Zeitschrift: Ingénieurs et architectes suisses

Band: 118 (1992)

Heft: 4

Artikel: La pompe à chaleur: comment acheter le kWh au quart de son prix

usual

Autor: Gaillard, Paul

DOI: https://doi.org/10.5169/seals-77737

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 25.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

La pompe à chaleur

Comment acheter le kWh au quart de son prix usuel

Par Paul Gaillard, ingénieur SIA, Pierrefleur 39, 1004 Lausanne Telle que les médias la présentaient il y a quelques décennies encore, la pompe à chaleur tenait à la fois du miracle – on pouvait «trouver» de la chaleur dans l'eau froide d'un lac en hiver – et du mystère, les explications du journaliste demeurant souvent fumeuses. De plus, les exemples d'applications étaient rares et ne concernaient pratiquement pas la maison individuelle. Aujourd'hui, de nombreuses installations de ce type sont en fonction dans notre pays, assurant sans problème le confort de très nombreuses villas notamment.

En fait de miracle, la pompe à chaleur ne fait que tirer parti de différences de température dans un circuit; ainsi, même si sa température est de 0 °C, un terrain réchauffera un fluide qui le parcourt à une température plus basse, et cela gratuitement. Quant au liquide mystérieux, c'est un transporteur de calories: la chaleur qu'il prend au terrain en est extraite lorsqu'il traverse le sol des locaux à chauffer. Ajoutons que le compresseur et le détendeur intégrés à un tel circuit ne font que renforcer ce processus de base en faisant circuler le fluide: le premier élève encore la température du fameux fluide après son passage dans le terrain, tandis que le second le réintroduit à basse température dans le jardin.

ne entreprise valaisanne, qui installe des pompes à chaleur en Suisse romande principalement, propose des journées portes ouvertes et organise une conférence de presse quand l'une de ses réalisations arrive à terme, créant ainsi l'occasion de faire mieux connaître cette technique. Nous avons assisté à l'une de ces manifestations et pensé qu'un rapport, exempt de considérations trop scientifiques, serait peut-être bien accueilli par les lecteurs d'Ingénieurs et architectes suisses.

Nous pensons en effet que la pompe à chaleur (ou thermopompe) est probablement moins connue qu'elle ne le mériterait. Relevant de principes élémentaires pour les spécialistes de la thermodynamique, son fonctionnement demeure moins familier aux autres techniciens. Nous tenterons ici de dépasser l'affirmation simpliste selon laquelle la pompe à chaleur, «c'est comme un frigo, sauf que c'est le contraire» pour en donner une idée plus élaborée et plus précise. Pour mieux situer le phénomène, nous limiterons toutefois notre discussion à un système destiné à l'habitat individuel essentiellement, bien que d'autres affectations ne soient ni rares ni problématigues. Il sera donc question de villas avec jardin potager ou espace extérieur de loisir.

Principes généraux

Tout gaz comprimé quelque peu énergiquement s'échauffe et il suffit de faire usage d'une pompe à vélo pour s'en convaincre. Si, maintenu sous pression et refroidi à la température ambiante, ce gaz est alors «détendu», c'est-à-dire libéré et rendu à la pression ambiante, il se refroidit encore en retrouvant son volume originel: autrement dit, on a «fabriqué du froid». Ensuite, ce gaz se réchauffera à nouveau au contact de la chaleur de l'environnement. Un exemple connu est celui du $\mathrm{CO_2}$ qui, détendu en neige carbonique, ne tarde pas à repasser à l'état gazeux et à la température ambiante.

Un gaz comprimé peut aussi diffuser sa chaleur en circulant dans un serpentin noyé sous un plancher. Il y est entré chaud, et en sort partiellement liquéfié et refroidi. Détendu dans un autre serpentin noyé, lui, sous la surface du jardin attenant à la maison, il va y entrer à une température alors plus basse que celle du terrain où il se réchauffera donc avant d'être à nouveau comprimé comme mentionné au début de l'alinéa.

