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mehr, die nicht einen Teil der Wandflachen
bilden. Um die dritte Spitze, die sehr stark
geneigt ist, besser zu unterstiitzen, wurde
noch das Hyppar C an seiner Basis statt
konkav konvex gestaltet, und schlieBlich
wurden die beiden dreieckigen Offnungen
zum Teil durch neue Hypparflachen ge-
schlossen, die sich an die bereits vorhan-
denen anschlieBen. In dieser Weise ent-
stand die in den Konstruktionszeichnun-
gen (Abb.18 und19) wiedergegebene end-
giiltige Form des Pavillons. In dieser Form
wurde der Pavillon vom Bauunternehmen
«Strabed» errichtet.

Das in Abbildung 20 wiedergegebene Bild
des Inneren wurde aufgenommen, bevor
die Spanndrahte des Betons durch die
Auskleidung der Wande dem Anblick ent-
zogen waren. Dieses Bild gibt eine gute
Vorstellung von der eigenartigen Raum-
wirkung des Gebaudes.

Il. Die Hypparschale
und ihre
mechanischen
Eigenschaften

C. G. Vreedenburgh

Etwa im Jahre 1935 wurden von Laffaille
und Aimond die ersten Untersuchungen
verdffentlicht Gber die Kraftverteilung in
Hypparschalen — das sind gebogene, als
hyperbolische Paraboloide geformte Wan-
de, deren Dicke bezogen auf die Flachen-
abmessungen sehr gering ist.') ?)

Bis vor etwa einem Jahrzehnt zeigte man
in der praktischen Bautechnik fiir diese
neue Art von Schalen im Gegensatz zu
kugelférmigen und zylindrischen Schalen
wenig Interesse. Anscheinend konnte
man sich an die Sattelform (entgegen-
gesetzte Kriimmungen in zwei zueinander
senkrechten Richtungen) schwer gew6h-
nen, da diese Form mit der konventionel-
len Architektur unvereinbar erschien.
Auch glaubte man, daB die praktische
Ausflihrung sich teurer stellen wiirde als
die der gebrauchlichen Schalen.
Inzwischen hat sich in dieser Beziehung
manches geandert. Unter anderm durch
die bahnbrechenden Arbeiten von Can-
dela in den USA® und Hruban in der
Tschechoslowakei* erkannte man immer
deutlicher, daB die Hypparschalen nicht
nur eine hohe Festigkeit und Stabilitat
besitzen, sondern sich daneben hervor-
ragend zur Komposition reizvoller archi-
tektonischer Formen eignen, die mit ver-
schiedenen Tendenzen der modernen
Kunst wunderbar im Einklang stehen. In
dieser Beziehung hat der im vorigen
Artikel beschriebene Entwurf von Le Cor-
busier und Xenakis fiir den Philips Pavil-
lon in Briissel, der ganz aus hyperboli-
schen Paraboloiden aufgebaut ist, ein-
deutig bewiesen, daB sich in den Hyppar-
schalen die architektonische Phantasie in
groBartiger Weise entfalten kann. AuBBer-
dem ist man im Hinblick auf die praktische
Ausfiihrung im Laufe der letzten Jahr-
zehnte zu der Erkenntnis gelangt, daB das
hyperbolische Paraboloid sich sowohl in
Holz wie in bewehrtem und in vorgespann-
tem Beton gerade besonders gut verwirk-
lichen laBt, dank den beiden Geraden-
scharen (Erzeugenden), die auf dieser
Flache angegeben werden kénnen.®

' B. Laffaille, Mémoire sur I'étude générale
des surfaces gauches, Mém. Assoc. Int.
Ponts et Charpentes 3, 295-332, 1935.

2 F, Aimond, Etude statique des voiles
minces en paraboloide hyperbolique,
Mém. Assoc. Int. Ponts et Charpentes 4,
1-112, 1936.

3 F.Handela, Structural applications of
hyperbolic paraboloidical shells, J. Amer.
Concrete Inst., Title Nr.51-20, Januar
1955, 397-415.

4 K. Uruban, Obecné reseni zlabovych
skorepin (Die allgemeine Theorie sattel-
formiger Schalen), Technische Hoch-
schule Brno, 1953.

5 Ein neueres Beispiel flr eine groBe, aus
geleimtem Holz bestehende Hypparschale
ist die Dachkonstruktion des Informa-
tionszentrums auf demPlace deBrouckere
in Briissel.

Die Hypparschale hat somit ihren Platz in
der Baukunst gefunden und wird bereits
an vielen Stellen und fiir verschiedene
Zwecke angewendet. Die Tatsache, da3
diese Bauform verhaltnismaBig neu ist,
sowie die gréBere geometrische Kompli-
ziertheit der Sattelflachen hat allerdings
zur Folge, daB der Baufachmann sich bei
der praktischen Ausflihrung oftmals nicht
ausschlieBlich auf bereits gesammelte Er-
fahrungen und auf sein Fingerspitzen-
gefiihl verlassen kann, sondern sich auf
eine wissenschaftliche Untersuchung des
zu erwartenden mechanischen Verhaltens
des Bauwerkes stlitzen mochte. So er-
suchte uns die Firma «Strabed» Ende
Januar 1957 um Beratung bezliglich der
Errichtung des Philips Pavillons.

