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mehr, die nicht einen Teil derWandflächen
bilden. Um die dritte Spitze, die sehr stark
geneigt ist, besser zu unterstützen, wurde
noch das Hyppar C an seiner Basis statt
konkav konvex gestaltet, und schließlich
wurden die beiden dreieckigen Öffnungen
zum Teil durch neue Hypparflächen
geschlossen, die sich an die bereits vorhandenen

anschließen. In dieser Weise
entstand die in den Konstruktionszeichnungen

(Abb. 18 undl 9) wiedergegebene
endgültige Form des Pavillons. In dieser Form
wurde der Pavillon vom Bauunternehmen
«Strabed» errichtet.
Das in Abbildung 20 wiedergegebene Bild
des Inneren wurde aufgenommen, bevor
die Spanndrähte des Betons durch die
Auskleidung der Wände dem Anblick
entzogen waren. Dieses Bild gibt eine gute
Vorstellung von der eigenartigen
Raumwirkung des Gebäudes.

II. Die Hypparschale
und ihre
mechanischen
Eigenschaften
C. G. Vreedenburgh

Etwa im Jahre 1935 wurden von Laffaille
und Aimond die ersten Untersuchungen
veröffentlicht über die Kraftverteilung in

Hypparschalen - das sind gebogene, als
hyperbolise h e Paraboloid e geformte Wände,

deren Dicke bezogen auf die
Flächenabmessungen sehr gering ist.1)2)
Bis vor etwa einem Jahrzehnt zeigte man
in der praktischen Bautechnik für diese
neue Art von Schalen im Gegensatz zu
kugelförmigen und zylindrischen Schalen
wenig Interesse. Anscheinend konnte
man sich an die Sattelform (entgegengesetzte

Krümmungen in zwei zueinander
senkrechten Richtungen) schwer gewöhnen,

da diese Form mit der konventionellen

Architektur unvereinbar erschien.
Auch glaubte man, daß die praktische
Ausführung sich teurer stellen würde als
die der gebräuchlichen Schalen,
inzwischen hat sich in dieser Beziehung
manches geändert. Unter anderm durch
die bahnbrechenden Arbeiten von Candela

in den USA3 und Hruban in der
Tschechoslowakei4 erkannte man immer
deutlicher, daß die Hypparschalen nicht
nur eine hohe Festigkeit und Stabilität
besitzen, sondern sich daneben hervorragend

zur Komposition reizvoller
architektonischer Formen eignen, die mit
verschiedenen Tendenzen der modernen
Kunst wunderbar im Einklang stehen. In

dieser Beziehung hat der im vorigen
Artikel beschriebene Entwurf von Le
Corbusier und Xenakis für den Philips Pavillon

in Brüssel, der ganz aus hyperbolischen

Paraboloiden aufgebaut ist,
eindeutig bewiesen, daß sich in den Hypparschalen

die architektonische Phantasie in

großartiger Weise entfalten kann. Außerdem

ist man im Hinblick auf die praktische
Ausführung im Laufe der letzten
Jahrzehnte zu der Erkenntnis gelangt, daß das

hyperbolische Paraboloid sich sowohl in

Holz wie in bewehrtem und in vorgespanntem
Beton gerade besonders gut verwirklichen

läßt, dank den beiden Geradenscharen

(Erzeugenden), die auf dieser
Fläche angegeben werden können.5

1 B. Laffaille, Mémoire sur l'étude générale
des surfaces gauches, Mém. Assoc. Int.
Ponts et Charpentes 3, 295-332, 1935.
2 F. Aimond, Etude statique des voiles
minces en paraboloide hyperbolique,
Mém. Assoc. Int. Ponts et Charpentes 4,

1-112, 1936.

3 F. Handela, Structural applications of
hyperbolic paraboloidica! shells, J. Amer.
Concrete Inst., Title Nr. 51-20, Januar
1955,397-415,
4 K. Uruban, Obecné reseni zlabovych
skorepin (Die allgemeine Theorie
sattelförmiger Schalen), Technische
Hochschule Brno, 1953.

5 Ein neueres Beispiel für eine große, aus
geleimtem Holz bestehende Hypparschale
ist die Dachkonstruktion des
Informationszentrums auf dem Place deBrouckère
in Brüssel.

Die Hypparschale hat somit ihren Platz in

der Baukunst gefunden und wird bereits
an vielen Stellen und für verschiedene
Zwecke angewendet. Die Tatsache, daß
diese Bauform verhältnismäßig neu ist,
sowie die größere geometrische
Kompliziertheit der Sattelflächen hat allerdings
zur Folge, daß der Baufachmann sich bei
der praktischen Ausführung oftmals nicht
ausschließlich auf bereits gesammelte
Erfahrungen und auf sein Fingerspitzengefühl

verlassen kann, sondern sich auf
eine wissenschaftliche Untersuchung des

zu erwartenden mechanischen Verhaltens
des Bauwerkes stützen möchte. So
ersuchte uns die Firma «Strabed» Ende
Januar 1957 um Beratung bezüglich der
Errichtung des Philips Pavillons.
Die Spannungszustände, die in einer derart

komplizierten Kombination von Schalen

und Rippen (angebracht in den
Durchdringungen der Schalen) auftreten können,

sind einer exakten Berechnung ganz
und gar unzugänglich. Wir konnten daher
der «Strabed» auf Grund theoretischer
Erkenntnisse nur ganz im allgemeinen die
Auskunft geben, daß der Entwurf uns
realisierbar und die geplante Bauweise
ausführbar erschien; für die zuverlässige
Beantwortung einer Anzahl Fragen war
jedoch - unter anderm auch wegen der
kurzen verfügbaren Zeit - eine
Modelluntersuchung das ausgewiesene
Hilfsmittel. Diese Modelluntersuchung,
ausgeführt in Rijswijk und in Delft von A. L.