Notre gaz ainsi transféré dans le plancher à chauffer a donc reçu deux apports d'énergie: les calories gratuitement prélevées dans le terrain et la chaleur de compression. Avec un gaz choisi pour ses qualités caloporteuses et soumis à des conditions de pression, de volume et de température adéquates, un compresseur absorbant 1 kWh du réseau électrique permettra d'en tirer environ 3 gratuitement du jardin. La pompe à chaleur est donc

un système qui délivre, au milieu à chauffer, quatre fois l'énergie qu'il emprunte au réseau, divisant par 4 le prix du courant acheté à des fins de chauffage!

En outre, nous allons voir que le jardin peut n'être qu'une source de chaleur parmi d'autres pour alimenter un tel système.

Pompe à chaleur monofluide, à 3 sources et 3 fonctions

Une installation standard, qu'il nous a été donné d'examiner à Vich au printemps 1991, s'alimente à trois sources d'énergie.

Premièrement, la chaleur est prélevée dans le terrain attenant à l'habitation à chauffer (fig. 1); le plus souvent, c'est un jardin potager ou d'agrément. L'expérience ayant montré qu'il s'agit là d'une profondeur optimale, le serpentin est enfoui à environ 50 cm, ce qui ne nécessite pas de travaux de terrassement importants et laisse l'appareillage facilement accessible en cas de besoin. La surface du jardin n'est pas hypothéquée par la présence de tubes en sous-sol, et peut être aménagée en pelouse, rocaille, chemins, massifs de plantes buissonneuses ou autres. Un potager peut également être exploité sans inconvénient au-dessus du capteur: le soutirage de chaleur ayant lieu en hiver, la production jardinière (d'été) n'est pas affectée par le refroidissement du sol. Deuxièmement, le renouvellement de l'air dans l'habitat est couplé à une récupération de chaleur. Avant d'être rejeté des locaux chauffés à 20 °C, l'air vicié est refroidi à 2 °C, fournissant au passage une quantité de chaleur qui suffit à couvrir un tiers des besoins de chauffage. Un agréable confort exige en effet un minimum de renouvellement de l'air, estimé à 0,7-0,8 fois le volume habitable par heure (fig. 2). En l'absence d'un tel dispositif de refroidissement de l'air à expulser, les rejets d'air chauffé et l'introduction d'air extérieur froid entraînent des pertes de l'ordre de 30 à 40% du bilan total de chauffage.

De plus, l'énergie de déshumidification des atmosphères de cuisine et locaux sanitaires, de même que l'équivalent calorifique de l'énergie élec-

54

IAS Nº 4

5 février 1992

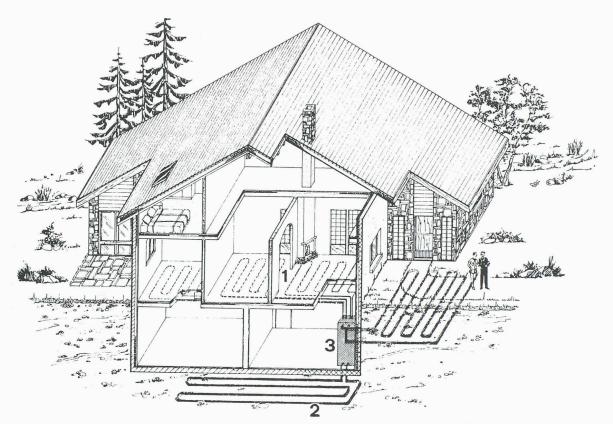


Fig. 1. - Pompe à chaleur avec capteur géothermique et plancher chauffant.

- 1 Plancher chauffant (tube coaxial cuivre + gaine polypropylène noyé dans la chape).
- 2 Capteur géothermique (tube coaxial cuivre + gaine polypropylène enterré à l'extérieur).
- 3 Armoire thermique.

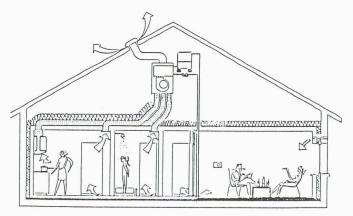


Fig. 2. – Schéma de circulation de l'air.

trique utilisée par le compresseur et le ventilateur viennent encore s'ajouter à cette récupération de chaleur. En une année, selon la situation, l'isolation de la maison et la puissance du système, l'économie d'énergie de chauffage de l'habitation peut ainsi être de 45 à 50%.

