Zeitschrift: Tracés : bulletin technique de la Suisse romande

**Herausgeber:** Société suisse des ingénieurs et des architectes

**Band:** 128 (2002)

**Heft:** 10

**Artikel:** L'exemple lausannois de gestion et distribution d'eau potable

Autor: Burnier, Henri

**DOI:** https://doi.org/10.5169/seals-80280

# Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

# **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 23.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# L'exemple lausannois de gestion et **distribution** d'eau potable

Chacun de nous dispose, à volonté, d'une eau saine disponible 24 heures sur 24, 365 jours par an, que ce soit à son domicile, sur son lieu de travail et même, souvent, dans ses espaces de loisirs. Une situation qui n'a à première vue rien d'exceptionnel, puisque la Suisse est réputée être «le château d'eau de l'Europe»... En l'occurrence, la performance réside plutôt dans le prix avantageux du service, puisqu'un mètre cube d'eau coûte entre 0,5 et 4 francs dans notre pays. Ainsi, c'est pratiquement sans échange de correspondance, sans gêne liée au transport ni emballage à détruire après livraison, que les distributeurs d'eau suisses fournissent à domicile une tonne d'une denrée alimentaire de première nécessité pour moins de 5 francs! Un constat que renforce encore la comparaison avec les prix pratiqués en France et en Allemagne, où l'eau est souvent deux fois plus chère. Le présent article fait le point sur la distribution de l'eau potable en Suisse et son évolution face aux nouvelles technologies.

#### Les acteurs

Bénéficiant de conditions climatiques et géologiques favorables qu'elle a su conserver, la Suisse a la chance de disposer de bonnes ressources en eau et ce, notamment grâce à l'intervention d'acteurs institutionnels qui ont fait, et continuent à faire, un excellent travail.

Qu'il soit institutionnel ou privé, le distributeur d'eau collabore avec les acteurs publics suivants:

- 1) la Confédération, dont le rôle est de légiférer (protection des ressources, normes de qualité de l'eau, etc.);
- 2) le canton, qui à titre de «propriétaire» de l'eau coordonne, partage les ressources et légifère; l'eau potable étant considérée comme une denrée alimentaire, il est aussi l'autorité de surveillance des distributeurs par l'intermédiaire du Laboratoire cantonal;
- 3) la commune, qui est responsable de la distribution d'eau sur son territoire, mais qui peut déléguer cette tâche à une autre commune, association ou compagnie d'eau.

Nous pensons que ce système typiquement suisse présente de nombreux avantages:

- les dispositions légales sont identiques pour tous les habitants:
- l'intervention du canton garantit la prise en compte des spécificités hydrologiques régionales, car la distribution de l'eau dans le Jura, les Alpes ou sur le plateau est soumise à des conditions fondamentalement différentes;
- la responsabilisation à la préservation des ressources locales demeure du ressort des citoyens de la commune.

Par ailleurs, le distributeur est en contact avec:

- la Société suisse du gaz et des eaux (<www.ssige.ch>), qui édicte des recommandations techniques et peut donner des conseils;
- la Société des distributeurs d'eau de la Suisse romande (<www.sdesr.ch>), qui peut également le conseiller;
- l'Association des maîtres ferblantiers appareilleurs (<www.ssiv.ch>), dont les membres effectuent les installations intérieures des immeubles, apportant l'eau là où elle est consommée; comme la tendance des normes, suisses ou européennes, vise à responsabiliser le distributeur d'eau jusqu'au point de consommation, il doit donc s'assurer que le produit n'est pas altéré par les installations intérieures de l'immeuble;
- et, bien entendu, la SIA qui élabore aussi de nombreuses normes touchant au domaine.