Bouma und F. K. Ligtenberg, wird im dritten

Artikel dieser Serie beschrieben.
Dennoch mag es für den interessierten
Leser vielleicht erwünscht sein, auch zu

zeigen, wie weit man mit einer Berechnung

der allgemeinen Spannungszustände
in Hypparschalen kommen kann und

welcher Art die Schwierigkeiten sind, die
in komplizierten Fällen zur Durchführung
einer ergänzenden Modell untersuch ung
zwingen.

Die Geometrie der Hypparschale
Zum Verständnis der auftretenden
Kräfteverteilung in einer Hypparschale ist es
notwendig, zunächst einiges über deren
Geometrie zu rekapitulieren.
Bezogen auf ein rechtwinkliges Achsenkreuz

Oxyz (siehe Abb. 1) kann man die
Gleichung des hyperbolischen
Paraboloids am besten in folgender Form
schreiben:

.T2 V2
Z — (1)

2r, 2r2

O ist dann der Scheitel (oder Mittelpunkt)
der Fläche, Oz die Achse, während xOz
und yOz Symmetrieebenen sind, welche
das Hyppar in den Parabeln p, bzw. p2
schneiden. Die in (1) vorkommenden
Größen rx und r2 sind die Krümmungsradien

der Parabeln py und p2 im Scheitel

0.
Die Ebene .rÜy schneidet die Fläche in den
Geraden 0£ und Of), die man Richtlinien
nennt. Die Achse Ox ist die
Winkelhalbierende des Winkels 2qi zwischen
diesen Richtlinien. Es gilt:

tggp -
\ >i

(2)

Bezogen auf das Achsensystem O^Tjz
(wobei die Achsen 0^ und Or) im
allgemeinen nicht senkrecht aufeinander
stehen) lautet die Gleichung des Hyppars:

^.^n

^-$fe^2r

Zur Beschreibung des hyperbolischen
Paraboloids. 0 Scheitel, Oz Achse;
xOz und yOz sind die Symmetrieebenen;
£Qs und )jOz sind die Richtebenen (Rt und
R2)i zu denen die beiden Scharen
Erzeugenden der Fläche parallel verlaufen.

VII 8
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(4)

Die beiden durch die Achse 0: und durch
die Richtlinien Oi; bzw. Ol] gehenden
Ebenen nennt man die Richtebenen R,
und i?2 des Hyppars. Aus Gleichung (3)
ist ersichtlich, daß alle parallel zu R,
vergütenden Ebenen das Hyppar in geraden
Linien schneiden; das gleiche gilt für alle
parallel zu R2 liegenden Ebenen. Das
hyperbolische Paraboloid enthält somit
zwei Scharen von Erzeugenden. Die
Geraden jeder dieser Scharen laufen sämtlich

parallel zu der zugehörigen
Richtebene, aber ihre Neigung ändert sich mit
der Entfernung von dieser Ebene (siehe
Abb. 2a).

2a
Hyperbolisches Paraboloid mit den beiden

Scharen Erzeugenden. 0 •= Scheitel,
Oz Achse.

m

Schließlich kann das hyperbolische
Paraboloid noch als eine Schiebungsfläche
betrachtet werden. Kehren wir hierzu nach
Abb. 1 zurück. Alle parallel zur
Symmetrieebene AsO^verlaufenden Ebenen schneiden

die Fläche nach Gleichung (1) in

Parabeln, die mitp, kongruent sind, während

alle parallel zur Symmetrieebene yOz
verlaufenden Ebenen Schnittkurven
ergeben, die mit der Parabel p2 kongruent
sind. Man kann sich das Hyppar somit
auch in der Weise entstanden denken,
daß man die Parabel p2 parallel zu sich
selbst verschiebt, wobei ihr Scheitel
entlang p, gleitet, oder indem man dieParabel
Pi parallel zu sich selbst verschiebt, wobei

ihr Scheitei entlang p2 gleitet.

Läßt man eine Ebene z c das Hyppar
schneiden, so erhält man gemäß
Gleichung (1) als Schnittkurve eine Hyperbel.
Projiziert man diese auf xOy, so sind 0|
und Ol] die Asymptoten und Oy die
imaginäre Achse. Läßt man eine Ebene z

c das Hyppar schneiden, so ist die
projizierte Schnittkurve wieder eine
Hyperbel mit den Asymptoten Of und Ori,
jedoch mit Ox als imaginäre Achse.

Im Sonderfall <j> 45° (Of und Or] stehen
in diesem Fall senkrecht aufeinander)
werden diese Hyperbeln gleichseitig. Man
nennt das Hyppar dann gleichseitig.