Enfin, on extrait aussi la chaleur des eaux usées (fig. 3). Un ménage moderne utilise environ 100 000 litres d'eau chaude par an, rejetée pour une bonne part entre 30 et 40 °C (eaux de lavage vaisselle-lessive, hygiène, etc.). Ces eaux sont rendues à l'égout après refroidissement à 9 °C.

La récupération est d'autant plus intéressante pour le bilan énergétique d'un ménage que:

- la consommation journalière d'eau chaude dépend fortement de l'évolution des comportements en matière d'hygiène et de recherche de commodité, entraînant la croissance de la consommation;
- les installations de chauffage sont devenues plus efficaces alors que les progrès de l'isolation des bâtiments diminuent les besoins en énergie.

En conséquence, l'importance relative de la part des eaux sanitaires dans le bilan croît très sensiblement et de manière assez constante.

Toutes les eaux usées de l'habitation sont amenées dans un stock intermédiaire. Vu la quasi-simultanéité du rejet des eaux usées et de l'entrée de l'eau froide dans le préparateur, un accumulateur-refroidisseur de 100 litres suffit à l'échange thermique pour rejet à 9 °C et renvoi des calories récupérées, par le compresseur, vers le préparateur d'eau chaude.

Ensemble, les solutions décrites cidessus permettent donc de couvrir les trois quarts des besoins de chauffage et d'eau chaude d'une maison par des apports gratuits — que ce soit par récupération (énergie de l'air vicié et des eaux usées) ou exploitation d'énergie indirectement solaire (chaleur du terrain) — seuls 25% de toute la chaleur utile provenant du réseau électrique.

La démonstration à laquelle nous avons assisté portait sur un tel ensemble d'installations assurant le chauffage des locaux, de l'eau chaude sanitaire et l'aération contrôlée d'une maison individuelle.

Le chauffage des locaux par pompe à chaleur supprime les inconvénients des moyens traditionnels, notamment les émissions de fumée, de gaz et de poussières. Il dispense une chaleur douce et homogène par le plancher. De plus, par temps de canicule, l'installation peut «produire de la fraîcheur» par simple inversion du circuit thermodynamique, ce qui représente un surcroît de confort appréciable.

L'eau chaude sanitaire est préparée dans un ballon en acier émaillé et un tube de cuivre de qualité frigorifique serpentant sur le pourtour de la cuve fait office de condenseur. Celui-ci est relié à la cuve par un enduit thermoconducteur pour obtenir un échange thermique optimal, formant un véritable couverture chauffante sur 80% de la surface de la cuve du chauffeeau. Le système de chauffage n'est pas en contact direct avec l'eau sanitaire, ce qui garantit la pureté de celle-ci. Enfin, l'isolation de l'ensemble est une jaquette en mousse de polyuréthane souple de forte épaisseur. Un thermostat spécial est monté sur la cuve, en liaison directe avec le compresseur, qui commande la température de sortie de l'eau. L'ensemble respecte les normes ASE

Quant à l'aération contrôlée de l'habitation, elle est importante. De nos jours en effet, le soin apporté à l'isolation de l'habitat implique pratiquement l'étanchéité, au point que les courants d'air sont exclus s'ils ne sont pas délibérément provoqués, ce que les résidents négligent souvent de faire. Il en résulte que l'air vicié des appartements n'est pas toujours évacué et remplacé par de l'air frais dans une mesure suffisante.

Un habitat de taille courante exige environ 500 litres d'air sain par heure pour éliminer ou atténuer les pollutions liées tant au gaz carbonique expiré par les êtres vivants, qu'à divers évaporats émanant des matériaux, peintures et vernis, sans oublier les fumées, poussières, fibres des isolants et odeurs de toutes provenances. D'autre part, le radium plus ou moins présent dans tout terrain dégage du radon (un gaz légèrement radioactif) qu'il s'agit également d'éliminer. L'aération contrôlée assure donc une ambiance plus saine que celle qui s'installe spontanément dans les locaux «trop bien» isolés.

Enfin, le confort de l'habitat tient encore à d'autres conditions, que la pompe à chaleur en général et la monofluide en particulier réalisent parfaitement: le chauffage par les planchers est à basse température, la régulation thermique a lieu par zones et un bien-être acoustique évident résulte d'une installation si peu bruyante qu'il est aisé de la rendre totalement inaudible.

