Zeitschrift: Ingénieurs et architectes suisses

Band: 119 (1993)

Heft: 14

Artikel: Ouvrages d'art de la section 8

Autor: Doret, Jean-François

DOI: https://doi.org/10.5169/seals-78056

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ouvrages d'art de la section 8

Par Jean-François Doret, ing. dipl. EPFL, chef du Service des ponts, Département des travaux publics. 1211 Genève 8

ingt-cinq ouvrages d'art - sans compter les tunnels de Vernier et de Confignon, ni la tranchée couverte de Chèvres - ialonnent la section 8 de l'autoroute de contournement de Genève, entre les voies CFF (limite de la section 7) et la frontière française (voir fig. 3 de l'article précédent).

Cet ensemble comprend un viaduc, sept ponts routiers, deux ponts de chemin de fer, huit passages supérieurs, six passages inférieurs et une passerelle. Si l'on mettait bout à bout le tablier de tous ces ouvrages, cela donnerait une longueur totale de 3 km. Sur les quinze ponts qui franchissent l'autoroute, six comportent un appui situé sur la berme centrale. Les travaux ont duré huit ans, débutant en 1985 pour se terminer en

Pour la conception de ces 25 ouvrages, 28 bureaux d'ingénieurs, 8 bureaux d'architectes, 2 bureaux de paysagistes, 6 bureaux de géomètres et 5 bureaux de géotechniciens ont été mis à contribution et la construction a été réalisée par 25 entreprises, souvent associées en consortiums.

La coordination générale ainsi que la supervision des études et de la construction ont été assurées par le Service des routes nationales et le Service des ponts du Département des travaux publics (DTP) de Genève, en étroite collaboration avec l'Office fédéral des routes (OFR) à Berne.

Dans le canton de Genève, les bureaux d'ingénieurs reçoivent, pour chaque ouvrage, des mandats complets comprenant la totalité des prestations énumérées dans le règlement SIA 103 pour l'étude ainsi que la direction des travaux. En conséquence, c'est aux ingénieurs qu'incombe l'entière responsabilité de la conception des projets et de leur réalisation. Le fait que chaque projet soit soumis à un expert ainsi qu'à l'approbation de l'OFR (projets de détail) n'implique aucune réserve de responsabilité.

Le choix définitif d'un avant-projet se fait généralement à partir de plusieurs variantes et sur la base d'une concertation entre l'ingénieur, les services du DTP et l'OFR.

On peut s'étonner de ce que, pour un grand nombre d'ouvrages, le choix se

soit porté sur des tabliers à caisson. A l'évidence, ce type de construction a de multiples avantages: bonne résistance aux efforts de torsion, chaussée moins soumise aux effets du verglas et tablier présentant une surface réduite aux effets destructeurs de la pollution atmosphérique (gaz carbonique) et des sels de lutte contre le verglas (embruns); quant à la section évidée, elle permet le passage des conduites et câbles des services publics. D'autre part, ce type d'ouvrage, simple et esthétique, offre la possibilité de limiter le nombre de piles et permet une grande souplesse pour leur implantation.

Esthétique et intégration dans le site

On attache de plus en plus d'importance à l'esthétique des ouvrages de génie civil et à leur intégration dans le site, aussi les projets des ouvrages d'art de l'autoroute de contournement ont-ils été soumis au préavis d'une commission consultative d'architec-

«L'impression d'esthétique qu'exerce un ouvrage sur celui qui le voit est déterminée par sa justification dans le plus large sens du terme. Elle exige la conformité de la conception à la forme. La conception doit séduire, tandis que la forme doit statiquement correspondre à la matière.» (J. Brunner: L'art de bâtir des ponts.)

On entend souvent dire: ce qui est statiquement juste est aussi beau. Le fonctionnement statique d'un ouvrage ne doit pas être caché. «Si l'ouvrage n'est pas fonctionnel, on est sûr de commettre une erreur sur le plan esthétique; quant à l'inverse, il n'est pas vrai.» (M. Bagon dans Annales de l'Institut technique du bâtiment.)

On ne peut admettre sans autre que chaque individu ressente une impression esthétique de même nature devant le même ouvrage. En réalité, cette perception est une appréciation subjective.