# Pourquoi une eau potable tous usages?

Avant d'entrer dans le vif de notre sujet, évoquons une question que se posent de nombreuses personnes soucieuses de notre environnement: pourquoi n'y a-t-il qu'un seul réseau de distribution d'eau potable tous usages (eau de boisson, également affectée au reste des besoins ménagers ou industriels, à l'arrosage, à la lutte contre l'incendie, etc.)? Les raisons en sont multiples:

- en Suisse notamment, où l'eau brute est de bonne qualité, les infrastructures destinées à son traitement sont relativement peu coûteuses et parfois inexistantes;
- les coûts d'investissement pour la distribution de l'eau soit

le réseau - sont de dix à vingt fois supérieurs à ceux engendrés par son traitement; il n'est, dès lors, guère justifiable de dupliquer l'infrastructure coûteuse pour économiser partiellement celle qui ne l'est pas;

- la répartition des coûts de fonctionnement obéit à la même logique que celle des investissements;
- le sous-sol de nos villes étant déjà très encombré, un réseau supplémentaire compliquerait encore le problème, tout en accroissant le risque d'erreurs de branchement.

C'est pourquoi, à quelques exceptions près, nous ne disposons en Suisse que d'un seul réseau d'eau potable tous usages auquel se raccorder.

#### Eau de sources, de nappes ou de lacs

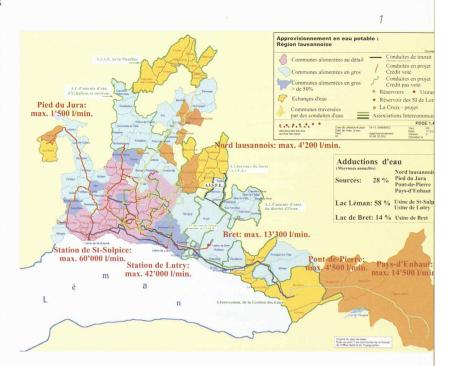
Les distributeurs d'eau ne fabriquent pas l'eau, ils la valorisent en la captant dans l'environnement et, le cas échéant, la traitent pour la rendre potable. Face aux immenses ressources dont jouit notre pays, le problème à l'échelle de la distribution d'eau potable réside en l'occurrence dans leur choix approprié et, comme le transport coûte cher en infrastructure, ce choix privilégie les ressources proches, locales, quitte à devoir potabiliser l'eau. Selon les statistiques de la SSIGE, le milliard de mètres cubes annuels consommés en Suisse provient pour:

- 42% de sources,
- 41% de nappes souterraines,
- 17% de lacs.

Précisons encore qu'il s'agit-là de moyennes: durant les périodes pluvieuses, en effet, les sources produisent beaucoup d'eau, mais les clients n'en consomment que peu, tandis qu'en périodes sèches c'est tout le contraire et il faut alors solliciter les lacs, éventuellement les nappes phréatiques pour compenser. Les quantités livrées sont donc énormes: un milliard de mètres cubes représentent le volume du lac de Bienne ou cinquante millions de chargements de camions de quarante tonnes par an. Toujours dans le même ordre de comparaison, les conduites du seul Service des eaux de Lausanne effectuent discrètement une livraison équivalente à quatre mille voyages de camions par jour... et près de dix mille lors de canicules.

Ainsi, l'eau est un produit local, qu'il est économique de capter et valoriser le plus près possible de l'endroit où il sera consommé et, pour des raisons de sécurité d'approvisionnement, il est préférable d'en diversifier les ressources. De ce fait, chaque distributeur livre un produit différent, qui peut lui-même varier d'un moment à l'autre en fonction de ses divers captages et de leurs disponibilités du moment.

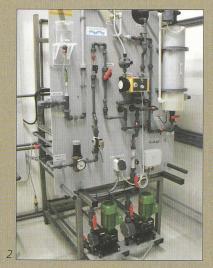
#### A chaque lieu, son histoire d'eau


Le Service des eaux de Lausanne livre dans dix-sept communes au détail, soit jusqu'aux bâtiments (voir **fig. 1**, communes en rose), et dans une cinquantaine d'autres qui possèdent leur propre réseau, mais dont les ressources propres sont insuffisantes, voire inexistantes (communes en bleu).

