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Geotechnique
et intelligence artificielle (1)

Systemes experts, réseaux de neurones artificiels, approches probabilistes,
logique floue et leurs applications en géotechnigue — gadgets ou nouvelles perspectives?

Introduction

A chaque époque ses modes. Actuel-
lement, ce sont des termes comme in-
telligence artificielle, systemes ex-
perts, connexionnisme, réseaux de
neurones artificiels, approches proba-
bilistes, logique floue, qui sont dans
le vent. Que recouvrent ces appella-
tions? Ont-elles une utilité quel-
conque en géotechnique, discipline
somme toute relativement ancienne
et pas nécessairement toujours a la
pointe du progres, ses principales
bases théoriques datant de plusieurs
dizaines d'années?

Comme on le verra, ces nouvelles
approches privilégient |'empirisme et
mettent en avant un raisonnement
de type qualitatif. D'aucuns peuvent
alors se demander si I'on n'assiste
pas a une régression de la pensée
scientifique et technique, les princi-
paux progres de ces dernieres années
dans le domaine de la géotechnique
ayant principalement consisté en une
quantification des parametres géo-
mécaniques et en une ameélioration
des modeles numériques (éléments
finis ...).

Cet article tente d'apporter des élé-
ments de réponse a ces questions en
présentant successivement chacune
des quatre approches dans leur
contexte et en les illustrant par des
exemples, de maniere a ce que le lec-
teur puisse se faire une opinion per-
sonnelle. Il ne s'agit que d'une intro-
duction aux différents sujets, des dé-
veloppements détaillés pouvant étre
trouvés dans les références bibliogra-
phiques.

Systemes experts

Contexte historique

Les systemes experts (SE) relevent du
domaine de l'intelligence artificielle
(IA) dont les buts premiers étaient ex-
trémement ambitieux: il s'agissait, ni
plus ni moins, de créer des machines
intelligentes capables de rivaliser
avec le raisonnement humain. Tres
longtemps, beaucoup de travaux en 1A
furent consacrés a la mise au point
d'une «machine de Turing» et le test

du méme nom, d'apres le mathémati-
cien anglais Alan Turing (1912-1954),
consiste a dialoguer par I'intermédiai-
re d'un terminal avec un humain et
une machine se trouvant dans une
autre piece. Le test est réussi, si
I'opérateur ne peut pas décider qui,
parmi ses deux interlocuteurs, est la
personne humaine! (fig. 1).

Mais tres vite, les buts fixés se sont
avérés trop ambitieux, et I'on a di se
rendre a I'évidence qu'une communi-
cation «humaine» était beaucoup trop
complexe par rapport a ce qu'on sa-
vait faire. Méme en faisant abstrac-
tion du coté émotionnel, une commu-
nication efficace nécessite au mains
une représentation interne du monde
qui, chez I'humain, ne s'acquiert que
par un apprentissage extrémement
long et difficile. On a alors redécou-
vert qu'il était paradoxalement plus
facile de programmer le raisonnement
d'un expert résolvant une tache com-
plexe mais tres spécifique, que celui
du quidam moyen soutenant une
conversation de café... Suite a ce
constat, beaucoup de chercheurs ont
(momentanément?) abandonné I'idée
de créer une machine intelligente uni-
verselle et se sont lancés dans le
développement de systemes experts
dédiés a des domaines précis.
Parallelement, on a constaté a partir
des années 1980 une forte demande
en automatisation d'expertises dans
des domaines comme la médecine,
les sciences humaines, la finance ou
I'ingénierie, dans le but principal de
pérenniser |'expertise apres le départ
de I'expert, mais aussi pour économi-
ser des colts d'expertise.

Cela a conduit au grand succes actuel
des systemes experts que E. Feigen-
baum, un des pionniers, a défini com-
me étant «des programmes congus
pour raisonner habilement a propos
de taches dont on pense qu'elles re-
quierent une expertise humaine consi-
dérable».

"Il faut bien sOr jouer le jeu. Il est en effet
trés facile de trouver la machine: il suffit de
demander de multiplier deux nombres de dix
chiffres ...

