmittels im Endzustand von 240 bis 400 in Frage kommen;

polierte Oberfläche;

Für Außenverkleidungen wird im allgemeinen die relativ billige Walzpolitur mit und ohne Glanzbeizung ausreichen. Fibergebürstete Oberflächen sind ebenfalls recht wirtschaftlich zu erzeugen und werden vielen Ansprüchen bei Innenausstattungen genügen. Geschliffene oder gar polierte Oberflächen sind wegen der vielen notwendigen Arbeitsgänge teuer und sollten daher außergewöhnliche Fälle beschränkt werden.

Glanz und Farbe der Chromstähle entsprechen dem bekannten Chromglanz verchromter Teile; die Chrom-Nickel-Stähle haben einen etwas weicheren, gelblichen Glanz.

Schließlich noch eine wesentliche

Eigenschaft: die rostfreien Stähle bestehen durch und durch aus Werkstoffen der gleichen Beständigkeit und besitzen die Fähigkeit, bei Verletzungen der passiven Außenschicht diese sofort wieder neu zu bilden, so daß ein Durchrosten oder Anfressen überhaupt nicht möglich ist. Ferner kann man Beschädigungen der Oberfläche durch Kratzer oder ähnliches meist dadurch beseitigen, daß man die betreffende Stelle am Bau überschleift und nachbehandelt. Das ist ein bedeutender Vorzug gegenüber allen anderen Werkstoffen metallischer Art, wie Leichtmetallen, die aus Korrosionsgründen eine Schutzschicht, z.B. Eloxierung, tragen; denn diese Metalle können am Bau nicht ausgebessert werden.

Möglichkeiten der Baukonstruktion

Da die Grundstückpreise in den Zentren aller Städte steigen, gehören wirtschaftliche Bauformen, wie z.B. Hochhäuser als Verwaltungs- und Geschäftshäuser, zum alltäglichen Bild unserer Großstädte. Die Bauzeiten werden immer mehr gedrückt; man erstrebt den schnell errichtbaren Leichtbau. Man verwendet dazu heute vielfach den Stahlskelettbau, der sich schnell errichten läßt, das tragende Gerippe darstellt und schwierige Rüstungsund Schalarbeiten weitgehend erspart. Heute werden die Wände derartiger Bauten meist mit Stein, Beton u.ä. verkleidet. Diese Arbeiten verlangen, trotz etwaiger vorgefertigter Einheiten, immer noch einen hohen Aufwand an Lohnstunden, die unter erschwerten Bedingungen, häufig in Zeitnot, mit entsprechenden Lohnzulagen aufgebracht werden müssen. Die verwendeten Werkstoffe, Steine und Beton, verlangen überdies eine starke Dimensionierung, so daß große Baugewichte aufzunehmen sind. Bei Hochbauten ent-

Tabelle 1 Rostfreie Stähle für architektonische Zwecke

Kennzeichnung		Dichtanalyse					Eigenschaften						
Werkstoff-Nr.	Bezeichnung	Kohlenstoff C	Chrom	Nickel Ni	Molybdän Mo	Gefüge	Streckengrenze σ_F kg/mm²	Zugfestigkeit GB kg/mm²	Bruchdehnung	Wärmeleitfähigkeit cal/cm.sec.grad	Wärmedehnung x 10-6/Grad	Schmelzpunkt ° C	Verwendung für architektonische Zwecke
4016	X 8 Cr 17	0.08	17.0	-	-	Fernit	< 30	45-60	< 20	0.06	10.0	1480	Innenverkleidungen
4057	X 22 Cr Ni 17	0.22	17.0	2.0	_	Sorbit	< 60	80 - 95	< 14	0.06	10.5	1490	Beschläge
	X 8 Cr Mo 17	0.08	17.0	-	1.0	Fernit	< 30	45-60	< 20	0.06	10.5	1480	Verkleidungen mit Salzwasser-Beständigkeit
4122	X 35 Cr Mo 17	0.40	17.0	-	1.2	Sorbit	< 60	80 - 95	< 14	0.07	16.0	1450	Beschläge mit höherer Beständigkeit
4350	X 12 Cr Ni 188	0.10	18.0	9.0	-	Austenit	< 25	55 - 75	< 50	0.035	16.0	1420	Außenverkleidungen
4351	X 5 Cr Ni 189	> 0.07	18.0	10.0	-	Austenit	< 25	5575	< 50	0.035	16.5	1420	Außenverkleidungen
4401	X5 Cr Ni Mo 1810	> 0.07	18.0	11.5	2.3	Austenit	< 22	55 - 70	< 45	0.035	16.5	142	Außenverkleidung höchster Beständigkeit
4345	X 8 Cr Mn Ni 189	> 0.1	18.0	5.0	Mn 8	Austenit	< 30	< 65	< 50	0.04	1500	1420	Außenverkleidung geringerer Beständigkeit

