Zeitschrift: Ingénieurs et architectes suisses

Band: 126 (2000)

Heft: 04

Artikel: Bois de chauffage et eau souterraine au service du nouveau musée

Autor: Matthey, Bernard

DOI: https://doi.org/10.5169/seals-81484

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Bois de chauffage et **eau** souterraine au service du nouveau musée

Les conditions climatiques de base pour la conservation des objets archéologiques

Pour ce projet et à la suite des observations réunies auprès de quelques musées étrangers, il est d'emblée apparu que l'obtention du climat intérieur exigé tiendrait de la quadrature du cercle. Les objets d'origine organique (bateaux, restes de tissus, de panier) requièrent en effet une humidité relative élevée, proche de la saturation, tandis que les pièces métalliques (fer, bronze, cuivre) commandent une atmosphère très sèche; seuls les minéraux ne sont pas tributaires d'exigences particulières. Quant à la température ambiante, si elle n'a guère d'importance en valeur absolue quelle que soit la nature des objets, la plus grande constance est en revanche de règle.

Sur la base de ces données de base, les mesures suivantes ont été retenues:

- réalisation d'un bâtiment à forte masse thermique impliquant en particulier une isolation périphérique;
- ventilation forcée dimensionnée, pour éliminer l'apport d'humidité par les visiteurs;

- protection solaire des vitrages par des stores motorisés sous contrôle du réseau MCR;
- élimination de la chaleur estivale en excès (éclairage, visiteurs, fenêtres) par le rafraîchissement de l'air pulsé et la dissipation de froid dans le réseau de chauffage au sol (16 à 17°C);
- isolement des objets nécessitant une humidité relative déterminée dans des vitrines ou des enceintes au climat contrôlé par un humidificateur ou (et) un dessiccateur.

Si la déshumidification de l'air pulsé par les batteries de ventilation est possible, il n'est pour l'instant pas prévu d'humidifier l'air en hiver, bien que la pose d'un équipement additionnel demeure possible. Répétons-le, les objets sensibles sont traités dans des enceintes ayant leur climat propre.

Les besoins en énergie thermique

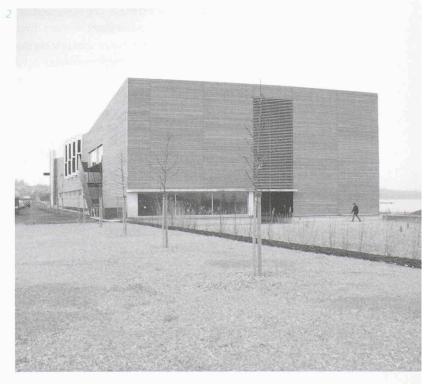
Un rapport surface de l'enveloppe/volume chauffé particulièrement favorable (0,30 m²/m³), une excellente isolation thermique des murs (k = 0,26 W/m²K), des fenêtres de qualité (k = 1,4 W/m²K) et un récupérateur rotatif sur la ventila-

LES INSTALLATIONS CLIMATIQUES DU LATENIUM EN QUELQUES CHIFFRE	5
Surface de référence énergétique	9540 m
Volume chauffé (musée et autres locaux)	22250 m
Demande d'énergie de chauffage Q _{ch} du bâtiment (musée, labo, concierge, abris)	139 MJ/m²aı
Puissance thermique de chauffe selon calorimétrie et besoin des installations de ventilation	150 kV
Puissance de la chaudière à bois déchiqueté	100 kV
Puissance de la chaudière à mazout	100 kV
Ventilation générale du musée	
Débit nominal	16140 m³/
Taux de renouvellement horaire maximum	1x /l
Récupération	rotati
Puissance batterie de chauffage	40 kV
Puissance batterie froide	76 kV
Puissance frigorifique par free-cooling à partir de l'eau de la nappe souterraine	
(ventilation + chauffage sol)	160 kV
Débit nominal sur circuit de la nappe souterraine	500 l/minut

tion établissent la demande en chaleur du bâtiment (Q_{ch}) à 139 MJ/m²an, ce qui entraîne des besoins en chauffage équivalant à 35 000 litres de mazout par an.

Le bois et l'eau souterraine au service du climat

Les hommes de la préhistoire utilisaient le bois pour se chauffer et le lac pour s'alimenter. En accord avec la Commission de construction, il fut donc convenu qu'une chaudière à bois déchiqueté provenant de forêts proches assurerait le chaffage du bâtiment et que, celui-ci étant posé sur une moraine en bordure du lac, on profiterait de cette situation pour y implanter deux puits qui l'alimenteraient en eau technique pour le rafraîchissement par *free-cooling*, de même que pour l'arrosage et les chasses des WC.


Une chaudière à mazout couvre les pointes, les pannes éventuelles de la chaudière à bois ainsi que le chauffage en début et en fin de saison. L'adjonction d'un groupe frigorifique pour augmenter la puissance de rafraîchissement reste possible en tout temps.

Deux puits (débit nominal 500 l/min) ont été mis en place en même temps que les pieux, mais à l'extérieur du bâtiment.

Quelques points particuliers des installations CVS

L'air de pulsion est injecté dans le bâtiment à partir de caissons de distribution encastrés dans la dalle et reliés à des conduites PE ø 47 mm aboutissant dans les plinthes. Une récupération de chaleur sur l'installation frigorifique des chambres froides sert au préchauffage de l'eau sanitaire. Enfin, on mentionnera encore la possibilité de compléter le rafraîchissement du bâtiment par le réseau de distribution du chauffage au sol. Quant à la régulation de l'ensemble des fonctions du bâtiment, elle est de type MCR.