Spécificité des systemes experts
par rapport a la programmation
classique

Une méthodologie spécifique a été

développée surtout parce que la pro-

grammation algorithmique de troisié-
me génération?, congue pour la réso-
lution de problémes bien structurés,
gtait mal adaptée pour modéliser le
raisonnement humain. Basé sur des
heuristiques, ce dernier est souvent
peu structuré, incertain, incomplet,

partiellement contradictoire et sujet a

de fréquentes révisions sur la base de

I'expérience accumulée ou de nou-

veautés technologiques.

Les principales caractéristiques des

systémes experts sont (fig. 2):

— une séparation entre le programme
proprement dit (appelé moteur d'in-
férence ou machine déductive et
écrit en langage classique) et les
connaissances (base de regles et de
faits), ce qui facilite énormément la
maintenance et permet au construc-
teur de SE (appelé cognicien) de se
concentrer sur le recueil et le traite-
ment de la connaissance, sans de-
voir s'occuper de programmation
«de bas niveau»,

— une interface  «constructeur»
constituée d'outils d'acquisition et
de mise a jour des connaissances
par le cognicien;

— une interface «utilisateur» trés
conviviale permettant un dialogue
entre le SE et |'utilisateur;

— une composante explicative ca-
pable de justifier les conclusions
auxquelles le SE est arrive;

— la capacité de pouvoir traiter diffé-
rents degrés de validité des regles,
des faits incertains, ainsi que

ZLes informaticiens ont I'habitude de distin-

guer plusieurs générations dans I'histoire de

I'évolution des langages de programmation:

— premiére génération: langage machine
(binaire)

— seconde génération: assembleur

— troisieme génération: langages procedu-
raux comme FORTRAN, C, PASCAL, ..

— quatrieme génération: bases de données
relationnelles

— cinquieme génération: intelligence artifi-
cielle (systemes experts, réseaux de neu-
rones artificiels, ...).
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Fig. 1. — Un systéme expert subissant le test
de Turing... (d'aprés [7]3)

d'avoir une stratégie face aux don-

nées manquantes.
Contrairement a un programme clas-
sique, un SE peut se tromper, a |'ima-
ge d'un expert humain. Pour montrer
que cela ne limite pas nécessairement
sa valeur, prenons |'exemple d'un pro-
gramme de jeux d'échecs. Un SE peut

perdre parce qu'il a opté pour un mau-
vais coup, tandis qu’un logiciel exami-
nant exhaustivement toutes les possi-
bilités perdra au temps!

Le moteur d'inférence qui pilote le rai-
sonnement, l'interface constructeur,
I'interface utilisateur sous forme de
fenétres de dialogue et d'affichage
des résultats et des explications, for-
ment ensemble un outil de développe-
ment, souvent aussi appelé «shell,
qui n'est en fait rien d'autre qu'un SE
dont la base de connaissances est
vide. On trouve de plus en plus de ces
shells dans le commerce, a des prix
variant en principe en fonction de leur
puissance et de leur convivialité.
Alars qu'a l'origine, on distinguait
trois types de SE selon qu'ils étaient
principalement basés sur:

— desregles,

— des réseaux sémantiques, définis-
sant des relations entre objets or-
ganisés en classes, avec des mé-
canismes d'apprentissage,

des «structures» (frames en an-
glais), caractérisées par la notion
de slots et de démons (procédures
lancées automatiquement a la sur-
venance de certains événements),
la plupart des shells actuels cumulent

C superviseur )
module de
moteur dialogue -
d'inférence avec ——— utilisateur
I'utilisateur
base de connaissance
faits regles
| expert
module de
dialogue o
avec le cognicien
constructeur

Fig. 2. — Schéma d'un systéme expert avec ses différentes composantes. Le cognicien construit le systéme expert en rem-
plissant la base de connaissances avec I'information préalablement recueillie auprés de I'expert. L utilisateur ne voit le sys-
téme expert qu'a travers une interface de dialogue. Un shell ou outil de construction est un systéme expert dont la base de

connaissances est vide.

les trois aspects. Certains cogniciens 205
préferent d'ailleurs s'en passer et pro-
grammer directement en LISP ou PRO-

LOG, qui sont des langages informa-
tiques adaptés aux SE.

