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Par Jean-Paul Dudt,

ingénieur
des Mines de Pans
ISRF-LMR-GC-EPFL
1 Ol5 Lausanne
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Géotechnique
et intelligence artificielle (I)
Systèmes experts, réseaux de neurones artificiels, approches probabilistes,
logique floue et leurs applications en géotechnique - gadgets ou nouvelles perspectives?

Introduction
A chaque époque ses modes.
Actuellement, ce sont des termes comme
intelligence artificielle, systèmes
experts, connexionnisme, réseaux de

neurones artificiels, approches
probabilistes, logique floue, qui sont dans

le vent. Que recouvrent ces appellations?

Ont-elles une utilité
quelconque en géotechnique, discipline
somme toute relativement ancienne

et pas nécessairement toujours à la

pointe du progrès, ses principales
bases théoriques datant de plusieurs
dizaines d'années?

Comme on le verra, ces nouvelles

approches privilégient l'empirisme et

mettent en avant un raisonnement
de type qualitatif. D'aucuns peuvent
alors se demander si l'on n'assiste

pas à une régression de la pensée

scientifique et technique, les principaux

progrès de ces dernières années
dans le domaine de la géotechnique

ayant principalement consisté en une

quantification des paramètres
géomécaniques et en une amélioration
des modèles numériques (éléments

finis...).
Cet article tente d'apporter des

éléments de réponse à ces questions en

présentant successivement chacune
des quatre approches dans leur

contexte et en les illustrant par des

exemples, de manière à ce que le

lecteur puisse se faire une opinion
personnelle. Il ne s'agit que d'une
introduction aux différents sujets, des

développements détaillés pouvant être

trouvés dans les références bibliographiques.

Systèmes experts

Contexte historique
26 mai 1993 Les systèmes experts (SE) relèvent du

domaine de l'intelligence artificielle
(IA) dont les buts premiers étaient
extrêmement ambitieux: il s'agissait, ni

plus ni moins, de créer des machines

intelligentes capables de rivaliser

avec le raisonnement humain. Très

longtemps, beaucoup de travaux en IA

furent consacrés à la mise au point
d'une «machine de Turing» et le test

du même nom, d'après le mathématicien

anglais Alan Turing (1912-1954),
consiste à dialoguer par l'intermédiaire

d'un terminal avec un humain et

une machine se trouvant dans une

autre pièce. Le test est réussi, si

l'opérateur ne peut pas décider qui,

parmi ses deux interlocuteurs, est la

personne humaine1 (fig. 1).

Mais très vite, les buts fixés se sont
avérés trop ambitieux, et l'on a dû se

rendre à l'évidence qu'une communication

«humaine» était beaucoup trop
complexe par rapport à ce qu'on
savait faire. Même en faisant abstraction

du côté émotionnel, une communication

efficace nécessite au moins

une représentation interne du monde

qui, chez l'humain, ne s'acquiert que

par un apprentissage extrêmement

long et difficile. On a alors redécouvert

qu'il était paradoxalement plus
facile de programmer le raisonnement
d'un expert résolvant une tâche
complexe mais très spécifique, que celui
du quidam moyen soutenant une

conversation de café... Suite à ce

constat, beaucoup de chercheurs ont

(momentanément?) abandonné l'idée
de créer une machine intelligente
universelle et se sont lancés dans le

développement de systèmes experts
dédiés à des domaines précis.

Parallèlement, on a constaté à partir
des années 1980 une forte demande

en automatisation d'expertises dans

des domaines comme la médecine,
les sciences humaines, la finance ou

l'ingénierie, dans le but principal de

pérenniser l'expertise après le départ
de l'expert, mais aussi pour économiser

des coûts d'expertise.
Cela a conduit au grand succès actuel
des systèmes experts que E. Feigenbaum,

un des pionniers, a défini comme

étant «des programmes conçus

pour raisonner habilement à propos
de tâches dont on pense qu'elles
requièrent une expertise humaine
considérable».