Malgré tout, certaines règles générales s'imposent. On pense par exemple que l'esthétique d'un ouvrage doit naître d'une synthèse réussie de la qualité de la matière, de la technique appliquée, de la simplicité, de

la perfection des proportions, de l'im- 25! pression d'équilibre et de l'accord avec l'environnement.

On peut, d'autre part, citer les propos de J. Gubler, professeur à l'Institut de théorie et d'histoire de l'architecture (ITHA) de l'EPFL: «Le sens et la valeur d'un pont ne sauraient se mesurer d'abord ou seulement à l'esthétique. Le discours esthétique tend à réduire le pont à une image. Le pont construit le lieu, le rend visible (tout le contraire du mimétisme et de l'intégration).» Comme on le voit, le «dialogue» des ingénieurs avec les architectes et les paysagistes est une nécessité que nous avons évidemment reconnue. Pour l'élaboration des projets de chacun des ouvrages, les ingénieurs ont largement bénéficié de conseils avisés aussi bien pour des détails de construction que pour la conception générale. Aujourd'hui, nous ne pouvons que nous montrer satisfaits de cette collaboration et des résultats obtenus.

Afin d'éviter le plus possible la monotonie engendrée par des surfaces de béton uniformes et dans le but, également, d'atteindre une certaine unité, un grand nombre de murs de culées et de soutènement ont été agrémentés de cannelures horizontales sur les conseils d'un bureau d'études spécialisé en aménagements paysagers.

La concertation entre les différents intervenants lors de la construction d'ouvrages proches les uns des autres a permis de rechercher une impression de cohérence et d'unité de forme. Ainsi, pour l'échangeur-jonction de Perly notamment, les piles de tous les ouvrages sont circulaires et les bandeaux de tabliers de même type (OA 405, 406, 407 et 418).

Dans le domaine des nuisances et surtout du bruit, on a voulu que l'impact de l'autoroute demeure aussi restreint que possible. C'est pourquoi il a fallu installer, sur certains ouvrages, des parois antibruit. Ces dispositifs étant souvent très inesthétiques, on a, dans la mesure du possible, cherché à utiliser des matériaux translucides afin d'éviter l'effet de tranchée et de maintenir la vue sur le paysage (OA 416 et 417). Là aussi, la collaboration avec les architectes et

Tableau 1. Ouvrages d'art de la section 8 de l'autoroute de contournement de Genève: types, caractéristiques, dimensions et coûts