Plus urbaines et groupées, les communes du canton de Genève ont quant à elles délégué la distribution d'eau sur l'ensemble du canton au Service de l'eau de Genève, établissement de droit public placé sous l'autorité du Conseil d'Etat<sup>1</sup>.

Pour les lecteurs que cela intéresse, les particularités de la situation genevoise ont déjà fait l'objet d'un article paru dans la revue en 1993; «Réservoirs de Bernex (1) — Distribution d'eau potable dans le canton de Genève», par HANSPETER RÜFENACHT, *Ingénieurs et architectes suisses* N° 22/1993, pp. 440-443.

# L'approvisionnement du buveur d'eau lausannois


En moyenne annuelle, l'eau provient pour 28% des cent vingt sources exploitées par le Service des eaux, pour 51% du lac Léman - par les usines de St-Sulpice et Lutry III - et pour 14% du lac de Bret. En période estivale sèche, les quantités journalières sont multipliées par un facteur variant entre deux et trois, tandis que les sources tarissent et que le pompage dans le Léman doit être augmenté, si bien que l'eau provient alors pour 10% de sources, pour 80% du Léman et pour 10% du lac de Bret.



#### Désinfection sûre et bien maîtrisée

Parmi les nombreux traitements de désinfection possibles, le Service des eaux de Lausanne a choisi d'utiliser la molécule de chlore produite par l'intermédiaire de l'électrolyse du sel de cuisine (NaCl). Cela consiste à produire sur le site, par électrolyse d'une solution de sel, une solution d'eau de Javel diluée à environ 25 à 30 g par litre (fig. 2). Ce procédé présente de nombreux avantages parmi lesquels:

- la suppression des risques liés au transport et à la manipulation de produits hautement toxiques (chlore gazeux);
- le stockage de courte durée de l'hypochlorite de sodium à faible titre, ce qui assure le maintien de ses caractéristiques chimiques et de sa qualité;
- l'exploitation d'une unité centrale de production qui permet d'alimenter de petites unités de désinfection délocalisées.



L'eau de source est généralement de bonne qualité, grâce à la filtration naturelle que lui assure son passage à travers le sol. Cette percolation en conditionne aussi la dureté, selon la nature géologique du sous-sol et la durée pendant laquelle l'eau y séjourne. Certaines sources peuvent toutefois être sujettes à une trop grande turbidité et, plus rarement, à des problèmes bactériens lors de fortes pluies; dans ces cas, le traitement habituel est la désinfection au chlore gazeux ou à l'eau de Javel. Parfois appliquée, la désinfection aux ultraviolets est plus délicate: outre qu'elle n'agit pas si l'eau est trouble, elle n'assure pas d'effet permanent.

L'eau de nappe phréatique présente les mêmes caractéristiques que l'eau de source, tout en étant moins soumise aux variations de qualité. Le cas échéant, son traitement éventuel est identique.

Quant à l'eau provenant du lac, elle doit certes être traitée, mais, une fois soumise au processus, elle est (contrairement aux idées reçues!) d'une bonne qualité constante et, en général, de dureté moyenne. Les modes de traitement usuels de l'eau de lac sont la filtration sur sable, éventuellement suivie par de l'ozonation et de la filtration sur charbon actif, et la désinfection systématique au chlore ou à l'eau de Javel.

Il existe, depuis peu, une nouvelle possibilité: la filtration membranaire suivie d'une faible désinfection au chlore, soit un type de traitement qui élimine physiquement bactéries et virus. L'une des premières grandes installations bénéficiant de la technologie à membranes d'ultrafiltration a été mise au service des Lausannois, il y a un peu plus d'une année à Lutry (fig. 3). Cette usine permet de livrer une eau de qualité excédant les exigences légales actuelles, ce qui est notamment apprécié par les industries utilisant de l'eau très pure dans leurs processus de fabrication (fig. 4).

#### Exigences de qualité

L'eau potable doit satisfaire aux dispositions de l'ordonnance sur les denrées alimentaires (ODAI et OHYG). En Suisse, nous avons la chance de disposer à la fois de bonnes ressources en eau et de normes sévères; pour ces deux raisons, les exigences sont très élevées et garantissent au consommateur une eau saine. En ce qui concerne la qualité bactériologique, les normes sont même plus contraignantes que pour l'eau minérale!

