Zeitschrift: Ingénieurs et architectes suisses

Band: 117 (1991)

Heft: 23

Artikel: Recherche et développement en énergie solaire

Autor: Gay, Jean-Bernard

DOI: https://doi.org/10.5169/seals-77660

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Recherche et développement en énergie solaire

1. Les précurseurs

Les recherches visant à l'utilisation de l'énergie solaire dans l'habitat ne datent pas d'hier: quatre siècles avant Jésus-Christ, Socrate proposait déjà un concept de maison solaire (fig. 1). Il fallut toutefois attendre encore près de seize siècles avant que la technologie du verre permette une réelle utilisation des apports solaires.

L'importante diminution de température, survenue en Europe entre le XIIIe siècle et le XVIIe siècle a favorisé le développement d'une architecture vernaculaire prenant en compte les particularités des microclimats locaux. Cela a contribué à une diversification et à un enrichissement de l'architecture, les formes typiques et variées résultant moins d'études théoriques, que du bon sens et de l'observation. A la fin du XIXe siècle, on assiste aux Etats-Unis aux premières tentatives d'utilisation de l'énergie solaire pour la préparation d'eau chaude: en 1902, à Los Angeles, Frank Walter dépose le premier brevet de chauffe-eau solaire (fig. 2). Ce brevet ne fut pas unique, puisqu'aux Etats-Unis une petite industrie se développa dans ce secteur.

Au niveau du chauffage des bâtiments des systèmes actifs furent également développés dans les années 30 (fig. 3). Tous ces développements s'arrêtèrent toutefois une dizaine d'années plus tard, victimes de la concurrence du

mazout et de l'électricité.

2. Le choc pétrolier

Le premier choc pétrolier de 1973 a mis en évidence le caractère limité des énergies fossiles. Suite à cette prise de conscience, la plupart des pays industrialisés ont mis sur pied des programmes de recherche et de développement des énergies renouvelables.

Aux Etats-Unis, sous l'impulsion du président Carter, un très important programme a été lancé. Parallèlement, de nombreuses maisons solaires ont été construites, tout d'abord dans les régions les plus favorisées (Nouveau-Mexique, Arizona, Californie), puis dans le reste du pays.

En Suisse le démarrage a été plus modeste et les premiers pas ont été entrepris par des privés avant que les pouvoirs publics ne réagissent. Le tableau 1 présente une série de dates importantes liées au développement de l'énergie solaire dans notre pays. Au niveau de l'encouragement à la recherche, les dates significatives sont 1975, avec l'adhésion de la Suisse à l'Agence internationale de l'énergie (AIE), et 1977, année de la création du Fonds national pour la recherche énergétique (NEFF).

3. Recherche et développement en Suisse

La recherche dans le domaine de l'énergie solaire en Suisse a débuté en 1974 à l'EPFL. Les premiers travaux ont porté sur la valorisation des mesures de rayonnement (collaboration GRES-ISM), sur le captage en façade (étude d'éléments intégrés par le GRES), sur le captage actif (étude de systèmes à l'ITA) et sur le stockage de la chaleur (étude de stocks latents à

Quelques années plus tard d'autres travaux débutaient à l'Université de Genève (mesures de rayonnement à Genève), à l'EIR à Wurenlingen (stand de test de capteurs actifs), à l'Institut de géologie de l'Université de Neuchâtel (étude de stocks de chaleur dans le terrain), enfin au Laboratoire fédéral d'essais des matériaux de Dübendorf (étude de surfaces à basse émissivité). Les auteurs de ces travaux étaient pour la plupart des physiciens, des ingénieurs, des géologues ou des chimistes, et bien peu d'architectes à l'époque se sentaient vraiment concernés par ces problèmes. Très vite toutefois, on se rendit compte de la nécessité d'une approche plus globale ne se limitant pas aux composants, mais prenant en compte l'ensemble du bâtiment. Cette prise de conscience stimula quelques architectes et vers la fin des années 70, les premières maisons individuelles solaires virent le jour dans notre pays. Dans la plupart des cas, ces constructions furent réalisées sur des bases empiriques, l'intuition de l'architecte constituant souvent le seul critère de décision. Si des erreurs ont inévitablement été commises, une expérience très utile a été acquise grâce à l'initiative de ces pionniers.