'Il faut bien sûr jouer le jeu. Il est en effet
très facile de trouver la machine: il suffit de

demander de multiplier deux nombres de dix

chiffres

Spécificité des systèmes experts
par rapport à la programmation
classique
Une méthodologie spécifique a été

développée surtout parce que la

programmation algorithmique de troisième

génération2, conçue pour la

résolution de problèmes bien structurés,
était mal adaptée pour modéliser le

raisonnement humain. Basé sur des

heuristiques, ce dernier est souvent

peu structuré, incertain, incomplet,
partiellement contradictoire et sujet à

de fréquentes révisions sur la base de

l'expérience accumulée ou de

nouveautés technologiques.
Les principales caractéristiques des

systèmes experts sont (fig. 2):

- une séparation entre le programme
proprement dit (appelé moteur d'in-
férence ou machine deductive et
écrit en langage classique) et les

connaissances (base de règles et de

faits), ce qui facilite énormément la

maintenance et permet au constructeur

de SE (appelé cognicien) de se

concentrer sur le recueil et le traitement

de la connaissance, sans
devoir s'occuper de programmation
«de bas niveau»;

- une interface «constructeur»
constituée d'outils d'acquisition et
de mise à jour des connaissances

par le cognicien;

- une interface «utilisateur» très
conviviale permettant un dialogue
entre le SE et l'utilisateur;

- une composante explicative ca¬

pable de justifier les conclusions

auxquelles le SE est arrivé;

- la capacité de pouvoir traiter diffé¬

rents degrés de validité des règles,
des faits incertains, ainsi que

2Les informaticiens ont l'habitude de distinguer

plusieurs générations dans l'histoire de

l'évolution des langages de programmation

- première génération: langage machine

(binaire)

- seconde génération: assembleur

- troisième generation langages procedu-

raux comme FORTRAN, C, PASCAL.

- quatrième génération: bases de données
relationnelles

- cinquième génération: intelligence artifi¬
cielle (systèmes experts, réseaux de

neurones artificiels,
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Fig. I. - Un système expert subissant le test
de Turing... (d'après [7]3j

d'avoir une stratégie face aux
données manquantes.

Contrairement à un programme
classique, un SE peut se tromper, à l'image

d'un expert humain. Pour montrer

que cela ne limite pas nécessairement

sa valeur, prenons l'exemple d'un

programme de jeux d'échecs. Un SE peut

perdre parce qu'il a opté pour un mauvais

coup, tandis qu'un logiciel examinant

exhaustivement toutes les

possibilités perdra au temps!
Le moteur d'inférence qui pilote le

raisonnement, l'interface constructeur,
l'interface utilisateur sous forme de

fenêtres de dialogue et d'affichage
des résultats et des explications,
forment ensemble un outil de développement,

souvent aussi appelé «shell»,

qui n'est en fait rien d'autre qu'un SE

dont la base de connaissances est
vide. On trouve de plus en plus de ces
shells dans le commerce, à des prix
variant en principe en fonction de leur

puissance et de leur convivialité.
Alors qu'à l'origine, on distinguait
trois types de SE selon qu'ils étaient

principalement basés sur:

- des règles,

- des réseaux sémantiques, définis¬

sant des relations entre objets
organisés en classes, avec des
mécanismes d'apprentissage,

- des «structures» [frames en an¬

glais), caractérisées par la notion
de slots et de démons (procédures
lancées automatiquement à la sur-

venance de certains événements),
la plupart des shells actuels cumulent
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Fig. 2. - Schéma d'un système expert avec ses différentes composantes Le cognicien construit le système expert en
remplissant la base de connaissances avec l'information préalablement recueillie auprès de l'expert L'utilisateur ne voit le
système expert qu'à travers une interface de dialogue. Un shell ou outil de construction est un système expert dont la base de
connaissances est vide

les trois aspects. Certains cogniciens 205
préfèrent d'ailleurs s'en passer et

programmer directement en LISP ou PROLOG,

qui sont des langages informatiques

adaptés aux SE.

