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éric Taillard, Professeur,
Ecole d'Ingénieurs du Canton de Vaud,
Route de Cheseaux 1, 1400 Yverdon-les-Bains

La biologie au service de I|a
logistique

( LOGISTIQUE )

Les contraintes sans cesse croissantes auxquelles doivent répondre les entreprises, ainsi que les pressions
de I’économie et des marchés imposent aux logisticiens la recherche de solutions nouvelles pour augmen-
ter la rentabilité de leur société. Par exemple, I'introduction de la redevance liée aux prestations pour les
poids lourds aura une influence non négligeable sur l'organisation du transport des marchandises et ce,
notamment pour les PME dont les cofits liés aux véhicules représentent une partie importante des charges,
en particulier les entreprises spécialisées dans la livraison et les services a domicile. Cela étant, des éco-
nomies doivent étre recherchées partout dans la chaine de production et pas seulement aux extrémités
(arrivée des matiéres premiéres et distribution du produit fini). Pour cela, on privilégie I’acquisition de
machines plus flexibles, mais aussi plus complexes a utiliser.

Comment les personnes chargées de la gestion des machines ou de la planification des tournées de véhi-
cules élaborent-elles des solutions rationnelles a ces problémes? Il se trouve que des techniques inspirées
de processus biologiques peuvent apporter des réponses tout a fait pertinentes. Et comme les questions a
résoudre se modifient trés rapidement avec I'évolution des techniques, un programmeur n’a guére le temps
de devenir spécialiste d’'un probléme, ce qui lui permettrait de mettre au point une méthode heuristique
ad hoc. Ces dix dernieres années, les chercheurs se sont donc attachés a I’élaboration de méta-heuristiques,
qui sont des ensembles de principes utiles pour la conception de nouvelles méthodes heuristiques. Ainsi,
plutét que de se cantonner a quelques domaines spécifiques, le programmeur spécialisé dans les méta-
heuristiques pourra rapidement apprendre a résoudre a peu prés n'importe quel probléme d’optimisation
combinatoire.

Dans cet article, nous présentons le fonctionnement de deux modeéles méta-heuristiques, dont les principes
sont basés sur des observations biologiques. Nous commencerons par le plus ancien, connu sous le nom d’al-
gorithmes génétiques dans la littérature spécialisée, avant d’aborder un des plus récents, soit les colonies
de fourmis artificielles.

Des techniques d’‘inspiration génétique
L'idée a la base des techniques d’optimisation génétiques
(1, 6, 7] s'inspire de I'évolution des étres vivants. Au cours
du temps, ces derniers se modifient sous I'influence du
milieu, les especes les plus vulnérables disparaissant pour lais-
ser la place a celles qui présentent des caractéristiques plus
favorables. Cette adaptation fait appel a quelques méca-
nismes bien particuliers:
- la reproduction favorisée des meilleurs individus d’une
population,
- les mutations génétiques apparaissant au fil des divisions
cellulaires,
I"élimination des individus les plus faibles.
Depuis la nuit des temps, I'homme a su accélérer a son pro-
fit cette évolution naturelle: I'agriculture et I'élevage se

" Les chiffres entre crochets renvoient & la bibliographie en fin
d'article.
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basent sur la sélection et le croisement de deux étres vivants
sexués, plantes ou animaux, selon un processus qui s'est
encore perfectionné avec les manipulations génétiques, qui
ne sont rien d'autre que des mutations artificiellement diri-
gées. A partir d'un exemple académique choisi pour la sim-
plicité du propos, nous allons maintenant illustrer comment
de tels modeles peuvent étre transposés pour traiter des pro-
blemes difficiles apparaissant en logistique.

Les algorithmes génétiques

Supposons qu'une entreprise de distribution doive
résoudre un probléme touchant au placement de vingt-trois
entrepots en Suisse. Admettons aussi que ce chiffre résulte
de raisons historiques et que |'entreprise, disposant actuelle-
ment d'un entrepdt par canton, souhaite dans un premier
temps évaluer I'impact qu‘aurait le déplacement de certains,
sans en supprimer, ni en créer de nouveaux.
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L'entreprise juge raisonnable de formuler le probleme ainsi:
dans quelles localités - parmi les quelques milliers de Suisse -
doit-on placer un entrepdt de maniére a minimiser la dis-
tance moyenne entre chaque localité et le dépot qui lui est
le plus proche?