Les grands distributeurs d'eau suisses ont aussi à cœur de livrer une eau compatible avec les prescriptions européennes. Cela est en effet important pour que les industries agroalimentaires ou pharmaceutiques, qui utilisent l'eau potable dans leurs produits, puissent exporter leurs marchandises dans les pays qui nous entourent.

De plus, chaque distributeur est maintenant obligé d'instaurer un système de management de la qualité (SMQ) pour prévenir les défauts. Les petits distributeurs mettent en place un système appelé «autocontrôle», tandis que les plus grands effectuent généralement une démarche de qualité selon la norme ISO 9001.

Enfin, dans toutes les communes, le Laboratoire cantonal opère des contrôles de l'eau potable par pointages. Les grands distributeurs estiment toutefois que ceux-ci demeurent insuffisants pour garantir une eau saine et piloter leurs installations de manière optimale, c'est pourquoi ils possèdent leur propre laboratoire et effectuent eux-mêmes des analyses. A titre d'exemple, cinq mille prélèvements par an sont effectués sur le réseau lausannois et examinés dans un laboratoire accrédité selon la nouvelle norme ISO 17025. Les appareils les plus perfectionnés sont disponibles pour la chromatographie ionique, la chromatographie en phase gazeuse, la spectrophotométrie UV ou la voltamétrie, notamment.

# Transport, stockage et distribution

#### Généralités

Dans un pays tel que le nôtre, transport, stockage et distribution constituent les éléments essentiels de la distribution d'eau. Si le poids de l'Histoire est encore prépondérant dans l'emplacement des installations (conduites, réservoirs, stations de pompage, etc), le distributeur d'eau tend toutefois

<sup>&</sup>lt;sup>1</sup> Pour une description détaillée du propcédé de filtration appliqué à Lutry, voir Denis Thonney: «L'eau de Lausanne bientôt filtrée par membranes», IAS N°10/1998, pp. 158-161

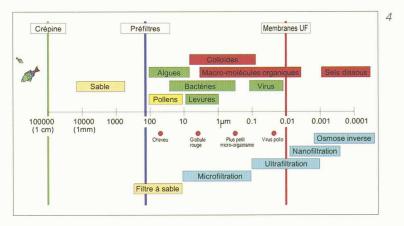
Fig. 3: Modules d'ultrafiltration (Photo: Ville de Lausanne)

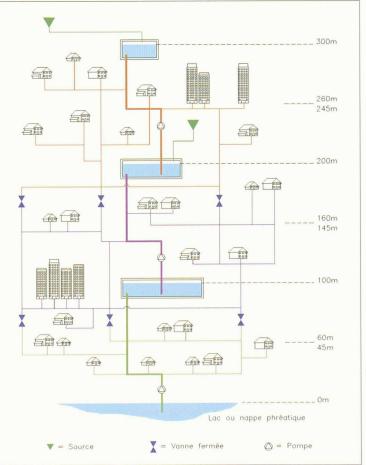
Fig. 4: Seuil de coupure du système d'ultrafiltration

Fig. 5: Principe des réseaux multi-étages



à concevoir son réseau selon les principes suivants, au fur et à mesure qu'il investit dans son infrastructure (fig. 5):


- chaque réseau est surmonté d'un réservoir qui sert de plan de mise en charge, de volume tampon pour les variations de consommation et de réserve en cas de défaillance technique;
- l'eau est distribuée entre 4 et 12 bars, si bien que le réservoir doit être situé entre 40 et 120 mètres au-dessus de la zone à alimenter;
- les sources éventuelles sont captées le plus haut possible;
- l'éventuelle eau manquante est pompée par étages successifs à travers le réseau depuis le lac ou la nappe phréatique.


