Zeitschrift: Bauen + Wohnen = Construction + habitation = Building + home :

internationale Zeitschrift

Herausgeber: Bauen + Wohnen

Band: 10 (1956)

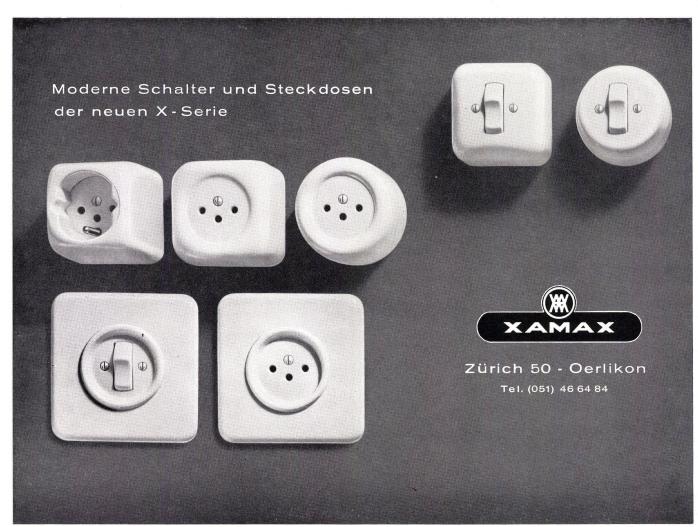
Heft: 11

Werbung

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation


L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Der automatische

Umluftheizer

mit der Lükon-Thermovent-Schaltung Verlangen Sie unverbindlich Liste 1 U

Fabrik für elektrotherm. Apparate

Paul Lüscher, Täuffelen

Telephon 032 / 7 35 45

Die gute Form 1956

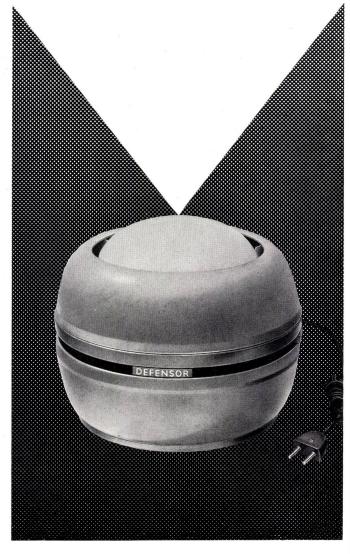
Klimaanlagen

Einige Vorteile der «Jettair»*-Hochdruck-Klimaanlagen: Kleine Kanäle – individuelle Temperaturregelung in jedem Raum-formschöne, wenig Platz beanspruchende Apparate – Luftvorhänge vor allen Fenstern, die jeden äußern Einfluß auf das Raumklima ausschalten. Vorteile, die Ihnen kein anderes System bietet!

* ges.gesch.

LUWA AG

Zürich 47, Anemonenstraße 40 Telephon 051 / 52 13 00


Fabriken in Paris Barcelona, Sâo Paulo, Charlotte USA

Diesen Winter in geheizten Räumen größere Behaglichkeit weniger Erkältungskrankheiten

durch eine ausreichende, rasch wirkende Luftbefeuchtung mit dem kleinen handlichen

DEFENSOR-Junior

Aerosol-Apparat

An der Muba 1956 mit «Die Gute Form» ausgezeichnet

Verlangen Sie ausführlichen Prospekt

DEFENSOR AG. ZÜRICH

Uraniastraße 40 Telefon 051 / 23 36 38

Über Luftfeuchtigkeit und die Gesundheit

Mehr als 100 Millionen Franken dürfte uns in der Schweiz die während der Heizperiode immer noch zu trockene Heizungsluft kosten – eine stattliche Summe, an die praktisch jedermann zahlenderweise beiträgt. Ein Hinweis auf Ursache, Auswirkung und Vermeidung dieser trokkenen «Heizungsluft» wird daher sicher interessieren und ein kleiner Exkurs in die Wissenschaft nützlich sein.

