Zeitschrift: Ingénieurs et architectes suisses

Band: 127 (2001)

Heft: 23

Artikel: Les secrets de la salle blanche: l'acoustique de la salle de concert du

KKL à Lucerne

Autor: Kahle, Eckhard

DOI: https://doi.org/10.5169/seals-80080

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

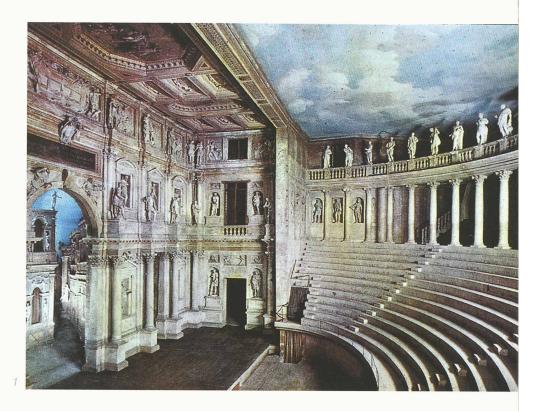
Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les secrets de la **salle blanche** L'acoustique de la salle de concert du KKL à Lucerne

Le 17 août 1998, une nouvelle salle de concert ouvrait ses portes à Lucerne. Considérée depuis lors comme l'un des exemples les plus accomplis de l'acoustique contemporaine, la salle blanche a acquis une reconnaissance internationale. Derrière la façade spectaculaire de l'architecte Jean Nouvel, se cache en effet une «cathédrale de l'acoustique» dotée de tous les moyens technologiques actuels.

La conception acoustique contemporaine est le fruit d'une longue évolution impliquant les salles de concert et les programmes musicaux qui y étaient donnés. Au contraire de l'opéra - dont le développement, depuis Monteverdi, a été systématiquement lié à des lieux de représentation ad hoc le concert dans une salle, sous sa forme actuelle, est un aboutissement relativement récent. Et tandis que nombre de salles d'opéra historiques sont toujours en fonction - du Teatro Olimpico (Andrea Palladio, 1584, fig. 1) au monumental (plus de 2000 places) Teatro San Carlo de Naples (1737) -, jusqu'au XIX^e siècle, la musique instrumentale fut surtout jouée dans des lieux a priori non destinés à cette activité: salons de la noblesse et de la haute bourgeoisie (les quatuors de Beethoven notamment), salles de bals des châteaux ou églises (fig. 2). Or la géométrie de certains de ces espaces préfigure déjà les caractéristiques des salles de concerts actuelles: salles assez étroites, longues et hautes, avec souvent un balcon ou une galerie et présentant des surfaces acoustiquement réfléchissantes, telles le bois ou le plâtre fortement ornementés (fig. 3).


Il faut également noter que les répertoires baroque et classique sont presque entièrement constitués de pièces composées pour une occasion particulière, en un lieu donné. Contrairement à ce qui se passe aujourd'hui, la musique devait donc s'adapter à son environnement acoustique et non l'inverse.

Ainsi, des études passionnantes sur Joseph Haydn montrent comment ses lieux de travail successifs - de Vienne à Londres, en passant par le Château Esterhazy - ont influencé la composition et l'orchestration de ses symphonies: ce n'est que dans les dernières symphonies, dites «londoniennes», composées pour la relativement grande Hanover Music Room (700 places), qu'il emploiera la totalité des vents et des cuivres et augmentera fortement le nombre des cordes. Un phénomène identique est clairement observable dans le parcours de Jean-Sébastien Bach, de la cour de Weimar (Concertos Brandebourgeois) à l'église St-Thomas de Leipzig (Cantates et Passions).

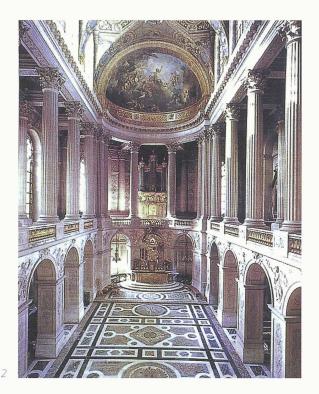
Au XIXº siècle encore, la situation n'a guère changé: ayant sa place attitrée à la Musikvereinssaal de Vienne, Johannes Brahms en a fait sa référence acoustique et il n'est pas surprenant que ses symphonies y soient si parfaitement mises en valeur; elles ont été écrites *pour* cette salle. Quant à l'église abbatiale du monastère de St-Florian, où Anton Bruckner était organiste, elle a non seulement influencé ses compositions pour orgue, mais aussi ses œuvres symphoniques.

Cette interdépendance entre l'écriture musicale et un lieu d'exécution précis se retrouve également dans les œuvres sacrées. Ainsi, l'acoustique relativement sèche de l'église protestante de St-Thomas à Leipzig - dans laquelle des tapis et des gobelins étaient suspendus afin de diminuer la réverbération et d'augmenter l'intelligibilité du service en allemand – a permis l'accentuation du rôle parlé de l'évangéliste et les passages orchestraux rapides et complexes des *Passions* de Bach. Quant à Benjamin Britten, dans son *War Requiem* écrit pour la réouverture de la cathédrale de Coventry après les bombardements de la Deuxième Guerre mondiale, il joue avec le temps de réverbération excessif pour créer une œuvre solennelle et dramatique, en y incorporant également des effets spatiaux.