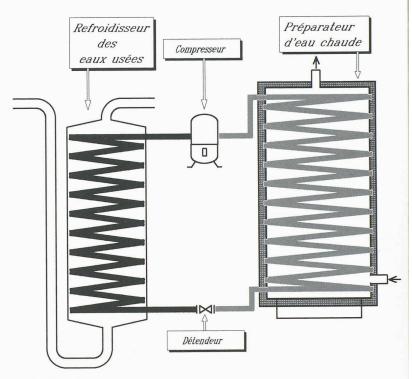


Fig. 3. – Extraction de chaleur des eaux usées.

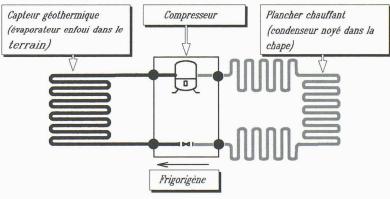


Fig. 4. – Schéma de la pompe à chaleur monofluide.

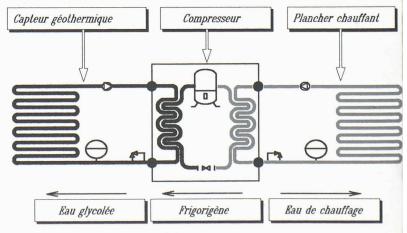


Fig. 5. – Schéma d'un système à trois fluides.

6

4S Nº 4

5 février 1992

Aspects essentiels de la pompe à chaleur monofluide

Fiabilité et longévité

La pompe à chaleur se compose essentiellement de trois éléments: un serpentin collecteur enfoui dans le terrain, un système de distribution de chaleur multicircuits noyé dans les planchers de l'habitation, et un groupe de compresseurs assurant la circulation du fluide à l'intérieur et à l'extérieur du bâtiment.

Le caractère original de la pompe à chaleur monofluide est, pour chaque compresseur pris isolément, l'unique circuit où circule un seul fluide, ce qui se traduit par une robustesse et un rendement énergétique exceptionnels. Son fonctionnement est illustré par la figure 4. La phase gazeuse du fluide est compressée avec augmentation de sa température pour être transférée aux planchers de l'habitat; là, elle cède sa chaleur pour le chauffage des locaux et restitue une phase liquide plus importante (condensation); à la sortie des planchers, un détendeur la dirige vers le terrain qui lui cède de la chaleur (évaporation); puis le cycle recommence.

L'énergie fournie par le réseau électrique sert pour une très faible part au transport du caloporteur, pour une part beaucoup plus forte à son chauffage, donc à celui du local. La chaleur du jardin sert exclusivement au chauffage, et précisément à la fraction gratuite (70 à 75%) de celui-ci. Cela explique le COP (coefficient de performance) de la pompe à chaleur: 1 kWh fourni par le réseau permet le prélèvement de 3 kWh dans le jardin, et leur transport vers la maison; donc la disposition de 4 kWh pour le chauffage de l'habitat. Le COP est alors de 4.

A titre de comparaison, examinons l'autre système communément offert sur le marché: la pompe à chaleur multifluide. La figure 5 schématise le dispositif complet d'un système à trois fluides.

Le jardin est parcouru par un circuit d'eau glycolée (par exemple), avec les organes nécessaires à son fonctionnement (notamment à la circulation du fluide). Les radiateurs de l'habitat font partie d'un autre circuit qui a les mêmes exigences, où circule de l'eau de chauffage. Entre ces deux circuits indépendants, un troisième où circule un fréon est séparé des deux précédemment décrits par des échangeurs de chaleur et permet à la pompe à chaleur de jouer son rôle.

On le voit, un tel système implique un nombre d'éléments et une complexité nettement supérieurs. Ainsi, là où un compresseur et un détendeur suffisent à équiper chaque circuit d'une pompe à chaleur monofluide, les systèmes multifluides nécessitent en outre des circulateurs, des vases d'expansion, des purgeurs, des vannes et des échangeurs. Cela se traduit naturellement par des investissements et des coûts d'exploitation plus faibles pour la pompe à chaleur monofluide. ainsi que par des risques de pannes presque nuls (moins de pièces mobiles, moins de matières galvaniquement incompatibles et donc de corrosion, moins de risques également pour l'environnement), et donc une longévité accrue.