Die Spannungszusténde, die in einer der-
art komplizierten Kombination von Scha-
len und Rippen (angebrachtin den Durch-
dringungen der Schalen) auftreten kon-
nen, sind einer exakten Berechnung ganz
und gar unzuganglich. Wir konnten daher
der «Strabed» auf Grund theoretischer
Erkenntnisse nur ganz im allgemeinen die
Auskunft geben, daB der Entwurf uns
realisierbar und die geplante Bauweise
ausfiihrbar erschien; fir die zuverlassige
Beantwortung einer Anzahl Fragen war
jedoch - unter anderm auch wegen der
kurzen verfligbaren Zeit — eine Modell-
untersuchung das ausgewiesene Hilfs-
mittel. Diese Modelluntersuchung, aus-
gefiihrt in Rijswijk und in Delft von A. L.
Bouma und F. K. Ligtenberg, wird im drit-
ten Artikel dieser Serie beschrieben.
Dennoch mag es fiir den interessierten
Leser vielleicht erwiinscht sein, auch zu
zeigen, wie weit man mit einer Berech-
nung der allgemeinen Spannungszustan-
de in Hypparschalen kommen kann und
welcher Art die Schwierigkeiten sind, die
in komplizierten Fallen zur Durchfiihrung
einer erganzenden Modelluntersuchung
zwingen.

Die Geometrie der Hypparschale

Zum Verstandnis der auftretenden Kréafte-
verteilung in einer Hypparschale ist es
notwendig, zunachst einiges Uber deren
Geometrie zu rekapitulieren.
Bezogen auf ein rechtwinkliges Achsen-
kreuz Oxyz (siehe Abb. 1) kann man die
Gleichung des hyperbolischen Para-
boloids am besten in folgender Form
schreiben:
R 2
oer, or, =
0 ist dann der Scheitel (oder Mittelpunkt)
der Flache, Oz die Achse, wahrend x0Oz
und yOz Symmetrieebenen sind, welche
das Hyppar in den Parabeln p, bzw. p,
schneiden. Die in (1) vorkommenden
GroéBen ry und r, sind die Kriimmungs-
radien der Parabeln p; und p, im Schei-
tel O.
Die Ebene xOy schneidet die Flache in den
Geraden Of und 01}, die man Richtlinien
nennt. Die Achse Ox ist die Winkel-
halbierende des Winkels 2¢ zwischen
diesen Richtlinien. Es gilt:
\r,
tggp = 2)

Ty

Bezogen auf das Achsensystem O&yz
(wobei die Achsen O& und Oy im allge-
meinen nicht senkrecht aufeinander
stehen) lautet die Gleichung des Hyppars:

|
|
v
z

1

Zur Beschreibung des hyperbolischen
Paraboloids. O = Scheitel, Oz = Achse;
x0z und yOz sind die Symmetrieebenen;
&0z und )0z sind die Richtebenen (R, und
R,), zu denen die beiden Scharen Erzeu-
genden der Flache parallel verlaufen.
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Die beiden durch die Achse Oz und durch
die Richtlinien O bzw. 07 gehenden
Ebenen nennt man die Richtebenen R;
und R, des Hyppars. Aus Gleichung (3)
ist ersichtlich, daB alle parallel zu R, ver-
laufenden Ebenen das Hyppar in geraden
Linien schneiden; das gleiche gilt fiir alle
parallel zu R, liegenden Ebenen. Das
hyperbolische Paraboloid enthilt somit
zwei Scharen von Erzeugenden. Die Ge-
raden jeder dieser Scharen laufen samt-
lich parallel zu der zugehérigen Richt-
ebene, aber ihre Neigung andert sich mit
der Entfernung von dieser Ebene (siehe
Abb. 2a).

2a

Hyperbolisches Paraboloid mit den bei-
den Scharen Erzeugenden. O = Scheitel,
Oz = Achse.

2b

Teil eines hyperbolischen Paraboloids,
begrenzt durch die vier Erzeugenden A B,
CD, AC, BD. Die lineare Verzerrung ist v,
die spezifische Verzerrung v/F = k =

1] rire.

Betrachtet man einen Teil der Flache einer
Hypparschale, begrenzt durch zwei Er-
zeugenden A4 B und CD der einen Schar
und zwei Erzeugenden AC und BC der
anderen Schar (siehe Abb.2b), so ist
sofort einzusehen, daB ein hyperboli-
sches Paraboloid auch dann erhalten
wird, wenn eine Gerade (z. B. AC),welche
zwei windschiefe Geraden schneidet (4B
und CD), an diesen beiden Geraden ent-
lang gleitend sich verlagert und dabei
parallel zu einer gegebenen Ebene bleibt
(im vorliegenden Fall zu der Richtebene,
zu der AC und BD parallel sind).

Konstruiert man auf zwei aneinander-
stoBenden Seiten (z. B. 4B und 4C) ein
Parallelogramm, dessen vierter Eckpunkt
mit F bezeichnet sei, so nennt man das
Stiick DE die lineare Verzerrung v der
Hypparflache 4 BDC; die Verbindungs-
gerade DE ist parallel zur Achse des
hyperbolischen Paraboloids.