Projiziert man von einem beliebigen Hyppar

eine Anzahl Hyperbeln (Höhenlinien)
und eine Anzahl Erzeugende auf die Ebene
xOy, so erhält man ein Bild wie in Abb. 3.
Vollständigkeitshalber sei hier noch das
einschalige Hyperboloid erwähnt, auf dessen

Fläche ebenfalls zwei Scharen von
Erzeugenden vorkommen. Diese Geraden
verlaufen jedoch nicht parallel zu zwei
Richtebenen, sondern parallel zu den
Erzeugenden einer Kegelfläche, dem
sogenannten Asymptotenkegel des
Hyperboloids. Hierdurch wird die Berechnung
der Kraftverteilung in der hyperboloidischen

Schale viel komplizierter als für die
Hypparschale.
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2b
Teil eines hyperbolischen Paraboloids,
begrenzt durch die vier Erzeugenden AB,
CD, AC, BD. Die lineare Verzerrung ist v,
die spezifische Verzerrung vjF h

1/ r,r2.

Betrachtet man einen Teil der Fläche einer
Hypparschale, begrenzt durch zwei
Erzeugenden AB und CD der einen Schar
und zwei Erzeugenden AC und BC der
anderen Schar (siehe Abb. 2b), so ist
sofort einzusehen, daß ein hyperbolisches

Paraboloid auch dann erhalten
wird, wenn eine Gerade (z. B. AC),welche
zwei windschiefe Geraden schneidet (AB
und CD), an diesen beiden Geraden
entlang gleitend sich verlagert und dabei
parallel zu einer gegebenen Ebene bleibt
(im vorliegenden Fall zu der Richtebene,
zu der AC und BD parallel sind).

Konstruiert man auf zwei aneinanderstoßenden

Seiten (z. B. AB und AC) ein
Parallelogramm, dessen vierter Eckpunkt
mit E bezeichnet sei, so nennt man das
Stück DE die lineare Verzerrung v der
Hypparfläche ABDC; die Verbindungsgerade

DE ist parallel zur Achse des
hyperbolischen Paraboloids.

Projiziert man die Fläche ABDC auf eine
senkrecht zur Achsrichtung DE stehende
Ebene und ist der Flächeninhalt dieser
Projektion (Parallelogramm A'B'D'C)
F, so nennt man das Verhältnis vjF die
spezifische Verzerrung; diese Größe ist
identisch mit der durch (4) definierten
Größe k und konstant für jeden von vier
Erzeugenden begrenzten Ausschnitt der
Hypparschale. In der Praxis wird k
gewöhnlich durch Berechnung der spezifischen

Verzerrung bestimmt.

Die Membrantheorie der Hypparschale
Kräfte, die in der Mittelebene einer Platte
oder Schale gelegen sind, nennt man
Membrankräfte. (Unter Mittelebene
versteht man den geometrischen Ort der
Mitte der Dickenerstreckung in allen Punkten

der Platte oder Schale). Im Gegensatz
zur ebenen Platte, die keine senkrecht zur
Plattenebene gerichtete Belastung in der
Form von Membrankräften aufnehmen
kann, ist dies bei einer gekrümmten Schale
möglich. In solchen Fällen, in denen die

Hyperbolisches Paraboloid mit Höhenlinien

(Hyperbeln) und Erzeugenden
(gestrichelt), projiziert auf die Ebene xOy.

zugehörigen Formänderungen der Schale
ungestört vonstatten gehen können, ist
eine ausschließlich durch Membrankräfte
erfolgende Kraftübertragung eine gute
Näherung der wirklichen Kraftverteilung.
Eine statisch mögliche Spannungsverteilung,

bei der Biegung und Torsion
vermieden werden (d. h. eine quasi-zwei-
dimensionale Spannungsverteilung),
ergibt nämlich in guter Näherung die kleinste
Formänderungsarbeit in der Konstruktion.
Man geht daher auch gewöhnlich so vor,
daß man zunächst die Kraftverteilung in
der Hypparschale nach der Membrantheorie

berechnet. Anschließend wird
man dann im allgemeinen, so gut es geht,
Korrektionen vornehmen müssen wegen
der Begrenzungen (Ränder) der Schale,
wo die Formänderungen, die dem Mem-
branspannungszustand entsprechen,
nicht unbehindert auftreten können. Beim

VII 10
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Philips Pavillon ist die Situation derart,
daß an der Durchdringung jedes Paares
von Hypparflächen diese starr mit einer
Rippe verbunden sind. Die Randbedingung

ist hier die, daß die Formänderungen
der Rippe die gleichen sein müssen wie
die der anschließenden Schalenränder.
Hierdurch entstehen sogenannte
Randstörungen, die weiter unten betrachtet
werden.
Die Differentialgleichungen für den Mem-
branspannungszustand kann man am
besten aufstellen durch Gleichgewichtsbetrachtung

eines belasteten Elementes
in den Richtungen f, r] und z. Wir
betrachten dazu ein Schalenelement, das
von vier benachbarten Erzeugenden
begrenzt ist; ihre Projektionen auf die
(horizontale) Ebene ÇOr] bilden ein Elementar-
Parallelogramm mit den Seiten df und &r]
(siehe Abb. 4). Die Belastungskomponenten

je horizontale Flächeneinheit der
Schale in den Richtungen Of, Or] und Oz

sind p£,pt] undpz. Die schiefen Membrankräfte

je Längeneinheit (sog. Schnittkräfte,

das Analogon zu den Spannungen
in der Lehre von den Spannungszustän-
den) im Schalenelement sind nÇ, ni] und &.
Man führt ferner die projizierten Schnittkräfte

ein:

nf ref

nr] nr]