stehen dadurch sehr große Querschnittsbelastungen auf die Tragkonstruktion und auf den Untergrund. Schlechte Baugrundverhältnisse in Großstädten stellen dann den Architekten vor unlösbare Aufgaben. Mancher an sich wirtschaftliche Hochbau wird nicht ausgeführt, da eine Fundamentierung derartiger Gewichte den Kostengewinn aufzehrt.

Eine Lösung dieser komplexen Aufgabe kann nur der Leichtbau bringen. Die Bauten werden z.B. als Stahlskelettbauten in einfachen geometrischen Formen entworfen; ihre Wandverkleidung muß aus vorgefertigten Wandelementen gleicher Abmessungen und geringsten Gewichtes bei einem Minimum an Arbeitszeit ohne Rüstung und Schalarbeiten bei jeder Witterung erstellt werden können. Diese Möglichkeit bietet z.B. der Einsatz rostfreier Stähle, wie man dies in den Vereinigten Staaten erprobt hat.

Die Gateway Center Group, eine Gruppe von mehreren Verwaltungshochhäusern in Pittsburgh enthält einige mit rostfreien «curtain walls» verkleidete Stahlskelettbauten mit 24 und 20 Stockwerken. Die Wandplattenelemente (Abb. 2), welche die Fenster mit einschließen, haben eine einheitliche Größe. Sie werden zusammengestellt aus vorgeformten Blechen, die durch Punktschweißen

miteinander verbunden und in einer Betonfabrik mit armiertem Leichtbeton hinterfüllt wurden. Der Leichtbeton übernimmt die Wärme- und Schallisolation, während die nur 0,8 mm starken Bleche aus rostfreiem 17%igem Chromstahl die verlorene Schalung, die Außenhaut, den Wind- und Wetterschutz und die Fassadenverkleidung bilden.

Die vorgefertigten Wandelemente wurden nach ihrer Fertigstellung in Stapeln, durch Gummizwischenlagen geschützt, zusammengepackt zur Baustelle gefahren. Hier konnten sie unter geringem Aufwand an Arbeitszeit an den Montageort hochgehißt, mit Hilfe der bereits an den Platten angeschraubten Winkelträger auf die Querträger des Stahlskelettes aufgesetzt und durch Anschweißen der Winkel am Skelett befestigt werden. Die Mannschaft war bei der Errichtung des zweiten Gebäudes bereits so eingespielt, daß in 15 Tagen 17 Stockwerke, von denen jedes 252 Wandplatten umfaßt, samt dem Feuerschutz der Träger vollständig fertiggestellt werden konnten.

Eine derartige Bauweise kommt dem Ideal eines Leichtbaues mit kürzester Bauzeit sehr nahe. Die erreichbaren Vorteile sind derart vielseitig, daß eine Aufzählung kaum vollständig sein würde. Zunächst wird die Planung zweifellos vereinfacht, wenn

auch die Organisation wesentlich intensiver vorbereitet werden muß und mehr derjenigen einer mechanisierten Serienfabrikation eines Industriebetriebes als einer konventionellen Hochbaustelle gleichen dürfte. Dafür werden erhebliche Arbeitszeiten gespart, und man kann praktisch mit ungelernten Arbeitskräften auskommen. Fehlermöglichkeiten sind nahezu ausgeschlossen; die Sicherheit des Gebäudes und die Einhaltung der errechneten Bauzeit und der Kosten werden garantiert; der Baufortschritt kann durch Witterungseinflüsse kaum mehr aufgehalten werden, wodurch sich erhebliche Unsicherheiten der Kalkulation ausmerzen lassen.