Le pilotage des pompes est actuellement informatisé. Cette solution, qui permet d'optimiser la consommation d'énergie et d'économiser environ 15% de la facture électrique grâce, notamment, à des algorithmes de calcul prenant en compte les variations de tarif entre le jour et la nuit, n'est toutefois applicable que si l'on dispose de réservoirs assez grands.

#### Réservoirs

Les réservoirs sont de volumineux ouvrages de béton armé, rarement précontraint, qui se vident la journée et se remplissent la nuit lorsque la consommation est faible et l'électricité de pompage bon marché. Leur dimensionnement est en général basé sur un volume de 500 l par habitant raccordé<sup>2</sup>.

Les réservoirs sont constitués de deux cuves au minimum, dont chacune est vidée, inspectée, le cas échéant entretenue, nettoyée et remise en service une fois par année. Ces opérations annuelles sont importantes, car elles garantissent une bonne hygiène de l'eau et permettent de repérer les anomalies éventuelles. Les plus fréquentes portent sur la dégradation des parois des réservoirs: l'enduit de surface se désagrège, les parois deviennent moins lisses et le lavage présente





5

<sup>&</sup>lt;sup>2</sup> Pour les détails de construction de ce type d'ouvrage, voir JOHNNY ROJAS: «Réservoirs de Bernex (2) — Nouvelles cuves en béton apparent étanche», IAS N° 22/1993, pp.444-449

plus de difficultés. Si le phénomène n'est pas stoppé, il s'accentue, les aciers d'armature sont menacés et l'ouvrage est en danger (comme une structure attaquée par la carbonatation). Depuis une trentaine d'années ce problème s'est intensifié - en Suisse comme dans les pays voisins - et les dernières recherches donnent à penser que les matières organiques qui entrent dans la composition des adjuvants, particulièrement ceux utilisés pour les mortiers d'accrochage, en sont responsables. Aussi, la tendance pour la conception de nouveaux réservoirs est-elle la suivante:

- parois très épaisses avec de faibles contraintes dans le béton,
- recouvrement des armatures de 5 à 6 cm,
- ciment à durcissement lent, ajout minimal d'adjuvants,
- granulométrie étudiée pour obtenir un béton «étanche», notamment avec des particules très fines (fumée de silice),
- application sur le coffrage d'une couche drainante en tissu.

#### Réseau d'eau

A l'instar de l'hôtel pour l'hôtelier, le bien le plus précieux du distributeur d'eau est le réseau, auquel il voue l'essentiel de son énergie et de ses ressources. La conception des réseaux est la suivante:

- maillage prononcé pour éviter les conduites en «antenne», qui peuvent constituer des bras morts (médiocre qualité de l'eau) et posent des problèmes d'alimentation lors des réparations;
- axe de pompage principal dans le maillage, mais au dimensionnement adéquat avec parcours de rechange prévus;
- vitesse maximale de l'eau inférieure à 1m/s dans les petites conduites;
- vitesse maximale de 1 à 1,5 m/s dans les grosses conduites (dès 600 mm);
- diamètre des conduites jamais inférieur à 120 à 150 mm (défense incendie);
- calcul des pertes de charge et des vitesses effectué par ordinateur (les réseaux ont longtemps été conçus par des gens expérimentés avec des calculs de vérification extrêmement sommaires).

Il faut savoir que les réseaux perdent une certaine quantité d'eau. On compte habituellement 10 à 20 % d'eau non comptabilisée, qui se répartit entre les fuites du réseau, l'utilisation non comptée de l'eau (défense incendie, lavage des routes, pannes de compteurs, vols d'eau) et les pertes dues à l'exploitation (vidange des réservoirs, conduites, etc.). Apparemment énorme, ce volume est malheureusement une réalité même dans les bons réseaux, mais il fait l'objet de toute la sollicitude des distributeurs d'eau. En revanche, la fiabilité d'un réseau maillé est étonnante et les coupures d'alimentation d'eau non planifiées sont rares. A Lausanne, les statistiques font état de 1% des immeubles dont l'alimentation est interrompue durant le 0,4 % du temps!