Afin de tenir compte de la démographie, on associera a
chaque localité un poids proportionnel a sa population. La
figure 1 illustre un tel probléme de placement d'entrep6ts et
des détails complémentaires sur ce type de questions et leurs
méthodes de résolution se trouvent dans [2 et 9].

Si I'on veut résoudre le probleme a I'aide de techniques
d'inspiration génétique, il faut tout d'abord trouver une
représentation de solution (les vingt-trois localités ou un
entrep6t sera placé) sous la forme d'une suite de genes; cela
peut se faire simplement en associant un géne a chaque loca-
lité ou il y a un entrep6t. Par exemple, une solution d'un pro-
bléme ou I'on place trois entrepdts dans les villes 1, 4 et 5
parmi dix localités pourra étre représentée par la suite (1, 0,
0,1,1,0,0,0,0,0),un 1symbolisant la présence d'un entre-
p6t et un 0 son absence.

Il faut ensuite créer une population de solutions sur
laquelle on simulera le processus d'évolution des étres
vivants. Comme il s'agit ici de se substituer a Dieu, mais que
notre connaissance est infiniment moins grande, on génére
habituellement cette population de maniere plus ou moins
aléatoire. Dans celle-ci, on sélectionnera alors deux «indivi-
dus» (en favorisant les meilleurs) que I'on fera se reprodui-
re. Ce processus consiste a construire un nouvel «individu»
en choisissant aléatoirement ses «génes» dans ceux de I'un
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Fig. 1: Placement de vingt-trois entrepdts en Suisse. L'objectif est de
minimiser la distance totale (pondérée par la population) entre
chaque localité et I'entrepét le plus proche. Prouver que |'on a obtenu
la meilleure solution possible est hors de la portée des programmes
actuels. Il est donc nécessaire de recourir a des méthodes appro-
chées, tels les algorithmes génétiques pour produire de bonnes
solutions avec un effort de calcul raisonnable.

Fig. 2: Principe de fonctionnement des algorithmes génétiques. On
sélectionne deux «individus» dans la population, & I'aide d’un opéra-

teur de croisement on en construit un nouveau en

mélangeant les

«génes» des deux «parents»; finalement, des mutations sont appli-
quées aux «génes» du nouvel élément obtenu avant de I'intégrer dans

ou l'autre de ses «parents». Par exemple, le croisement de la
solution (0, 1,0, 0, 1,0, 0, 0, 1, 0) avec celle donnée plus
haut pourrait donner un premier «enfant» (1, 1,0, 0, 1, O,
0, 0, 0, 0) ou un autre «descendant» (0, 1,0,0,1,0,0,0, 1,
0). Le point commun entre ces deux solutions est le place-
ment d'un entrepot dans la localité 5, car les deux «parents»
ont un dépdt dans cette localité. Tous les «enfants» que I'on
peut créer avec ces deux «parents» auront donc ce «géne»
en commun.

L'étape suivante consiste a essayer d’améliorer le nouvel
«individu» a I'aide de manipulations génétiques. Pour notre
probléme, cela revient, par exemple, a déplacer un entrepot
d'une localité a une autre. Dans le deuxiéme «enfant» géné-
ré plus haut, une de ces manipulations consisterait a dépla-
cer I'entrepét de la localité 9 dans la 10 pour obtenir la solu-
tion(0,1,0,0,1,0,0,0, 0, 1). Parmi toutes les modifications
d'une solution on choisira celle qui est la meilleure.
Finalement, la solution nouvellement créée est insérée dans
la «population», en remplacement d'une autre moins bonne.
La figure 2 illustre le principe de fonctionnement des algo-
rithmes génétiques.
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Fig. 3: Chemin réel créé par des fourmis

Fig. 4: Optimisation de trajet par des fourmis. Une fourmiliére est reliée a une source
de nourriture par deux tuyaux de longueurs différentes. Aprés une phase d’apprentis-
sage, presque tous les insectes empruntent le chemin le plus court. Le phénoméne peut
étre expliqué par le dépdt d’une substance chimique par les fourmis et par le fait que
ces derniéres suivent de préférence des chemins fortement marqués par cette
substance.