ê-=ê

cosa
cos/3

cos ß

cosa
(5)

Die Gleichgewichtsbedingungen in der
f-, r]- bzw. z-Richtung liefern dann
folgende Gleichungen:

ÔnÇ Ô&

pr] sin 2çp 0,
änr] ä&

m + ô§r''""^'"' y
ÔH I ôz òz

2ôWèï + \p'-piTmpnTn
sin 2<p O.

Der in Klammern stehende Ausdruck ist
die Komponente p2 der Belastung, wenn
man diese nach der z-Richtung und der
Tangentialebene im betrachteten Schalenpunkt

zerlegt; man kann somit die dritte
Gleichung von (6) auch wie folgt schreiben:

ôÇôr]
+ pz sin 299 0 (7)

Eine sehr einfache Lösung bekommt man,
wenn die Belastung in der z-Richtung je
horizontale Flächeneinheit der Hypparschale

in allen Punkten konstant ist, g,
während pf pr] 0. Aus Gleichung (3)

folgt die rein geometrische Beziehung:

k sin 299
ÔSÔT]

Gleichung (7) liefert somit für den Fall

P* r-

2k
konstant (8)

Man ersieht aus dieser Formel, daß die
Schnittkraft # umgekehrt proportional k
ist. Nach Gleichung (4) ist es somit günstig,

die Krümmungsradien r, und r2
möglichst klein zu wählen. Je stärker die
Schalenkrümmung, um so günstiger ist
die Spannungsverteilung.
Wenn die Schale von Erzeugenden
begrenzt wird, und außerdem die Membrankräfte

nf und nr] hier gleich Null gesetzt
werden dürfen (nachgiebige Randglieder),
folgt ferner aus den ersten beiden
Gleichungen (6), daß in allen Punkten der
Schale diese Kräfte Null sind.
Eine konstante Belastung je horizontale
Flächeneinheit wird durch eine Hypparschale

mit vertikaler Achse und konstanter

Dicke somit in der Form von konstanten

Schubspannungen entlang den
Erzeugenden auf die Randglieder übertragen.

Die Schale ist dann nahezu eine
Schale gleichen Widerstands; dies be¬

deutet, daß, wenn in einem Punkt der
Schale die Spannung den maximal
zulässigen Wert erreicht, dies in sämtlichen
Punkten der Fall ist. Da die Festigkeit des
Materials dann überall voll ausgenutzt
wird, leuchtet es ein, daß eine Konstruktion

gleichen Widerstands einem Minimum

an Materialverbrauch entspricht.

Schalenelement

,43

är'(

Gleichgewicht eines Schalenelementes,
unter Einführung von schiefen projizierten
Schnittkräften. Schnittkräfte sind Kräfte
je Längeneinheit der Schale; die
Komponenten der parallel zur Mittelebene der
Schale wirkenden Schnittkräfte
(Membranschnittkräfte) werden gewöhnlich mit
n und (5 bezeichnet. Dividiert man eine
Schnittkraft durch die Dicke der Schale,
so erhält man offenbar eine Spannung
(Kraft je Flächeneinheit).

Obiges kann noch anhand von Abbildung
5 erläutert werden. In ihr ist eine einfache
Schalenform abgebildet, bestehend aus
vier Quadranten, die jeweils einen Teil
eines gleichseitigen Hyppars bilden, mit
Rippen als Randgliedern. Wie in einem
der Quadranten mit gestrichelten Linien
angegeben, befinden sich auf der Fläche
Parabeln, die nach oben konvex sind, und
solche, die nach oben konkav sind. Die
ersteren sind Druckparabeln, die letzteren
Zugparabeln. Die Belastung der Schale
wird nun zur Hälfte von den Druckparabeln

und zur Hälfte von den Zugparabeln
aufgenommen. Betrachtet man einen
Punkt eines Randgliedes, in dem eine
Zugparabel und eine Druckparabel
zusammenkommen, so ergeben die
Reaktionskräfte von beiden zusammen eine
Schubkraft längs des Randgliedes, so daß
die Rippen nicht senkrecht zu ihrer
Längsrichtung belastet werden. Diese Art der
Kraftübertragung findet auch dann statt,
wenn die Hypparschalen nicht gleichseitig
sind. Dadurch wird begreiflich, daß beim
Philips Pavillon die Belastung größtenteils
in Form von Druckkräften entlang den
Rippen auf die Fußpunkte übertragen wird,
und daß daher die ursprünglich notwendig
erachteten vertikalen Unterstützungen der
Spitzen zuguterletzt entbehrt werden
konnten.

Die hier beschriebene einfache Kraftverteilung

gilt nur für eine gleichmäßig
verteilte Belastung je horizontale Flächeneinheit,

wie zum Beispiel eine
Schneebelastung von konstanter Dicke in vertikaler

Richtung.