Construction d'un système expert
L'utilisation d'un shell (qui doit être

soigneusement choisi en fonction du

problème à traiter et du budget à

disposition), permet en principe au cognicien

de se concentrer sur la conception

et le développement de la base

de connaissances, sans devoir
apprendre d'autre langage de programmation

que la syntaxe de l'outil qu'il
utilise. La tâche principale du cognicien

consiste alors à recueillir, structurer

et coder un savoir.
La méthode classique pour recueillir
l'information est l'interview d'experts
du domaine (des géotechniciens
expérimentés dans notre cas) et la consultation

de la littérature spécialisée. En

principe, toutes les sources sont à

exploiter, quitte à différencier la validité
de l'information selon sa provenance
(voir plus loin). Les règles d'expertise
ainsi récoltées doivent en général être
structurées avant de pouvoir être
formalisées et introduites dans la base
de connaissances. Ce travail nécessite

une bonne représentation du

domaine étudié, c'est-à-dire un choix

judicieux des objets, des classes d'objets

et des propriétés pertinentes, ainsi

qu'une identification préalable des

types de conclusions souhaitées. Un

«gros» SE nécessite aussi des
mécanismes de vérification de la consistance

des règles, surtout si l'élaboration
s'étend sur une longue durée ou si

plusieurs personnes participent à sa

réalisation.
Les règles se présentent généralement

sous la forme:
Si [un ensemble de propriétés

d'objets satisfait certaines
conditions],

Alors [l'hypothèse est vérifiée avec
un certain degré de certitude]

Et [le SE déclenche certaines ac¬

tions].
Si l'hypothèse d'une règle devient
condition pour une autre, on dit que

3Les chiffres entre crochets renvoient à la

bibliographie à paraître en fin de la deuxième

partie de cet article.
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les deux règles sont chaînées, et lors

de l'exécution, leur évaluation se fera

en cascade.

Un SE opérationnel peut contenir
plusieurs milliers de règles, et sa mise

au point nécessite plusieurs hommes-

années de travail; un certain nombre

de prototypes sont d'ailleurs souvent
nécessaires avant la réalisation de la

version définitive. Une technique
consiste à utiliser un shell pour les

essais, puis de réécrire un moteur d'in-
férence et une interface bien adaptés

au problème étudié une fois le produit
stabilisé.
Les shells, qui devaient à l'origine
permettre au non-informaticien de

construire un SE en alignant simplement

des règles, ont été sans cesse

perfectionnés pour pouvoir de mieux

en mieux simuler les différentes

nuances du raisonnement humain. On

en est arrivé à des produits très
performants, mais tellement sophistiqués

que leur utilisation est devenue
souvent plus complexe que le maniement
d'un langage de troisième génération!

Principaux domaines
d'application des systèmes
experts en géotechnique
La technique des SE est bien sûr

inadaptée à tout ce qui relève du calcul,

mais s'applique bien aux
domaines régis par l'empirisme, le

savoir-faire, l'expérience professionnelle,

l'intuition. On trouvera des

références de réalisations pratiques
principalement dans [2], [6] et [10]

Parmi les SE classiques, citons
PROSPECTOR, conçu pour aider les

géologues dans la prospection de minerais,

et qui a été un des premiers

grands systèmes experts en exploitation;

il semblerait même qu'il ait permis

de localiser un gisement de

molybdène en 1980! Son développement,
commencé en 1974, a nécessité plus
de 30 années-personnes de travail et

contient plus de 1000 règles fournies

par 9 experts en minéralogie.
Citons également un système expert

pour le choix du soutènement de galeries

minières développé par Baroudi

[1] et un autre pour le choix du

soutènement lors de percements
d'ouvrages souterrains de génie civil, réalisé

à l'EPFL [4].