On notera que cette technique ne nécessite que trés peu
de connaissances spécifiques au probléme. Elle peut donc
étre appliquée a n'importe quel probléme pour lequel une
solution peut étre représentée sous la forme d'un ensemble
de «geénes» et pour lequel on peut évaluer la qualité d'une
solution. Lorsque les contraintes du probléeme sont particu-
lierement ardues a satisfaire, il est possible d'appliquer cette
technique en relaxant certaines contraintes, mais en faisant
dépendre la mesure de la qualité d'une solution des éven-
tuelles violations de contraintes.

Il peut paraitre surprenant qu’un tel procédé apporte des
solutions a des problémes si complexes que méme |'étre
humain se trouve incapable de les résoudre sans aide. Il est
vrai que les méthodes vont en s'affinant. En effet, si les
«mutations» proposées initialement étaient purement aléa-
toires, I'idée de les diriger - a I'instar des inquiétantes mani-
pulations génétiques si médiatisées aujourd’hui - n‘a été
popularisée que récemment.

Comme la simulation informatique pose moins de pro-
blemes éthiques et qu'elle est beaucoup moins risquée que
les manipulations sur des étres vivants, d'autres techniques
sont également apparues qui n‘ont pas leur équivalent bio-
logique, telles le croisement simultané de plus de deux «indi-
vidus» ou une gestion impitoyable de la «population» pour
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éviter les problémes de «consanguinité». Pour étre tout a fait
précis, relevons que lesdites techniques sont réapparues,
puisqu‘elles ont été proposées, il y a bientoét un quart de
siecle, sous le nom de «recherche par dispersion» [4, 5].

On peut dire que les algorithmes génétiques ont actuelle-
ment atteint un certain degré de maturité et que de nom-
breuses applications industrielles y font appel, qu'il s'agisse
d’optimiser des processus ou de produire des solutions admis-
sibles a des problemes dont les contraintes sont particuliere-
ment nombreuses et variées. Quelques exemples typiques
d'application sont le séquencage d'opérations dans des pro-
cessus de production, I'optimisation des tournées de véhi-
cules, la conception de circuits VLSI, la gestion des horaires
du personnel d'une entreprise, |'affectation de fréquences en
téléphonie mobile, etc. Cela étant, les recherches dans ce
domaine demeurent tres actives, que ce soit dans |'analyse
théorique du fonctionnement des algorithmes génétiques ou
dans la conception et le test de nouvelles «manipulations
génétiques».

Des colonies de fourmis artificielles...

En vous promenant, vous aurez sans doute déja remarqué
des chemins de fourmis (fig.3), dont la fréquentation et la
rectitude sont comparables a celles de nos autoroutes un

‘
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week-end de Paques. Il y réegne en effet un trafic intense, qui
connecte visiblement deux centres d'intérét particuliers: la
fourmiliere et une source de nourriture. Sachant qu’une
fourmi ne voit pas beaucoup plus loin que le bout de ses
antennes et ne se déplace qu’aléatoirement dans un espace
inconnu, comment nos hyménoptéres peuvent-elles suivre de
tels chemins? La réponse a cette question est relativement
simple: les fourmis produisent des substances qu’elles
déposent sur le sol et qu’elles ont la faculté de détecter et
d’'analyser avec leurs antennes. Appelées phéromones, ces
substances sont donc porteuses d'information et une voie a
grande circulation se crée par le dépot de grandes quantités
de celles-ci. Bien qu’invisible pour nous, un tel chemin est par-
faitement marqué pour les fourmis.