Construction d’un systeme expert
Lutilisation d'un shell (qui doit étre
soigneusement choisi en fonction du
probleme a traiter et du budget a dis-
pasition), permet en principe au cogni-
cien de se concentrer sur la concep-
tion et le développement de la base
de connaissances, sans devoir ap-
prendre d'autre langage de program-
mation que la syntaxe de I'outil qu'il
utilise. La tache principale du cogni-
cien consiste alors a recueillir, struc-
turer et coder un savoir.

La méthode classique pour recueillir
I'information est I'interview d'experts
du domaine (des géotechniciens expé-
rimentés dans notre cas) et la consul-
tation de la littérature spécialisée. En
principe, toutes les sources sont a ex-
ploiter, quitte a différencier la validité
de I'information selon sa provenance
(vair plus loin). Les régles d’expertise
ainsi récoltées doivent en général &tre
structurées avant de pouvoir étre for-
malisées et introduites dans la base
de connaissances. Ce travail nécessi-
te une bonne représentation du do-
maine étudié, c'est-a-dire un choix
judicieux des objets, des classes d'ob-
jets et des propriétés pertinentes, ain-
si qu‘une identification préalable des
types de conclusions souhaitées. Un
«gros» SE nécessite aussi des méca-
nismes de vérification de la consistan-
ce des regles, surtout si I'élaboration
s'étend sur une longue durée ou si
plusieurs personnes participent a sa
réalisation.

Les regles se présentent générale-
ment sous la forme:

Si [un ensemble de propriétés
d'objets  satisfait certaines
conditions],

Alors [I'hypothése est vérifiée avec
un certain degré de certitude]
[le SE déclenche certaines ac-
tions].

Si I'hypothese d'une regle devient
condition pour une autre, on dit que

Et

3Les chiffres entre crochets renvoient a la bi-
bliographie a paraitre en fin de la deuxieme
partie de cet article.




06
\S No 12

26 mai 1993

les deux regles sont chainées, et lors
de I'exécution, leur évaluation se fera
en cascade.

Un SE opérationnel peut contenir plu-
sieurs milliers de regles, et sa mise
au point nécessite plusieurs hommes-
années de travail; un certain nombre
de prototypes sont d'ailleurs souvent
nécessaires avant la réalisation de la
version définitive. Une technique
consiste a utiliser un shell pour les es-
sais, puis de réécrire un moteur d'in-
férence et une interface bien adaptés
au probleme étudié une fois le produit
stabilisé.

Les shells, qui devaient a l'origine
permettre au non-informaticien de
construire un SE en alignant simple-
ment des regles, ont été sans cesse
perfectionnés pour pouvoir de mieux
en mieux simuler les différentes
nuances du raisonnement humain. On
en est arrivé a des produits tres per-
formants, mais tellement sophistiqués
que leur utilisation est devenue sou-
vent plus complexe que le maniement
d'un langage de troisieme génération!

Principaux domaines

d‘application des systéemes
experts en géotechnique

La technique des SE est bien sir
inadaptée a tout ce qui reléve du cal-
cul, mais s'applique bien aux do-
maines régis par |'empirisme, le sa-
voir-faire, I'expérience professionnel-
le, I'intuition. On trouvera des réfé-
rences de réalisations pratiques prin-
cipalement dans (2], [6] et [10]

Parmi les SE classiques, citons PROS-
PECTOR, congu pour aider les géo-
logues dans la prospection de mine-
rais, et qui a été un des premiers
grands systemes experts en exploita-
tion; il semblerait méme qu'il ait per-
mis de localiser un gisement de mo-
lybdene en 1980! Son développement,
commencé en 1974, a nécessité plus
de 30 années-personnes de travail et
contient plus de 1000 regles fournies
par 9 experts en minéralogie.

Citons également un systeme expert
pour le choix du souténement de gale-
ries minieres développé par Baroudi
(1] et un autre pour le choix du soute-
nement lors de percements d'ou-
vrages souterrains de génie civil, réa-
lisé a I'EPFL [4].