Parmi les domaines potentiels qui
devraient bien se prêter au traitement

par SE, nommons entre autres:

- la sélection de sites de construc¬

tion,

- les campagnes de reconnaissance

géotechnique et l'interprétation
des données de forages,

- l'aide à la décision lors de la

conception de fondations, de

confortations ou d'ouvrages
souterrains,

- le choix des méthodes de construc¬

tion et de soutènement des

ouvrages souterrains,

- l'analyse de risques sismiques,

- la prospection,

- la classification des sols ou massifs

rocheux en fonction de leur

utilisation,

- l'établissement de plans d'auscul¬

tation d'ouvrages ou de surveillance

d'instabilités, etc.

Apports et limites
des systèmes experts
Comme toute nouveauté, la technique
des SE souffre actuellement encore
de l'enthousiasme typique des

«nouveaux convertis» qui veulent l'appliquer

à toutes les sauces. Or, il est
clair que si le raisonnement à modéli-

ser a de «bonnes propriétés» (s'il est

linéaire, bien structuré, simple, complet,

stable, etc.), et que l'utilisateur a

juste besoin du résultat final sans

justification ni explication de la

démarche, la programmation algorithmique

classique offre toujours le

meilleur outil.
En revanche, l'apport des SE au

traitement de problèmes mal structurés

est indéniable. Rarement développés
dans le but de remplacer un expert
humain, ils servent surtout à garder,

stabiliser, objectiviser et unifier le

savoir, comme aide-mémoire pour l'expert

lui-même, ainsi qu'à des fins
pédagogiques pour futurs experts. A la

limite, on peut concevoir que dans des

situations bien particulières les SE en

arrivent à supplanter les experts
humains. Cela peut être le cas dans des

situations nécessitant la collaboration
de spécialistes de domaines
différents, lorsqu'aucun expert humain ne

dispose d'une connaissance globale
du sujet, ou encore, lorsque l'experti¬

se dépend de technologies qui
évoluent tellement rapidement que l'expert

a du mal à suivre.

Une retombée annexe et non

négligeable des SE a par ailleurs été le

développement d'interfaces utilisateurs
de plus en plus conviviales (ce qui a

aussi rendu les utilisateurs toujours
plus exigeants...).
Les problèmes majeurs que rencontre

cette nouvelle approche sont moins

dus aux limitations des outils de

développement qu'aux difficultés d'acquisition

et de formalisation de connaissances

complexes. On s'est en effet
rendu compte que la réalisation d'un

système expert exploitable demandait

une bonne structuration de la base de

connaissances, et qu'il ne suffisait

pas simplement d'empiler des règles;

parallèlement, l'avantage de ne pas
devoir apprendre de langage de

programmation est tout relatif, la

manipulation de shells performants étant
souvent plus complexe que des

langages comme BASIC, FORTRAN ou C.

Le cognicien a donc tout intérêt à

posséder de solides bases informatiques,
et le temps n'est pas encore venu où

il suffira de savoir taper à la machine

pour construire un SE conséquent...
Un autre grand problème est lié à l'ex-

plicitation du raisonnement par
l'expert, qui sait résoudre la tâche, mais a

beaucoup de peine à exprimer son
cheminement intellectuel sous forme
de règles. Ce handicap sérieux va

pouvoir être contourné par la

technique des réseaux de neurones artificiels.

Réseaux de neurones artificiels

Contexte
Tout comme les systèmes experts,
cette technique est aussi issue d'une

branche de LIA, le connexionnisme,
lui-même né de la constatation de

plusieurs insuffisances propres à

l'informatique basée sur la logique
formelle. En effet, une comparaison des

performances pour la résolution de

tâches simples, comme la reconnaissance

de formes ou l'accès à la

mémoire, montre que l'exécution séquentielle

d'instructions - même sur les

machines les plus performantes - est
d'une inefficacité désespérante par



dendrites

rapport au cerveau humain. Par

ailleurs, la programmation classique
nécessite toujours une modélisation
du phénomène à simuler, et on