Au chapitre de la fiabilité, la pompe à chaleur et son système de circuits doit fonctionner toute l'année à coup sûr, tant mécaniquement, électriquement, que chimiquement (absence d'oxydation) et l'utilisateur doit pouvoir se passer de tout moyen de chauffage ou de refroidissement d'appoint.

Le distributeur-installateur du produit que l'on nous a invité à voir a insisté sur les points suivants.

D'abord, la panne générale est impossible (hormis celle du réseau électrique local bien entendu, mais l'arrêt de ce dernier n'est jamais de longue durée, sauf catastrophe naturelle affectant d'ailleurs aussi les autres systèmes de chauffage modernes). En effet, selon la taille et la structure (nombre et disposition des pièces essentiellement) de la maison, les circuits distincts des pompes à chaleur individuelles sont au nombre de 6 à 10 dans la plupart des cas. Il s'agit de tubes de cuivre gainés de polyéthylène, dont aucun de ceux mis en service n'a posé un quelconque problème. Le dimensionnement général est largement calculé pour que l'ensemble fournisse toute l'énergie nécessaire, même lors des hivers les plus rudes.

La panne de circuit individuel étant déjà d'une probabilité extrêmement faible, le risque d'une panne générale est, lui, absolument exclu.

Ensuite, l'absence d'organes faillibles (circulateurs, vannes, purgeurs, vases d'expansion) garantit évidemment l'absence des pannes correspondantes. Quant à l'absence d'eau, elle élimine les corrosions qui pourraient résulter de la coexistence de matières galvaniquement différentes et une construction simple dispense de connexions dont les soudures sont susceptibles de produire des déchets préjudiciables au bon fonctionnement des organes mécaniques. Enfin, l'improbable panne de régulation peut être éliminée par un électricien local de formation standard, et dispense donc du recours à un spécialiste coûteux, souvent indisponible dans l'immédiat.

Economie

Jusqu'à une période récente, les pompes à chaleur coûtaient relativement cher à l'achat et à l'installation. Depuis, les progrès de la technique en ont abaissé le prix dans une mesure considérable et la pompe à chaleur géothermique monofluide occupe une place enviable dans le tableau comparatif 1. Sans oublier qu'elle dispense de la construction comme de l'entretien d'une cheminée et d'une chaudière, ainsi que du logement d'une citerne en chambre forte.

Du strict point de vue consommation, la pompe à chaleur est par nature, donc, un moyen de chauffage plus économique que tout autre système classique. D'autant d'ailleurs que ses circuits peuvent être mis en action progressivement, c'est-à-dire où et quand il le faut, par opposition au «tout ou rien» habituel.

Si l'économie d'exploitation justifie à elle seule le choix de la pompe à chaleur, il se trouve de surcroît que son coût d'installation est lui aussi plus favorable que celui des moyens traditionnels, un gain non négligeable aux yeux de l'investisseur. Le tableau 1 exprime une comparaison à partir de paramètres d'achat choisis sans complaisance pour la pompe à chaleur. Son COP n'ayant pas toujours été ce

Tableau 1

Système de chauffage	Ма	zout	Gaz	(nat.)	PAC GSV*		PAC GMF*	
Investissement	Coût/Fr.	Annuité/Fr.	Coût/Fr.	Annuité/Fr.	Coût/Fr.	Annuité/Fr.	Coût/Fr.	Annuité/Fr.
Installation de chauffage Local + infrastructure	20 000 13 000	2037 1154	15 000.— 6 000.—	1527 532	35 000.— 4 000.—	3564 355	25 000.— 2 000.—	2546.– 177.–
Cheminée Terrassement, sonde	3 000	266	3 500 310	310	9800	918.—	1 000.—	94.—
Coût capital investi (1)		3457		2369.—		4837		2817
Consommations	kg	Fr./an	m³	Fr./an	kWh	Fr./an	kWh	Fr./an
Combustible kWh brûleur + ppe + etc. Maintenance	1580	711 120 450	1867	1027 50 300	5357	803 130 400	5000	750.— 200.—
Coût annuel utilisation		(1281.–)		(1377.–)		(1333.–)		(950.–)
Moy. annuelle 15 ans (2)		1682.—		1808.—		1751		1247
Comparaison des coûts annue	els							
Coût global (1) + (2)		5139		4177		6588.—		4063
Ct./kWh tot. corresp.		34		28		43		27

Légende: GSV = Géothermique Sonde Verticale; GMF = Géothermique Mono-Fluide.