Parmi les domaines potentiels qui de-
vraient bien se préter au traitement
par SE, nommons entre autres:

— la sélection de sites de construc-
tion,

— les campagnes de reconnaissance
géotechnique et I'interprétation
des données de forages,

— l'aide a la décision lors de la
conception de fondations, de
confortations ou d'ouvrages sou-
terrains,

— le choix des méthodes de construc-
tion et de soutenement des ou-
vrages souterrains,

— I'analyse de risques sismiques,

— |a prospection,

— la classification des sols ou mas-
sifs rocheux en fonction de leur
utilisation,

— |'établissement de plans d'auscul-
tation d'ouvrages ou de surveillan-
ce d'instabilités, etc.

Apports et limites

des systemes experts

Comme toute nouveauté, la technique
des SE souffre actuellement encore
de I'enthousiasme typique des «nou-
veaux convertis» qui veulent |'appli-
quer a toutes les sauces. Or, il est
clair que si le raisonnement a modéli-
ser a de «bonnes propriétés» (s'il est
linéaire, bien structuré, simple, com-
plet, stable, etc.), et que l'utilisateur a
juste besoin du résultat final sans
justification ni explication de Ia
démarche, la programmation algorith-
mique classique offre toujours le
meilleur outil.

En revanche, I'apport des SE au trai-
tement de problemes mal structurés
est indéniable. Rarement développés
dans le but de remplacer un expert
humain, ils servent surtout a garder,
stabiliser, objectiviser et unifier le sa-
voir, comme aide-mémoire pour |'ex-
pert lui-méme, ainsi qu'a des fins pe-
dagogiques pour futurs experts. A la
limite, on peut concevoir que dans des
situations bien particuliéres les SE en
arrivent a supplanter les experts hu-
mains. Cela peut étre le cas dans des
situations nécessitant la collaboration
de spécialistes de domaines diffé-
rents, lorsqu'aucun expert humain ne
dispose d'une connaissance globale
du sujet, ou encore, lorsque I'experti-

se dépend de technologies qui évo-
luent tellement rapidement que I'ex-
pert a du mal a suivre.

Une retombée annexe et non négli-
geable des SE a par ailleurs été le dé-
veloppement d'interfaces utilisateurs
de plus en plus conviviales (ce qui a
aussi rendu les utilisateurs toujours
plus exigeants...).

Les problemes majeurs que rencontre
cette nouvelle approche sont moins
dus aux limitations des outils de déve-
loppement qu'aux difficultés d'acqui-
sition et de formalisation de connais-
sances complexes. On s'est en effet
rendu compte que la réalisation d'un
systeme expert exploitable demandait
une bonne structuration de la base de
connaissances, et qu'il ne suffisait
pas simplement d'empiler des regles;
parallelement, I'avantage de ne pas
devoir apprendre de langage de pro-
grammation est tout relatif, la mani-
pulation de shells performants étant
souvent plus complexe que des lan-
gages comme BASIC, FORTRAN ou C.
Le cognicien a donc tout intérét a pos-
séder de solides bases informatiques,
et le temps n'est pas encore venu ou
il suffira de savoir taper a la machine
pour construire un SE conséquent...
Un autre grand probleme est lié a I'ex-
plicitation du raisonnement par I'ex-
pert, qui sait résoudre la tache, mais a
beaucoup de peine a exprimer son
cheminement intellectuel sous forme
de regles. Ce handicap sérieux va
pouvoir étre contourné par la tech-
nique des réseaux de neurones artifi-
ciels.

Réseaux de neurones artificiels

Contexte

Tout comme les systemes experts,
cette technique est aussi issue d'une
branche de I'IA, le connexionnisme,
lui-méme né de la constatation de
plusieurs insuffisances propres a I'in-
formatique basée sur la logique for-
melle. En effet, une comparaison des
performances pour la résolution de
taches simples, comme la reconnais-
sance de formes ou |'acces a la mé-
moire, montre que |'exécution séquen-
tielle d'instructions — méme sur les
machines les plus performantes — est
d'une inefficacité désespérante par




rapport au cerveau humain. Par
ailleurs, la programmation classique
nécessite toujours une modélisation
du phénomene a simuler, et on
constate que la capacité de représen-
tation des modeles suffit a peine a si-
muler des comportements élémen-
taires et s'avére nettement insuffisan-
te dans la plupart des situations
concretes.

