Zeitschrift: Tracés : bulletin technique de la Suisse romande

**Herausgeber:** Société suisse des ingénieurs et des architectes

**Band:** 142 (2016)

**Heft:** 19: TSAM : sauvegarde de l'architecture du 20e siècle #2

Rubrik: Pages SIA

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

# **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

# Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 18.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch



#### Pages d'information de la SIA - Société suisse des ingénieurs et des architectes

# AFFILIATIONS À LA SIA PREMIER SEMESTRE 2016

Entre le 1er janvier et le 30 juin 2016, la SIA a accueilli six nouveaux membres bureaux et cinq nouvelles succursales de bureaux déjà membres. 74 personnes ont rejoint la SIA à titre individuel. 12 étudiants ont obtenu le statut de membre étudiant. Au nom de la SIA, le Comité et le Bureau remercient les membres de leur intérêt et de leur confiance et leur souhaitent la bienvenue.

#### **BUREAUX MEMBRES**

aaag architectes, Fribourg STUDIO GUSCIO Sàrl, Lausanne bureau brisson architectes, Lausanne RB&MC architectes EPFL HES-SO, Aigle Vernet Hogge Architectes SA, Lausanne Géoconseils SA. Colombier NE

#### SUCCURSALES DE BUREAUX

CSD Ingénieurs AG, Bulle EDY TOSCANO SA Engineering & Consulting, Domdidier eicher + pauli AG, Bienne GEOS Ingénieurs Conseils SA, Lausanne HKG Engineering Romandie SA Ingénieurs - conseils en électricité SIA, Lausanne

# MEMBRES INDIVIDUELS

### Section Berne

Marchand Gilles, arch, dipl. EPF, Tavannes

#### Section étranger

Burri Guillaume, arch. dipl. EPF, Buchillon Mendes Figueiredo João Paulo, MSc Ing en gén. civil, Vuisternens-devant-Romont Richard Patrick, arch. dipl. EPF/REG A, London

## **Section Fribourg**

Geiser Françoise, D' ing. dipl civil, D' ès sc. techniques EPF, Vuiteboeuf Santis Irene, MSc Arch. EPF, Fribourg

## Section Genève

Aeby Marc, arch. dipl. ETS/HES, Puplinge Binci Massimiliano, D' ès sc., ing. civil dipl., Genève Bizouard Guillaume, ing. géomètre, Collonges-sous-Salève Collin Didier, arch. dipl. EPF, Genève Cuéllar Isabel, architecte UPM, Genève De Almeida Victor, arch. dipl. HES. Genève Duparc Mariette, arch. dipl., Vers Faidutti Vincent, arch. dipl. DPLG, Genève Fuller Emma-Julia, MA Arch. BFH/HES-SO, Genève Girault Isabel, arch. dipl. EPF, Urbaniste IFU, Petit-Lancy Koechlin-Niklaus Isabelle, architecte HES, Carouge GE Lagnese Jean-Pierre, arch. dipl. EPF, Genève Lupianez Jonathan, dipl. géographe urbaniste, Genève Magnin John-Alexandre Sinclair, MSc ing. civil, Châtelaine Michel Cyrille, Ingénieur Civil INSA, Divonne-les-Bains Neri Marco, MSc Arch. EPF, Marly Pepermans Ana-Inès, ing. arch. UCL, Genève Rosset Manuel, ing. dipl., Faverges Rouillon Mathieu, Dipl. arch. DPLG, Genève Strübin Pascal, arch. dipl. HES, Meyrin 1 Svantner Michael, MSc Arch. USI, Carouge GE Toscan Jean, arch. dipl. ETS, EAUG, REG A, Chêne-Bourg Toscan-de Botton Caroline, arch. dipl. EAUG, REG A, Chêne-Boura

Ugolini Marco, Dott. in Architettura, La Croix-de-Rozon

#### Section Neuchâtel

Gerspach Alexandre, ing. spéc. gen. civil, Neuchâtel

Coquoz Raphaël, ing. civ. dipl. EPF, Salvan Cottier Florian, ing. sc. mat. dipl. EPF, Conthey Mayoraz Frédéric, D' ing. dipl civil, D' ès sc. techniques EPF, Lausanne

Sehaqui Hamza, ing. civ. dipl. EPF, Ecublens VD Sovran Giulio, arch. dipl. REG A, Champlan Teixeira Ricardo, ing. civil dipl. EPF, Evionnaz Tercinod Andre, ing. civile strutture, Sion