Paramètres de calcul.

Taux intérêt hypothécaire appliqué au capital investi: 8 %

Longévité comptable et annuités:

Amortissement installation: 20 ans; cheminée et locaux: 30 ans; terrassements: 25 ans. Annuité: 10,18 %, 8,88 %, 9,36 %.

Coût de l'énergie consommée:

Consommation annuelle d'énergie de chauffage: 15 000 kWh. Coût unitaire de l'énergie mazout: 0,45 Fr./kg; gaz: 0,55 Fr./m³; électricité: 0,15 Fr./kWh (moyenne HT BT).

Coût du renchérissement énergie et services: 4 %/an.

Avenir pris en compte: 15 ans

Coefficient d'augmentation du prix de l'énergie: 1,31.

qu'il est aujourd'hui, on comprend que la pompe à chaleur ait «mis son temps» à faire ses preuves; de même, comme pour toute technique naissante, un processus de maturation a été nécessaire pour atteindre le niveau de fiabilité qui la caractérise et qui lui vaut aujourd'hui d'occuper la position la plus favorable de tous les procédés de chauffage au point de vue économique.

Effets environnementaux

La pompe à chaleur monofluide constitue pour l'environnement un système particulièrement favorable. D'abord, c'est un matériel qui consomme peu d'énergie pour sa fabrication même. Ensuite, sa consommation en cours de fonctionnement est faible puisque, on l'a vu, les trois quarts de la chaleur fournie à l'habitat sont tirés gratuitement de la nature sans le moindre effort d'extraction. Enfin, l'exploitation normale de la pompe à chaleur monofluide ne provoque aucune émission polluante. Ce que l'on ne peut dire des moyens de chauffage traditionnels, comme le montre fort bien le tableau 2 des pollutions annuelles dues au chauffage d'une maison individuelle.

Par ailleurs, comme le souligne le protocole de Montréal, le caloporteur HCFC R22 utilisé dans la pompe à chaleur monofluide offre:

- un coefficient de destruction de l'ozone 12 fois moins actif que le plus destructeur des autres caloporteurs utilisables (le CFC 115);

- une durée de vie de 3 à 4 fois moins longue que le plus favorable (CFC 11),
- une action sur l'effet de serre 6 fois moindre que le même relativement bien classé CFC 11.

Le tableau 2 donne une idée des sources de pollutions courantes avant 1991. Et n'oublions pas qu'après cette année, certes marquée par l'interdiction de nombreux aérosols, il subsistera néanmoins encore plus de 80% des causes précédentes de pollutions atmosphériques! La pompe à chaleur contribue à déconcentrer celles de l'habitat, ce qui représente déjà un résultat immédiat et local, même si cela ne dispense pas de poursuivre la lutte sur d'autres plans, bien entendu.

Chacun des 6 à 10 circuits d'une pompe à chaleur monofluide ne contient que 1,5 kg d'un fluide dont la toxicité est si faible que l'on peut boire sans danger de l'eau saturée en HCFC R22 (qui a été choisi comme le plus sûr des fréons du point de vue sanitaire). En outre, comme la probabilité de rupture d'un circuit est infime et que celle de toucher plus d'un circuit simultanément est quasi nulle, on réalise le niveau de sécurité élevé du système. Enfin, à une époque où la préoccupa-

tion de recycler tout ce qui est recyclable gagne du terrain, il faut apprécier cette caractéristique exceptionnelle de la pompe à chaleur qui puise à trois sources d'énergie dont deux internes à l'habitat, à savoir la chaleur de l'air vicié et celle des eaux usées. Au lieu de diffuser en continu de la chaleur achetée sur le marché et provenant généralement de sources non renouvelables, la pompe à chaleur recycle ainsi près des deux tiers de l'énergie de chauffage.