Projiziert man die Flache 4 BDC auf eine
senkrecht zur Achsrichtung DE stehende
Ebene und ist der Flacheninhalt dieser
Projektion (Parallelogramm 4'B'D'C") =
F, so nennt man das Verhaltnis v/F die
spezifische Verzerrung; diese GroBe ist
identisch mit der durch (4) definierten
GroBe k und konstant fiir jeden von vier
Erzeugenden begrenzten Ausschnitt der
Hypparschale. In der Praxis wird k ge-
wohnlich durch Berechnung der spezifi-
schen Verzerrung bestimmt.

SchlieBlich kann das hyperbolische Para-
boloid noch als eine Schiebungsflache
betrachtet werden. Kehren wir hierzu nach
Abb. 1 zurlick. Alle parallel zur Symme-
trieebene xOzverlaufenden Ebenenschnei-
den die Flache nach Gleichung (1) in
Parabeln, die mit p, kongruent sind, wéh-
rend alle parallel zur Symmetrieebene y0z
verlaufenden Ebenen Schnittkurven er-
geben, die mit der Parabel p, kongruent
sind. Man kann sich das Hyppar somit
auch in der Weise entstanden denken,
daB man die Parabel p, parallel zu sich
selbst verschiebt, wobei ihr Scheitel ent-
lang p4 gleitet, oder indem man die Parabel
p: parallel zu sich selbst verschiebt, wo-
bei ihr Scheitel entlang p, gleitet.

LaBt man eine Ebene z = -+ ¢ das Hyppar
schneiden, so erh&lt man gemaB Glei-
chung (1) als Schnittkurve eine Hyperbel.
Projiziert man diese auf x0y, so sind 0%
und O die Asymptoten und Oy die ima-
gindre Achse. LaBt man eine Ebene z =
— ¢ das Hyppar schneiden, so ist die
projizierte Schnittkurve wieder eine Hy-
perbel mit den Asymptoten O& und On,
jedoch mit Ox als imaginare Achse.

Im Sonderfall @ = 45° (0 und Oy stehen
in diesem Fall senkrecht aufeinander)
werden diese Hyperbeln gleichseitig. Man
nennt das Hyppar dann gleichseitig.

Projiziert man von einem beliebigen Hyp-
par eine Anzahl Hyperbeln (H6henlinien)
und eine AnzahlErzeugende auf die Ebene
x0y, so erhalt man ein Bild wie in Abb. 3.
Vollstandigkeitshalber sei hier noch das
einschalige Hyperboloid erwahnt, auf des-
sen Flache ebenfalls zwei Scharen von
Erzeugenden vorkommen. Diese Geraden
verlaufen jedoch nicht parallel zu zwei
Richtebenen, sondern parallel zu den Er-
zeugenden einer Kegelfliche, dem so-
genannten Asymptotenkegel des Hyper-
boloids. Hierdurch wird die Berechnung
der Kraftverteilung in der hyperboloidi-
schen Schale viel komplizierter als fiir die
Hypparschale.

Die Membrantheorie der Hypparschale

Krafte, die in der Mittelebene einer Platte
oder Schale gelegen sind, nennt man
Membrankrafte. (Unter Mittelebene ver-
steht man den geometrischen Ort der
Mitte der Dickenerstreckung in allen Punk-
ten der Platte oder Schale). Im Gegensatz
zur ebenen Platte, die keine senkrecht zur
Plattenebene gerichtete Belastung in der
Form von Membrankraften aufnehmen
kann, istdies bei einer gekriimmten Schale
mdglich. In solchen Fallen, in denen die

o 2=-2 4

Hyperbolisches Paraboloid mit Hhen-
linien (Hyperbeln) und Erzeugenden (ge-
strichelt), projiziert auf die Ebene x0y.

zugehorigen Forméanderungen der Schale
ungestort vonstatten gehen kénnen, ist
eine ausschlieBlich durch Membrankrafte
erfolgende Kraftiibertragung eine gute
Néaherung der wirklichen Kraftverteilung.
Eine statisch mégliche Spannungsvertei-
lung, bei der Biegung und Torsion ver-
mieden werden (d.h. eine quasi-zwei-
dimensionale Spannungsverteilung), er-
gibt ndmlich in guter Ndherung die kleinste
Forméanderungsarbeit in der Konstruktion.
Man geht daher auch gewéhnlich so vor,
daB man zunachst die Kraftverteilung in
der Hypparschale nach der Membran-
theorie berechnet. AnschlieBend wird
man dann im allgemeinen, so gut es geht,
Korrektionen vornehmen miissen wegen
der Begrenzungen (Rander) der Schale,
wo die Forméanderungen, die dem Mem-
branspannungszustand entsprechen,
nicht unbehindert auftreten kénnen. Beim
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Philips Pavillon ist die Situation derart,
daB an der Durchdringung jedes Paares
von Hypparflachen diese starr mit einer
Rippe verbunden sind. Die Randbedin-
gung ist hier die, daB die Forménderungen
der Rippe die gleichen sein miissen wie
die der anschlieBenden Schalenrénder.
Hierdurch entstehen sogenannte Rand-
stérungen, die weiter unten betrachtet
werden.