Au lieu de se concentrer sur 'amélio-
ration des modeles de calcul formel
ou sur I'augmentation de la puissance
des machines, les tenants du
connexionnisme ont décidé de chan-
ger d'approche en s'inspirant de la
structure et du fonctionnement céré-
braux et ils proposent |'apprentissage
par I'exemple sur des structures mas-
sivement paralleles. La simulation du
comportement macroscopique  clas-
sique y est remplacée par un traite-
ment statistique, consistant a extraire
les traits caractéristiques des situa-
tions présentées; la solution est alors
I'émergence de tendances sous forme
d'un ensemble de grandeurs analo-
giques.

Bases physiologiques, les
neurones naturels

Les recherches en physiologie ont
montré que du point de vue fonction-
nel, le cerveau peut étre schématisé
par plusieurs couches de neurones in-
terconnectés, ceux d'une couche don-
née travaillant en parallele. Un neuro-
ne est une cellule constituée de trois

\ X1 = sortie du neurone 1

soma

dendrites

A

Fig. 3. — Schéma d'un neurone naturel et de son fonctionnement. L'information est recueillie
par les dendrites, puis circule jusqu‘au soma pour y parvenir avec une intensité et un retard
dépendant de la longueur des dendrites. Celui-ci effectue a chaque instant une sommation de
toutes les impulsions qui lui arrivent, et si la résultante dépasse un certain seuil, il émet un
potentiel d'action unitaire qui est transmis sans altération le long de I'axone. Grace a I'arbo-
rescence terminale, le signal est réparti sur les neurones cibles a travers des synapses qui ont

\ axone
, - >
flux de l'information
20

la faculté de pondérer le flux.

éléments: les dendrites, le soma et
I'axone, quant au point de contact
entre I'axone et une dendrite du neu-
rone suivant, il est appelé une synap-
se. Le principe de son fonctionne-
ment, décrit par le modéle de McCul-
loch et Pitts en 1943 déja, est extré-
mement simple (fig. 3).

Les poids synaptiques varient au
cours du temps, ce qui explique la
plasticité du systeme cérébral qui
évolue avec |'apprentissage et |'expé-
rience. Le mécanisme de cette évolu-
tion, décrit pour la premiere fois par
Hebb, peut se résumer ainsi: une
connexion souvent activée est renfor-
cée (son poids synaptique augmente),
tandis qu‘une connexion peu utilisée
se détériore.

Fonctionnement des réseaux

de neurones artificiels

Le fonctionnement des neurones arti-

ficiels est schématisé a la figure 4.

Ceux-ci sont organisés en réseaux

(fig. b) caractérisés par:

— N points d'entrée et P points de
sortie (N étant la dimension des

neurone 1 et le neurone i

70 \.Wil\ﬂ’:ds synaptique entre le

- X2 W2
= O -
v
Win
k. -
= O
v
rangée k-1 synapses

- .
S

sortie vers
neurone i la rangée
de la rangée k k+1

Fig. 4 — Schéma du fonctionnement d'un neurone artificiel
L'entrée E est la somme des contributions de tous les neurones convergeant vers le neurone |,

c'est-a-dire:
E =X "W, + X, "W, + .+ X, "W

in

La sortie Y, dépend de la valeur de E, relativement au seuil o:

sik <o alors Y, =0
siki= o alors Y, =1

vecteurs de données et Pcelle des
vecteurs résultats);

— QO rangées intermédiaires compre-
nant chacune K{g) neurones ca-
chés;

— une matrice de poids synaptiques
[W], Wi, Etant le poids synap-
tique entre le neurone / de la ran-
gée g, et le neurone j de la rangée
.

— un tableau [o] de seuils, o, étant
le seuil du neurone /de la rangée q.