#### Section Vaud

Badia Nicolàs Eulàlia, arch. dipl., Lausanne Bissegger Ralph, arch. dipl. EPF, Aigle Bourqui Didier, ing. en civil dipl. HES, Gland Cabessa Gaëlle, MA Arch. EPF, Lausanne Carvalho Almeida Joaquim Manuel, arch. dipl., Lausanne Cauderay Pierre, MA Arch, EPF, Lausanne Constantin Jérôme, ing. en gén. civil HES, Morges Domon Eric, ing. civ. dipl. EPF, St-Sulpice VD Donner Christophe, arch. dipl. EPF, Lausanne Durieux Géraldine, ing. civil dipl. architecte, Lausanne Förster Jan, ing. dipl. arch. paysagiste HES/FSAP, Pully Fournier Pascal, arch. dipl. HES, Bex Fowler Grit, Dipl.-Ing. Arch. FH, Vevey Fröhlich Nicolas, arch. dipl. EAUG, La Tour-de-Peilz Fruehauf Claudius, Dipl. Arch. ETH, Lausanne Fukami Kimio, arch. dipl. EPF, Lausanne Graz Emmanuel, ing. arch. du paysage dipl. HES, Savigny Hoerd Florent, ing. civil dipl., Lausanne Klaus Cécile, MSc Arch. EPF, Lausanne Kosenko Anna, arch. dipl. EPF, Lausanne Lambiel Audrey, arch. dipl. EPF, Riddes Lopes Ivan, MSc Arch. EPF, Lausanne Maccagnan Sandra, arch. dipl. HES, Bex Maciel Natário Francisco Manuel, D' ès sc. EPFL ing. civil dipl. IST-ULisboa, Ecublens VD Mercier Florine, MSc Arch. EPF, Lausanne Mercier Oulevey Mical, arch. dipl. EPF, Bussigny-près-Pereiro Miguel, arch. dipl. EPF, Lausanne Pham Nguyen Phu, ing. civil architecte, Mondercange Pradera Mallabiabarrena Miren Edurne, architecte REG A. La Tour-de-Peilz Regazzoni Oliver, arch. dipl. EPF, Lausanne Ruffieux Pierre-Louis, MSc ing. en Engineering HES-SO, Skröder Nermine, MA Arch. EPF, Lutry Tassinari Luca, Dr. ès sc., ing, civil dipl., Lausanne Viladoms Carlos, MA Arch, EPF, Chexbres

# **MEMBRES ÉTUDIANTS**

Vitelli Giuseppe, architecte HES, Attalens

von Mandach Xavier, ing. civil dipl., Lausanne

**Section Fribourg** 

Roulet Adrian, Fribourg

### Section Genève

Chautemps Florian, Neydens

### Section Valais

Grande Federica, St-Maurice Guyaz Xavier, Conthey

# Section Vaud

Bally Virginie, Nyon Burgener Pierre, Fribourg Donnet Louis, Lausanne Florean Max, Pully Jeckelmann Adrien, Vugelles-La Mothe Keller Odile, Eclépens

Pascalis Jean-Yves, Chavannes-près-Renens Sauthier Sarah, Puidoux

Contact pour membres et toute personne intéressée: 044 283 15 02. member@sia.ch Informations: www.sia.ch/affiliation SIA-Service pour membres bureaux: 044 283 15 15, contact@siaservice.ch Informations et prestations: www.sia.ch/siaservice

# AVIS AUX EXPERTS **DU BÉTON**

Le groupe de travail Béton de la commission de la norme SIA 262 recherche de nouveaux membres.

Le groupe de travail Béton recherche des représentants de maîtres d'ouvrage et de bureaux d'études. Ce groupe de travail:

- est l'interlocuteur de la SIA et plus particulièrement de la commission SIA 262 pour toutes les questions relatives au
- est le comité de normalisation suisse de référence pour toutes les questions d'ordre technique et écologique en rapport avec le béton, ses constituants, son recyclage et sa protection;
- assure le partage d'informations entre les organismes de normalisation européens et suisses:
- répond aux questions des professionnels dans leur domaine d'activité.

Les candidats intéressés doivent répondre au profil suivant:

- formation d'ingénieur EPF/ETS/HES ou géologue;
- connaissances techniques à jour sur les thèmes décrits;
- maîtrise de l'allemand, du français et de l'anglais:
- membre SIA souhaité.

La participation au travail de la commission et du groupe de travail vous donne l'occasion de contribuer à l'élaboration de bases de travail pour le secteur de la construction.