Concrètement, deux conditions doivent être remplies pour envisager l'installation d'une pompe à chaleur:

- disposer d'une surface de captage qui ne soit pas trop inférieure à la surface à chauffer et qui ne comporte pas d'arbres, donc un jardin ou une pelouse;
- avoir un habitat à 2, voire 3 niveaux, au maximum 4 dans des cas extrêmes liés à des circonstances spécialement favorables.

Les limites sont donc celles du terrain et de la hauteur de l'immeuble. C'est pourquoi nous avons d'emblée consacré ce reportage au cas des villas individuelles, sans toutefois préjuger d'une évolution permettant d'autres applications.

Reste enfin le problème que ne manquera pas de soulever un micro-écologiste pessimiste (non, ce n'est pas un pléonasme): «Votre pompe à chaleur»

5 février 1992 AS Nº 4

Emissions	Dioxyde	Oxydes d'azote	Monoxyde	Hydrocarbures	Gaz carbonique	Suies, cendres,
	de soufre SO ₂	NO _x	de carb. CO	CH ₃ -C	CO₂	poussières, etc.
Effets	Lésions des voies respiratoires Lésions oculaires Dommages à la végétation Formation de pluies acides responsables du dépérissement des végétaux et de dommages au terrain et aux eaux souterraines	Lésions pulmonaires Formation d'oxydants photochimiques (ozone de basse altitude responsable du «smog estival» entraînant des irritations pulmonaires et oculaires, et des dommages à la végétation Formation de pluies acides (voir sous SO ₂)	Troubles cardiaques Céphalées, vertiges, nausées Troubles du système nerveux central	Mutations Cancer Formation d'oxydants photochimiques (voir NO _x)	Réchauffement de l'atmosphère (effet de serre)	Cancer Lésions des voies respiratoires Modifications du climat Dommages poul la végétation

Emissions des systèmes de	SO ₂	NO _x	CO	CH ₃ -C	CO ₂	Suies, cendres,
chauffage en kg	2	X		53 6	302	etc.
Mazout EL	8	4	4	1	8000	<1
Mazout L+L	38	10	<1	1	_	2
Gaz	< 1	3	5	1	6000	< 1
Charbon	50	12	> 200	7	9000	13
PAC multifluide	_	_	-	_	_	_ *
PAC monofluide	_	_	-	-	-	_

Chauffages avec combustibles liquides ou solides:

Les systèmes ont fait d'importants progrès au cours de la dernière décennie. Il leur est néanmoins impossible d'être «propres», même dans les conditions idéales. De plus, lors de contrôles officiels, 20 % des installations ont pollué nettement plus que l'indiquent les valeurs ci-dessus, et ont nécessité un assainissement. Les risques liés aux pertes de mazout lors des transvasements et stockages sont importants. Un litre de mazout souille 1 000 000 de litres d'eau. Sachant que plusieurs centaines de milliers de litres de mazout s'échappent chaque année dans la nature en Suisse, on juge des dégâts subis par l'environnement. Eau + antigel et antioxydant: 500 l

PAC multifluides

Les appareils ne causent aucune pollution et ont une influence positive sur l'environnement en diminuant la consommation d'énergie.

En cas d'accident, les nuisances sont minimes:

CFC ou HCFC: 5 kg Huile: 0,3

PAC monofluides Les dommages subis par l'environnement sont encore plus faibles qu'avec les PAC multifluides. La rupture totale d'un circuit ne libère que: HCFC 1,5 kg. Huile 0,11.

5

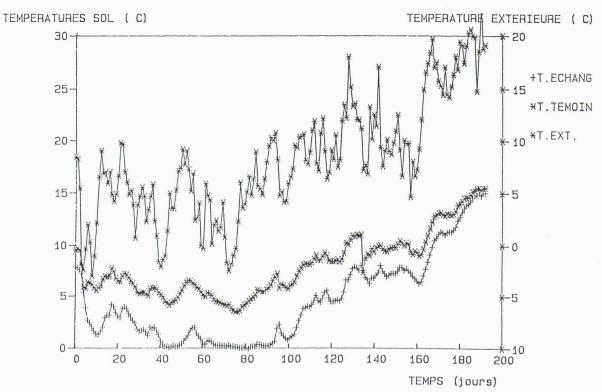


Fig. 6. – Mesure de la température du sol et de la température extérieure.