Die Differentialgleichungen fiir den Mem-
branspannungszustand kann man am
besten aufstellen durch Gleichgewichts-
betrachtung eines belasteten Elementes
in den Richtungen &, 7 und z. Wir be-
trachten dazu ein Schalenelement, das
von vier benachbarten Erzeugenden be-
grenzt ist; ihre Projektionen auf die (hori-
zontale) Ebene £0 bilden ein Elementar-
Parallelogramm mit den Seiten d£ und dn
(siehe Abb. 4). Die Belastungskomponen-
ten je horizontale Flacheneinheit der
Schale in den Richtungen O&, On und Oz
sind p&, pn und pz.Die schiefen Membran-
krafte je Langeneinheit (sog. Schnitt-
krafte, das Analogon zu den Spannungen
in der Lehre von den Spannungszustéan-
den) imSchalenelement sindnf,nr) und 9.
Man fihrt ferner die projizierten Schnitt-
krafte ein:

— cosa
né =nf —
cosf}
cosfi
niy=nny
cosa

e

(5)

F—

Die Gleichgewichtsbedingungen in der
&-, m- bzw. z-Richtung liefern dann fol-
gende Gleichungen:

d;& 09 2
T£+$p5snn2(p:0,
b

it 619 7 sin2¢p =0
on T oE TSNP =0 ®

0%z Oz Oz
20 &5, + (\PZ“PSE —p1 (57])

sin2p = 0.

Der in Klammern stehende Ausdruck ist
die Komponente p; der Belastung, wenn
man diese nach der z-Richtung und der
Tangentialebene im betrachteten Schalen-
punkt zerlegt; man kann somit die dritte
Gleichung von (6) auch wie folgt schrei-
ben:

20 2% i pisinzp—0

- sin =
SESn Pz P

Eine sehr einfache Lésung bekommt man,
wenn die Belastung in der z-Richtung je
horizontale Flacheneinheit der Hyppar-

schale in allen Punkten konstant ist, = g,
wéhrend p& = p7n = 0. Aus Gleichung (3)
folgt die rein geometrische Beziehung:

% k sin 2

— = i

o5&y ¢
Gleichung (7) liefert somit fiir den Fall
p: = g:

¥ S 2%; — konstant (8)

Man ersieht aus dieser Formel, daB die
Schnittkraft & umgekehrt proportional &
ist. Nach Gleichung (4) ist es somit glin-
stig, die Kriimmungsradien r, und r, még-
lichst klein zu wahlen. Je starker die
Schalenkrimmung, um so glinstiger ist
die Spannungsverteilung.

Wenn die Schale von Erzeugenden be-
grenzt wird, und auBerdem die Membran-
krafte n& und ny hier gleich Null gesetzt
werden diirfen (nachgiebige Randglieder),
folgt ferner aus den ersten beiden Glei-
chungen (6), daB in allen Punkten der
Schale diese Krafte Null sind.

Eine konstante Belastung je horizontale
Flacheneinheit wird durch eine Hyppar-
schale mit vertikaler Achse und konstan-
ter Dicke somit in der Form von konstan-
ten Schubspannungen entlang den Er-
zeugenden auf die Randglieder Ubertra-
gen. Die Schale ist dann nahezu eine
Schale gleichen Widerstands; dies be-

deutet, daB, wenn in einem Punkt der
Schale die Spannung den maximal zu-
lassigen Wert erreicht, dies in samtlichen
Punkten der Fall ist. Da die Festigkeit des
Materials dann {iberall voll ausgenutzt
wird, leuchtet es ein, daB eine Konstruk-
tion gleichen Widerstands einem Mini-
mum an Materialverbrauch entspricht.

Schalenelement
/

Gleichgewicht eines Schalenelementes,
unter Einflihrung von schiefen projizierten
Schnittkraften. Schnittkrafte sind Kréfte
je Langeneinheit der Schale; die Kom-
ponenten der parallel zur Mittelebene der
Schale wirkenden Schnittkrafte (Mem-
branschnittkrafte) werden gewéhnlich mit
n und O bezeichnet. Dividiert man eine
Schnittkraft durch die Dicke der Schale,
so erhélt man offenbar eine Spannung
(Kraft je Flacheneinheit).

Obiges kann noch anhand von Abbildung
5 erlautert werden. In ihr ist eine einfache
Schalenform abgebildet, bestehend aus
vier Quadranten, die jeweils einen Teil
eines gleichseitigen Hyppars bilden, mit
Rippen als Randgliedern. Wie in einem
der Quadranten mit gestrichelten Linien
angegeben, befinden sich auf der Flache
Parabeln, die nach oben konvex sind, und
solche, die nach oben konkav sind. Die
ersteren sind Druckparabeln, die letzteren
Zugparabeln. Die Belastung der Schale
wird nun zur Halfte von den Druckpara-
beln und zur Hélfte von den Zugparabeln
aufgenommen. Betrachtet man einen
Punkt eines Randgliedes, in dem eine
Zugparabel und eine Druckparabel zu-
sammenkommen, so ergeben die Reak-
tionskrafte von beiden zusammen eine
Schubkraft langs des Randgliedes, so daB
die Rippen nicht senkrecht zu ihrer Langs-
richtung belastet werden. Diese Art der
Kraftiibertragung findet auch dann statt,
wenn die Hypparschalen nicht gleichseitig
sind. Dadurch wird begreiflich, daB beim
Philips Pavillon die Belastung gréBtenteils
in Form von Druckkraften entlang den
Rippen auf die FuBpunkte tibertragenwird,
und daB daher die urspriinglich notwendig
erachteten vertikalen Unterstiitzungen der
Spitzen zuguterletzt entbehrt werden
konnten.