Mais comprendre comment les fourmis suivent un chemin
ne nous explique pas encore comment il a été trouvé. Pour
cela, des chercheurs ont pensé a modéliser une fourmi sous
la forme d’'un processus au comportement aléatoire, mais
biaisé. Ce dernier fonctionne de la facon suivante: la fourmi
artificielle part de la fourmiliére et se déplace aléatoirement.
Tout en se déplacant, elle dépose une petite quantité de
phéromones pour pouvoir retourner en arriere lorsqu’elle le
désire. Ayant trouvé une source de nourriture, elle rentre a
la fourmiliére tout en déposant une quantité de phéromones
proportionnelle a I'intérét de la source de nourriture.
Naturellement, d'autres fourmis font de méme simulta-
nément, ce qui fait que lors de son déplacement aléatoire,
une fourmi peut croiser des traces déposées précédemment:
elle les suivra avec une probabilité qui dépend fortement de
la quantité de phéromones déposée.

Les fourmis ayant trouvé un bon chemin vers une source
de nourriture pourront faire I'aller-retour plus rapidement que
celles ayant suivi un itinéraire tortueux. Ainsi, la quantité de
phéromones déposée augmente-t-elle plus rapidement sur
les bons chemins que sur les mauvais. Par conséquent, aprés
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une phase d’'apprentissage, toutes les fourmis finiront par
choisir la voie la plus directe. A |'aide de ce modéle, il est pos-
sible d'expliquer comment ces insectes parviennent a opti-
miser leurs déplacements.

Ce modéle a été validé par des expériences sur des four-
mis réelles (fio 4). La fourmiliére est placée dans un récipient
connecté a une source de nourriture par un tuyau. Celui-ci
se sépare en deux branches qui se rejoignent non loin de la
source. Si les deux branches sont de longueurs différentes,
on observe effectivement que presque toutes les fourmis
empruntent la plus courte aprés un certain temps. Si elles
sont de méme longueur, on pourrait penser que le trafic se
répartira également dans les deux branches. En réalité, on
constate que les insectes finissent presque tous par emprun-
ter la méme branche. Cela s’explique par le fait qu'un petit
déséquilibre momentané dans les quantités de phéromones
déposées dans les tuyaux ne fait que s'accentuer au cours du
temps. Un phénoméne que I'observe également dans les
simulations de fourmis artificielles.

La transposition de ces observations pour |'optimisation de
probléemes combinatoires obéit au modele suivant: on fait
correspondre a chaque fourmi un processus de construction
d’une solution, puis on associe une valeur a chaque élément
dont une solution peut étre constituée. Cette valeur sera
I'analogue de la quantité de phéromone déposée sur le sol.

Pour obtenir des solutions de qualité acceptable, il faut
bien entendu simuler de nombreuses fois le processus de
construction d’une solution. Cependant, la puissance
actuelle des ordinateurs personnels permet de construire des
dizaines ou des milliers de solutions par seconde. Il est donc
possible d’obtenir en quelques secondes ou en quelques
minutes des solutions tout a fait acceptables en pratique. Le
défi dans ce domaine reste |'optimisation en ligne ou des
décisions doivent étre prises en une fraction de seconde. On
peut imaginer que les recherches vont prochainement s'in-
tensifier dans ce domaine. Pour des détails complémentaires
sur les colonies de fourmis artificielles, voir [3 et 10], par
exemple. Afin d'illustrer notre propos, nous ferons appel a un
exemple d'application concret: la livraison de mazout.

Rationalisation de livraisons de mazout

Aprés avoir placé vingt-trois dépots de carburant dans
toute la Suisse sur la base de certains criteres, chacun des
gérants d'un dépot doit s'occuper de la livraison des com-
mandes de mazout. Généralement, le processus est le sui-
vant: un client téléphone a I'entreprise de distribution pour
commander une quantité donnée d’huile de chauffage. Le
vendeur doit alors fixer la date de la livraison ou une fenétre
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Fig. 5: Proposé il y a plus de vingt ans, ce petit probléme académique de distribution
de biens a septante-cing clients n'a toujours pas livré tous ses secrets: il n'est pas
encore prouvé que la solution proposée est optimale. Elle a été découverte en 1992 [8]
a l'aide d'une méthode construite sur la base d‘'une méta-heuristique. Le grand disque
noir représente le dépét et les cercles, les clients. La surface de ces derniers est pro-
portionnelle & la quantité demandée. Les trajets du dépét au premier et au dernier
client de chaque tournée ne sont pas dessinés pour ne pas surcharger le diagramme.