Dans le même temps, vous profitez du savoir-faire de vos collègues, élargissez votre réseau professionnel et restez à la pointe des connaissances

La collaboration au sein des commissions et groupes de travail de la SIA se fait à titre

bénévole. Les frais encourus sont remboursés conformément au règlement SIA y afférent.

En cas de questions, veuillez vous adresser à Fritz Hunkeler, président du groupe de travail Béton à l'adresse hunkeler@tfb.ch / tél. 062 887 72 25 ou à Heike Mini, Bureau SIA, tél. 044 283 15 42. Les personnes intéressées sont invitées à nous faire parvenir leurs CV et lettre de motivation adressés à Heike Mini d'ici au 31 octobre 2016, à l'adresse: Bureau SIA, Selnaustrasse 16, 8027 Zurich ou par e-mail à: heike.mini@sia.ch.

# CAHIER TECHNIQUE SIA 2051 – BUILDING INFORMATION MODELLING (BIM): BASES POUR L'APPLICATION DE LA MÉTHODE BIM

Avec son cahier technique SIA 2051 *BIM* actuellement en consultation, la SIA a élaboré un document essentiel pour faciliter la compréhension. Il sera suivi d'une documentation illustrant l'application pratique de la méthode.

Au plus tard depuis la Swissbau 2016, le Building Information Modelling (BIM) fait l'actualité. Architectes et concepteurs se penchent sur la méthode BIM, dont l'utilisation n'a de cesse de progresser. De plus, un nombre croissant de maîtres d'ouvrage exigent l'application du BIM. Ils en attendent une nette amélioration des processus d'étude, de réalisation et d'exploitation pour une meilleure qualité des ouvrages.

Dans le même temps, les opinions quant aux performances potentielles du BIM divergent fortement parmi les professionnels de la construction et l'application de la méthode semble en outre peu claire à nombre d'entre eux. Aussi, avec son cahier technique SIA 2051 Building Information Modelling (BIM) - Bases pour l'application de la méthode BIM qu'elle a mis en consultation début juillet, la SIA apporte-t-elle une importante contribution à la clarification du débat et lui donne-t-elle un tour concret. Une commission de 18 membres de groupes professionnels de la SIA a élaboré ce cahier technique, avec l'appui de représentants des hautes écoles, du CRB, ainsi que de la KBOB qui ont apporté leur expérience et leurs connaissances.

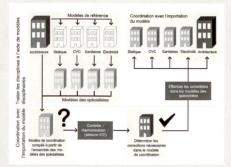
# Etablir un consensus terminologique

Pour la rédaction du cahier, la commission s'est mise d'accord sur une série d'énoncés de base: le Building Information

Modelling est une méthode qui utilise des modèles d'ouvrages numériques. En tant que bases de données, ces modèles constituent à la fois une abstraction du réel et une représentation des caractéristiques d'un ouvrage. Afin de poser d'emblée une terminologie univoque, le cahier technique définit la notion de BIM ainsi que nombre d'autres termes usités dans le cadre de son application. Il décrit ensuite l'organisation d'un processus BIM et de son élément central, le plan de traitement du projet BIM (également appelé manuel BIM du projet), en détaillant la formulation des objectifs, les contenus des modèles, ainsi que leur coordination (voir figure ci-dessous). De même, le document explicite les formes et les niveaux d'application de la collaboration basée sur le BIM, ainsi que l'intégration des modèles d'ouvrage que cela suppose. Le cahier technique nomme les participants et les rôles qui leur sont dévolus, de même qu'il énonce la répartition des tâches et des responsabilités. Le chapitre final consacré aux prestations montre en quoi l'application de la méthode BIM peut modifier la fourniture des prestations: ce point est illustré par les questions quand, quoi, qui et combien - et des précisions sont apportées pour la prise en compte d'éventuelles modifications dans les règlements actuels concernant les honoraires. Enfin, les modifications entraînant des effets sur les dispositions contractuelles sont également signalées, tout comme les domaines juridiques concernés (droits d'utilisation, p. ex.).

# Pas de nouveau système de classification

Comme base pour l'application de la méthode BIM et en tant que norme de compréhension classique, le cahier technique SIA 2051 a sciemment été mis au point de manière à ne pas empiéter sur d'autres normes et règlements. De même, il n'établit pas de nouveau système de classification et ne contient ni définition d'attributs, ni énoncés qualitatifs ou quantitatifs concernant la fourniture de prestations et leur rémunération. Il démontre en priorité que la méthode peut déjà être appliquée dans le cadre des normes, règlements et standards aujourd'hui en vigueur. Certes, la numérisation croissante des processus de conception et de construction obligera à terme à revoir des outils de travail existants ou à en créer de nouveaux, mais cela supposera un stade d'expérience suffisant pour en tirer les meilleures pratiques.