Genau erfaßbar sind die gewichtsmäßigen Einsparungen, die sich durch die Verbilligung der Fundierung und durch die Verminderung der Querschnitte der Stahlskelettkonstruktion ergeben. Die frühere Bezugsmöglichkeit sichert dem Bauherrn eine schnellere Rendite; wegen der schwächeren Wände wird bei vielstöckigen Gebäuden viel zusätzlicher Nutzraum gewonnen, der sich in höheren Mieteinnahmen bezahlt macht. Schließlich sind die Instandhaltungskosten niedrig, und die mit einer Reinigung, z.B. bei Ablaugen oder Sandstrahlen eines Mauerwerkes, verbundenen Unannehmlichkeiten sind verschwunden. Die rostfreie Außenhaut und die Fenster können von einem am Dach aufgehängten Fahrstuhl aus mit warmer Seifenlauge abgewaschen werden.

Der Architekt mag sich durch eine derartige Mechanisierung und Vereinheitlichung in seinem künstlerischen Wirken eingeengt fühlen; er wird aber vielfältige Möglichkeiten bei der Gestaltung der Plattenprofile, der Anordnung der Fenster, der Kombination verschiedener Werkstoffe und Farben finden, die solchen Gebäuden dennoch ein individuelles Gepräge zu geben vermögen.

Vielfältig sind die Möglichkeiten, die sich dem Architekten durch die Kombination von Werkstoffen verschiedener Farben bieten. Der Glanz rostfreier Stähle bringt die Schönheit anderer Baustoffe zur Geltung und steigert die Wirkung der Farbe, wobei gleichzeitig die Eintönigkeit großer gleichfarbiger Flächen vermieden wird.

Wie schön ein völlig einheitliches Gebäude sein kann, zeigt das nur aus bläulichem Glas und rostfreiem Stahl bestehende Lever Building in New York (Abb. 4), das man als extremen Leicht-Hochhausbau bezeichnen kann. Seine glatten Fronten werden lediglich durch Farbnuancen des Glases und den Glanz der rostfreien Fassungen unterbrochen. Beide Werkstoffe sind dauerhaft und können durch einfaches Abwaschen mit geringstem Aufwand gereinigt werden. Eine ähnlich wirtschaftliche Lösung einer farbig lebhaften Gebäudegestaltung zeiat schließlich das Beispiel des Lutheran Brotherhood Building in Minneapolis, bei dem die Farbe der emaillierten Stahlplatten der Wand-

Inland Steel Building, Chicago.

Taufbecken aus rostfreiem Stahl. Bildhauer Werthmann, Kaiserswerth.

Verwaltungsbau Schmolz und Bickenbach, Düsseldorf.

verkleidung mit den rostfreien Bändern der Einfassungen lebhaft korrespondiert.

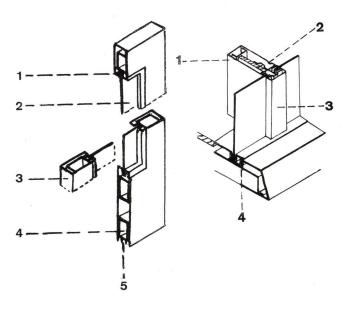
Bei einer derartigen Bauweise steht zweifellos der Anteil des Ingenieurs bei der Gestaltung und Bauausführung im Vordergrund.

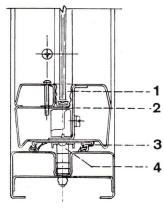
Der Architekt wird wegen der vorwiegend optischen Wirkung grundsätzlich die geschliffenen oder walzpolierten Oberflächenausführungen bevorzugen. Zudem bietet die geschliffene Oberfläche den Vorteil, daß Ungleichmäßigkeiten, wie sie von Schweißnähten und -punkten herrühren können, weniger sichtbar sind als auf einer hochglanzpolierten Fläche.

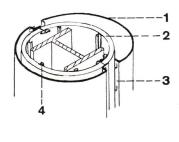
Der Unterhalt derartiger Verkleidungen ist denkbar einfach. In einer normalen Großstadtatmosphäre genügt im Jahr ein zweimaliges Abwaschen mit warmem Seifenwasser, um die Schönheit der Oberfläche unbegrenzt zu erhalten. Die niedrigen Unterhaltungskosten sind sicherlich von großer Bedeutung, wenn es darum geht, ein attraktives Aushängeschild, wie ein solcher Bauteil es darstellt, zu gestalten.