OA	Désignation	Structure			
Viaduc					
419	Viaduc de Bardonnex: ouvrage autoroutier situé au-delà des plates-formes douanières	2 tabliers en béton précontraint, caisson h = 3,16 m			
Ponts rou	tiers				
415	Pont RC 15 route de Vernier: passage de la route de Vernier au-dessus de l'autoroute	2 tabliers en béton précontraint, caisson h = 1			
416	Pont d'Aigues-Vertes: ouvrage autoroutier en courbe sur le Rhône	2 tabliers en béton précontraint, caissons h = 2,20-5,30 m			
407	Pont bretelle route de Saint-Julien-Genève: ouvrage en courbe, liaison entre la route de Saint-Julien et le futur évitement de Plan-les-Ouates	béton précontraint, caisson h = 2,30 m			
418	Pont RC 3 route de Saint-Julien (ouest): ouvrage en courbe, passage de la route de Saint-Julien au-dessus de l'autoroute	2 tabliers en béton précontraint, caisson h = 2,50 m			
406	Pont RC 3 route de Saint-Julien (est): ouvrage biais, passage de la route de Saint-Julien au-dessus du raccord de l'évitement de Plan-les-Ouates	dalle pleine en béton précontraint, h = 1,10-2,10 m			
417	Pont sur l'Aire: ouvrage autoroutier au-dessus de la rivière l'Aire	2 tabliers en béton précontraint, dalles pleines h = 0,50-0,80 m			
405	Pont bretelle Genève-France: ouvrage en courbe, liaison entre Genève-Sud et la France	béton précontraint, caisson h = 2,30 m			
7	Ponts routiers				
Ponts de	chemin de fer				
414	Pont CFF voie industrielle SASMA	caisson en béton précontraint, h = 2,90 m			
413	Pont CFF voie industrielle de l'usine à gaz	caisson en béton précontraint, h = 3,10 m			
2	Ponts de chemin de fer				
D	and firm (DC)				
601	s supérieurs (PS) PS du Bois-des-Mouilles	poutres en béton précontraint, h = 1,82 m			
		béquilles + dalle pleine en béton précontraint			
602	PS bretelle jonction de Bernex	h = 0,90 m			
604	PS chemin des Grands-Champs	béquilles + caisson en béton précontraint, h = 1,50 m			
605	PS route de Base	caisson en béton précontraint, h = 2,40 m			
609	PS chemin Pré-Berghem	poutres en béton précontraint, h = 1,50-2,50			
610	PS route des Ravières	dalle pleine en béton précontraint, h = 0,70 n			
603	PS route de Pré-Marais	béquilles + dalle pleine en béton précontrain h = 0,60 m			
616	PS chemin des Suzettes	béquilles + dalle pleine en béton précontrain h = 0,60 m			
8	Passages supérieurs				
Passages	s inférieurs (PI)				
606	PI deux-roues sous la bretelle Saint-Julien–Genève	dalle pleine en béton armé, h = 0,60 m			
607	PI deux-roues sous la bretelle Saint-Julien–France	dalle pleine en béton armé, h = 0,60 m			
650	PI boucle de rebroussement, plate-forme douanière suisse	dalle pleine en béton armé, h = 0,50 m			
613	PI deux roues sous la route d'accès jonction de Bernex	dalle pleine en béton armé, h = 0,40 m			
614	PI deux roues sous la route de Chancy RC 4	dalle pleine en béton armé, h = 0,40 m			
404	PI bretelle Lausanne-Genève	dalle pleine en béton armé, h = 0,40 m			
6	Passages inférieurs				
Passerel	Passerelle deux roues Bois-de-la-Grille	caisson en béton précontraint, h = 1,64 m			
608		calcenn on hoton procontraint h = 1 k/ m			

56

AS Nº 14

Tablier			Prix (fr/m²)	Coût (fr.)	Notes			
longueur (m) largeur (m) surfa		surface (m²)		22-2 (110)				
2 × 358	12	8 592	2776	23 851 390	construction «pont poussé», financement: CH 63%, F 37%; voir article séparé			
					financement: CH 63%, F 37%; voir article séparé			
2 × 72,50	11,72	1 699	1754	2 979 750				
2 × 251	13,10	6 5 7 6	2291	15 065 157	construction «encorbellement», voir article séparé			
137	10,55	1 445	2118	3 060 162				
2 × 146,40	11,30	3 309	3110	10 290 000				
80,30	25,10	2015	4290	8 563 067	voir description détaillée et figure 2			
2 × 23,50	13,10	616	2223	1 369 552				
146,20	16,07	2 350	1710	4 018 380				
1350,30		18010		45 346 068				
93,60	6,20	580	6668	3 867 769				
94	7 (moyenne)	658	5677	3 735 563				
187,60		1238		7 603 332				
52,50	7,40	388	2970	1 152 535				
60	15,40	924	2111	1 950 688				
	1							
65,60	7,10	465	4171	1 939 776				
70,81	16	1133	3129	3 545 348				
85,85	6,90	592	2548	1 508 541				
43	10,84	466	3336	1 554 600				
35,70	9,20	328	3073	1 008 145				
37,70	4,50	169	2485	420 000				
451,16		4465		13 079 633				
20,13	4,35	87	6784	590 243				
10,60	4,35	46	8493	390 721				
39,60	10	396	2903	1 149 700				
19,50	5,70	111	2792	310 000				
43	5,70	245	3061	750 000				
43	10,76	462	2726	1 259 766				
175,83		1347		4 450 430				
110,90	4,64	515	3691	1 000 000	voir description détaillée et figure 1			
	4,04		3031	1 900 809	voir description détaillée et figure 1			
environ 3 km		34 167		96 231 662				