Für das Eigengewicht der Schale gilt die
einfache Kraftverteilung nur näherungsweise.

Beträgt dieses Gewicht je Flächeneinheit

der Schale g, so wird die Schnittkraft

¦&, für eine Schale mit vertikaler
Achse:

»=-iv®2k

0 1 + k1 (f2 + ri*—2$>] cos 299)

(9)

(10)

Bilden die Normalen der Schalenfläche
keinen allzugroßen Winkel mit der Achse
(.'A 15°), so kann 0 1 gesetzt werden.
Ferner findet man:
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raf — —- cos 2<p \0 r

I ' 2gr]Sin22qS\n[\ 0 + kmkr]cos2tf']
+ UO]),

2A

+ ,/ag!sin22<p1n[\/0+/c?;—fcfcos2y] -

+ MI).
OD

Die Integrationsfunktionen /, (/;) und
f2 (|) müssen aus den Randbedingungen
bestimmt werden.

In dieser Weise kann man auch die
Membrankräfte für eine konstante Belastung w
je Flächeneinheit der Schale berechnen,
die in jedem Punkte senkrecht zur Schale
gerichtet ist. Eine derartige Belastung
wird nämlich häufig als Windbelastung
angenommen.

Man findet dann:

ir -2fe

Abbildung, daß die Vorspannung die
Druckschnittkräfte raf I <5 und nr] — ö
verursachen muß, und daß der Span-
nungszustand dann umgewandelt wird in
eine einachsige Druckspannung (eine der
Hauptspannungen ist Null), mit einer
Hauptschnittkraft 0n3, die in der Richtung
R'n3 wirkt, das heißt in Richtung der
genannten Winkelhalbierenden.

y

(12)

raf wk{2Çr]- Ì2cos2q>) h f3 ()]), \
nr] wk (2<;r] — i]2cos2<p) m f4 (£), / (13)

tr2 cry m v* m

Konstruktion des Mohrschen Spannungskreises

für einen ebenen Spannungszu-
stand, zur Ermittlung der Hauptspannungen

ff, und ff2 in einem bestimmten Punkt
aus den Normalspannungen ox und Gy
und aus der Schubspannung T in zwei
zueinander senkrechten Flächenelementen

in diesem Punkt. Man trägt ax und Gy
auf derff-Achse auf und senkrecht dazu t,
was die Punkte Rx und Ry ergibt. Der
durch Rx und Rv gehende Kreis, dessen
Mittelpunkt M auf der ff-Achse liegt,
liefert die Punkte ff, und a2. Die Abstände
Off, und Off2 stellen die Größe der
Hauptspannungen dar, die in den Richtungen
Rxa, bzw. firn, wirken.

6 b

System von vier gleichseitigen Hypparschalen

bei voller Belastung, die gleichförmig

je horizontale Flächeneinheit
verteilt ist. Die Pfeile geben die Schubkräfte
an, wie sie auf die steifen Randglieder
übertragen werden.

Aus den obigen Formeln sieht man, daß,
im Gegensatz zu einer Schneebelastung,
sowohl bei Belastung durch Eigengewicht
als auch durch Wind, die Schnittkräfte d
nicht mehr konstant sind, und daß jetzt
auch die Schnittkräfte n eine Rolle zu
spielen beginnen.

Hat man die projizierten Schnittkräfte ni;

und nr] berechnet, so sind durch die
Beziehungen (5) auch die wirklichen Schnittkräfte

n£ und ni] bekannt. Hierbei ist zu
berücksichtigen, daß (siehe Abb. 4):

1

cos ß --

\'1 - (òziam

1

yi - (òz/ò)])2

(14)

Die minimal erforderliche Vorspannung
findet man, wenn der Kreis die ()-Achse
berührt und wenn man gleichzeitig die
neuen Punkte RÇ'' und Rr] ' die auf der
gleichen schiefen Geraden wie i?£ und Rr]
liegen, zusammenfallen läßt; der Kreis
berührt dann auch diese schiefe Gerade
(im Punkt R). Der Mittelpunkt M' des
Kreises wird daher auf der Winkelhalbierenden

dieser schiefen Geraden und der
$-Achse gefunden. Man ersieht aus der

Änderung der Mohrschen Konstruktion,
um von den Spannungen (oder, da es
sich hier um einen Membranspannungs-
zustand handelt: von den Schnittkräften
n§ und nr]; siehe Abbildung 4) ausgehen
zu können, die nach den beiden durch
einen Punkt des Hyppars gehenden
Erzeugenden gerichtet sind. Die
Flächenelemente, in denen diese Spannungen
wirksam sind, stehen also nicht senkrecht
aufeinander, sondern bilden einen Winkel

it. Man trägt nf und nr] auf einer Achse
auf, die einen Winkel w mit der $-Achse
bildet, und zeichnet in den gefundenen
Punkten # parallel zur #-Achse, was die
Punkte i?f und Ri] liefert. Der durch Rf
und Ri] gehende Kreis, dessen Mittelpunkt

M auf der ra-Achse liegt, liefert die
Punkte n, und n2. Die Abstände On, und
0n2 geben die Größe der Hauptschnittkräfte

an, die in den Richtungen Rrjn,
bzw. Rr]n2 wirksam sind.