Auch der Bildhauer greift hin und wieder zu diesem Werkstoff, der ihm geeignet erscheint, die natürliche Schönheit hervorzuheben (Abb. 9) oder durch seine Reinheit eine symbolische Wirkung hervorzubringen (Abb. 15).

Kosten


Es lassen sich heute schon Preiskalkulationen aus den Vereinigten Staaten zum Vergleich heranziehen. Es soll ein Kostenvergleich zwischen einer konventionellen Verkleidung mit Ziegelmauerwerk und rostfreien Wandplattenelementen für den bereits erwähnten Bau von drei Verwaltungshochhäusern des Gateway Center in Pittsburgh aus dem Jahre 1952 gezogen werden.


Die drei Bauten haben eine kreuzförmige Grundfläche mit einem Umfang von je 260 m. Zwei der Gebäude
umfassen je 20, eines 26 Stockwerke.
Dem Kostenvergleich ist die Verwendung von 17%igem Chromstahl
in walzpolierter Oberflächenausführung zugrunde gelegt. Als die
wesentlichen Punkte, bei denen
Einsparungen in größerem Maße
leichterfaßbar sind, werden aufeffihrt:


 Verminderung der Tragkonstruktion durch Lastverminderung

Diese Einsparungen sind die erste Folge der hier gewählten Leichtbaukonstruktion. Die Fundamente konnten schwächer als üblich ausgelegt werden. Da aber ihre Kostenanteile wegen des Baugrundes stark differieren, sind diese Anteile nicht aufgeführt. Wie hoch aber die Massenverminderung wird, kann man bereits aus der Verringerung der Belastung jedes vertikalen Trägers des Stahlskelettes um 2,1 t je Stockwerk ermessen. Bei einem zwanzigstöckigen Gebäude betrug daher die auf jeden Vertikalträger entfallende Lastenverringerung etwa 26 t.

Die leichtere Wandplattenausführung verminderte natürlich auch die Dimensionierung der Querträger, bei denen je Plattenelement von 7,2 m Breite 3 bis 4 t eingespart werden konnten. Insgesamt ließen sich daher an jedem der drei Gebäude 512 bis 640 t Stahlskelett einsparen, was bei den drei Gebäuden zusammen etwa 2000 t entspricht, also etwa 15 % des Gesamtgewichtes des Stahlskelettes. Legt man als

Türkonstruktionen aus rostfreiem Stahl. Flachrahmen aus rostfreiem Stahl.

- Schrauben aus rostfreiem Stahl, von Glas verdeckt
- Glasscheibe
- Rostfreies Stahlblech 1,5 mm
- Rahmen aus Verkantrohr in Flußstahl
- Nutendichtung

Fensterkonstruktion aus rostfreiem Stahl. Fensterrahmen mit versteckter Scheibenbefestiauna.

- Versteifung aus rostfreiem Stahl
- Bohrung für Halteschrauben
- Verkleidung aus rostfreiem Stahl 1.5 mm
- Versteckte rostfreie Schrauben

Scheibenfassungen und Befestigungen. Fenster, 360° drehbar.

- Dichtungsstreifen aus Polyvinylchlorid
- Befestigung
- Dichtung aus Polyvinylchlorid
- Drehzapfen

Verkleidung von Säulen aus rostfreiem Stahl.

Verkleidung aus 1,5 mm starkem rostfreiem Stahlblech mit Klammernverbindung.

- Verkleidung aus rostfreiem Stahl 1.5 mm
- Kunststoffrohr
- Klemmverschluß
- Versteifungen

Preis für die Tonne Stahlkonstruktion in den Vereinigten Staaten (1950) 172 Dollar zugrunde, so ergibt sich allein für das Stahlskelett eine Kostenersparnis von 357 062 Dollar.

2. Frühere Mieteinnahmen durch Bauzeitverkürzung

Von mehreren Bauunternehmern waren als Bauzeit für die drei Bauwerke allein für die Ausmauerung der Wände sechs Monate geschätzt worden. Für die Verkleidung mit den Leichtplatten aus rostfreiem Stahl und Leichtbeton benötigte man fünfzehn Tage (drei Arbeitswochen) für siebzehn Stockwerke. Die örtlichen Mietpreise betrugen (1950) 53 5 Dollar/m2 im Jahr. Bei einer Gesamtfläche von 81 3000 m² für alle drei Gebäude lassen sich an Mietausfall berechnen:

Für eine Bauzeit von sechs Monaten: 2 175 000 Dollar.

