Zeitschrift: Ingénieurs et architectes suisses

Band: 126 (2000)

Heft: 18

Artikel: Feuilles isolantes réfléchissant l'infrarouge (FIR) dans la construction

Autor: Wakili, K. Ghazi / Frank, Th.

DOI: https://doi.org/10.5169/seals-81519

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

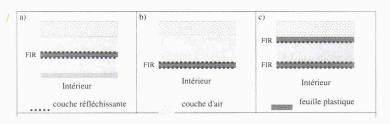
Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025


ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Feuilles isolantes réfléchissant l'**infrarouge** (FIR) dans la construction

Depuis quelque temps, une campagne publicitaire pour des feuilles isolantes réfléchissant l'infrarouge (FIR) est menée dans l'espace européen. Certains fournisseurs distribuent des brochures qui contiennent des indications incorrectes ou équivoques sur la conductibilité thermique ou la résistance thermique de tels produits et sur la comparaison avec les isolants thermiques conventionnels. Le présent article a pour but d'éclaircir les caractéristiques thermiques effectives des FIR, à l'aide de tableaux et d'exemples concrets reposant sur l'application de la nouvelle norme SIA 180 (édition 1999) et de la norme EN ISO 6946.

Structure et caractéristiques physiques

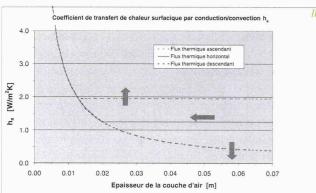
Une construction pourvue de feuilles isolantes réfléchissant l'infrarouge (FIR) se compose de trois parties (fig. 1):

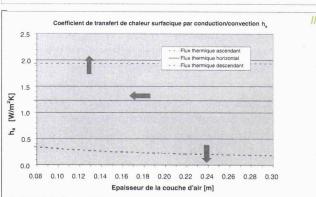
- une ou plusieurs feuilles ou voiles de matière plastique de 3 à 8 mm d'épaisseur (avec inclusion de bulles d'air),
- une couche réfléchissant l'infrarouge sur une ou sur les deux faces de la feuille de matière plastique,
- une couche d'air sur une ou sur les deux faces de la feuille de matière plastique réfléchissant l'infrarouge.

Il ressort de la structure de ces constructions FIR que le transfert de chaleur a lieu essentiellement par rayonnement thermique et par convection dans les couches d'air. Sur les produits d'isolation conventionnels, c'est au contraire la conduction de chaleur qui est déterminante pour ce transfert.

Selon la norme EN ISO 6946, la résistance thermique *Rg* d'une couche d'air non ventilée se détermine à l'aide de la relation suivante:

 $R_g = \frac{1}{h_a + h_r}$


où h_a et h_r sont les coefficients d'échange thermique superficiels par conduction/convection et par rayonnement.


 h_r est déterminé par le pouvoir émissif (l'émissivité) de la surface limitante en direction du flux thermique:

$$h_r = \frac{4 \sigma T^3_{\rm m}}{\frac{1}{\varepsilon_I} + \frac{1}{\varepsilon_2} - 1}$$

La couche réfléchissant l'infrarouge étant caractérisée par un pouvoir émissif \mathcal{E} peu élevé, son coefficient h_r est lui aussi faible

 h_a dépend quant à lui de l'épaisseur de la couche d'air; une relation qui est représentée dans les figures 2 et 3 selon la norme EN ISO 6946:1996.

De ces figures, il ressort que la résistance thermique R_g d'une couche d'air non ventilée demeure constante à partir d'une certaine épaisseur. En d'autres termes, cela signifie que

Fig. II: Coefficient de transfert de chaleur surfacique h_a pour des couches d'air d'une épaisseur variant entre 10 et 70 mm, selon EN ISO 6946 Fig. III: Coefficient de transfert de chaleur surfacique h_a pour des couches d'air d'une épaisseur allant 80 à 300 mm, selon EN ISO 6946 Tableau 1: Conductibilité thermique équivalente de couches d'air horizontales + surfaces limitantes

Tableau 2: Résistances thermiques superficielles de surfaces intérieures non-réfléchissantes selon EN ISO 6946

la valeur de R_g d'une couche d'air verticale (flux thermique horizontal) n'augmente plus à partir d'une épaisseur d'environ deux centimètres. Il en va de même pour une couche d'air horizontale avec un flux thermique ascendant (p. ex. toit plat en hiver) à partir d'une épaisseur de 1,3 cm. A l'inverse, sur les isolants conventionnels, R augmente de manière linéaire avec l'épaisseur.