Die hier beschriebene einfache Kraftver-
teilung gilt nur fur eine gleichmaBig ver-
teilte Belastung je horizontale Flachen-
einheit, wie zum Beispiel eine Schnee-
belastung von konstanter Dicke in verti-
kaler Richtung.

Fir das Eigengewicht der Schale gilt die
einfache Kraftverteilung nur naherungs-
weise. Betragt dieses Gewicht je Flachen-
einheit der Schale g, so wird die Schnitt-
kraft @, fiir eine Schale mit vertikaler
Achse:

- _ 2 va
9-— 2 Vo ©

wo

D=1+ k2(E2+n2—26n cos 2p)  (10)

Bilden die Normalen der Schalenflache
keinen allzugroBen Winkel mit der Achse
(== 15°), so kann @ = 1 gesetzt werden.
Ferner findet man:
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Qi;» cos2p Vo +

n§ =

-1/ 2gmsin?22pin [ (T)TI.E——A-;/cosQr]‘] I
+ ),

2‘%‘_ cos2p Y@ +

ny =

(1n

Die Integrationsfunktionen f; (1) und
F2 (&) miissen aus den Randbedingungen
bestimmt werden.

In dieser Weise kann man auch die Mem-
brankrafte flir eine konstante Belastung w
je Flacheneinheit der Schale berechnen,
die in jedem Punkte senkrecht zur Schale
gerichtet ist. Eine derartige Belastung
wird namlich haufig als Windbelastung
angenommen.

Man findet dann:

wd
P £ 12
) o (12)
nz: = wk (250 —&2cos 2p) + 2 (1)), \ a3)

1) = wk (28— 12 cos 2) + 14 (§), |

5

System von vier gleichseitigen Hyppar-
schalen bei voller Belastung, die gleich-
férmig je horizontale Flacheneinheit ver-
teilt ist. Die Pfeile geben die Schubkréafte
an, wie sie auf die steifen Randglieder
tibertragen werden.

Aus den obigen Formeln sieht man, daB,
im Gegensatz zu einer Schneebelastung,
sowohl bei Belastung durch Eigengewicht
als auch durch Wind, die Schnittkrafte d
nicht mehr konstant sind, und daB jetzt
auch die Schnittkrafte n eine Rolle zu
spielen beginnen.

Hat man die projizierten Schnittkréfte n&

und ni; berechnet, so sind durch die Be-
ziehungen (5) auch die wirklichen Schnitt-
krafte n& und n# bekannt. Hierbei ist zu
beriicksichtigen, daB (siehe Abb.4):

1
V14 0=

COs U —

(14)
1

cos ffl= ———
V1 -+ (0s/0n)

Die minimal erforderliche Vorspannung
findet man, wenn der Kreis die 0-Achse
berthrt und wenn man gleichzeitig die
neuen Punkte RE” und Ry" die auf der
gleichen schiefen Geraden wie RS und Ry
liegen, zusammenfallen [4Bt; der Kreis
bertihrt dann auch diese schiefe Gerade
(im Punkt R’). Der Mittelpunkt M’ des
Kreises wird daher auf der Winkelhalbie-
renden dieser schiefen Geraden und der
#-Achse gefunden. Man ersieht aus der

Abbildung, daB die Vorspannung die
Druckschnittkrafte n& + O und ny + 0
verursachen muB, und daB der Span-
nungszustand dann umgewandelt wird in
eine einachsige Druckspannung (eine der
Hauptspannungen ist Null), mit einer
Hauptschnittkraft Ons, die in der Richtung
R'n, wirkt, das heiBt in Richtung der ge-
nannten Winkelhalbierenden.

.

6a

Konstruktion des Mohrschen Spannungs-
kreises flr einen ebenen Spannungszu-
stand, zur Ermittlung der Hauptspannun-
gen gy und 0, in einem bestimmten Punkt
aus den Normalspannungen Gx und oy
und aus der Schubspannung 7 in zwei
zueinander senkrechten Flachenelemen-
ten in diesem Punkt. Man tragt ox und oy
auf der o-Achse auf und senkrechtdazut,
was die Punkte Rx und Ry ergibt. Der
durch Ry und Ry gehende Kreis, dessen
Mittelpunkt M auf der o-Achse liegt, lie-
fert die Punkte 0, und o,. Die Abstande
004 und Oo, stellen die GroBe der Haupt-
spannungen dar, die in den Richtungen
Rxoy bzw. Ryo, wirken.

6b

Anderung der Mohrschen Konstruktion,
um von den Spannungen (oder, da es
sich hier um einen Membranspannungs-
zustand handelt: von den Schnittkréaften
né und n1); siehe Abbildung 4) ausgehen
zu kénnen, die nach den beiden durch
einen Punkt des Hyppars gehenden Er-
zeugenden gerichtet sind. Die Flachen-
elemente, in denen diese Spannungen
wirksam sind, stehen also nicht senkrecht
aufeinander, sondern bilden einen Win-
kel w. Man tragt n& und n aufeiner Achse
auf, die einen Winkel «c mit der ?-Achse
bildet, und zeichnet in den gefundenen
Punkten 7} parallel zur #-Achse, was die
Punkte R und Ry liefert. Der durch RE
und Ry gehende Kreis, dessen Mittel-
punkt M auf der n-Achse liegt, liefert die
Punkte n, und n,. Die Abstande On, und
On, geben die GréBe der Hauptschnitt-
kréfte an, die in den Richtungen Run,
bzw. Rnn, wirksam sind.