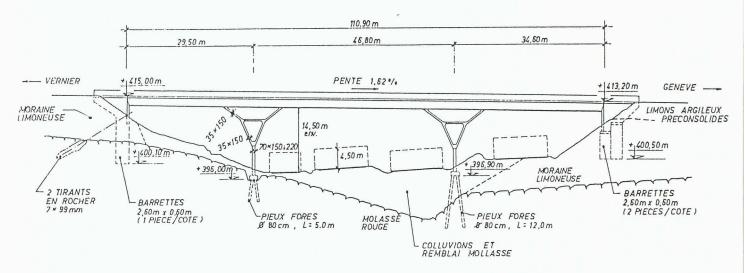


Fig. 1. - Passerelle du Bois-de-la-Grille pour deux-roues (OA 608)

paysagistes s'est avérée extrêmement utile.

Ouvrages d'art représentatifs

Il est évident que l'originalité, l'esthétique ou la valeur technique propres à certains ouvrages méritent une attention particulière. Nous avons donc choisi de présenter plus en détail deux ouvrages intéressants: le premier pour sa recherche esthétique et le second pour sa technique de réalisation.

Passerelle du Bois-de-la-Grille pour deux-roues (OA 608)

Cet ouvrage enjambe l'autoroute de contournement entre la route de Vernier et les portails Avanchet du tunnel de Vernier et constitue un tronçon du cheminement des cyclistes et piétons entre Vernier et Châtelaine/Le Lignon. La passerelle est un ouvrage en béton précontraint d'une longueur de 110 m environ, deux piles intermédiaires réduisant les portées au sol à 29,50 m, 46,80 m et 34,60 m. Les piles ont une forme en «Y» dans le plan vertical de l'ouvrage, de telle sorte que le tablier, situé à 15 m au-dessus de l'autoroute, comporte cinq travées de 20,80, 17,02, 29,78, 17,02 et 26,28 m (fig. 1). La culée Vernier repose sur des pieux barrettes descendant jusqu'à la molasse. Elle est ancrée en tête par des tirants précontraints scellés dans la molasse également. La culée Genève comporte un radier reposant sur le terrain et des barrettes assurant la stabilité contre un glissement d'ensemble. Les deux piles sont supportées par des pieux reposant sur la molasse.

Le tablier, dont la section transversale est un caisson trapézoïdal d'une hauteur de 1,64 m et d'une largeur de 4,64 m, comporte une chaussée de 4,00 m et deux bordures de 0,32 m supportant les garde-corps d'une hauteur de 1,20 m. Celui situé du côté du tunnel de Vernier comprend un éclairage intégré dans la main courante. La passerelle dégage dans son ensemble une impression reflétant sa fonction: une structure légère pour des charges légères. D'où les portées réduites par l'utilisation de béquilles, permettant la réalisation d'une structure élancée, aux lignes harmonieuses, dont l'aspect est encore agrémenté par des lignes aux couleurs de la commune de Vernier, constituées de carrelages collés sur la tranche des piles. Les culées sont situées dans des talus arborisés.

La méthode d'exécution a été conditionnée par la forme inhabituelle des piles qui ont nécessité une préfabrication lourde sur chantier (pièces de 42 t) et l'intervention d'une grue routière (portée de 10 m) mettant en place ces éléments à une hauteur de 15 m. Le tablier a été réalisé en trois étapes pour limiter l'importance du cintre. Les travaux ont commencé en avril 1989 et la mise en service a eu lieu en iuin 1990.

Pont RC3 route de Saint-Julien (est) (OA 406)

L'ouvrage est situé sur la route cantonale de Saint-Julien (RC3), qui traverse le territoire de la commune de Plan-les-Ouates. Il permet le franchissement de l'autoroute d'évitement de Plan-les-Ouates (section 6 ou SN1a). Sa longueur totale est d'environ 80 m (fig. 2).

L'ouvrage est calculé pour supporter les charges définies par la norme SIA 160 (édition 1970) et par la directive SIA 160/1 pour les routes d'approvisionnement du type II (convois de 240 t). Il s'agit d'un pont biais à deux travées. La travée ouest, légèrement en courbe, mesure 41,30 m; la travée est, en alignement, a une portée de 39,00 m. L'orientation des culées et de l'axe des appuis centraux par rapport à l'axe longitudinal est variable (culée ouest: 32,6°, appui central: 36,0°, culée est: 43,9°).