Conductibilité thermique équivalente $\lambda_{\acute{e}q}$ de couches d'air

La conductibilité thermique équivalente λ_{eq} d'une couche d'air est définie par la relation suivante:

$$\lambda_{eq} = d/R_g = d (h_a + h_r)$$

où d représente l'épaisseur de la couche d'air.

Le tableau 1 donne, pour les couches d'air horizontales, les valeurs de $\lambda_{\acute{e}q}$ à la température moyenne de 10°C (283 K) en fonction des surfaces limitantes, de la direction du flux thermique et de l'épaisseur.

Résistance thermique superficielle R_s de surfaces réfléchissantes

Pour les constructions FIR sur lesquelles une des faces réfléchissantes est tournée directement vers l'espace intérieur (fig. 1, b et c), il faut tenir compte d'une réduction du coefficient d'échange thermique superficiel à l'intérieur. Du fait de la faible valeur de \mathcal{E} , la part du transfert de chaleur par rayonnement diminue, tandis que la résistance thermique superficielle intérieure R_{si} augmente. Selon l'annexe A de la norme EN ISO 6946 on a:

$$R_{si} = \frac{1}{h_{ci} + h_r}$$
 où la part du rayonnement est donnée par $h_r = 4\sigma \cdot \mathcal{E} \cdot \mathcal{T}_{\mathrm{m}}^3$

avec $h_{ci} = 5.0$ W/m²K pour flux thermique ascendant $h_{ci} = 2.5$ W/m²K pour flux thermique horizontal $h_{ci} = 0.7$ W/m²K pour flux thermique descendant.

Le tableau 2 donne une comparaison avec les résistances thermiques superficielles de surfaces non réfléchissantes (EN ISO 6946 5.2).

Coefficient de déperditions thermiques Ψ pour ponts thermiques linéaires

Tout comme elles le font lorsqu'elles sont associées à des produits d'isolation thermique conventionnels, les lattes et les poutres créent sur une construction FIR des ponts thermiques linéaires, dont le coefficient de déperditions thermiques Ψ peut être déterminé à l'aide d'un calcul bidimensionnel (prEN ISO 10211-2).

			·····	1	1
0.067	0.067	0.030	0.030	0.028	0.028
0.109	0.123	0.035	0.049	0.030	0.044
0.151	0.185	0.040	0.074	0.033	0.067
0.194	0.246	0.046	0.098	0.036	0.089
0.236	0.308	0.051	0.123	0.039	0.111
0.324	0.431	0.065	0.172	0.048	0.155
0.460	0.616	0.090	0.246	0.066	0.222
	0.109 0.151 0.194 0.236 0.324	0.109 0.123 0.151 0.185 0.194 0.246 0.236 0.308 0.324 0.431	0.067 0.067 0.030 0.109 0.123 0.035 0.151 0.185 0.040 0.194 0.246 0.046 0.236 0.308 0.051 0.324 0.431 0.065	0.067 0.067 0.030 0.030 0.109 0.123 0.035 0.049 0.151 0.185 0.040 0.074 0.194 0.246 0.046 0.098 0.236 0.308 0.051 0.123 0.324 0.431 0.065 0.172	0.067 0.067 0.030 0.030 0.028 0.109 0.123 0.035 0.049 0.030 0.151 0.185 0.040 0.074 0.033 0.194 0.246 0.046 0.098 0.036 0.236 0.308 0.051 0.123 0.039 0.324 0.431 0.065 0.172 0.048

$T_{\rm m} = 293 \text{ F}$	$\zeta = 20^{\circ}C$	Dire	ction du flux thermie	que
	Emissivité	1	4	1
R _{si} [W/m ² K]	ε = 0.1	0.18 (5.56)	0.33 (3.03)	0.79 (1.27)
$(h_{si} = 1/R_{si})$	ε = 0.9	0.10 (10.00)	0.13 (7.69)	0.17 (5.88)

Réduction de la résistance thermique

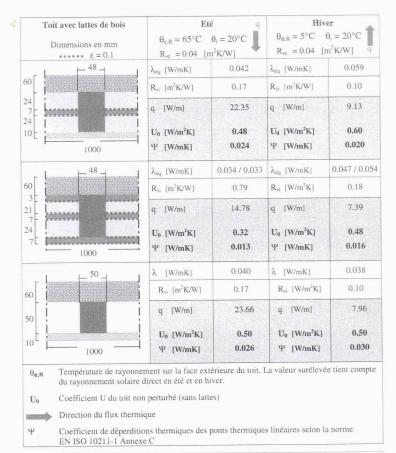
Comme chacun sait, différents facteurs, tels que le vieillissement et l'absorption d'humidité notamment, provoquent une réduction de la résistance thermique des produits d'isolation thermique conventionnels.