6c

Wiinscht man einen Spannungszustand
zu erhalten, in dem keine Zugspannungen
auftreten, so muB man durch &uBere
Krafte den Mohrschen Spannungskreis
derart verschieben, daB er ganz links von
der #-Achse zu liegen kommt. Man kann
dies mit Vorspannungskabeln bewirken,
die man gem&B den Erzeugenden des
Hyppars verlegt, und muB dann die ge-
maB n& und n1 gerichteten Vorspan-
nungsschnittkrafte (Druckkréafte) von den
Punkten n& bzw. n7) aus auf der gleichen
schiefen Achse nach links auftragen.
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Zur Beurteilung der Festigkeit einer Kon-
struktion missen schlieBlich aus den
wirklichen Schnittkraften fiir eine Anzahl
hervorstechende Punkte der Schale die
Hauptschnittkrafte® nach GroBe und Rich-
tung bestimmt werden. Hierzu ist es noch
erforderlich, im betrachteten Punkt den
Winkel @ zwischen den Erzeugenden
(siehe Abb. 4) zu kennen. Dieser kann mit

Hilfe nachstehender Formel berechnet
werden:

|68) (0z/0m) + cos 2
— (02/08) (0z/0m) + cos 2¢

VI + (9z/0931 11 + (9z/0m)2]
(15)

Da man es hier mit schiefen Schnittkraften
bzw. Spannungen zu tun hat, muB3 die ge-
brauchliche Kreiskonstruktion nach Mohr
etwas geandert werden. In Abbildung 6a
ist die gewodhnliche Konstruktion nach
Mohr fiir einen ebenen Spannungszustand
gegeben; mit ihr bestimmt man aus den
Normalspannungen ox und oy und der
Schubspannung 7 - wirksam in zwei zu-
einander senkrechten Flachenelementen,
beide senkrecht zur spannungslosen
Ebene - die Hauptspannungen o, und o,
nach Richtung und GréBe. Abbildung 6b
zeigt die gednderte Konstruktion, um aus
den schiefen Schnittkraften nE,m] und P -
wirksam in zwei Flachenelementen, die
einen spitzen Winkel « miteinander bil-
den - die Hauptschnittkrafte ny und n,
nach Richtung und GréBe zu bestimmen.”

Weiterhin kann man dann in der Mittel-
ebene der Schale zwei Kurvenscharen
zeichnen, welche die Eigenschaft besitzen,
daB in jedem Schnittpunkt die beiden
Tangenten an die betreffenden Kurven
die Richtungen der Hauptschnittkrafte ni
und n2 in jenem Punkt angeben. Diese
Kurven sind die Hauptschnittkrafttrajek-
torien; man nennt sie auch Hauptspan-
nungstrajektorien, da ja die Schnittkraft
geteilt durch die Dicke der Schale die
Spannung ergibt.

Verwendet man vorgespannten Beton, so
erhebt sich unter anderm die Frage,
welche Spannkrafte man in den Kabeln
(verlegt in Richtung der Erzeugenden)
mindestens anzubringen hat; mit anderen
Worten, welche Schnittdruckkrafte man in
der &- bzw. in der 7-Richtung dem Span-
nungszustand mindestens (berlagern
muB, damit in keinem einzigen durch den
betrachteten Punkt gehenden Flachen-
element noch eine Zugspannung auftritt.
Die graphische Lésung dieses Problems
ist in Abbildung 6c angegeben.

Randstérungen

Wie bereits oben erwéahnt, kann die Schale
in der N&he der steifen Randglieder nicht
ungestért die Formanderungen erfahren,
welche dem Membranspannungszustand
entsprechen. Denkt man sich namlich das
Randglied von der Schale geldst, so daB
diese Formanderungen ungehindert statt-
finden kénnen, so wiirden Schalenrand
und Randglied sich nachher nicht mehr
passend aneinanderfliigen. Letzteres kann
man nur erreichen, wenn das Randglied
Krafte (Normal-, Schub- und Querkrafte)
und Momente (Biege- und Torsions-
momente) auf den Schalenrand ausiibt,
und umgekehrt die Schale entgegenge-
setzte Kréafte und Momente auf das Rand-
glied derart, daB die damit einhergehen-
den zusatzlichen Formanderungen eine
vollkommene Anpassung ermoglichen.
Die Berechnung dieser Randstérungen,
die dem Membranspannungszustand
tUberlagert werden missen, gehort zu den

¢ Analog definiert als die Hauptspannun-
gen in der zweidimensionalen Span-
nungslehre, namlich als die Schnittkrafte
in solchen Flachenelementen, in denen
keine Schubkrafte, sondern nur Normal-
krafte vorhanden sind (dies sind dann
gleichzeitig die groBten und kleinsten im
betrachtenden Punkt auftretenden Schnitt-
krafte).

7 C. G. J. Vreedenburgh, Hypparschalen,
bearbeitet von W. Grijm, Centr. Comm.
Studiebelangen, Delft 1954, Seite 17-26.

schwierigsten Problemen der Schalen-
theorie.