Fig. 7. - Configuration compète. 1 Armoire thermique 2 Chauffage par le plancher 5 Admission de l'air frais (débit constant) 4 Récupérateur sur l'aération contrôlée 7 Refroidisseur des eaux usées 8 Préparation d'eau chaude sanitaire

3 Capteur géothermique 6 Extraction de l'air vicié

dira-t-il, «techniquement et économiquement, c'est bien, mais vous allez geler le jardin! Or, un jardin gelé est un jardin improductif; dans le cas le plus favorable, un jardin seulement un peu refroidi sera moins productif! «Votre» pompe à chaleur, c'est un malheur!»

Naturellement, on ne saurait nier que la chaleur prélevée dans le terrain refroidit celui-ci. La question est: de combien de degrés?

Des mesures scientifiques ont été réalisées par des universités, d'autres l'ont été par des critiques pas toujours favorablement disposés, mais tous leurs résultats concordent, comme l'exprime la figure 6: le terrain, en profondeur (50 cm), subit une chute de température de l'ordre de 5°C par rapport à l'état de la surface. A ce propos, des travaux importants ont été fructueusement entrepris par le Laboratoire d'énergétique et de thermodynamique de l'Université d'Angers, France (Revue Générale de Thermique N 341-5/90, J.Hladik), ainsi que par le CETIAT (Centre technique des industries aéroliques et thermiques, pour le compte de l'AFME (Agence française pour la maîtrise de l'énergie). Leurs conclusions sont en accord avec les valeurs citées. Aux expériences des praticiens s'ajoutent donc les connaissances scientifiques les plus rigoureusement acquises.

A ce jour, les références sont constituées par les centaines de pompes à chaleur installées dans notre pays qui ont plus de cinq ans de carrière sans incident, ni insuffisance, même par les hivers les plus rigoureux. A cet égard, il importe de rappeler que la configuration courante comporte de 6

à 10 circuits indépendants, ce qui garantit une probabilité de panne totale pratiquement nulle. On ne connaît pas de cas où une habitation ait été rendue invivable ou ait exigé un chauffage d'appoint, à cause d'un arrêt général de fonctionnement de l'installation, ou simplement à cause de la panne d'un des circuits.

Quant à l'avenir, maîtres d'ouvrage et maîtres d'œuvre se verront systématiquement offrir des configurations complètes selon la figure 7: installation de base (pompe à chaleur multicircuits utilisant la chaleur du terrain avoisinant la maison pour chauffer celle-ci), récupération de l'énergie des eaux usées (REU), et dispositif d'aération contrôlée (RAC).

Notre pays compte presque 3,1 millions de logements, dont 30% sont habités par leurs propriétaires. On peut en déduire que près de 800 000

logements individuels seront susceptibles d'être chauffés par pompe à chaleur. Pour l'instant, seuls 2,5% le sont (environ 75 000), contre 25% en Suède. Le Japon compte, lui, plus de 3 millions d'unités en service.

Pourquoi cette «timidité suisse»? Comme nous avons tenté de le montrer dans cet article, les pompes à chaleur ont d'abord fait figure de curiosités plus ou moins mystérieuses, puis elles ont traversé leurs maladies d'enfance, et ce n'est que depuis une décennie qu'elles fonctionnent avec la régularité d'une horloge et une économie exemplaire. Dans une courbe de longévité des produits, elles se situeraient donc, en «phase de décollage». On estime maintenant qu'au cours des vingt années à venir, entre 200 000 et 300 000 pompes à chaleur seront installées en Suisse.

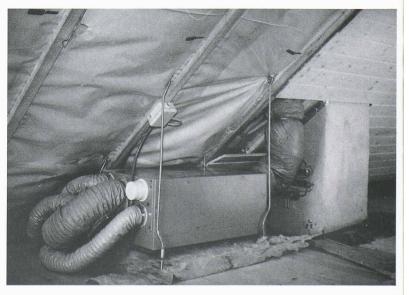


Fig. 8

S Nº 4

5 février 1992