Sur les constructions FIR, une modification du pouvoir émissif (augmentation de ε) peut entraîner une réduction de la résistance thermique. Les causes possibles d'une telle réduction sont l'oxydation de la couche métallique ou le dépôt d'humidité, de poussière ou de salissures sur la surface du revêtement.

Calcul du coefficient de transmission thermique $\it U$

Selon la norme SIA 180 (1999), les ponts thermiques doivent toujours être pris en compte dans le calcul du coefficient de transmission thermique. Pour ce faire, on peut appliquer l'équation suivante:

$$U = \frac{U_0 \cdot A + \Psi \cdot 1}{\Delta}$$


 U_0 = coefficient de transmission thermique de la zone non perturbée (sans ponts thermiques) [W/m²K]

A = surface totale [m²]

 ψ = coefficient de déperditions thermiques des ponts thermiques linéaires [W/mK]

1= longueur des ponts thermiques linéaires [m]

Matériau	Coefficient λ [W/mK]
Bois	0.14
Plâtre	0.25
Acier	50
Panneaux de fibres de bois liés au ciment	0.12
Feuille FIR	0.037

Toit avec poutrelles en acier $Version \ 1$ $Dimensions \ en \ mm$ $\epsilon = 0.1$	$\theta_{e,R} = 65^{\circ}C$ $R_{se} = 0.04 \text{ [V]}$	$\theta_i = 20^{\circ}C$	Hive $\theta_{e,R} = 5^{\circ}C$ $\theta_{i} = R_{sc} = 0.04$ [W/s	= 20°C
These and a second second second second	λ _{éq} [W/mK]	0.22	λ _{éq} [W/mK]	0.56
60	R_{si} [W/m ² K]	0.79	R _{si} [W/m ² K]	0.18
220 6 Air	q [W/m]	55.74	q [W/m]	35.21
7 110	U ₀ [W/m ² K] Ψ [W/mK]	0.38 0.047	U ₀ [W/m²K]	0.77 0.048
Therefore the second sec	λ _{éq} [W/mK]	0.22	λ _{éa} [W/mK]	0.56
60	R _{si} [W/m ² K]	0.17	R _{si} [W/m ² K]	0.10
220 6 Air	q [W/m]	75.31	q [W/m]	37.61
7 110 3000	U ₀ [W/m ² K] Ψ [W/mK]	0.53 0.095	U ₀ [W/m ² K] Ψ [W/mK]	0.82 0.056
T ANNA DE LA CONTRACTOR	λ _D [W/mK]	0.040	λ _D [W/mK]	0.038
60 Isolant	R _{si} [W/m ² K]	0.17	R _{st} [W/m ² K]	0.10
160	q [W/m]	69.73	q [W/m]	23,34
3000	U ₀ [W/m ² K] Ψ [W/mK]	0.45 0.193	U ₀ [W/m ² K] Ψ [W/mK]	0.45
 θ_{0,R} Température de rayonnem du rayonnement solaire di U₀ Coefficient U du toit non p Direction du flux thermique 	rect en été et en h perturbé (sans les	iver.	. La valeur surélevé	ée tient com

Coefficient de déperditions thermiques des ponts thermiques linéaires selon la norme

Exemple 1: toit avec construction FIR à deux couches d'air

Dans ce premier exemple, deux versions d'une construction FIR sont comparées à une isolation réalisée avec un matériau conventionnel (épaisseur = 50 mm) pour les conditions estivales et hivernales. L'écart entre les lattes est d'un mètre dans tous les cas, mais leur section est de 24 x 48 mm pour les constructions FIR et de 50 x 50 mm dans l'exemple conventionnel. Ces sections ont été choisies conformément aux dimensions utilisées dans la pratique. Le tableau 3 indique la conductibilité thermique de divers matériaux.

On remarquera (tableau 4) que les deux constructions FIR présentent un coefficient U_0 beaucoup plus bas en été qu'en hiver. Cela est dû à l'inversion du sens du flux thermique et à son influence sur le transport de chaleur par convection dans les couches d'air. Il en résulte, d'une part, une modification de la conductivité thermique équivalente $\lambda_{\rm eq}$ et, d'autre part, de la résistance thermique superficielle $R_{\rm si}$ sur le plafond (contre l'espace intérieur). Sur la toiture isolée à l'aide d'un matériau conventionnel, l'inversion du sens du flux thermique n'entraîne qu'une modification de la résistance thermique superficielle $R_{\rm si}$ sur le plafond, car le transport de chaleur dans le matériau isolant est déterminé par la conduction thermique, qui est elle-même indépendante de la direction du flux thermique.