6c
Wünscht man einen Spannungszustand
zu erhalten, in dem keine Zugspannungen
auftreten, so muß man durch äußere
Kräfte den Mohrschen Spannungskreis
derart verschieben, daß er ganz links von
der #-Achse zu liegen kommt. Man kann
dies mit Vorspannungskabeln bewirken,
die man gemäß den Erzeugenden des
Hyppars verlegt, und muß dann die
gemäß n^ und nr] gerichteten
Vorspannungsschnittkräfte (Druckkräfte) von den
Punkten rc| bzw. nr] aus auf der gleichen
schiefen Achse nach links auftragen.

'n-îr-V

6 c
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Zur Beurteilung der Festigkeit einer
Konstruktion müssen schließlich aus den
wirklichen Schnittkräften für eine Anzahl
hervorstechende Punkte der Schale die
Hauptschnittkräfte4 nach Größe und Richtung

bestimmt werden. Hierzu ist es noch
erforderlich, im betrachteten Punkt den
Winkel co zwischen den Erzeugenden
(siehe Abb. 4) zu kennen. Dieser kann mit
Hilfe nachstehender Formel berechnet
werden:

(<5z/<5|) (ôzlôrj) + cos 2a>

costo — -
V[1+(&/(5fH[1 + ((52/<5j))2]

(15)

Da man es hier mit schiefen Schnittkräften
bzw. Spannungen zu tun hat, muß die
gebräuchliche Kreiskonstruktion nach Mohr
etwas geändert werden. In Abbildung 6a
ist die gewöhnliche Konstruktion nach
Mohr für einen ebenen Spannungszustand
gegeben; mit ihr bestimmt man aus den
Normalspannungen ax und Oy und der
Schubspannung T - wirksam in zwei
zueinander senkrechten Flächenelementen,
beide senkrecht zur spannungslosen
Ebene -die Hauptspannungen a, und a2
nach Richtung und Größe. Abbildung 6b
zeigt die geänderte Konstruktion, um aus
den schiefen Schnittkräften raf, ni] und ¦&-
wirksam in zwei Flächenelementen, die
einen spitzen Winkel m miteinander
bilden - die Hauptschnittkräfte ni und n2
nach Richtung und Größe zu bestimmen.7

Weiterhin kann man dann in der Mittelebene

der Schale zwei Kurvenscharen
zeichnen,welche dieEigenschaft besitzen,
daß in jedem Schnittpunkt die beiden
Tangenten an die betreffenden Kurven
die Richtungen der Hauptschnittkräfte m
und m in jenem Punkt angeben. Diese
Kurven sind die Hauptschnittkrafttrajek-
torien; man nennt sie auch Hauptspan-
nungstrajektorien, da ja die Schnittkraft
geteilt durch die Dicke der Schale die
Spannung ergibt.

Verwendet man vorgespannten Beton, so
erhebt sich unter anderm die Frage,
welche Spannkräfte man in den Kabeln
(verlegt in Richtung der Erzeugenden)
mindestens anzubringen hat; mit anderen
Worten, welche Schnittdruckkräfte man in
der f- bzw. in der »j-Richtung dem
Spannungszustand mindestens überlagern
muß, damit in keinem einzigen durch den
betrachteten Punkt gehenden Flächenelement

noch eine Zugspannung auftritt.
Die graphische Lösung dieses Problems
ist in Abbildung 6c angegeben.

Randstörungen

Wie bereits oben erwähnt, kann dieSchale
in der Nähe der steifen Randglieder nicht
ungestört die Formänderungen erfahren,
welche dem Membranspannungszustand
entsprechen. Denkt man sich nämlich das
Randglied von der Schale gelöst, so daß
diese Formänderungen ungehindert
stattfinden können, so würden Schalenrand
und Randglied sich nachher nicht mehr
passend aneinanderfügen. Letzteres kann
man nur erreichen, wenn das Randglied
Kräfte (Normal-, Schub- und Querkräfte)
und Momente (Biege- und
Torsionsmomente) auf den Schalenrand ausübt,
und umgekehrt die Schale entgegengesetzte

Kräfte und Momente auf das Randglied

derart, daß die damit einhergehenden

zusätzlichen Formänderungen eine
vollkommene Anpassung ermöglichen.
Die Berechnung dieser Randstörungen,
die dem Membranspannungszustand
überlagert werden müssen, gehört zu den

* Analog definiert als die Hauptspannungen
in der zweidimensionalen

Spannungslehre, nämlich als die Schnittkräfte
in solchen Flächenelementen, in denen
keine Schubkräfte, sondern nur Normalkräfte

vorhanden sind (dies sind dann
gleichzeitig die größten und kleinsten im
betrachtenden Punkt auftretenden Schnittkräfte).

7 C. G. J. Vreedenburgh, Hypparschalen,
bearbeitet von W. Grijm, Centr. Comm.
Studiebelangen, Delft 1954, Seite 17-26.

schwierigsten Problemen der Schalentheorie.