Ersetzt man die Hypparschale in einem
kleinen Bereich durch eine Schiebungs-
flache von Kreisen mit den Radien r, und
72,50 gilt bei schwachen Kriimmungen fir
das Randstdérungsproblem (naherungs-
weise) folgende Differentialgleichung:

D
VAVAVAVA Ul Uty

1 0w 2 Ow 1 0%w] (16)
..y L g B

(722 0x*  ryrp 0x20y% 142 0y*

Hierin ist:

w = Verlagerung eines Schalenpunktes

in Richtung der Normalen,
s Eb
C0xr Oy?! 1—v?
ES?
] o 2
12 (1—2?)

A

¥ = Schalendicke,
E = Elastizitaitsmodul,
v = Poissonsche Querzahl.

Die GréBen D und K stellen die Deh-
nungssteifigkeit bzw. Biegungssteifigkeit
der Schale dar.
Ist w bekannt, so kann die gesamte Kraft-
verteilung bestimmt werden. Man findet,
daB die von den Randpunkten ausgehen-
den Stérungen stets aus der Uberlage-
rung zweier Wellen bestehen, die beide in
vielen Fallen schnell abklingen, so daB in
gewisser Entfernung von den Randglie-
dern kaum noch etwas von den Rand-
stérungen zu bemerken ist.
Unter anderm wegen der Tatsache, daB
eine Berechnung nach Gleichung (16)
tUberaus schwierig ist und bei komplizier-
ten Randbedingungen, wie sie belm
Philips Pavillon herrschen,sogarundurch-
fuhrbar, erscheint uns die folgende néhe-
rungsméaBige Berechnung zur Bestim-
mung der GroBenordnung der Randstd-
rungen in Hypparschalen fiir die Praxis
durchaus geniligend. Diese Rechen-
methode basiert auf der Tatsache, daB
eine Schale, was dieBiegungserscheinun-
gen betrifft, verglichen werden kann mit
einer Platte auf elastischer Unterlage.
Denkt man sich also einen Streifen der
Hypparschale senkrecht zum Randglied,
so verhalt sich dieser Streifen annahernd
wie ein Tréager auf elastischer Unterlage.
Sind die Hauptkriimmungen der Hyppar-
schale im betrachteten Randpunkt k bzw.
k1,® so betragt die Bettungskonstante fiir
den aquivalenten Trager auf elastischer
Unterlage ungefahr:

¢ = E0 (k2 + k2?). 17)
(Unter der Bettungskonstante einer elasti-
schen Unterlage versteht man den Gegen-
druck je Flacheneinheit, der je Einheit der
Zusammenpressung entsteht. Je groBer
¢, um so groBer die Bettungssteifigkeit.)
Der Verlauf der Randstérung, nunmehr
ausschlieBlich bestimmt durch das Biege-
moment m und die Querkraft g (beide je
Langeneinheit der Schale), kann nun in
einfacher Weise berechnet werden. Es
ergibt sich, daB man den Verlauf der Rand-
stérungen durch eine «Wellenlange» und
eine «Dampfung» beschreiben kann, die
beide durch eine charakteristische Lange
bestimmt werden:

(18)

Man kann annehmen, daB in einer Ent-
fernung von ungefahr 3,54 vom Rand der
EinfluB der Stérung vernachlassigt wer-
den kann. Aus (18) sieht man, daB die
Stérungsbereiche um so kleiner sind, je
geringer die Schalendicke und je groBer
die Hauptkrimmungen (d. h. je kleiner die
Hauptkriimmungsradien).

Kann die Befestigung der Schale im Rand-
glied als véllig starre Einspannung ange-
sehen werden, so verlaufen das Rand-

® Bei einem hyperbolischen Paraboloid
fallen die Hauptkrimmungsrichtungen in
einem bestimmten Punkt zusammen mit
den beiden Winkelhalbierenden der bei-
den durch diesen Punkt gehenden Er-
zeugenden.
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stérungsmomentmund die Randstérungs-
querkraft ¢, beide je Langeneinheit der
Schale, als Funktion der Entfernung x zum
Rand gemaB den Kurven in Abbildung 7
(die Belastung der Schale senkrecht zu
deren Flache ist p). Man sieht aus den ins
Diagramm eingeschriebenen Formeln,
daB jede Stoérung jetzt als eine einzige
gedampfte Welle verlauft, die man als die
Resultierende der beiden Wellen betrach-
ten kann, die Gleichung (16) entsprechen.
Die Dampfung ist um so starker, je kleiner
die charakteristische Lange A ist. In die-
sem Fall einer starren Einspannung am
Rande wird das negative Einspannungs-
Schnittmoment:

1 =
mo ép/,2, (19)
und die Auflagerreaktion je Langeneinheit
(= die Schnittquerkraft an der Einspann-
stelle):

g0 = pA. (20)

Ist die Schale am Rande scharnierend ge-

lagert, so wird die Auflagerreaktion:

! pi (21

Qo = 5 P4, J

und das maximale (positive) Schnitt-

moment, das in einer Entfernung 0,785
vom Randglied auftritt:

m = 0,16 pA? (22)

7x FA

Verlauf der Randstérungen m (Biege-
moment je Langeneinheit der Schale) und
q (Querkraft je Langeneinheit der Schale)
bei Einspannung der Schale in einem
vollig steifen Randglied. / ist die charak-
teristische Lange. In einer Entfernung
x=235A=45 < (7/4) A vom Rande ist
die Stérungswelle praktisch abgeklungen.