constate que la capacité de représentation

des modèles suffit à peine à

simuler des comportements élémentaires

et s'avère nettement insuffisante

dans la plupart des situations
concrètes.
Au lieu de se concentrer sur l'amélioration

des modèles de calcul formel

ou sur l'augmentation de la puissance
des machines, les tenants du

connexionnisme ont décidé de changer

d'approche en s'inspirant de la

structure et du fonctionnement
cérébraux et ils proposent l'apprentissage

par l'exemple sur des structures
massivement parallèles. La simulation du

comportement macroscopique
classique y est remplacée par un traitement

statistique, consistant à extraire
les traits caractéristiques des situations

présentées; la solution est alors

l'émergence de tendances sous forme
d'un ensemble de grandeurs
analogiques.

Bases physiologiques, les
neurones naturels
Les recherches en physiologie ont
montré que du point de vue fonctionnel,

le cerveau peut être schématisé

par plusieurs couches de neurones
interconnectés, ceux d'une couche donnée

travaillant en parallèle. Un neurone

est une cellule constituée de trois

axone

/* \J flux de I inlormation

Fig. 3. - Schéma d'un neurone naturel et de son fonctionnement L'Information est recueillie

par les dendrites, puis circule jusqu'au soma pour y parvenir avec une intensité et un retard
dépendant de la longueur des dendrites. Celui-ci effectue à chaque instant une sommation de
toutes les impulsions qui lui arrivent, et si la résultante dépasse un certain seuil, il émet un
potentiel d'action unitaire qui est transmis sans altération le long de l'axone. Grâce à
l'arborescence terminale, le signal est réparti sur les neurones cibles à travers des synapses qui ont
la faculté de pondérer le flux

éléments: les dendrites, le soma et
l'axone, quant au point de contact
entre l'axone et une dendrite du neurone

suivant, il est appelé une synapse.

Le principe de son fonctionnement,

décrit par le modèle de McCul-
loch et Pitts en 1943 déjà, est
extrêmement simple (fig. 3).

Les poids synaptiques varient au

cours du temps, ce qui explique la

plasticité du système cérébral qui
évolue avec l'apprentissage et l'expérience.

Le mécanisme de cette évolution,

décrit pour la première fois par
Hebb, peut se résumer ainsi: une
connexion souvent activée est renforcée

(son poids synaptique augmente),
tandis qu'une connexion peu utilisée
se détériore.

Fonctionnement des réseaux
de neurones artificiels
Le fonctionnement des neurones
artificiels est schématisé à la figure 4.

Ceux-ci sont organisés en réseaux

(fig. 5) caractérisés par:

- N points d'entrée et P points de

sortie (A/ étant la dimension des

: sortie du neurone 1

poids synaptique entre le

neurone 1 et le neurone i

X1V?O*
x? Wl2

?O »*<

o<
rangée k-1 synapses

sortie vers

neurone i la rangée

de la rangée k k + 1

Fig 4 - Schéma du fonctionnement d'un neurone artificiel
L'entrée F, est la somme des contributions de tous les neurones convergeant vers le neurone i,

c'est-à-dire:

E.-X, *Wl, + ...+X*W,„
La sortie Y, dépend de la valeur de E, relativement au seuil o
s/E,<ct alors Y, D

si E, s a alors Y, /

vecteurs de données et P celle des

vecteurs résultats);

- Q rangées intermédiaires comprenant

chacune K(qj neurones
cachés;

- une matrice de poids synaptiques
[W], Wijm étant le poids synaptique

entre le neurone /de la rangée

q] et le neurone y de la rangée

%
- un tableau [cr] de seuils, 07. étant

le seuil du neurone /de la rangée q.