Von allen Faktoren im Komplex der Luftfeuchtigkeit ist am wesentlichsten, daß die Luft bis zu ihrer Sättigung bei verschiedenen Temperaturen verschiedene Mengen Wasserdampf aufzunehmen vermag, und zwar wird bei zunehmender Temperatur das Aufnahmevermögen immer höher. So beträgt es bei 0° C 4,8 g und bei 20°C 17,3 g Wasserdampf pro Kubikmeter Luft. Die Luft kann aber nicht nur, sondern will auch die ihrer Temperatur zugeordnete Menge Wasserdampf aufnehmen. Daraus folgt, daß kalte, selbst voll gesättigte Luft bei Erwärmung zu ungesättigter Luft wird und das Bestreben hat, so lange weiteren Wasserdampf aufzunehmen, bis der Sättigungsgrad bei der gegebenen höheren Temperatur erreicht ist. Dieses Sättigungsdefizit deckt die Luft durch Wasserentzug aus den sich in ihrer Umgebung befindlichen Wasserträgern, und sie trocknet diese entsprechend aus. Als Wasserträger sind irgendwelche, einen Feuchtigkeitsgehalt aufweisenden Materialien wie Wände, Möbel usw. und, was von größter Bedeutung ist, auch die sich im Raum befindlichen Personen zu verstehen. Dieser Wasserentzug ist um so rascher und kräftiger, je größer das Sättigungsdefizit noch ist.

Der allgemein gültige Maßstab des Feuchtigkeitsgehaltes der Luft - in Form von unsicht- und unspürbarem, gasförmigem Wasser - ist die sogenannte «relative Luftfeuchtiakeit», die mit einem Hyarometer direkt gemessen werden kann. Die relative Luftfeuchtigkeit ist eine Verhältniszahl und gibt an, wieviele Prozent der einer bestimmten Temperatur zugeordneten maximal aufnehmbaren Menge Wasserdampf effektiv vorhanden sind. Die Differenz zu 100 % entspricht dem Sättigungsdefizit. Wenn also zum Beispiel bei 0° C 4.8 g Wasserdampf im Kubikmeter Luft enthalten sind, so entspricht dies 100% relativer Feuchtigkeit, nämlich dem Sättigungsgrad. Wird nun diese Luft auf 20° C erwärmt, was einem Sättigungsgrad von 17,3 g Wasserdampf pro Kubikmeter Luft entspricht, so fällt bei dem gleichbleibenden, effektiven Wasserdampfgehalt von 4,8 g die relative Luftfeuchtigkeit auf zirka 25 %, mit einem entsprechenden Sättigungsdefizit von 75% oder 12,5 g Wasser pro Kubikmeter Luft. Die vorher völlig gesättigte Luft ist also durch ihre Erwärmung zu austrocknender Luft geworden.

Die leider noch weitverbreitete Meinung, daß auch bei niederer Außentemperatur die Luftfeuchtigkeit im Raum durch Öffnen der Fenster erhöht werden kann, ist also irrig. Anderseits müssen doch periodisch die Fenster geöffnet oder eine Ventilation in Betrieb gehalten werden, aber nur, um den verbrauchten Luftsauerstoff zu ersetzen und die ausgeatmete Kohlensäure zu entfernen – was von keinem noch so gepriesenen Lufterneuerer oder Ozon-

Apparat besorgt werden kann. Durch diese unumgängliche Frischluftzufuhr entsteht nach den oben beschriebenen physikalischen Gesetzen die trockene «Heizungsluft»!

Bei Räumen mit Deckenstrahlungsheizung ist dies noch in vermehrtem Maße der Fall, weil mit deren naturgemäßen Regelverzögerung bei Überwärmung des Raumes – zum Beispiel bei Sonneneinstrahlung! – notgedrungen die Fenster auch zur Temperaturreglierung benützt werden müssen.