Für die Zeit zur Verkleidung mit den Wandplatten aus rostfreiem Stahl von drei Wochen (21 Tage) ergibt sich ein Mietausfall von 250 000 Dollar.

Als Gewinn aus der verkürzten Bauzeit fließen daher dem Bauherrn 1 925 000 Dollar zu.

Die Erfahrungen, die man an diesem Bau machte, haben gezeigt, daß die Montagezeiten durch gut eingearbeitete Montagemannschaften sich noch erheblich vermindern ließen. 3. Erhöhte Mieteinnahmen durch

Raumgewinn Bei Hochhäusern mit vielen Stock-

werken summieren sich Flächengewinne durch eine Verminderung der Wandstärken sehr stark. In diesem Falle konnte die Wandstärke bei gleicher Schall- und Wärmedämmung durchschnittlich um 12,5 cm vermindert werden. Bei einem Gebäudeumfang von 263 m gewann man daher je Stockwerk zusätzlich 36,9 m², was bei insgesamt 64 Stockwerken einem Flächengewinn von 2360 m² entspricht. Mit dem bereits genannten Mietpreis von 53,5 Dollar

je Quadratmeter und Jahr ergibt sich daher eine Mietmehreinnahme von 126 400 Dollar im Jahr. Diese Mehreinnahme summiert sich von Jahr zu Jahr über eine vielleicht sehr lange Zeit. Daher kann dieser Betrag alle anderen Ersparnisse weit übersteigen.

Gesamtersparnisse:

Verminderung der Tragkonstruktion 357 072 Dollar.

Mieteinnahmen durch Bauzeitverkürzung 1 925 000 Dollar.

Mieteinnahmen durch Raumgewinn im ersten Jahr 126 400 Dollar.

Totalersparnis im ersten Jahr 2 408 472 Dollar.

Eine Reihe weiterer Kostenfaktoren ist weniger leicht erfaßbar, kann aber trotzdem nennenswerte Beträge umfassen, zum Beispiel:

geringere Fundierungskosten; keine Ausfälle durch Witterungseinflüsse:

Zinsgewinn durch verkürzte Bauzeit. Schließlich sind die Kosten für den Unterhalt ein wesentlicher Faktor, der sich allerdings nie genau erfassen läßt. Es wurden für ähnliche Gebäude in Pittsburgh und Chicago, die in konventionellem Mauerwerk ausgeführt sind, für eine Reinigung und Überholung Beträge von 30 000 bis 85 000 Dollar (in einem Falle sogar 127 000 Dollar) angegeben. Demgegenüber sind die Kosten für die einfachen Abwaschungen, wie sie im Jahr vielleicht einmal notwendig sein können, wesentlich niedriger. Dazu kommt der weitere Vorteil, daß das Gebäude sein stets neues Aussehen bewahrt - für ein Geschäftshaus zweifellos eine Werbung!

Feuerbeständigkeit, Wärmeund Schallisolation

In den baupolizeilichen Vorschriften spielt die Feuerbeständigkeit eine wichtige Rolle.

Wie bereits ausgeführt, besitzt rostfreier Stahl einen sehr hohen Schmelzpunkt von 1450° C und, besonders die austenitischen Stähle, eine sehr hohe Wärmefestigkeit. Diese erreicht zwar bei weitem nicht diejenige von Stein und Beton bei sehr hohen Temperaturen; aber durch Kombination beider Stoffe lassen sich sehr wirtschaftliche Lösungen finden. Aber es bleibt unbestritten, daß von allen in Frage Metallverkleidungen kommenden rostfreier Stahl weitaus die günstigsten Eigenschaften besitzt. Kombinationen aus rostfreien Blechen und Beton bieten die Möglichkeit, allen Anforderungen zu genügen, durch Vorfertigen den Bauablauf zu erleichtern und die Bauzeit wesentlich herabzusetzen.

