Zeitschrift: Tracés : bulletin technique de la Suisse romande

Herausgeber: Société suisse des ingénieurs et des architectes

Band: 132 (2006)

Heft: 17: Assemblages inédits

Werbung

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

lation et souder en quelques secondes et en une égale mesure autant du bois tendre (épicéa) que du bois dur (hêtre, chêne). La dimension des surfaces soudées est de 500 cm², et il est possible de l'étendre encore en variant la dimension de la fixation (surface d'appui).

Afin de déterminer la force de cisaillement, des surface de 20 cm par 10 cm ont été soudées par vibrations linéaires. Une fois les paramètres de la machines (fréquence, pression et déplacement vertical) réglés de manière idéale, on atteint une contrainte de cisaillement moyenne de 7,9 N/mm² pour le hêtre. Les paramètres de la machine varient fortement selon les essences de bois, chacune d'entre elles ayant une anatomie différente. La teneur en humidité du bois joue également un rôle prépondérant, car elle influence les caractéristiques de résistance du matériau.

Le soudage de l'épicéa sur des surfaces plus importantes présente encore quelques problèmes. En effet, si la valeur moyenne de la résistance au cisaillement atteint 5,2 N/mm² pour des petites surfaces (30x100 mm), elle diminue nettement pour des surfaces plus grandes: dans ce cas de figure, les tensions intérieures peuvent provoquer la déchirure des joints dans les bords. Actuellement, la recherche se consacre avant tout à la résolution de ce problème, étant donné que l'épicéa constitue l'essence la plus utilisée en Europe, surtout dans le domaine de la construction.


Compte des nombreux paramètres influençant le soudage (humidité, essence, taille de la surface, réglage de la machine à souder, etc.), le problème demeure cependant complexe. Les matériaux couramment soudés par friction ont une structure homogène et leur comportement est thermoplastique. Le défi majeur réste donc d'optimiser le processus du soudage du bois, en dépit du manque d'homogénéité de ce matériau.

> Bernhard Stamm, dr ing. civil TU Karlsruhe (D) Georg Rossmair, ing. civil FH Rosenheim (D) Yves Weinand, prof. EPFL, architecte ISA, dr ing. civil EPF

> EPFL-ENAC-IS-IBOIS GC H2 711 (Bâtiment GC), Station 18, CH-1015 Lausanne

Bibliographie

- [1] A. VAIRIS, M. FROST: «High frequency linear friction welding of titanium alloy », Wear 217 (1998), 117-131
- V.K. Stokes: "Vibration welding of thermoplastics (Part I) a phenomenology of the welding process», Polymer Engineering and Science, 28(11) (1988b), 718-727
- [3] F.D. DUFFIN, A.S. BAHRANI: «Frictional behaviour of mild steel in friction welding », Wear 26 (1973), 53-74
- V.K. STOKES: « Analysis of the friction (spin-) welding process for thermoplastics », Journal of Materials Science, 23 (1988a), 2772-2785
- [5] R.J. CRAWFORD, Y. TAM: «Friction welding of plastics», Journal of Materials Science, 16 (1981), 3275-3282
- [6] C.J. Nonhof, M. RIEPEN, A.W. MELCHERS: «Estimates for process conditions during the vibration welding of thermoplastics », Polymer engineering and science, 36 (1996), 20018-2028
- [7] B. STAMM, J. NATTERER, P. NAVI: « Joining wood by friction welding », Holz als Roh- Werkstoff, 63 (2005), 313-320
- [8] B. STAMM: «Development of friction welding of wood physical, mechanical and chemical studies », Thèse sciences EPFL, no 3396
- [9] A.K. Schlarp: « Zum Vibrationsschweißen von Polymerwerkstoffen -Prozess-Struktur-Eigenschaften », Doctoral Thesis Universität-Gesamthochschule Kassel, Faculty of Mechanical Engineering (1989)
- [10]B.Gfeller, A. Pizzi, M. Zanetti, M. Properzi, F. Pichelin, M. Lehmann, L. Delmotte: « Solid wood joints by in situ welding of structural wood constituents », Holzforschung, 58 (2004), 45-52

COMPASS DEVELOPMENTS SA

Le concept «new work» de Lista Office: deux mots pour exprimer notre volonté de favoriser l'échange, la communication et le bien-être à travers un design harmonieux et fonctionnel.

> 1, rue de Hesse CH-1204 Genève T 022 807 12 70 F 022 807 12 75 info@listacd.ch www.listacd.ch