#### Evolution et entretien du réseau

Le réseau vit et évolue avec les infrastructures urbaines. Il suit les développements des zones construites, avec les routes et les autres réseaux, son entretien étant assuré à la faveur de travaux communs et coordonnés avec les différents services concernés. Ainsi, dans toutes les routes passantes, refaites tous les trente à trente-cinq ans, les conduites sont remplacées au même rythme.

En revanche, dans des chemins peu importants - parfois privés - qui ne sont pas refaits régulièrement en profondeur, les conduites ont vieilli un peu dans l'oubli. Un état de fait aujourd'hui mis en évidence par les bases de données informatiques, qui montrent une pyramide des âges des conduites très étendue, avec des tuyaux de la fin du dix-neuvième siècle encore en service!

Pallier le manque d'entretien des parties de réseau «oubliées» devient maintenant une priorité, d'autant plus que celles-ci vont souvent dans le sens de la pente (contrairement à la plupart des routes principales) et peuvent constituer ou être parallèles à un axe de pompage. Cela étant, la période budgétaire difficile que nous traversons – de surcroît marquée par la stagnation des quantités d'eau vendues – ne facilite guère l'obtention des crédits nécessaires au remplacement de ces conduites; dans les routes peu passantes, la tendance actuelle consiste donc à les faire durer le plus longtemps possible pour n'envisager leur remplacement qu'en dernière extrémité.

La procédure d'intervention inclut les étapes suivantes:

- établissement de prévisions sur la durée de vie résiduelle probable des conduites à l'aide d'une analyse statistique de la base de données du réseau et identification des tronçons à risques;
- confirmation si nécessaire du diagnostic par écoute de fuites, bilans volumétriques ou mesure ultrasonique des épaisseurs de parois par robot (méthode actuellement encore un peu onéreuse);
- 3) recherche du mode d'intervention le plus approprié pour chaque tronçon à risques, à savoir surveillance acoustique avec réparation des fuites éventuelles, protection cathodique, revêtement intérieur, tubage ou remplacement. La surveillance acoustique permet la détection et la pré-

#### Prévoyance et économies vont de pair

Pour minimiser les frais de pompage en profitant au maximum du prix nocturne de l'électricité, les vingt réservoirs du réseau lausannois contiennent en moyenne 700 l/hab, soit plus de 140 000 m³. Peu de gens savent que la colline de Montétan, charmant parc arborisé, contient dans son sous-sol un réservoir aussi grand que la cathédrale de Lausanne.

# localisation des fuites. On dispose aujourd'hui d'équipements mobiles installés dans un fourgon que l'on déplace sur les tronçons à ausculter. Grâce à la mise à disposition d'émetteurs, d'écouteurs et d'enregistreurs de données de plus en plus performants et autonomes, que l'on peut aussi mettre en place de manière permanente, cette technique est en plein développement. D'ici peu, les instruments pourront même être reliés directement à un ordinateur de surveillance, si bien que l'on se dirige vers le «réseau intelligent».

La protection cathodique est à la fois un outil d'auscultation de l'état du revêtement extérieur et un moyen de protection contre la corrosion extérieure des conduites présentant une continuité électrique (acier soudé par exemple). Après introduction d'un courant de protection dans la conduite, les gradients de potentiel sont mesurés le long de son tracé, puis comparés avec le gradient de potentiel du terrain environnant. Lorsque ces valeurs présentent une forte déviation, cela signale une «sortie» de courant, donc un défaut de revêtement. Après analyse des données, il est possible de décider si la conduite peut être bardée par protection cathodique ou si son remplacement doit être envisagé. Le Service des eaux de Lausanne a appliqué et testé cette méthode à plusieurs reprises sur des conduites maîtresses de pompage et d'adduction de 700, 800 et 1000 mm de diamètre; dans ces cas, la protection cathodique a été complétée par un revêtement intérieur en mortier projeté, ce type de réhabilitation coûtant moins de la moitié du prix d'une conduite neuve

Le revêtement intérieur vise à stopper la corrosion interne. Celle-ci étant rarement à l'origine de fuites (sauf pour les réseaux véhiculant de l'eau très douce), le revêtement sert essentiellement à préserver la qualité de l'eau. Les deux techniques actuellement appliquées sont la projection de mortier de ciment ou de peinture à base de résine époxy.