Die Wärmeisolation steht natürlich mit der Feuerbeständigkeit (Feuerkatastrophe!) in direktem Zusammenhang; sie hat aber auch eine große wirtschaftliche Bedeutung. Derartige Gebäude besitzen häufig Klimaanlagen, die für eine ausgeglichene Temperatur während des ganzen Jahres zu sorgen haben. Vom Grad der Wärmeisolation ist daher sowohl die Größe als auch die Leistung der Klimaanlage direkt abhängig. Es ist nun eine bekannte Tatsache, daß in Gebäuden mit großen verglasten Flächen durch die Einstrahlung gerade im Sommer oft unerträgliche Temperaturen entstehen, die durch die Klimaanlagen gar nicht mehr zu bewältigen sind; sie werden oft durch Wasserverknappung in der heißesten Zeit in ihrer Leistungsfähigkeit noch weiter beschränkt. In dieser Beziehung bietet die niedrige Strahlungsabsorption der blanken rostfreien Außenhaut weitere Vorteile, die durch eine Kombination mit den sehr schlecht wärmeleitenden konventionellen Baustoffen, wie Beton, aber auch besonderen Kunststoffen, eine geradezu ideale Verbesserung ermöglichen.

Beton und Stahl sind sehr gute Schallträger. Um eine gute Schallisolation sicherzustellen, sind diese Kombinationen allein zweifellos nicht ausreichend. Man wird aber auf irgendeinen Innenputz wegen einer einheitlichen Flächenwirkung nie verzichten; dieser aber ist zweckmäßig als Schallabsorber aufzubauen. Wirtschaftliche Lösungen bieten aufgespritzte Kunststoffe oder aufgeklebte geschraubte oder Schallabsorptionsplatten.

In manchen Gebieten ist großer Wert auf die Erdbebensicherheit zu legen. Die beeinflussenden Faktoren sind Maße, Steifigkeit bzw. Elastizität und die Fähigkeit, nicht nur Druckspannungen, sondern auch Zugspannungen aufnehmen zu Stahlskelettbauten können. einer Leichtbauverkleidung, deren Einzelplatten selbst und untereinander große Elastizität aufweisen, scheinen auch in dieser Beziehung sehr große Vorteile zu bieten.

Fragen der Konstruktion und Verarbeitung

Es wurde bereits ausgeführt, daß aus der Vielzahl der rostfreien Stahllegierungen für architektonische Verwendungszwecke nur die ferritische Standardlegierung mit 17% Chrom bzw. 18% Chrom, 8% Nickel im wesentlichen in Frage kommt. Beide Legierungen lassen sich gut verarbeiten. Ihre Erzeugung in Form von warmgewalzten Profilen und Blechen oder kaltgewalzten Blechen und Bändern bereitet keine Schwierigkeiten. Kaltgewalzte Bänder dienen in den gleichen Stärken, wie sie für Wandverkleidungen in Frage kommen, nämlich von etwa 0,5 bis 2,0 bis 2,5 mm, als Ausgangsmaterial für kaltgewalzte Profile. Bei der Erzeugung der kaltgewalzten Bleche, Bänder und Profile kann die Festigkeit der Erzeugnisse in hohem Maße variiert werden. Dabei lassen sich Zugfestigkeiten erreichen, wie sie bei Baumaterialien nur noch von Spannbetonstählen übertroffen werden. Die Formate der Bleche sind

GC

Leichtmetall-Fensterbau Geilinger & Co Winterthur

durch die Breite der wohl in der Mehrzahl der Fälle zur Verwendung kommenden Bänder vorgegeben.

Nun sind auch die deutschen Hersteller fast alle in der Lage, auf modernen Kaltwalzgerüsten Bandbreiten von 1000 bis 1200 mm zu erzeugen. Die Länge der Tafeln ist an sich nur durch Verarbeitungsrücksichten mit etwa 2500 bis 3000 mm begrenzt.

Die Bänder selbst, die weitgehend in der Breite unterteilt werden können, haben im allgemeinen ein Bundgewicht von 5 t. Die Oberflächenausführung dieser Bleche kann sowohl bei walzpolierten als auch bei fibergebürsteten Blechen bereits im Band erzeugt werden, so daß sie nur einen geringen Mehraufwand erfordern.

Mit dem Anlaufen der Bänder haben sich die Preise gegenüber den früheren Preisen von Tafelblechen erheblich ermäßigt. Der Architekt wird daher aus Preisgründen weitgehend von den vorgegebenen Breiten auszugehen haben und für Außenverkleidungen diese relativ billig herstellbaren Oberflächenausführungen seinen Plänen zugrunde legen.