Ersetzt man die Hypparschale in einem
kleinen Bereich durch eine Schiebungsfläche

von Kreisen mit den Radien r, und

r2, so gilt bei schwachen Krümmungen für
das Randstörungsproblem (näherungsweise)

folgende Differentialgleichung;

AAAAi« -^0 y
1 ò' Ô* 1 ö'w

r22ôx' r,r2ôx2ôy2 r,2 ôy'
(16)

Hierin ist:
iv Verlagerung eines Schalenpunktes

in Richtung der Normalen,

A

K

5* Ô2

x2 ôy2
'

EÔ'

12(1— v2)

D
EÔ

1— v'

v Schalendicke,
E Elastizitätsmodul,
v Poissonsche Querzahl.

Die Größen D und K stellen die Deh-
nungssteifigkeit bzw. Biegungssteifigkeit
der Schale dar.
Ist io bekannt, so kann die gesamte
Kraftverteilung bestimmt werden. Man findet,
daß die von den Randpunkten ausgehenden

Störungen stets aus der Überlagerung

zweier Wellen bestehen, die beide in
vielen Fällen schnell abklingen, so daß In

gewisser Entfernung von den Randgliedern

kaum noch etwas von den
Randstörungen zu bemerken ist.
Unter anderm wegen der Tatsache, daß
eine Berechnung nach Gleichung (16)
überaus schwierig ist und bei komplizierten

Randbedingungen, wie sie beim
Philips Pavillon herrschen, sogar undurchführbar,

erscheint uns die folgende
näherungsmäßige Berechnung zur Bestimmung

der Größenordnung der Randstörungen

in Hypparschalen für die Praxis
durchaus genügend. Diese
Rechenmethode basiert auf der Tatsache, daß
eine Schale, was dieBiegungserschelnun-
gen betrifft, verglichen werden kann mit
einer Platte auf elastischer Unterlage.
Denkt man sich also einen Streifen der
Hypparschale senkrecht zum Randglied,
so verhält sich dieser Streifen annähernd
wie ein Träger auf elastischer Unterlage.
Sind die Hauptkrümmungen der Hypparschale

im betrachteten Randpunkt fei bzw.
fej," so beträgt die Bettungskonstante für
den äquivalenten Träger auf elastischer
Unterlage ungefähr:

c EÔ (k,2 + k22). (17)

(Unter der Bettungskonstante einer elastischen

Unterlage versteht man den Gegendruck

je Flächeneinheit, der je Einheit der
Zusammenpressung entsteht. Je größer
c, um so größer die Bettungssteifigkeit.)
Der Verlauf der Randstörung, nunmehr
ausschließlich bestimmt durch das
Biegemoment m und die Querkraft q (beide je
Längeneinheit der Schale), kann nun in
einfacher Weise berechnet werden. Es

ergibt sich, daß man den Verlauf der
Randstörungen durch eine «Wellenlänge» und
eine «Dämpfung» beschreiben kann, die
beide durch eine charakteristische Länge
bestimmt werden:

0,76 V<5

Vfe,2 + k2
(18)

Man kann annehmen, daß in einer
Entfernung von ungefähr 3,5.?. vom Rand der
Einfluß der Störung vernachlässigt werden

kann. Aus (18) sieht man, daß die
Störungsbereiche um so kleiner sind, je
geringer die Schalendicke und je größer
die Hauptkrümmungen (d. h. je kleiner die
Hauptkrümmungsradien).
Kann die Befestigung der Schale im Randglied

als völlig starre Einspannung
angesehen werden, so verlaufen das Rand-

* Bei einem hyperbolischen Paraboloid
fallen die Hauptkrümmungsrichtungen in
einem bestimmten Punkt zusammen mit
den beiden Winkelhalbierenden der beiden

durch diesen Punkt gehenden
Erzeugenden.
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störungs moment m und die Randstörungs-
querkraft q, beide je Längeneinheit der
Schale, als Funktion der Entfernung x zum
Rand gemäß den Kurven in Abbildung 7

(die Belastung der Schale senkrecht zu
deren Fläche istp). Man sieht aus den ins
Diagramm eingeschriebenen Formeln,
daß jede Störung jetzt als eine einzige
gedämpfte Welle verläuft, die man als die
Resultierende der beiden Wellen betrachten

kann, die Gleichung (16) entsprechen.
Die Dämpfung ist um so stärker, je kleiner
die charakteristische Länge X ist. In
diesem Fall einer starren Einspannung am
Rande wird das negative Einspannungs-
Schnittmoment:

pX2 (19)

und die Auflagerreaktion je Längeneinheit
die Schnittquerkraft an der Einspannstelle):

9o pX. (20)

Ist die Schale am Rande scharnierend
gelagert, so wird die Auflagerreaktion :

So ;ph (21)

und das maximale (positive)
Schnittmoment, das in einer Entfernung 0.785A
vom Randglied auftritt:

- o,i6P;.2 (22)

Q.lpX2

v/T 2 3 i 5 6 7x £

",- - jpA2l/2e~" cos &

1. 0,6

t 0.4

Verlauf der Randstörungen m
(Biegemoment je Längeneinheit der Schale) und

q (Querkraft je Längeneinheit der Schale)
bei Einspannung der Schale in einem
völlig steifen Randglied. A ist die
charakteristische Länge. In einer Entfernung
x 3,5 X 4,5 x (tt/4) X vom Rande ist
die Störungswelle praktisch abgeklungen.