Quant au tubage intérieur, il vise à renforcer et étancher les conduites défaillantes. Trois méthodes sont utilisées:

- tubage par un diamètre plus petit (valable pour les grosses conduites rectilignes),
- tubage par un tuyau PE plié en U et gonflé une fois mis en place,
- collage d'une gaine en fibres de verre avec une résine époxy à l'intérieur de la conduite.

A condition de soigner leur mise en œuvre, les trois méthodes donnent de bons résultats, et le prix est généralement compris entre la moitié et les deux tiers de celui d'une conduite neuve.

# Matériaux et conception des conduites

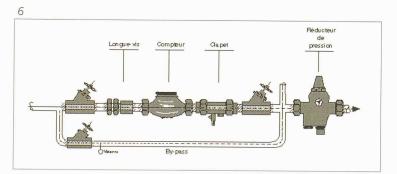
Les conduites sont constituées des matériaux suivants:

- petits diamètres: polyéthylène (PE) ou fonte,
- diamètres moyens: fonte, fibre de verre, (acier),
- gros diamètres: fonte, fibre de verre (faible pression), acier, âme-tôle,
- très gros diamètres: acier, âme-tôle.

Les tuyaux en âme-tôle sont constitués d'une tôle d'acier de faible épaisseur assurant l'étanchéité, elle-même revêtue d'une couche externe de béton armé de 8 à 10 cm d'épaisseur qui reprend la pression intérieure et les charges ovalisantes, tandis qu'une couche de mortier de ciment de 3 cm d'épaisseur isole la tôle du contact avec l'eau potable.

| Matériel       | Avantages                             | Inconvénients                   |
|----------------|---------------------------------------|---------------------------------|
| Conduites en   | Pas de corrosion                      | Assemblages délicats            |
| PE             | Léger                                 | Diffusion d'hydrocarbures       |
|                | Pose rapide                           | Pose demandant du soin          |
|                |                                       | Pièces spéciales chères         |
|                |                                       | Faibles diamètres               |
| Conduites en   | Pose rustique                         | Corrosion, faire attention à la |
| fonte          | Pièces spéciales bon marché           | manutention et aux dispositifs  |
|                |                                       | d'appui                         |
|                |                                       | Assez lourd                     |
| Conduites en   | Résistant                             | Corrosion                       |
| acier          | Relativement léger                    | Assemblage par soudures         |
|                | Déformable                            | demandant du soin               |
| Conduites en   | Pas de corrosion                      | Assemblages pas toujours        |
| fibre de verre | Léger                                 | verrouillés                     |
|                | Pose rapide                           | Pièces spéciales pas standard   |
|                |                                       | Aucune indication quant à la    |
|                |                                       | durabilité, car matériel        |
|                |                                       | relativement neuf               |
| Conduites en   | Pas de corrosion                      | Assemblages par soudure et      |
| âme-tôle       | Résistant et durable                  | agrégeage du béton              |
|                | Pièces très spéciales sur mesure      | Lourd                           |
|                | (rotules, joints de dilatation, etc.) | Piquages difficiles             |
|                |                                       | Pièces spéciales sur mesure     |
|                |                                       |                                 |

#### Prévoir les ruptures


Le développement d'un modèle prévisionnel des défaillances basé sur une analyse de survie a été mené conjointement par le Service des eaux de Lausanne et l'unité de recherche «Ouvrages et réseaux hydrauliques» du CEMAGREF à Bordeaux. Il permet d'identifier les conduites présentant le plus de risques de casse d'un point de vue statistique. En test depuis deux ans, ce modèle livre des résultats très encourageants: en effet, 25% des ruptures prédites se sont produites.