Einschneidend und auch wirtschaftlich von enormer Bedeutung sind die Auswirkungen zu trockener Raumluft auf die Gesundheit, die Behaglichkeit und die Arbeitsleistung der sich in geschlosse-nen Räumen – Büro, Heim, Werkstatt – aufhaltenden Menschen. Die Körpertemperatur ist ja noch höher als die Zimmertemperatur und entsprechend größer wird das Sättigungsdefizit der eingeatmeten trockenen Luft, das dann durch Wasserentzug aus den Schleimhäuten der Nasenund Rachenhöhlen gedeckt wird. Diese werden entsprechend ausgetrocknet und entzündet und damit die Bazillenabwehr geschwächt, die Behaglichkeit und die Arbeitslust vermindert. Krankheiten, wie Katarrh, Husten, Bronchitis, Grippe und anderes mehr, werden in trockener Luft viel leichter übertragen, da die bazillenhaltigen Husten- und Nießtröpfchen durch Verdunstung sehr rasch kleiner und damit schwebefähiger werden. Sie binden sich an Staub, mit dem sie dann wieder aufgewirbelt werden und leicht in die in der Regel schon entzündeten und in der Abwehr geschwächten Nasen- und Rachenschleimhäute gelangen können. Akute Erkrankungen der Nasennebenhöhlen (Sinusitis), der Stirn- und Kieferhöhlen. der Rachenhöhlen (Angina), sowie der Bronchien werden bei zu trockener Atmungsluft hartnäckiger und in ihrer Ausheilung verzögert. Der größte Teil der sogenannten Winter-Erkältungskrankheiten sind also eigentliche «Heizungskrankheiten», welche durch ausreichende Luftbefeuchtung weitgehend vermieden werden könnten, was von der Medizin erkannt worden ist und heute in der Prophylaxe und Therapie berücksichtigt wird.

Für den sich in geschlossenen Räumen aufhaltenden Menschen gibt es keine bestimmte optimale Luftfeuchtigkeit. Es muß eher von einer Behaglichkeitszone gesprochen werden, weil das Temperaturund Feuchtigkeitsempfinden weitgehend subjektiv ist. Diese Behaglichkeitszone liegt erfahrungsgemäß bei Ruhe oder leichter Arbeit bei 50-60 % relativer Luftfeuchtigkeit mit 18-20 °C Zimmertemperatur. Bei niedrigeren Temperaturen kann die relative Luftfeuchtigkeit etwas höher und bei höheren Temperaturen muß sie etwas niedriger liegen, wenn die Behaglichkeit gewahrt bleiben soll.

Welches sind nun die Möglichkeiten zur Vermeidung dieser gesundheitlichen Störungen und wirtschaftlichen Schäden? Nachdem wir die Außentemperatur nicht beeinflussen können und uns im Winter in geheizten Räumen aufhalten wollen: Einzig eine ausreichende Luftbefeuchtung im Raum selbst!

Diese Erkenntnis ist wahrlich nicht neu; man erinnere sich nur des Wassertopfes auf dem Kachelofen. Alle Wasserverdunster sind aber in ihrer Wirkung zu schwach und zu langsam, weshalb wir ja heute das Problem der zu trockenen Luft immer noch kennen. Ein Normalzimmer von zirka 50 Kubikmeter Rauminhalt benötigt nämlich nach einmaligem kräftigem Lüften und niedriger Außentemperatur zirka 1/4 Liter Wasser, das innert $^1/_2$ Stunde in die Luft gebracht werden sollte. Diese Leistung ist jedoch nur mit einem Zerstäubergerät mit Elektromotor möglich. Erst die in den letzten Jahren entwickelten Feinst-Zerstäuber, wie die Defensor-Aerosol-Apparate, können allen praktischen Anforderungen an die Aerosol-Feinheit, Geräuscharmut, Handlichkeit, Preis und geringe Betriebskosten genügen. Bei diesen Geräten kann während Epidemiezeiten dem Befeuchtungswasser auch noch ein Raumluftdesinfiziens oder zur Neutralisierung unangenehmer Gerüche ein Desodorans beigegeben werden. Siehe Abb, auf Seite 270