Apres avoir créé une telle structure en
choisissant judicieusement le nombre
de points d'entrée, de sortie, de
couches cachées et de neurones par
couche, tous les poids Wi, €t les
seuils o, sont initialisés a de petites
valeurs aléatoires. Ensuite, on proce-
de a une phase d'apprentissage, qui
consiste @ mémoriser des associa-
tions entre des vecteurs d'entrée et
des sorties connues par adaptation
des poids Wijg, et éventuellement
des seuils o, L'apprentissage par su-
pervision se fait par cycles de quatre
temps:

— présentation d'un vecteur en en-
trée p; dont on connalt le vecteur
de sortie désiré d;

— détermination de la sortie y; effec-
tive par propagation du vecteur p;
a travers les différentes couches;

— évaluation de l'erreur en sortie
comme différence entre le résultat
calculé y; et la sortie désirée d;;

— finalement, correction des poids
afin de minimiser I'erreur, et nou-
veau cycle pour le prochain couple
de vecteurs.

Il existe plusieurs techniques d'adap-

tation des poids, la plus classique

étant la rétropropagation du gradient,
qui consiste a propager le terme d'er-
reur @, depuis la derniere couche vers
la premiere et de corriger les poids de
chaque connexion proportionnelle-
ment a la part du terme d'erreur qui y
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transite (c'est-a-dire de sa participa-
tion a I'erreur totale). Le facteur de
proportionnalité, compris entre 0 et 1,
est appelé parametre d'apprentissa-
ge. Le choix de sa valeur influe sur la
vitesse et |a stabilité de I'apprentissa-
ge: si elle est trop petite, les correc-
tions sont faibles et I'apprentissage
est extrémement lent; si elle est trop
grande, les adaptations se font par
sauts et il y a risque d'instabilité. Il
faut donc trouver un compromis, et si
un réseau doit «apprendre» un en-
semble de A vecteurs prototypes, on
lui présentera plusieurs fois les A vec-
teurs dans un ordre aléatoire, avec un
parametre d‘apprentissage décrois-
sant vers zéro avec le nombre de pré-
sentations.

Une fois I'apprentissage fini et les
poids synaptiques et les seuils fixés,
le réseau est prét pour la production,
appelée phase de reconnaissance, ou
I'on présente des vecteurs d'entrée x;
inédits et I'on s'intéresse aux sorties
y; produites par le réseau.

Illustration par un exemple

Pour illustrer I'utilisation d'un RNA,
supposons qu‘on s'intéresse au codt
du metre linéaire de tunnel en fonc-
tion de la forme, du volume excave,
de la hauteur de couverture, des ca-
ractéristiques du soutenement et du
revétement, ainsi que de la présence
ou non d'une étanchéité, et ce, pour
les ouvrages construits depuis 1970.
On suppose aussi disposer de 200 cas

Tableau 1 — Vecteur d'entrée pour un RNA. La premiere colonne décrit six composantes,

—

a

deuxieme donne le type logique des données et la troisiéme montre un exemple.

Désignation Type des données Exemple

Forme Catégorie Fer a cheval

Section [m?] Nombre réel 110,0

Hauteur de couverture [m] Nombre réel 125,0

Type de soutenement Catégorie Boulons + béton projeté
Epaisseur du revétement [m] Nombre réel 0,40

Présence d'une étanchéité Booléen NON

réels pour lesquels ces caractéris-
tiqgues et le colt au metre sont
connus; on les appellera les vecteurs
d'apprentissage, car ce sont eux qui
vont servir de modeles.

Dans un premier temps, il faut définir
la taille des vecteurs d'entrée et de
sortie. La sortie se limite a un scalaire
(le colt au metre), tandis que I'entrée
est un vecteur a six composantes dont
le tableau 1 donne la désignation, le
type logique et un exemple; donc N =
BetP=1.