Kann das Randglied selbst noch eine
Formänderung erfahren, so kann nötigenfalls

deren Einfluß ebenfalls in der Rechnung

berücksichtigt werden.

Mit Hilfe der Formeln (19) und (22) ist es
möglich, für eine beliebige Schale die
Größenordnung der Randstörungsmomente

zu bestimmen. Werden diese
Momente zu groß, so muß die Schale in den
kritischen Punkten verstärkt werden. Bei
Schalen aus bewehrtem Beton kann man
sich in vielen Fällen mit der Einfügung
zusätzlicher Bewehrungsstäbe begnügen.
Reicht diese Maßnahme nicht aus, so ist
auch die Schalendicke größer zu wählen.
Mit Hilfe der Formeln (20) und (21) kann
man berechnen, welcher Teil der Gesamt-
schalenbelastung durch Biegung auf die
Randglieder übertragen wird. Offenbar
wird dann der übrige Teil in Form von
Membrankräften von der Schale
aufgenommen.

Die hier angegebenen Formeln und
insbesondere Formel (8) bildeten die Grundlage

für die theoretische Analyse der
Kraftverteilung, wie sie im Philips Pavillon
ungefähr zu erwarten war, sowie für die
vorläufige Dimensionierung der Rippen
und Schalenwände, die auch für die Mo-
delluntersuchung zugrunde zu legen war.
Vollständigkeitshalber sei in diesem
Zusammenhang noch erwähnt, daß vor
kurzem im Stevin-Laboratorium in Delft die

Brauchbarkeit von Formel (19) bei einem
großen Modellversuch mit einer Hypparschale

aus bewehrtem Beton gemäß
Abbildung 5 experimentell nachgewiesen
worden ist.

Stabilität gegen Beulung und Durchschlag

Es ist eine bekannte Tatsache, daß doppelt

gekrümmte Schalen viel stabiler
gegen Beulung sind als zylindrische
Schalen.ZurSchätz ung der Beulungsbelastung
pk (d. h. die senkrecht auf die
Schalenoberfläche wirkende Belastung, bei der
die Schalenwand gerade im Begriff steht,
sich auszuheulen) einer Hypparschale
kann man die Theorie von Wansleben'
anwenden. Man findet dann:

2EÓ2
pk •

\3(1--v2)
: kik2 (23)

worin k, und k2 die absoluten Werte der
örtlichen Hauptkrümmungen darstellen.
Wenn fe, k2, geht (23) über in die Formel
für die Kugelschale nach Zoelly. Bezüglich

einer strengeren Berechnung der
Beulungsbelastung einer gleichseitigen
Hypparschale sei verwiesen auf eine
Arbeit von Ralston.10

Aus Formel (23) ist ersichtlich, daß mit
wachsenden Krümmungen die Beulungsbelastung

zunimmt bzw. die Beulungs-
gefahr abnimmt. Beim Philips Pavillon
mußte somit vor allem der Stabilität
derjenigen Teile Aufmerksamkeit geschenkt
werden, an denen die Krümmungen sehr
gering waren. Wie jedoch auch aus Formel

(23) hervorgeht, kann man die Beu-
lungsgefahr einer Schale dadurch
wesentlich vermindern,daß man dieSchalen-
dicke größer wählt. Jedenfalls aber wird
man bei Anwendung dieser Formel einen
erheblichen Sicherheitskoeffizienten
einrechnen müssen; dies ist übrigens auch
wegen dem möglichen Vorhandensein
von Formfehlern der Schale notwendig.
Die theoretische Untersuchung der
Stabilität von Schalen ist nicht einfach, vor
allem dann nicht, wenn man neben der
Beulung auch die Möglichkeit eines
Durchschlags berücksichtigen möchte.
Bei Durchschlag kann die Schale plötzlich
eine neue Gleichgewichtslage einnehmen,
wobei Verlagerungen von endlicher Größe
auftreten. Die gebräuchliche Theorie, bei
der nur unendlich kleine Formänderungen
vorausgesetzt werden, ist dann nicht mehr
anwendbar; man benutzt dann statt dessen

die sogenannte Theorie zweiter
Ordnung. Wir glauben, daß bezüglich der
Durchschlagsgefahr, die naturgemäß ernster

ist als die Beulungsgefahr, eine
Hypparschale ihrer Sattelform wegen günstiger

sein dürfte als die kugelförmige
Schale. Obgleich dies theoretisch noch
nicht bewiesen ist, findet unsere
Vermutung eine gewisse Bestätigung in der
besonders hohen Stabilität, die im
Verlaufe der im dritten Artikel dieser Reihe
beschiiebenen Modellversuche beobachtet

wurde.

Die Fortsetzung der beiden Beiträge:
«Modelluntersuchung für den Bau des
Pavillons» und «Konstruktion des Pavillons

in vorgespanntem Beton» folgt in der
nächsten Ausgabe Nr. 8, August 1959.

9 K. Girkmann, Flächentragwerke, Springer

Wien, 4. Auflage, 1956, S. 516-529.

10 A. Ralston, On the problem of buckling
of a hyperbolic paraboloidal shell loaded
by its own weight, J. Math. Phys. 35,
53-59, 1956.
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