Après avoir créé une telle structure en

choisissant judicieusement le nombre

de points d'entrée, de sortie, de

couches cachées et de neurones par
couche, tous les poids W,iq,Ql et les

seuils (jiq sont initialises à de petites
valeurs aléatoires. Ensuite, on procède

à une phase d'apprentissage, qui
consiste à mémoriser des associations

entre des vecteurs d'entrée et
des sorties connues par adaptation
des poids WiJm et éventuellement
des seuils aiq. L'apprentissage par
supervision se fait par cycles de quatre

temps:

- présentation d'un vecteur en en¬

trée p, dont on connaît le vecteur
de sortie désiré d;,

- détermination de la sortie y effec¬

tive par propagation du vecteur p,
à travers les différentes couches;

- évaluation de l'erreur en sortie

comme différence entre le résultat
calculé y! et la sortie désirée d,;

- finalement, correction des poids
afin de minimiser l'erreur, et
nouveau cycle pour le prochain couple
de vecteurs.

Il existe plusieurs techniques d'adaptation

des poids, la plus classique
étant la rétropropagation du gradient,
qui consiste à propager le terme d'erreur

d; depuis la dernière couche vers
la première et de corriger les poids de

chaque connexion proportionnellement

à la part du terme d'erreur qui y



Tableau 1 - Vecteur d'entrée pour un RNA. La première colonne décrit six composantes, la

deuxième donne le type logique des données et la troisième montre un exemple.
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transite (c'est-à-dire de sa participation

à l'erreur totale). Le facteur de

proportionnalité, compris entre 0 et 1,

est appelé paramètre d'apprentissage.

Le choix de sa valeur influe sur la

vitesse et la stabilité de l'apprentissage:

si elle est trop petite, les corrections

sont faibles et l'apprentissage
est extrêmement lent; si elle est trop
grande, les adaptations se font par
sauts et il y a risque d'instabilité. Il

faut donc trouver un compromis, et si

un réseau doit «apprendre» un

ensemble de R vecteurs prototypes, on

lui présentera plusieurs fois les R

vecteurs dans un ordre aléatoire, avec un

paramètre d'apprentissage décroissant

vers zéro avec le nombre de

présentations.

Une fois l'apprentissage fini et les

poids synaptiques et les seuils fixés,
le réseau est prêt pour la production,
appelée phase de reconnaissance, où

l'on présente des vecteurs d'entrée x;
inédits et l'on s'intéresse aux sorties

Ky produites par le réseau.

Illustration par un exemple
Pour illustrer l'utilisation d'un RNA,

supposons qu'on s'intéresse au coût
du mètre linéaire de tunnel en fonction

de la forme, du volume excavé,
de la hauteur de couverture, des

caractéristiques du soutènement et du

revêtement, ainsi que de la présence

ou non d'une étanchéité, et ce, pour
les ouvrages construits depuis 1970.

On suppose aussi disposer de 200 cas

Désignation Type des données Exemple

Forme Catégorie Fera cheval

Section [m2] Nombre réel 110,0

Hauteur de couverture [m] Nombre réel 125,0

Type de soutènement Catégorie Boulons + béton projeté

Epaisseur du revêtement [m] Nombre réel 0,40

Présence d'une étanchéité Booléen NON

réels pour lesquels ces caractéristiques

et le coût au mètre sont

connus; on les appellera les vecteurs

d'apprentissage, car ce sont eux qui

vont servir de modèles.
Dans un premier temps, il faut définir
la taille des vecteurs d'entrée et de

sortie. La sortie se limite à un scalaire

(le coût au mètre), tandis que l'entrée

est un vecteur à six composantes dont
le tableau 1 donne la désignation, le

type logique et un exemple; donc N
6 et P= 1.