En étudiant l'histoire de la perception de la musique, on constate qu'aux époques baroque et classique, le répertoire contemporain était pratiquement le seul à être interprété. Les partitions des «vieux» maîtres vénérés (Bach pour Mozart, Beethoven pour le jeune Mendelssohn) étaient certes étudiées, mais jamais jouées en public. Au XIX^e siècle encore, l'exécution de pièces contemporaines domine à quelques exceptions près, dont la plus connue est la série de concerts donnée par Félix Mendelssohn Bartholdy au Gewandhaus de

Leipzig où, pour la première fois, il a «osé» proposer des œuvres de Bach et d'autres compositeurs disparus.

La fin du XIX^e voit les premières tournées de concert, où des compositeurs comme Mahler, Tchaïkovski ou Dvorák sont invités à diriger leurs propres œuvres, mais c'est au XX^e siècle que s'amorce le véritable changement de paradigme vers une offre de concerts de type muséologique, où l'interprétation de pièces contemporaines et l'exécution d'œuvres de commande deviennent l'exception. Ce concept d'«offre muséologique» n'est pas employé dans un sens péjoratif; il qualifie une réalité qui a ouvert une multitude de perspectives nouvelles.


Ainsi, après s'être initialement concentrée sur les grandes œuvres de la période romantique et quelques pièces phares du baroque et du classique tardif, l'offre n'a cessé de s'élargir et l'amateur de concerts peut aujourd'hui faire son choix dans un répertoire couvrant au moins huit cents ans d'histoire de la musique. En même temps, la progression des techniques d'enregistrement et un programme toujours plus étoffé de concerts réunissant des exécutants de haut niveau a facilité l'accès à des interprétations d'excellente qualité.

Cathédrale de l'acoustique

Voyons maintenant en quoi cette évolution détermine la conception d'une salle de concert moderne. L'objectif fixé pour l'acoustique de celle de Lucerne était de pouvoir répondre à des exigences de qualité maximales pour tout le répertoire musical allant du Moyen Age à l'époque contemporaine.

Sur le plan de la forme, tout d'abord, la salle de Lucerne s'inspire de la géométrie des meilleures salles de concert classiques: longue, étroite et très haute, elle accueille un parterre et quatre balcons frontaux et latéraux. Quant à ses 1890 places (1840 lorsque la scène est agrandie), elles offrent à chaque auditeur une qualité de présence et de puissance optimale de tous les instruments. A partir de deux mille places en effet, on observe des difficultés croissantes à maintenir la clarté et l'immédiateté du son orchestral, surtout lorsqu'il émane de formations réduites: outre que la même énergie sonore doit y être répartie entre davantage d'auditeurs, une telle salle est obligatoirement plus vaste, ce qui se traduit par un éloignement excessif des surfaces réfléchissant le son.

A Lucerne, en revanche, une largeur de salle réduite à 22 mètres crée des réflexions à la fois fortes et précoces, qui sont intégrées au son direct perçu par l'oreille, augmentant ainsi l'effet de présence des instruments. De plus, ces réflexions arrivant latéralement créent un très fort sentiment d'enveloppement. Des études scientifiques ont identifié ce sentiment comme l'un des attributs subjectifs principaux pour

l'évaluation de la qualité acoustique et démontré sa corrélation avec l'énergie des sons arrivant latéralement. L'effet est encore renforcé par les quatre balcons latéraux, dont l'angle entre chaque sous-face horizontale et le mur crée une réflexion vers le bas qui revient vers les spectateurs. Le parcours du son peut en l'occurrence être comparé à celui qu'emprunteraient des boules de billard, si bien qu'une orientation appropriée des surfaces de la salle garantit une répartition homogène des réflexions sonores vers toutes les places.

Avec ses 22 mètres sous plafond à partir du niveau de la scène, la salle est extrêmement haute, ce qui a amené nombre d'auditeurs et de critiques à parler de «cathédrale de l'acoustique». L'important volume acoustique permet au son de se répandre, de trouver son espace et de créer une réverbération chaleureuse et enveloppante. Tandis que le nombre, l'énergie, la direction et le temps d'arrivée des réflexions sonores créent la présence et la clarté du son (qui rendent justice aux moindres détails des partitions), c'est le volume de la salle qui confère au son l'ampleur, la rondeur et la chaleur.

Acoustique variable

La salle lucernoise tire sa particularité essentielle de ce qu'elle permet de faire varier tous les paramètres énumérés ci-dessus, pour adapter l'acoustique aux différents types de musique, aux différentes interprétations et aux artistes.