Il faut ensuite choisir le nombre de
couches intermédiaires et leur taille.
Il n'existe malheureusement aucune
regle pour optimiser ce choix, et il
faut procéder par tatonnement. En gé-
néral, on commence par construire un
réseau avec une seule couche cachée,
et si le résultat n'est pas satisfaisant,
on augmente incrémentalement la
taille (on peut aussi appliquer une
stratégie inverse ou méme mixte). On
pourvoira cette couche d'un certain
nombre de neurones (p. ex. 6) tout en
gardant la possibilité d'augmenter ou
de diminuer ce nombre par la suite.
[l faut savoir que le nombre de neu-
rones cachés a une influence sur la
qualité de ce qui a été appris. Un ré-
seau comprenant beaucoup de neu-
rones permet de mémoriser le détail
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Fig. 5 — Schéma d'un réseau de neurones artificiels a 4 points d'entrée, 3 couches cachées et
2 points de sortie. Afin de ne pas surcharger la figure, toutes les connexions n‘ont pas été des-
sinées, en particulier les connexions entre neurones d'une méme couche.

de toutes les situations présentées,
mais risque de donner des résultats
peu robustes lors de la reconnaissan-
ce. Peu de neurones, au contraire,
permettent d'extraire des tendances
générales et produisent des résultats
assez robustes mais relativement in-
différenciés. Une analogie avec les
polynémes de régression permet de
comprendre ce phénomene (fig. 6).
Une fois une topologie de réseau
choisie, on initialise les poids et les
seuils a de petites valeurs aléatoires
et on procéde a |'apprentissage en
présentant plusieurs fois la série des
200 cas dont on dispose. On initialise-
ra le parametre d'apprentissage a la
valeur 0,5 par exemple et on le fera
décroitre du quart de sa valeur a
chaque série de présentations (ici non
plus, il n'y a pas de régle générale).
Comme critere d'arrét, on peut
prendre le nombre de séries présen-
tées (1000 p. ex.), ou une limite de
convergence (p. ex., on arrétera des
que toutes les erreurs de la série se-
ront inférieures a un certain seuil).

La qualité du réseau obtenu peut étre
vérifiée sur un ensemble de vecteurs
témoins connus et qui n‘ont pas servi
pour |'apprentissage. Aussi longtemps
que le réseau n'est pas jugé satisfai-
sant, on le modifie en agissant sur le
nombre et |a disposition des neurones
cachés, en sachant que tout |I'appren-
tissage devra étre recommencé a
chaque changement! Les criteres pour
décider si un réseau est acceptable
sont plus ou moins objectifs et dépen-
dent essentiellement des moyens de
vérification a disposition (vecteurs té-
moins) et des performances qu'on
veut atteindre (colt d'une erreur de
prédiction).

Le cadre d'apprentissage, qui est I'es-
pace couvert par les vecteurs d'ap-
prentissage, est une autre notion im-
portante, car la qualité des reconnais-
sances diminue dés que le vecteur
présenté s'éloigne de ce cadre. Dans
notre cas, un tunnel construit en 1955
sortira du cadre d'apprentissage. Il en
serait de méme pour un tunnel de




150 m? si tous nos 200 tunnels de ré-
férence avaient une surface inférieure
a 110 m2. Pour une seule dimension,
la définition du cadre d'apprentissage
est triviale; elle peut I'étre beaucoup
moins dés qu'on croise plusieurs di-
mensions comme le montre le tableau
2: bien que dans cet exemple, un tun-
nel de 105 m2 appartienne au cadre
d'apprentissage, de méme qu'un tun-
nel sous 1500 m de couverture, un
tunnel présentant simultanément les
deux caractéristiques en sort!

Dans ce contexte, il faut néanmoins
préciser que méme si la qualité du ré-
sultat souffre des qu'on sort du cadre
d'apprentissage, les performances
des RNA sont généralement robustes.
De méme, aprés un apprentissage
adéquat sur la base dun grand
nombre de cas différents, le RNA ob-
tenu est souvent capable de traiter de
facon satisfaisante des données par-
tiellement incompletes. Dans des si-
tuations idéales, on peut a la limite
concevoir qu'une des composantes du
vecteur d'entrée soit erronée sans que
le résultat n'en soit beaucoup affecté.
Cela représente un progres indéniable
par rapport aux systemes experts
classiques, méme si une telle robus-
tesse se paye par un certain manque
de sensibilité.