Exemple 2: toit avec construction FIR à une seule couche

Les tableaux 5 et 6 reproduisent les résultats de calculs bidimensionnels pour deux versions de constructions FIR dans des conditions estivales et hivernales. Les résultats obtenus sur une réalisation semblable, mais dotée d'un isolant conventionnel (épaisseur 60 mm) sont également donnés à titre de comparaison. L'écartement entre les poutrelles d'acier est de 3 m.

Dans le premier cas (tableau 5), un plafond supporté par des poutrelles en acier est recouvert d'une feuille réfléchissante posée au-dessous des poutrelles métalliques. La couche d'air présente une épaisseur de 200 mm. Afin de mettre en évidence l'influence de la couche réfléchissante sur $\lambda_{\acute{e}q}$ et R_{si} , le calcul a été effectué pour une feuille avec un revêtement réfléchissant sur une face et pour une autre dotée d'un tel revêtement sur les deux faces. Comme on l'a déjà constaté dans l'exemple 1, les constructions FIR accusent une nette différence, imputable à l'inversion du sens du flux thermique, entre l'été et l'hiver.

Dans le second cas (tableau 6), les poutrelles en acier sont enveloppées d'une feuille réfléchissante et la couche d'air ainsi

EN ISO10211-1m Annexe C

Tableau 5: Résultats des calculs bidimensionnels pour l'exemple 2, première version de construction Tableau 6: Résultats des calculs bidimensionnels pour l'exemple 2, seconde version de construction Tableau 7: Résumé des résultats des calculs bidimensionnels

créée entre la feuille et le plafond est plus mince (25 mm). Pour fixer la feuille, deux lattes de bois de section carrée sont fixées des deux côtés de chacune des poutrelles métalliques. L'influence de la couche réfléchissante sur λ_{eq} et R_{si} a de nouveau été déterminée pour une feuille avec un revêtement réfléchissant sur une face et pour une autre dont les deux faces sont dotées d'un tel revêtement.

En conclusion

Pour la détermination de la résistance thermique R de constructions équipées de feuilles réfléchissant l'infrarouge, le nombre et l'épaisseur des couches d'air jouent un rôle tout aussi important que le pouvoir émissif $\mathcal E$ des surfaces réfléchissant l'infrarouge. Il faut en effet tenir compte du fait que la résistance thermique d'une couche d'air demeure constante à partir d'une certaine épaisseur (env. 2 cm pour les couches d'air horizontales et env. 1,3 cm pour les couches d'air verticales avec un flux thermique ascendant) et ne varie donc plus avec l'augmentation de leur épaisseur. L'épaisseur de la feuille elle-même ne joue qu'un rôle secondaire.

Il faut ensuite prêter attention à la disposition géométrique de la construction FIR, en précisant si la valeur *R* se rapporte à une paroi (avec couches d'air verticales) ou à un toit (avec couches d'air horizontales). Dans ce dernier cas, il faut aussi faire la distinction entre l'hiver et l'été (flux thermique descendant ou ascendant).

S'y ajoute enfin un troisième paramètre, qui est le coefficient de déperditions thermiques des ponts thermiques linéaires Ψ . Ce dernier est introduit pour tenir compte du flux thermique supplémentaire provoqué par les fixations de la construction (p. ex. lattage).

Une déclaration correcte du produit doit donc mentionner toutes ces grandeurs déterminantes et une comparaison thermique avec des isolants conventionnels n'est admissible que sur la base d'une telle déclaration complète.

En guise de résumé, le tableau 7 donne les coefficients *U* des diverses constructions FIR examinées, calculés sur la base de la surface totale du toit et de la longueur totale 1 des ponts thermiques linéaires, soit la longueur déterminante pour établir le coefficient de déperditions thermiques de ces ponts.