La parution de la documentation SIA D0256 BIM est prévue en même temps que la publication définitive du cahier technique.

Elaborée sous la direction de la commission SIA 2051, celle-ci comportera deux parties, dont la première abordera les exigences liées à l'introduction du BIM dans une entreprise. Plus développée, la seconde documentera un projet BIM par l'exemple. L'application de la méthode BIM y sera représentée de manière concrète, calquée sur la pratique. Les éléments du plan de traitement du projet BIM et leurs liens avec les modèles numériques seront mis en évidence. En ce qui concerne les prestations, la documentation précisera comment la rémunération peut être déterminée selon les règlements sur les honoraires actuellement en vigueur. La documentation SIA D0256 constitue ainsi le complément pratique essentiel au cahier technique SIA 2051, dont l'objectif premier est la mise en place d'une compréhension commune.

#### Lacunes du modèle IFC

S'ils apportent une aide précieuse à l'application du BIM, le cahier technique et la documentation n'en lèvent pas pour autant tous les obstacles qui peuvent se poser dans la pratique quotidienne: ni l'un ni l'autre ne définiront en effet les caractéristiques des objets employés dans les modèles numériques de l'ouvrage. Ces caractéristiques sont aujourd'hui décrites dans le format de données IFC (ISO 16739).

Bien qu'il constitue un modèle de données solide et étendu, le format IFC présente encore quelques lacunes. Certaines caractéristiques (des matériaux, p. ex.) ainsi que leur attribution aux phases de conception, de construction et d'exploitation ne sont pas standardisées. Au niveau européen, de gros efforts sont actuellement consentis pour combler ces lacunes avec le CEN TC 442 BIM. Mais cela ne dispensera pas la Suisse d'adapter les caractéristiques et leur distribution entre les différentes phases à sa propre culture du bâti et d'en assurer l'accès à tous, sur un serveur dédié, par exemple. Notons qu'une telle solution est déjà à la disposition



Modèle de coordination BIM pour un projet d'immeuble; le graphique montre l'intégration des modèles des spécialistes au modèle général. (Source SIA 2051)

des utilisateurs équipés de logiciels de dernière génération chez nos voisins de l'Est. Sans nouvelle standardisation des caractéristiques et des phases correspondantes, l'interopérabilité demeurera en effet limitée.

Prof. Manfred Huber, arch. dipl. EPF SIA, président de la commission SIA 2051 BIM, copropriétaire aardeplan Architekten ETH SIA, directeur du centre de compétences pour la conception et la construction numériques à la FHNW

La consultation du cahier technique SIA 2051 est ouverte jusqu'au 30 septembre 2016. Vous trouverez le projet et les commentaires qui s'y rapportent sous www. sia.ch/fr/services/sia-norm/mises-en-consultation/nc/1/.

# ÉCHOS DES GROUPES PROFESSIONNELS: LE GPS NE REMPLACE PAS LE TRADITIONNEL TRAVAIL DE MENSURATION

La participation des ingénieurs géomètres à la construction du tunnel du Gothard a été capitale. Pour d'autres projets d'envergure aussi, on oublie volontiers l'excellent travail de préparation qu'ils fournissent

Après l'article sur l'ouverture du tunnel du Gothard paru dans le nº 12 de TRACÉS, de nombreux ingénieurs géomètres ont dû respirer un bon coup: ils sont malheureusement habitués à ce que leur travail ne soit pas connu, et encore moins reconnu. Mais comment serait-il possible, sans leurs mesures de précision, que deux tubes, percés séparément sur une longue distance et au tracé non rectiligne de 57 km, se rencontrent au cœur de la montagne sur quatre tronçons entre Erstfeld, Amsteg, Sedrun, Faido et Bodio? Ces mesures sont d'une exactitude redoutable, comme entre Sedrun et Faido où la précision est de 8 cm en planimétrie et même de 1 cm en altimétrie.

Dès 1992, soit deux ans avant l'appel d'offres du projet de construction du tunnel, le consortium de mensuration VI-GBT, formé de trois bureaux d'études spécialisés, a été mis sur pied. Ce sont eux qui ont obtenu le marché parmi 126 candidats, en raison notamment de leur expérience dans ce domaine et de leur collaboration de longue date avec les hautes écoles et les fabricants d'instruments de mesure. Le consortium garantissait la nécessaire continuité sur 20 ans ainsi qu'une évaluation approfondie des risques.