Il faut ensuite choisir le nombre de

couches intermédiaires et leur taille.
Il n'existe malheureusement aucune

règle pour optimiser ce choix, et il

faut procéder par tâtonnement. En

général, on commence par construire un

réseau avec une seule couche cachée,

et si le résultat n'est pas satisfaisant,
on augmente incrémentalement la

taille (on peut aussi appliquer une

stratégie inverse ou même mixte). On

pourvoira cette couche d'un certain
nombre de neurones (p. ex. 6) tout en

gardant la possibilité d'augmenter ou

de diminuer ce nombre par la suite.
Il faut savoir que le nombre de

neurones cachés a une influence sur la

qualité de ce qui a été appris. Un

réseau comprenant beaucoup de

neurones permet de mémoriser le détail
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Fig. 5 - Schéma d'un réseau de neurones artificiels à 4 points d'entrée. 3 couches cachées et
2 points de sortie. A fin de ne pas surcharger la figure, toutes les connexions n 'ont pas été
dessinées, en particulier les connexions entre neurones d'une même couche

de toutes les situations présentées,
mais risque de donner des résultats

peu robustes lors de la reconnaissance.

Peu de neurones, au contraire,

permettent d'extraire des tendances

générales et produisent des résultats

assez robustes mais relativement
indifférenciés. Une analogie avec les

polynômes de régression permet de

comprendre ce phénomène (fig. 6).

Une fois une topologie de réseau

choisie, on initialise les poids et les

seuils à de petites valeurs aléatoires

et on procède à l'apprentissage en

présentant plusieurs fois la série des

200 cas dont on dispose. On initialise-
ra le paramètre d'apprentissage à la

valeur 0,5 par exemple et on le fera

décroître du quart de sa valeur à

chaque série de présentations (ici non

plus, il n'y a pas de règle générale).
Comme critère d'arrêt, on peut
prendre le nombre de séries présentées

(1000 p. ex.), ou une limite de

convergence (p. ex., on arrêtera dès

que toutes les erreurs de la série
seront inférieures à un certain seuil).

La qualité du réseau obtenu peut être
vérifiée sur un ensemble de vecteurs
témoins connus et qui n'ont pas servi

pour l'apprentissage. Aussi longtemps

que le réseau n'est pas jugé satisfaisant,

on le modifie en agissant sur le

nombre et la disposition des neurones
cachés, en sachant que tout l'apprentissage

devra être recommencé à

chaque changement! Les critères pour
décider si un réseau est acceptable
sont plus ou moins objectifs et dépendent

essentiellement des moyens de

vérification à disposition (vecteurs
témoins) et des performances qu'on
veut atteindre (coût d'une erreur de

prédiction).

Le cadre d'apprentissage, qui est

l'espace couvert par les vecteurs

d'apprentissage, est une autre notion

importante, car la qualité des reconnaissances

diminue dès que le vecteur

présenté s'éloigne de ce cadre. Dans

notre cas, un tunnel construit en 1955

sortira du cadre d'apprentissage. Il en

serait de même pour un tunnel de



150 m2 si tous nos 200 tunnels de

référence avaient une surface inférieure
à 110 m2. Pour une seule dimension,
la définition du cadre d'apprentissage
est triviale; elle peut l'être beaucoup
moins dès qu'on croise plusieurs
dimensions comme le montre le tableau
2: bien que dans cet exemple, un tunnel

de 105 m2 appartienne au cadre

d'apprentissage, de même qu'un tunnel

sous 1500 m de couverture, un

tunnel présentant simultanément les

deux caractéristiques en sort!

Dans ce contexte, il faut néanmoins

préciser que même si la qualité du

résultat souffre dès qu'on sort du cadre

d'apprentissage, les performances
des RNA sont généralement robustes.

De même, après un apprentissage

adéquat sur la base d'un grand
nombre de cas différents, le RNA

obtenu est souvent capable de traiter de

façon satisfaisante des données

partiellement incomplètes. Dans des

situations idéales, on peut à la limite
concevoir qu'une des composantes du

vecteur d'entrée soit erronée sans que
le résultat n'en soit beaucoup affecté.

Cela représente un progrès indéniable

par rapport aux systèmes experts

classiques, même si une telle robustesse

se paye par un certain manque
de sensibilité.
Finalement, il faut aussi se poser la

question de la pertinence des

paramètres d'entrée par rapport à la sortie.