Toit avec poutrelles en acier Version 2	Eté $\theta_{e,R} = 65^{\circ}\text{C}$ $\theta_{i} = 20^{\circ}\text{C}$		Hiver $\theta_{e,R} = 5^{\circ}C$ $\theta_i = 20^{\circ}C$	
Dimensions en mm $\epsilon = 0.1$	$R_{sc} = 0.04 \text{ [W/m}^2\text{K]}$		$R_{se} = 0.04 \text{ [W/m}^2\text{K]}$	
There are a constant and a constant	λ _{éq} [W/mK]	0.043	λ _{éq} [W/mK]	0.062
5	R _{si} [W/m ² K]	0.79	R _{si} [W/m ² K]	0.18
	q [W/m]	69.28	q [W/m]	35.97
6 25 x 25	U ₀ [W/m ² K]	0.48	U ₀ [W/m ² K]	0.76
3000	Ψ [W/mK]	0.114	Ψ [W/mK]	0.115
50 25 25 x 25	λ _{éq} [W/mK]	0.043	λ _{éq} [W/mK]	0.062
	R_{si} [W/m ² K]	0.17	R _{si} [W/m ² K]	0.10
	q [W/m]	96,74	q [W/m]	38.22
	U ₀ [W/m ² K]	0.67	U ₀ [W/m ² K]	0.81
	Ψ [W/mK]	0.135	Ψ [W/mK]	0.115
_!	λ _D [W/mK]	0.040	λ _D [W/mK]	0.038
50	R _{si} [W/m ² K]	0.17	R _{si} [W/m ² K]	0.10
Isolant	q [W/m]	69.73	q [W/m]	23.34
160	U ₀ [W/m ² K]	0.45	U ₀ [W/m ² K]	0.45
3000 110	Ψ [W/mK]	0.193	Ψ [W/mK]	0.203
e,R Température de rayonnen d'un rayonnement solain	nent sur la face extére direct de 600	rieure du toit. W/m² en ét	La valeur surélevé é et de 300 W	ée tient comp /m² en hive
U ₀ Coefficient U du toit non	perturbé (sans pout	relles).		
Direction du flux thermiq	ue.			
Coefficient de déperdition	s des ponts thermic	ues linéaires s	selon EN ISO1021	1-1 Annexe C

Construction	Eté	Hiver
24 7 24	$\label{eq:continuous} \begin{array}{ll} U_0 = 0.48 \ W/m^2 K & A = 15 \ m^2 \\ \psi = 0.024 \ W/m K & \ell = 18 \ m \\ \\ U = 0.51 W/m^2 K \end{array}$	$U_0 = 0.60 \text{ W/m}^2\text{K} A = 15 \text{ m}^2$ $\psi = 0.020 \text{ W/mK} \ell = 18 \text{ m}$ $U = 0.62 \text{W/m}^2\text{K}$
50	$U_0 = 0.50 \text{ W/m}^2\text{K} A = 15 \text{ m}^2$ $\psi = 0.026 \text{ W/mK} \ell = 18 \text{ m}$ $U = 0.53 \text{W/m}^2\text{K}$	$U_0 = 0.50 \text{ W/m}^2\text{K} A = 15 \text{ m}^2$ $\psi = 0.030 \text{ W/mK} \ell = 18 \text{ m}$ $U = 0.54 \text{W/m}^2\text{K}$
220	$U_0 = 0.38 \text{ W/m}^2 \text{K} A = 120 \text{ m}^2$ $\psi = 0.047 \text{ W/mK} \ell = 50 \text{ m}$ $U = 0.40 \text{W/m}^2 \text{K}$	$U_0 = 0.77 \text{ W/m}^2 \text{K} A = 120 \text{ m}^2$ $\psi = 0.048 \text{ W/mK} \ell = 50 \text{ m}$ $U = 0.79 \text{W/m}^2 \text{K}$
25 7	$U_0 = 0.48 \text{ W/m}^2 \text{K} A = 120 \text{ m}^2$ $\psi = 0.114 \text{ W/mK} \ell = 50 \text{ m}$ $U = 0.53 \text{W/m}^2 \text{K}$	$U_0 = 0.76 \text{ W/m}^2\text{K} \qquad A = 120 \text{ m}^2$ $\psi = 0.115 \text{ W/mK} \qquad \ell = 50 \text{ m}$ $U = 0.81 \text{W/m}^2\text{K}$
60	$U_0 = 0.45 \text{ W/m}^2 \text{K} A = 120 \text{ m}^2$ $\psi = 0.193 \text{ W/mK} \ell = 50 \text{ m}$ $U = 0.53 \text{W/m}^2 \text{K}$	$U_0 = 0.45 \text{ W/m}^2 \text{K} A = 120 \text{ m}^2$ $\psi = 0.203 \text{ W/mK} \ell = 50 \text{ m}$ $U = 0.53 \text{W/m}^2 \text{K}$