Zeitschrift: Tracés : bulletin technique de la Suisse romande

Herausgeber: Société suisse des ingénieurs et des architectes

Band: 134 (2008)

Heft: 19: Tensairité

Artikel: Coupole WEB (Wind Experiment Breadboard) aux Canaries

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-99708

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

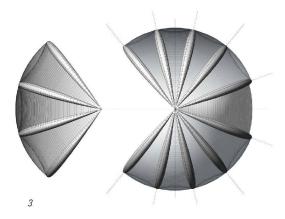
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

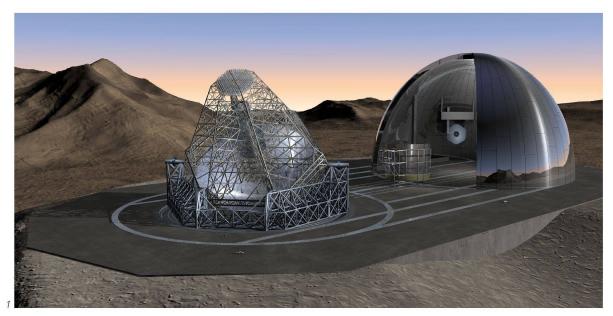
Download PDF: 20.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

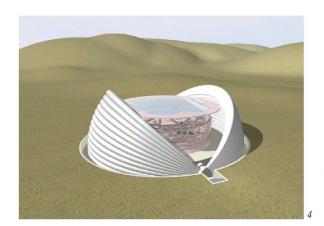

COUPOLE WEB (WIND EXPERIMENT BREADBOARD) AUX CANARIES

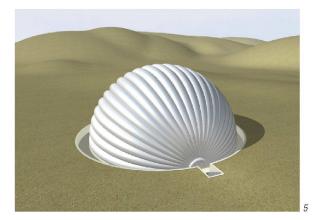
En 2005, un consortium d'ingénieurs composé de Airlight, Helbling Engineering et Passera Pedretti & Partners a été désigné pour étudier la réalisation d'une coupole de 250 m de diamètre qui devait accueillir le futur télescope géant OWL (Over Welmingly Large) de l'European Southern Observatory (ESO)¹. Cette coupole devait avoir une grande ouverture et pouvoir coulisser de 300 m en 30 minutes sur des rails, afin de libérer totalement le télescope pour les observations de nuit (fig. 1). La porte, d'une largeur de 160 m à la base, devait s'ouvrir en 20 minutes.


Cette étude a fourni l'opportunité d'envisager plusieurs variantes de tensairité et de montrer qu'une structure reposant sur ce principe ne pèserait que 4000 t par rapport aux 30 000 t qu'imposerait une solution traditionnelle en charpente métallique. Ce gain de poids se traduisait par une réduction des coûts de l'ordre de 50%.


Parmi les diverses solutions envisagées, l'ESO s'est mon-

tré très intéressé par une variante proposant une coupole « déployable » qui pouvait s'ouvrir complètement, évitant de la sorte d'avoir à faire coulisser l'abri du télescope lors de chaque mise en service (fig. 4 et 5). Les études laissaient entrevoir que la structure tensairité serait suffisamment rigide et pourrait se montrer très efficace dans de nombreux domaines: moins chère, très simple, d'ouverture rapide, nécéssitant peu ¹ Ce projet, qui prévoyait la mise en place d'un miroir de 100 m de diamètre, a dequis été abandonné en raison de son coût excessif On





p.16 TRACÉS nº 19 - 8 octobre 2008

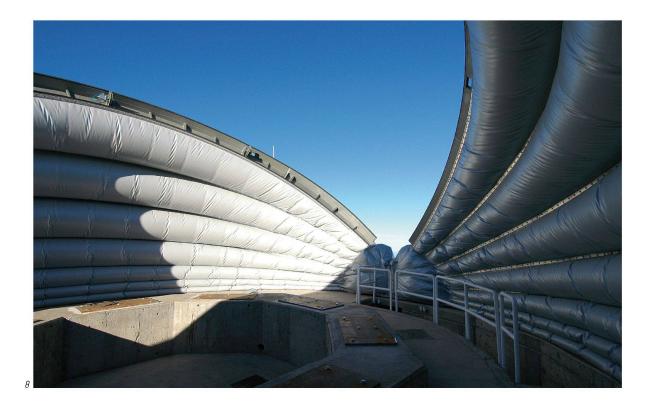
TRACÉS nº 19 · 8 octobre 2008 p.17

d'entretien. La solution prévoyait que la coupole se ferme simplement en remplissant d'air les boudins à l'aide de ventilateurs d'une puissance totale de 500 kW (dans la solution initiale, les moteurs nécessaires pour déplacer la coupole avaient une puissance de 6000 kW). On pourrait ouvrir et fermer la coupole en 20 minutes seulement. Sur la base de cette étude prometteuse et afin de valider notre concept, l'ESO nous a attribué le mandat de réaliser une petite coupole pour le projet WEB².

Sensiblement plus modeste que le projet initial, la coupole réalisée pour WEB a un diamètre de 11,8 m pour une hauteur de 6,3 m. Elle consiste en deux demi-coupoles identiques, formées de poutres tensairités ayant une forme de banane. L'intersection de chacune de ces « bananes » se fait sur deux arcs métalliques tenus entre eux par une série de tirants (fig. 6). Ces derniers remplacent la membrane qui doit assurer la liaison entre les deux arcs nécessaire au bon fonctionnement de la tensairité. La pression maximale à l'intérieur des bananes est de 100 mbar. Comme prévu pour le projet grand format, l'ouverture et la fermeture se font en diminuant ou

² Un autre projet de l'ESO pour tester le système de réglage des miroirs des futurs grands télescopes en augmentant la pression. Le temps d'ouverture/fermeture est de 5 minutes seulement.

Si la réalisation de la coupole n'a pas posé de problèmes statiques particuliers, elle a en revanche été plus délicate au niveau des détails de construction. Le principal problème était de définir le dessin de la membrane qui autoriserait une ouverture et une fermeture rapide de la coupole sans générer de mauvais plis. Cela concernait tout particulièrement les zones de rotation à proximité des appuis des bananes, des zones dans lesquelles s'ajoutaient par ailleurs des problèmes d'étanchéité.


Actuellement, la coupole fonctionne parfaitement bien. Elle est malheureusement toujours vide, la livraison des équipements qu'elle est censée protéger ayant pris du retard.

Données du projet :

Nom: WEB Enclosure
Situation: Tenerife, Iles Canaries
Client: ELT-ESO-SPE, <www.eso.org >
Ingénieur: Airlight Ltd., Biasca, Suisse

Constructeur: Canobbio SpA, Castelnuovo Scrivia, Italie

Construction: Mai 2008

p.18 TRACÉS nº 19 - 8 octobre 2008