L'innovation la plus importante est la chambre de réverbération (ou chambre d'écho) en forme de «U», qui entoure la moitié avant de la salle, derrière la scène et sur les côtés des spectateurs jusqu'aux sas d'accès des balcons arrière. Autour de la scène, ce dispositif s'étend du niveau du deuxième balcon jusqu'au plafond, tandis que sur les côtés, il va du troisième balcon au plafond. Grâce à cinquante-deux portes massives en béton, le volume d'environ 6 000 m³ de la chambre de réverbération peut être ajouté aux quelque 19 000 m³ de la salle, ce qui accroît le volume acoustique total de presque un tiers. La chambre permet non seulement d'augmenter le temps de réverbération, mais le degré d'ouverture des portes autour de la scène ajuste également la «largeur acoustique» de la salle pour les musiciens. Pour des formations orchestrales importantes, les portes sont plus largement ouvertes, afin de donner davantage de volume et d'espace au son orchestral et de contrer une saturation sonore de la salle; pour des concerts de musique de chambre, elles demeurent fermées pour créer une acoustique plus intime et plus resserrée. Enfin, le degré d'ouverture des portes permet de faire varier le couplage entre les deux volumes, c'està-dire d'influencer l'énergie qui entre et sort de la chambre de réverbération.

La chambre de réverbération sert non seulement à la variabilité acoustique, mais aussi à l'optimisation de la qualité sonore: des études ont démontré que, dans la plage temporelle située entre 50 et 150 millisecondes après l'arrivée du son direct à l'oreille de l'auditeur, il est préférable que l'énergie sonore et les réflexions soient faibles, afin d'éviter toute interférence avec le son direct. Il faut donc retarder cette énergie et l'étaler dans le temps: on la retient momentanément dans la chambre de réverbération, avant de la laisser repartir progressivement. Le réglage de l'ouverture des portes de la chambre permet d'adapter la magnitude et le retard temporel selon les oeuvres musicales.

Dans la chambre, des rideaux mobiles permettent de faire varier le temps de réverbération et donc l'acoustique de la chambre de réverbération. Sans absorption, on peut créer une acoustique de cathédrale, tandis qu'avec tous les rideaux déployés, on peut agrandir le volume acoustique sans augmenter la durée du temps de réverbération. Dans la salle ellemême, des rideaux peuvent également être déployés devant les murs latéraux pour diminuer le temps de réverbération de la salle, notamment lorsqu'une acoustique plus sèche est requise par des conférences ou de la musique amplifiée.

Réflexions, réverbérations et qualité de silence

Au-dessus de la scène et des premières rangées du parterre se trouve un plafond acoustique réglable en hauteur. Ce
dispositif crée les réflexions acoustiques nécessaires à une
bonne écoute entre musiciens, avec un retard adapté pour
éviter tout danger d'écho. Le plafond acoustique définit en
outre une hauteur acoustique virtuelle qui peut être adapté
à la formation orchestrale et au nombre d'auditeurs. Pour des
concerts de musique de chambre et éventuellement pour une
salle partiellement vide, on descendra ce plafond afin de produire une atmosphère plus intime; à l'inverse, il pourra être
remonté jusqu'au plafond fixe pour accommoder de très
grandes formations ou des récitals d'orgue.

Une grande partie des murs latéraux, y compris les portes accédant à la chambre de réverbération, sont recouverts de reliefs en plâtre, soit plus de vingt mille plaques de vingt centimètres de côté, appliquées à la main. Les expériences faites dans plusieurs salles construites au cours des dernières décennies ont en effet montré que des surfaces trop lisses rendent un son désagréable, heurté et dur. Or un tel effet demeure absent des salles anciennes - qu'elles aient à l'origine été conçues pour la musique ou non - en raison des matériaux bruts qui les constituent et de leurs surfaces rugueuses fortement ornementées. A Lucerne, les ornementations classiques ont été retraduites dans un langage architectural

contemporain, avec cinq motifs différents disposés selon un mode spécifiquement dicté par l'architecte. Ces reliefs en plâtre permettent de casser le son afin de démultiplier les réflexions acoustiques et de les distribuer dans toutes les directions, assurant un champ tardif réverbéré plus homogène. Par ailleurs, une certaine partie des hautes fréquences est absorbée, ce qui retire la dureté et l'acidité au son.

Reste à mentionner un aspect fondamental de l'acoustique de la salle: son silence. Toute musique s'appuie en effet sur le silence. À Lucerne, tous les efforts ont été réunis pour obtenir un silence parfait: la ventilation de la salle comme les installations de lumière sont inaudibles pendant les concerts. Le lieu bénéficie ainsi d'une qualité de silence unique: la musique peut émerger du néant et le dernier accord décroître jusqu'à l'inaudible. Et il est toujours fascinant d'entendre comment les musiciens s'approprient ce silence et en jouent pour en tirer de subtils effets tout simplement impossibles dans nombre d'autres salles.

Signalons pour terminer que la salle de concert de Lucerne, cette «grande machine au service de la musique» dotée de possibilités singulières, a entre-temps ravivé l'intérêt pour les œuvres de commande et que - dans le droit fil de la tradition historique - elle a déjà inspiré à plusieurs compositeurs des pièces créées tout exprès pour ce lieu.