La distance verticale entre le niveau de l'axe de l'autoroute SN1a et celui de l'axe de la route de Saint-Julien est d'environ 9,50 m.

Sur le bord nord de l'ouvrage se raccorde la bretelle route de Saint-Julien - Lausanne.

La largeur totale du tablier est de 25,10 m, elle comprend pour chaque sens de circulation: deux voies de 3,50 m, une piste cyclable de 1,75 m et un trottoir de 1,90 m. Une berme centrale de 2,00 m sépare les deux sens de circulation.

58

S Nº 14

23 juin 1993

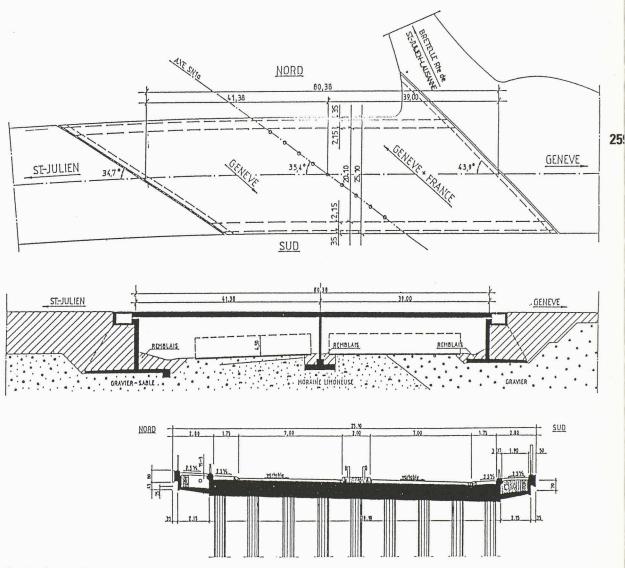


Fig. 2. – Pont en biais de la route de Saint-Julien (est) (passage de la route de Saint-Julien au-dessus de l'évitement de Plan-les-Ouates, OA 406): plan et coupes

Des caniveaux destinés à recevoir les conduites industrielles sont aménagés sous les trottoirs. Des glissières de sécurité (profil A) sont installées de part et d'autre de la berme centrale. L'espace situé entre les glissières est agrémenté de bacs à fleurs et reçoit les candélabres de l'éclairage public. Quant à la séparation entre les voies de circulation et les trottoirs elle est assurée par des glissières de sécurité en profil caisson.

Une paroi antibruit associée à un garde-corps est installée sur le bord sud du pont. Elle est prolongée sur le mur de soutènement pour rejoindre l'ouvrage OA 418. Un garde-corps est posé sur le bord nord.

Le tablier est constitué d'une dalle pleine précontrainte à inertie variable (épaisseur allant de 1,10 m à 2,10 m). Elle s'appuie sur les culées est et ouest par l'intermédiaire d'appuispots et sur neuf piles centrales circulaires alignées, encastrées dans le tablier et la semelle de fondation.

Les calculs statiques de l'ouvrage ont été établis à l'aide du programme de calcul par éléments finis *MAPS*, avec l'assistance de l'Institut de statique et des structures de l'EPFL (professeur R. Walther). Ceux-ci ont été réalisés à l'aide d'éléments coques, les piles centrales étant également introduites dans le calcul. Les hypothèses de base ont été confirmées par un essai de charge sur modèle réduit en microbéton et fils d'acier à l'échelle de 1:20.

Les efforts horizontaux sont repris dans le sens longitudinal par l'ensemble des neuf piles et dans le sens transversal, par les appuis-pots guidés sur les culées.

La précontrainte est obtenue par un réseau de câbles tridirectionnel.

Les caniveaux supportant les trottoirs ont été bétonnés après la mise en tension des câbles de la dalle. Ils sont également précontraints dans le sens longitudinal (3 câbles à 80 tonnes). Les deux culées reposent sur des terrains de bonne qualité et sont constituées de semelles continues et de murs avec contreforts, en raison de la hauteur importante des remblais.

La partie supérieure des culées abrite la galerie de visite des appuis qui est également utilisée pour le passage de conduites industrielles. Les culées reçoivent, en plus des appuis mobiles, les appuis guidés de l'ouvrage situés sur l'axe longitudinal. Sur la culée est, deux appuis mobiles supplémentaires supportent la dalle de la bretelle.