### Raccordement et disponibilité

La Loi sur la distribution de l'eau prévoit que les zones légalisées doivent être équipées en eau potable. Le (futur) propriétaire a la charge de raccorder son immeuble au réseau principal, généralement situé sur le domaine public (en principe sous la route). Dans la plupart des cas, il devra s'acquitter d'une taxe de raccordement à titre de contribution à l'infrastructure déjà existante et payée auparavant par d'autres usagers, qui est calculée en fonction de la valeur ou de l'importance de l'immeuble.

Le raccordement (fig. 6) inclut:

- une prise sur le réseau principal avec une vanne de coupure,
- un branchement,
- un passage de mur constitué d'un manchon isolant pour éviter que le réseau ne serve de mise à terre de l'immeuble comme ce fut autrefois le cas (ce qui a causé de nombreuses fuites par corrosion),
- un compteur, changé tous les dix à quinze ans par le distributeur (la tendance actuelle pour les consommateurs importants est au télé-relevé),
- un clapet de retenue destiné à éviter les retours d'eau en cas de chute de pression dans le réseau principal,
- un réducteur de pression protégeant les installations intérieures en limitant la pression à 4 bars environ.



# Economies d'eau

La première économie qu'il est possible de faire est, tout bonnement, de boire l'eau du réseau qui est saine et bon marché. Si elle sent le chlore, il convient de la verser dans une carafe une demi-heure avant de la consommer, en profitant de la mettre au réfrigérateur durant cette période. Et pour les amateurs de bulles, il existe des appareils bon marché permettant de gazéifier l'eau du robinet.

Les besoins ménagers sont de 162 litres par habitant et par jour, un chiffre qui est en baisse depuis une quinzaine d'années. La répartition de la consommation et les possibilités d'économies s'établissent comme suit:

- 48 litres pour les WC (il existe maintenant des chasses qui permettent d'économiser l'eau)
- 32 pour les bains/douches (préférez la douche!)
- 30 pour les lessives (choisissez aussi votre lave-linge en fonction de sa consommation d'eau)
- 24 pour la cuisson/boisson
- 28 pour les autres activités telles qu'arrosage, jeux, etc.

### Traitement de l'eau par les particuliers

Il existe un certain nombre d'appareils, parfois promus à grands renforts de publicité, qui permettent de traiter l'eau dans un immeuble. Or les distributeurs d'eau sont plutôt réticents face à cette offre, car l'expérience montre que ces dispositifs sont fréquemment sources d'ennuis et que leurs effets sur la santé ne sont pas toujours correctement étudiés. Les traitements à disposition répondent à trois fonctions:

- les adoucisseurs, à n'installer que sur le circuit d'eau chaude, non potable deux types sont proposés: le premier échange les ions Ca avec le ion Na et le second magnétise le calcium pour éviter qu'il ne se dépose (il faut toutefois noter que ces appareils ne sont utiles que lorsque la dureté de l'eau dépasse 15 à 20 degrés français, un point sur lequel il convient de se renseigner auprès du distributeur);
- les filtres à charbon actif, qui sont à proscrire s'ils ne sont pas changés très régulièrement, car ils représentent de véritables nids de bactéries;
- le traitement anti-corrosion des conduites intérieures par injection de phosphates, qu'il s'agit aussi d'éviter dans la mesure où ils occasionnent des rougeurs et démangeaisons sur la peau de certaines personnes et ont peut-être encore d'autres effets sur la santé.

#### Conclusions

On a coutume de dire, en plaisantant, que la distribution d'eau est le plus vieux métier du monde: il est, en effet, apparu avec la création des villes et a grandement contribué à leur développement.

En Suisse, les distributeurs d'eau et leurs partenaires ont fait un excellent travail si l'on considère la qualité de la prestation offerte pour un prix très bas. Aujourd'hui, la profession se réoriente en appliquant et intégrant les possibilités ouvertes par de nouveaux systèmes, qu'ils soient électroniques, informatiques, microtechniques ou de gestion. Gageons que ce virage technologique permettra aux distributeurs d'eau suisses de rester compétitifs.