Die hohe Festigkeit der rostfreien Stähle läßt es wünschenswert erscheinen, daß sie zu mittragenden Bauteilen ausgestaltet werden. Trotz der hohen Festigkeit sind gewisse Mindestblechstärken auch bei reinen Verkleidungen ohne Tragaufgabe notwendig, die von der jeweiligen ungestützten Fläche bedingt wird.

Große ununterstützte Flächen neigen nämlich leicht zu Beulenbildung, z.B. bei Temperaturdehnung.

Billiger allerdings als durch Steigerung der Blechstärke können die auch architektonisch noch auswertbaren konstruktiven Möglichkeiten herangezogen werden, durch Sikken, Kanten oder Prägeformen das Trägheitsmoment der Bleche so zu heben, daß man mit sehr geringen Blechstärken häufig auskommen wird. Große und breite Bleche werden auf Abkantpressen verformt; bei Wiederkehr der gleichen Form einer Einprägung, wie sie Abb. 2 zeigt, wird man die Formgebung auf Pressen vornehmen. Profile für Fenster und Türen hingegen, die im allgemeinen in großen Längen bei relativ geringer Breite in großer Zahl benötigt werden, lassen sich ebenfalls auf Profilwalzen kalt herstellen. Sie werden dann lediglich noch auf Längen und Gehrung geschnitten.

Bei den Konstruktionen beobachtet man sehr häufig Schraubverbindungen, die manchmal versteckt angeordnet sind, und Klemmverbindungen mit teilweise sehr sinnreichen Konstruktionen. Es wird aber auch Widerstandspunktschweißen ausgiebig Gebrauch gemacht. Dieses Schweißverfahren garantiert hohe Festigkeit der Verbindung, ohne daß die Oberfläche der Bleche beschädigt wird und dann nachgearbeitet werden muß. Voraussetzung hierfür ist die Durchführung von ausreichend vielen Versuchen, um die richtige Einstellung der Schweißmaschinen zu finden.

Schmelzschweißungen sind weniger geeignet, weil sie in allen Fällen Nacharbeit der Naht verlangen und mit Verzug zu rechnen ist. Auch Hartlöten, mit Silberlot-Legierungen, sind aus dem gleichen Grund weniger geeignet. Aus Verarbeitungsgründen eignen sich von allen

Plastik. Naturstein in rostfreiem Edelstahl gefaßt. Bildhauer Werthmann, Kaisers-

Loten am besten Weichlote aus 70% Zinn mit 30% Blei, die aber nur für Dichtungszwecke verwendet werden können. Neuerdings wird in vielen Industriezweigen ausgiebig das Kleben mit Kunstharzen eingeführt, wobei sich bei rostfreien Stählen Scherfestigkeiten von etwa 1 kg/mm² ergeben, wenn die Oberfläche vorher durch Ätzen oder Schleifen aufgerauht wurde.

Bei der Gestaltung von Außenteilen aus rostfreiem Stahl muß dafür Sorge getragen werden, daß verschmutztes Tropfwasser nicht über die Flächen herablaufen kann. Andererseits ist es erwünscht, wenn horizontale Bänder eine genügende Neigung aufweisen, damit das Regenwasser abgelagerten Staub ständig entfernen kann.

Werden die rostfreien Bleche mit gewöhnlichem Stahl zusammen verarbeitet, so muß bei der Verarbeitung auf peinliche Sauberhaltung der Oberfläche der rostfreien Bleche von Eisenstaub geachtet werden, damit nicht die sogenannte Fremdrostbildung auftritt. Im Betrieb muß ebenfalls Sorge getragen werden, daß kein Rost mit Kondenswasser ausdringen oder Regenwasser eindringen kann, wenn z.B. rostfreier Stahl darunterliegenden gewöhnlichen Stahl verkleidet. Dies läßt sich leicht erreichen durch geeignete Konstruktion der Verbindungen sowie durch Abdichtung von Schraubenlöchern, durch Falzen oder Überlappungen mit Kunststoffklebern.

Benutzte Literatur:

Proceedings of the ASTM Vol. 46, 1946. Vorgefertigte Wandelemente aus Stahlblech, Beratungsstelle für Stahlverwendung Nr. 0013/ZE.

Architectural Uses of the Stainless Steels, Committee of Stainless Steel Producers.

Walls of Steel, United States Steel. Stainless Steels for Store Fronts and Building Entrances, Committee of Stainless Steel Producers.