Les culées et les murs en aile sont prolongés par d'importants murs de soutènement pour permettre le passage des voies de circulation de ce nœud routier.

L'appui central de l'ouvrage est constitué par neuf piles circulaires en béton armé de 1,00 m de diamètre, reposant sur une semelle commune continue et encastrées dans le tablier et dans la semelle de fondation. L'ensemble des piles assure la stabilité longitudinale de l'ouvrage.

Tableau 2. Ouvrages d'art de la section 8 de l'autoroute de contournement de Genève: intervenants

	Construction								
OA	Désignation	D	F Ingénieurs	Architectes	Géomètres	Géotechniciens	Experts	Entreprises	Coûts
415	Pt RC5 rte Vernier	85	86 Epars & Devaud	Michel	Morand	GADZ	Légeret	Ambrosetti	2'979'750
416	Pt d'Aigues-Vertes	85	87 Barthassat - Lachenal Fontaine	Brera	Kuhn & Wasser	GADZ	Favre	Ambrosetti	15'065'157
414	Pt CFF voie ind. SASMA	86	87 Tremblet Paquet		Hochuli & Kohler	GADZ	Fiechter	Nibbio Ambrosetti	3'867'769
413	Pt CFF voie ind. us. gaz	87	88 Tremblet Paquet		Hochuli & Kohler	GADZ	Fiechter	Ambrosetti Nibbio Cochet	3'735'563
601	PS Bois-des-Mouilles	88	89 Légeret	Vaucher	Kuhn & Wasser	Amsler	Fol	Clerget Rusconi	1'152'535
608	Pass, 2 roues Bois-de-la-Grille	89	90 Fornerone	Tschumi	Morand	GADZ	Serdaly	Clerget SCRASA	1'900'809
602	PS bretelle jonction Bernex	89	90 Jorand - Roget	Palma	Bovier	Amsler	Peiry	Spinedi	1'950'688
604	PS ch. des Grands-Champs	89	90 Paquet	Renaud Holdener	Oettli	GADZ	Légeret	Raviglione	1'939'776
605	PS route de Base	89	90 Camen & Rutschi	Renaud Holdener	Kuhn & Wasser	GADZ Tappolet	Légeret	Rampini	3'545'348
606	PI 2 roues sous bret.St-JulG	89	90 Herrera	Renaud Holdener	Kuhn & Wasser	GADZ Tappolet	Erbeia	Raviglione	590'243
607	PI 2 roues sous bret.St-JulF	89	90 Herrera	Renaud Holdener	Kuhn & Wasser	GADZ Tappolet	Erbeia	Dessimoz	390'721
407	Pt bret.route St-Julien-Genève	89	90 Fischer	Renaud Holdener	Heimberg	GADZ Tappolet	Barthassat	Zschokke Bariatti Spinedi	3'060'162
609	PS chemin du Pré-Berghem	89	90 Klemm	Renaud Holdener	Heimberg	GADZ Tappolet	Epars	Raviglione	1'508'541
610	PS route des Ravières	89	90 Fiechter	Renaud Holdener	Heimberg	GADZ Tappolet	Epars	Brunet Rampini Cochet Sarchionni	1'554'600
650	PI boucle de rebroussement	89	90 Weber	Chenu Curat Oberson	Heimberg	Ott	Schweizer	Rampini Cochet Colas Brunet	1'149'700
419	Viaduc de Bardonnex	89	91 Scetauroute (Rhône-Alpes)	Serafin	Scetauroute	Solab Scetauroute	Steinmann	GTM Beaume & Cie	23'851'390
418	Pt RC3Rte de St-Julien (ouest	89	91 Tournier-Guscetti-Wälschli	Renaud Holdener	Kuhn & Wasser	GADZ Tappolet	Beylouné	Ambrosetti	10'290'000
406	Pt RC3Rte de St-Julien (Est)	89	91 Sumi - Babel	Renaud Holdener	Kuhn & Wasser	GADZ Tappolet	Fol	Zschokke Bariatti Spinedi Conti	8'563'067
603	PS route de Pré-Marais	90	91 Schaerer	AVV	Bovier	Geos	Klemm	Induni	1'008'145
404	PI bretelle Lausanne - Genève	90	91 Fol et Duchemin	Renaud Holdener	Heimberg	GADZ Tappolet	Urner	SCRASA	1'259'766
417	Pont sur l'Aire	91	92 Fol et Duchemin	AVV	Oettli	GADZ	Hühn	Belloni Perret Piasio	1'369'552
613	PI rte accès jonction Bernex	91	91 Zimmermann-Schutzlé Mantilleri	AVV	Bovier	Geos	Erbeia	Dessimoz	310'000
405	Pt bretelle Genève - France	91	92 Liechti - Serex	Renaud Holdener	Heimberg	GADZ Tappolet	Fontaine	Ambrosetti	4'018'380
614	Pl route de Chancy RC4	92	92 Zimmermann-Schutzlé Mantilleri	AVV	Bovier	Geos	Erbeia	Piasio Dessimoz	750'000
616	PS chemin des Suzettes	92	92 Weber		Bovier	Geos	Fontaine	Conti	420'000
								Coût total de construction :	96'231'662
	Aménagements divers								
416	Eclairage	92	93 Scherler		-		-	Magnenat Translumen BAG	510'000
416	Aspersion de saumures	92	92 Barthassat - Lachenal Fontaine SGI				-	Boschung Mecatronic	525'000
416	Parois phoniques	93	93 Barthassat - Lachenal Fontaine	Brera	÷			Mabilia	895'000
417	Parois phoniques	93	93 Fol et Duchemin	AVV				Mabilia	115'000
								Coût total aménagements divers :	2'045'000