Dans notre cas, on peut se
demander si les coûts au mètre de tunnel

sont bien dus aux variables du

tableau 1, et à elles seules. La prise en

compte d'un paramètre «superflu»
n'est pas grave, car le RNA affecte

toutes les liaisons qui en partent de

poids nuls, et le seul inconvénient est

un surdimensionnement inutile du

RNA. Par contre, si on oublie des

facteurs importants (comme c'est de toute

évidence le cas dans notre

exemple), leur influence sera arbitrairement

répartie sur les paramètres

présents, ce qui donne un RNA

pathologique. Pour éviter un tel phénomène,

il est conseillé de partir d'un

ensemble de données aussi complet que
possible et de le réduire incrémenta-

lement en supprimant progressivement

les paramètres dont les poids

sont nuls.
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Fig. 6 - Influence du degré d'un polynôme de régression sur la qualité et la sensibilité de la

prédiction Un polynôme de degré élevé, passant fidèlement par tous les points de définition,

présente tellement de méandres que l'erreur de prédiction peut être relativement grande; en

revanche, un polynôme de degré 1 (une droite) reste relativement éloigné de chaque point,
mais donne une prédiction moyenne robuste.

Portée et limitations des réseaux
de neurones artificiels
Contrairement aux systèmes experts,
le comportement des réseaux de

neurones artificiels est de type purement
associatif ou «réflexe», c'est-à-dire

sans «raisonnement» sous-jacent, ce

qui présente des avantages et des

inconvénients: la signification des situations

d'apprentissage n'a pas besoin

d'être explicitée (on économise la

représentation par un modèle), mais,

par contre, la sémantique des

associations formées lors de l'apprentissage

n'apparaît nulle part et les règles

restent sans signification physique.
La qualité et la puissance d'un réseau

augmentent avec le nombre et la

cohérence des items appris et les

solutions montrent une robustesse aux

données manquantes ou aberrantes,

éventuellement même erronées, qui

n'existe pas dans les modèles

informatiques basés sur la logique formelle.

Il n'est par contre pas toujours
facile de savoir si le réseau construit est

sain. Plusieurs causes peuvent en

effet mener à des réseaux pathologiques

sans que le constructeur ou

l'utilisateur ne s'en rendent compte,

comme une mauvaise définition des

données ou encore une stabilisation

du système à un «minimum local» non

désiré (par analogie avec les fonctions

d'interpolation par minimisation de

l'erreur quadratique).
Malgré des débuts d'applications
dans la pratique, des questions
fondamentales cherchent encore des

réponses, comme la disposition et le

nombre optimal de neurones cachés

en fonction du problème à traiter ou la

conception de techniques d'apprentissage

plus rapides. La construction

d'un réseau de neurones artificiels
utilisable nécessite encore beaucoup
de savoir-faire empirique et les

réalisations actuelles se situent encore
bien loin du fonctionnement effectif
du cerveau.
On peut d'ailleurs noter que malgré
les progrès effectués, ni les systèmes

experts ni les réseaux de neurones
artificiels n'ont jusqu'ici permis de réaliser

une machine tant soit peu «intelligente»,

et que l'ordinateur continue à

bien faire ce que le cerveau fait mal

(p. ex. les opérations numériques) et à

pratiquement ne pas savoir faire ce

que le cerveau fait très bien
(reconnaissance de visages p. ex).

(A suivre)

Tableau 2 - Cadre d'apprentissage On a représenté le nombre de vecteurs d'apprentissage

par section et hauteur de couverture. Bien que 45 tunnels aient une couverture supérieure à

1000 m et que pour 25. la section soit supérieure à WO m2, la portion d'espace (H > 1000 m et
S> 100 m2) n 'appartient pas au cadre d'apprentissage.

S < 100 m2 WOm2<S<IIOm2

H< 1000 m n 120 n - 45

1000m<H<2000m n 25 n 0
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