Kann das Randglied selbst noch eine
Formanderung erfahren, so kann nétigen-
falls deren EinfluB ebenfalls in der Rech-
nung berticksichtigt werden.

Mit Hilfe der Formeln (19) und (22) ist es
maoglich, fur eine beliebige Schale die
GroBenordnung der Randstérungsmo-
mente zu bestimmen. Werden diese Mo-
mente zu groB3, so muB die Schale in den
kritischen Punkten verstarkt werden. Bei
Schalen aus bewehrtem Beton kann man
sich in vielen Fallen mit der Einfligung zu-
satzlicher Bewehrungsstédbe begniigen.
Reicht diese MaBnahme nicht aus, so ist
auch die Schalendicke gréBer zu wéahlen.
Mit Hilfe der Formeln (20) und (21) kann
man berechnen, welcher Teil der Gesamt-
schalenbelastung durch Biegung auf die
Randglieder (ibertragen wird. Offenbar
wird dann der (brige Teil in Form von
Membrankraften von der Schale aufge-
nommen.

Die hier angegebenen Formeln und ins-
besondere Formel (8) bildeten die Grund-
lage fur die theoretische Analyse der
Kraftverteilung, wie sie im Philips Pavillon
ungeféhr zu erwarten war, sowie fiir die
vorlaufige Dimensionierung der Rippen
und Schalenwande, die auch fiir die Mo-
delluntersuchung zugrunde zu legen war.
Vollstandigkeitshalber sei in diesem Zu-
sammenhang noch erwahnt, daB vor kur-
zem im Stevin-Laboratorium in Delft die

Brauchbarkeit von Formel (19) bei einem
groBen Modellversuch mit einer Hyppar-
schale aus bewehrtem Beton geméaB Ab-
bildung 5 experimentell nachgewiesen
worden ist.

Stabilitat gegen Beulung und Durch-
schlag

Es ist eine bekannte Tatsache, daB dop-
pelt gekrimmte Schalen viel stabiler ge-
gen Beulung sind als zylindrische Scha-
len.ZurSchatzung der Beulungsbelastung
pk (d. h. die senkrecht auf die Schalen-
oberflache wirkende Belastung, bei der
die Schalenwand gerade im Begriff steht,
sich auszubeulen) einer Hypparschale
kann man die Theorie von Wansleben?
anwenden. Man findet dann:
2E0?
=————"kik,
Vaa—o2)

Pk (23)

worin k; und k, die absoluten Werte der
ortlichen Hauptkrimmungen darstellen.
Wenn k4 = k,, geht (23) iiber in die Formel
fir die Kugelschale nach Zoelly. Beziig-
lich einer strengeren Berechnung der
Beulungsbelastung einer gleichseitigen
Hypparschale sei verwiesen auf eine Ar-
beit von Ralston.'®

Aus Formel (23) ist ersichtlich, daB mit
wachsenden Kriimmungen die Beulungs-
belastung zunimmt bzw. die Beulungs-
gefahr abnimmt. Beim Philips Pavillon
muBte somit vor allem der Stabilitat der-
jenigen Teile Aufmerksamkeit geschenkt
werden, an denen die Krimmungen sehr
gering waren. Wie jedoch auch aus For-
mel (23) hervorgeht, kann man die Beu-
lungsgefahr einer Schale dadurch we-
sentlich vermindern, daB3 man die Schalen-
dicke groBer wahlt. Jedenfalls aber wird
man bei Anwendung dieser Formel einen
erheblichen Sicherheitskoeffizienten ein-
rechnen missen; dies ist iibrigens auch
wegen dem moglichen Vorhandensein
von Formfehlern der Schale notwendig.
Die theoretische Untersuchung der Sta-
bilitat von Schalen ist nicht einfach, vor
allem dann nicht, wenn man neben der
Beulung auch die Moglichkeit eines
Durchschlags beriicksichtigen mochte.
Bei Durchschlag kann die Schale plétzlich
eine neue Gleichgewichtslage einnehmen,
wobei Verlagerungen von endlicher GréBe
auftreten. Die gebréuchliche Theorie, bei
der nur unendlich kleine Formanderungen
vorausgesetzt werden, ist dann nicht mehr
anwendbar; man benutzt dann statt des-
sen die sogenannte Theorie zweiter Ord-
nung. Wir glauben, daB beziiglich der
Durchschlagsgefahr, die naturgemaB ern-
ster ist als die Beulungsgefahr, eine Hyp-
parschale ihrer Sattelform wegen glinsti-
ger sein durfte als die kugelférmige
Schale. Obgleich dies theoretisch noch
nicht bewiesen ist, findet unsere Ver-
mutung eine gewisse Bestatigung in der
besonders hohen Stabilitat, die im Ver-
laufe der im dritten Artikel dieser Reihe
beschriebenen Modellversuche beobach-
tet wurde.

Die Fortsetzung der beiden Beitrage:
«Modelluntersuchung fiir den Bau des
Pavillons» und «Konstruktion des Pavil-
lons in vorgespanntem Beton» folgt in der
nachsten Ausgabe Nr. 8, August 1959.

? K. Girkmann, Flachentragwerke, Sprin-
ger Wien, 4. Auflage, 1956, S.516-529.

o A. Ralston, On the problem of buckling
of a hyperbolic paraboloidal shell loaded
by its own weight, J. Math. Phys. 35,
53-59, 1956.
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