C'est toutefois le bétonnage du tablier qui mérite une attention particulière parmi les procédés mis en œuvre lors de la réalisation de l'ouvrage. Celui-ci a, en effet, été bétonné en continu, ce qui constitue, compte tenu de la masse de béton à mettre en œuvre, une réelle performance et a nécessité un gros déploiement de forces humaines et matérielles. Couler d'une seule traite 2550 m³ de béton en vingt heures, pour réaliser le tablier du pont, tel était l'enjeu de l'opération menée tambour battant du dimanche 4 novembre 1990 à 23 heures au lundi 5 novembre à 19 heures.

Pas moins de 45 camions malaxeurs ont été mobilisés pour l'occasion, tandis que plus de 70 ouvriers se relayaient par équipes. Le béton devait être livré à la minute près, sans la moindre interruption, à partir de deux centrales situées à La Praille et à Vernier. Le rythme a été calculé de façon

qu'il n'y ait jamais plus de deux heures et demie entre la mise en place des différentes couches ou la jonction des différentes portions du tablier. Le débit du béton a progressé régulièrement pour culminer à 200 m³/h.

Pourquoi recourir à une méthode aussi audacieuse? Tout simplement à cause de la forme très particulière de ce pont, qui est en biais et se termine par une amorce de virage. L'EPFL, qui a procédé à des recherches sur la technique de mise en œuvre des dalles biaises, a participé à l'opération

Les travaux ont débuté en septembre 1989 pour s'achever en septembre 1991.

Conclusions

Les nouvelles normes, qui mettent en évidence la notion d'aptitude au service et, d'une manière générale, l'exigence de durabilité et de fiabilité permettent d'espérer que ces nouveaux ouvrages ne nécessiteront que peu d'entretien, ce qui n'empêchera nullement de les soumettre, dans l'avenir, à une surveillance systématique et rationnelle afin d'en assurer la pérennité dans les meilleures conditions techniques et économiques.

Le constructeur de pont a pour vocation de rapprocher, d'établir des contacts, de permettre le passage, la rencontre, l'échange.

On ne peut que se féliciter de la collaboration, nécessaire et fructueuse, entre ingénieurs, architectes, paysagistes et entrepreneurs, qui s'est instaurée aussi bien pendant la conception, que la réalisation de ces ouvrages. C'est ce travail, réalisé en commun, qui a permis de construire des ouvrages qui, nous en sommes convaincus, sont d'excellente

qualité.

60

4S Nº 14

23 juin 1993