Fig. 6: Exemple de plan de livraison portant sur prés de quatre cents clients situés dans
le canton de Vaud. Le dépat est situé non loin de Lausanne.
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de temps pendant laquelle celle-ci doit avoir lieu. Il doit aussi
s'informer des conditions d'accés a la citerne du client, soit
de I'éventuelle limitation du poids des véhicules ou de la dis-
tance entre le lieu de stationnement du camion et la citerne,
pour pouvoir déterminer la longueur minimale du tuyau
nécessaire au remplissage, etc.

Les bulletins de commande sont ensuite transmis au pla-
nificateur des tournées des véhicules qui doit résoudre
chaque jour, ou chaque demi-journée, un probléeme de livrai-
son de biens. Ce type de problémes est ardu (on ne connait
pas actuellement de méthode permettant de fournir la
meilleure solution possible en un temps de calcul raisonnable)
et, en pratique, le planificateur a beaucoup de mal & inté-
grer toutes les contraintes en jeu. Il adopte souvent des solu-
tions dont la longueur des trajets est de 10% & 20% plus éle-
vée que ce qu'il est possible d’obtenir avec des programmes
basés sur des méta-heuristiques. La figure 5 donne un petit
exemple de probléme académique non encore résolu.

Voici comment on applique le modele des colonies de four-
mis artificielles au probléme de la livraison de mazout. A
chaque véhicule, on associe une fourmi, tandis que la four-
miliere représente le dépot. Puis, chaque fourmi se dirige
aléatoirement vers un client qui n'a pas encore été desservi,
mais en favorisant les destinations qui lui sont proches, et va
de client en client tant que la capacité du véhicule qui lui est
associée est suffisante. Lorsque celui-ci est vide, on retourne
faire le plein au dép6t et on recommence. On construit ainsi
une solution généralement trés mauvaise - a I'image du che-
min aléatoire emprunté par la premieére fourmi sortant de la
fourmiliere apres I'hiver - mais on dépose quand méme une
petite quantité de phéromones sur chaque troncon de route
emprunté par les véhicules pour effectuer ces livraisons fic-
tives.

Lors de la construction de nouvelles solutions, les fourmis
choisiront le prochain client a desservir en prenant en consi-
dération la quantité de phéromones associée aux troncons en
plus de la longueur de ceux-ci. En répétant des centaines ou
des milliers de fois ce processus de construction et en dépo-
sant lors de chaque construction une quantité de phéro-
mones proportionnelle a la qualité de la solution produite, il
est possible de planifier les livraisons beaucoup mieux que
ce qui est réalisable a la main (fig. 6). Implantée pour la pre-
miere fois en milieu industriel en 1996, cette technique est
décrite de maniere plus détaillée dans (3 et 10].
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Conclusions

Aussi surprenant que cela puisse paraitre, des phénomenes
biologiques peuvent nous apprendre a apprendre. Naturel-
lement, d'autres techniques d’apprentissage existent, parmi
lesquelles les méta-heuristiques qui font actuellement
I'objet de recherches soutenues sur le plan international.
L'attention particuliére portée a de tels modéles n'est pas
étrangére aux succeés obtenus dans la résolution de nom-
breuses applications industrielles.

A I'heure actuelle, ils constituent en effet la seule manieé-
re connue pour traiter de maniére satisfaisante certains pro-
blémes pratiques difficiles. La recherche dans ce domaine est
donc fortement liée aux applications. L'Ecole d'ingénieurs du
canton de Vaud fait ceuvre de pionniére au niveau des HES
en proposant des cours d'aide a la décision et de méthodes
générales d'optimisation dans la formation de ses ingénieurs
informaticiens.
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