Les travaux de mensuration proprement dits ont été réalisés pour ainsi dire 24 h sur 24 et 365 jours par an par des spécialistes du consortium avec le concours de plus de 120 professionnels pendant près de 20 ans (souvent durant des jours fériés stipulés contractuellement). Les coûts pour la mensuration du tunnel se sont chiffrés à env. 10 millions de francs, soit moins de 1% du total des coûts de construction (12 milliards).

La mensuration a été effectuée selon des principes éprouvés, déjà appliqués en 1880 lors du premier tunnel, mais complétée ou remplacée par des technologies de pointe. Quelques explications à ce propos: autrefois, une triangulation de tout le secteur du tunnel était nécessaire avant le début des travaux pour déterminer la planimétrie relative des deux, voire de tous les points d'attaque principaux et intermédiaires. A l'époque, on utilisait des théodolites (appareils de mesure des angles) pour calculer les angles dans des triangles délimités par des points fixes (sommets, crêtes marquantes, etc.). Toutes les distances étaient calculées à l'aide d'une distance de base entre les points fixes et, ce faisant, entre les portails également. En 1995, des méthodes GPS spéciales ont totalement remplacé cette triangulation classique au-dessus de la montagne. Les mesures qui étaient auparavant relevées au cours d'un fastidieux travail de terrain de plusieurs mois ont été effectuées en utilisant simultanément 15 appareils GPS installés sur 30 piliers à proximité des portails et des points fixes sur tout le secteur du projet, soit 60 km, le tout en deux jours de travail seulement. Une opération réalisable grâce à des données satellites poussées d'une précision de quelques millimètres.

Au cœur de la montagne, il est impossible d'utiliser un GPS: autrefois, on s'orientait au moyen d'un cheminement polygonal à partir de chaque portail (mesure des points dans l'axe en déterminant les angles et les distances), alors qu'on recourt dorénavant à une triangulatération sophistiquée. En d'autres termes, on crée un réseau très dense et surdéterminé de points mesurés à plusieurs reprises. Le principe paraît simple, mais la tâche dans le tunnel ne l'est pas, car en plus de l'addition d'erreurs angulaires, des strates d'air chaud variables provoquent également des réfractions diverses de la lumière, c'està-dire du faisceau de mesure. Des erreurs et des divergences non négligeables peuvent en résulter. Il a fallu répéter souvent les mesures de contrôle et d'appui (dans ce projet, à peu près tous les deux kilomètres) à l'aide d'un gyrothéodolite (une toupie tournante qui



Grâce aux géomètres, les ouvrages sont érigés exactement à l'endroit prévu. (Photo René Haag)

s'oriente en fonction de l'axe de rotation de la Terre). Seule cette technique a permis de réaliser, à une profondeur importante au milieu du tunnel, les points d'attaque intermédiaires (Amsteg, Sedrun et Faido) qui ont considérablement réduit la durée des travaux du tunnel.

Nous, les architectes, les ingénieurs et tous les concepteurs, devrions garder bien présent à l'esprit que sans mensuration, aucun ouvrage ne se dresserait sur le site prévu ni ne serait achevé à temps!

Fritz Zollinger, président du groupe professionnel Environnement, membre de la société spécialisée geosuisse, fritz.zollinger@bluewin.ch



# Les outils du recrutement et leur validité prédictive

10 octobre, webinaire, 13h00 – 14h30 Informations et inscription: www.sia.ch/form/web60-16

# Fondation d'un bureau d'architecture / d'ingénierie - sociétés de personnes

11 octobre 2016, Genève, 13h00 – 18h00 Informations et inscription: www.sia.ch/form/gp22-16

# Négocier avec succès

12 octobre 2016, Lausanne, 13h30 – 17h30 Informations et inscription: www.sia.ch/form/vo13-16

# Séminaire vendanges fiscales

20 octobre 2016, Genève et autres lieux, 17h30 – 19h30 Informations et inscription: www.sia.ch/form/bdo01-16

#### Processus global du BIM

31 octobre 2016, Lausanne, 9h00 – 17h30 Informations et inscription: www.sia.ch/form/bim07-16

# Comment facturer la TVA?

1er novembre 2016, Lausanne, 17h00 – 19h00 Informations et inscription: www.sia.ch/form/tva04-16

## Parler en public pour présenter vos projets

2 et 22 novembre 2016, Lausanne, 9h00 – 17h30, Informations et inscription: www.sia.ch/form/ppf01-16