Finalement, il faut aussi se poser la
question de la pertinence des para-
metres d'entrée par rapport a la sor-
tie. Dans notre cas, on peut se de-
mander si les colits au metre de tun-
nel sont bien dus aux variables du ta-
bleau 1, et a elles seules. La prise en
compte d'un parameétre «superflu»
n'est pas grave, car le RNA affecte
toutes les liaisons qui en partent de
poids nuls, et le seul inconvénient est
un surdimensionnement inutile du
RNA. Par contre, si on oublie des fac-
teurs importants (comme c'est de tou-
te évidence le cas dans notre
exemple), leur influence sera arbitrai-
rement répartie sur les parametres
présents, ce qui donne un RNA patho-
logique. Pour éviter un tel phénome-
ne, il est conseillé de partir d'un en-
semble de données aussi complet que
possible et de le réduire incrémenta-
lement en supprimant progressive-
ment les parametres dont les poids
sont nuls.
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Fig. 6 — Influence du degré d'un polynéme de régression sur la qualité et la sensibilité de la
prédiction. Un polyndme de degré élevé, passant fidélement par tous les points de définition,
présente tellement de méandres que I'erreur de prédiction peut étre relativement grande; en
revanche, un polynéme de degré 1 (une droite) reste relativement éloigné de chaque point,

mais donne une prédiction moyenne robuste.

Portée et limitations des réseaux
de neurones artificiels
Contrairement aux systemes experts,
le comportement des réseaux de neu-
rones artificiels est de type purement
associatif ou «réflexe», c'est-a-dire
sans «raisonnement» sous-jacent, ce
qui présente des avantages et des in-
convénients: la signification des situa-
tions d'apprentissage n'a pas besoin
d'étre explicitée (on économise la
représentation par un modele), mais,
par contre, la sémantique des asso-
ciations formées lors de I'apprentissa-
ge n'apparait nulle part et les regles
restent sans signification physique.
La qualité et la puissance d'un réseau
augmentent avec le nombre et la co-
hérence des items appris et les solu-
tions montrent une robustesse aux
données manquantes ou aberrantes,
éventuellement méme erronées, qui
n'existe pas dans les modéles infor-
matiques basés sur la logique formel-
le. Il n'est par contre pas toujours fa-
cile de savoir si le réseau construit est
sain. Plusieurs causes peuvent en ef-
fet mener a des réseaux patholo-
giques sans que le constructeur ou
I'utilisateur ne s'en rendent compte,
comme une mauvaise définition des
données ou encore une stabilisation

du systéme a un «minimum local» non
désiré (par analogie avec les fonctions
d'interpolation par minimisation de
I'erreur quadratique).
Malgré des débuts d'applications
dans la pratique, des questions fonda-
mentales cherchent encore des ré-
ponses, comme la disposition et le
nombre optimal de neurones cachés
en fonction du probleme a traiter ou la
conception de techniques d'apprentis-
sage plus rapides. La construction
d'un réseau de neurones artificiels
utilisable nécessite encare beaucoup
de savoir-faire empirique et les réali-
sations actuelles se situent encore
bien loin du fonctionnement effectif
du cerveau.
On peut d'ailleurs noter que malgré
les progres effectués, ni les systemes
experts ni les réseaux de neurones ar-
tificiels n'ont jusqu'ici permis de réali-
ser une machine tant soit peu «intelli-
gente», et que |'ordinateur continue a
bien faire ce que le cerveau fait mal
(p. ex. les opérations numériques) et a
pratiquement ne pas savoir faire ce
que le cerveau fait trés bien (recon-
naissance de visages p. ex.).

(A suivre)

Tableau 2 — Cadre d’apprentissage. On a représenté le nombre de vecteurs d'‘apprentissage
par section et hauteur de couverture. Bien que 45 tunnels aient une couverture supérieure a
1000 m et que pour 25, la section soit supérieure & 100 m?, la portion d'espace (H > 1000 m et
S > 100 m?) n'appartient pas au cadre d'apprentissage.

S <100 m? 100m?<S<110m?
H <1000 m n=120 n=45
1000 m < H <2000 m n=25 n=0
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