Les mesures effectuées sur quelquesunes de ces maisons ont permis de mieux comprendre comment celles-ci fonctionnaient vraiment, elles ont également permis de valider les premiers programmes de simulation sur ordinateur développés dans notre pays (PASSIM à l'EPFL). Ces programmes ont à leur tour permis, au travers d'études de sensibilité, d'établir des règles

de dimensionnement valables pour les conditions climatiques de notre pays. Dès 1981, les contacts entre recherche et pratique se sont accentués, et les premiers «Ateliers solaires» ont été organisés par le GRES.

Parallèlement à ce démarrage dans le secteur de la construction, des produits et des composants industriels nouveaux ont été développés en Suisse ainsi qu'à l'étranger. Parmi ceux-ci nous relèverons:

- des vitrages plus performants (vitrages sélectifs),
- des façades industrielles à très haute isolation,
- de nouvelles isolations (transparentes, pariétodynamiques, etc.),
- des installations techniques plus sophistiquées.

Le développement de certains de ces produits a conduit à des collaborations utiles entre chercheurs et praticiens (collaboration du LESO avec Geilinger, Schmidlin, Agero, Basler et Hofmann, etc.).

L'intégration de ces composants nouveaux au bâtiment a également nécessité la mise au point d'outils informatiques permettant à la fois l'optimisation du bâtiment et la prédiction de ses performances hivernales et estivales. Le développement et surtout la diffusion de ces logiciels ont été rendus possibles grâce aux progrès de la microinformatique et en particulier aux possibilités nouvelles offertes par les ordinateurs personnels; c'est ainsi que le logiciel «LESO-SAI» a été développé à l'EPFL.

A partir des années 80, on a également assisté à la construction des premiers bâtiments administratifs et industriels à basse consommation d'énergie. La réalisation de ces bâtiments a fait ressortir des problèmes nouveaux et intéressants, nous citerons plus spécialement:

- les problèmes de ventilation et de contrôle des mouvements d'air.
- le contrôle du confort estival,
- l'éclairage naturel,
- les systèmes de chauffage à basse puissance et faible inertie.

Plusieurs de ces points ont donné lieu à de nouveaux thèmes de recherche : le projet national ERL («Energie Relevante Luftströmungen in Gebauden»), des travaux sur le refroidissement passif à l'Université de Genève, le projet LUMEN («LUMière naturelle et ENergétique du bâtiment») à

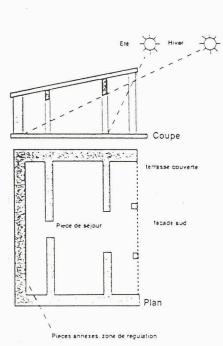


Fig. 1. - Conception d'une maison solaire selon Socrate (environ 400 ans avant J.-C.).

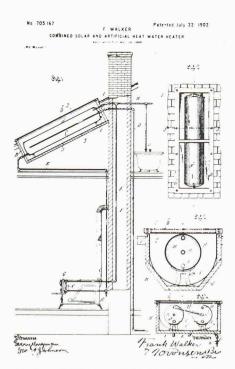


Fig. 2. - Copie du brevet de chauffe-eau solaire déposé par Frank Walter en 1902 à Los Angeles.

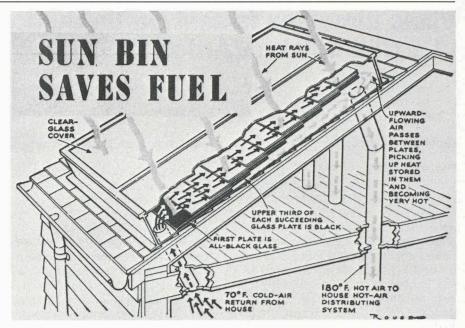


Fig. 3. - Système de chauffage solaire à air selon George Löf, Boulder, Colorado, 1930.

l'EPFL, le développement de régulations prévisionnelles (collaboration LESO - Landis & Gyr).

Au niveau du transfert des connaissances, des séminaires sont organisés à l'EPFL (« Symposium sur la recherche et le développement en énergie solaire en Suisse», ICBEM'87), ainsi qu'à l'EMPA («Wärmeschutzseminar»), depuis de nombreuses années. Parallèlement toute une série de rapports ont été publiés, la SIA n'étant elle-même pas demeurée inactive dans ce domaine: le tableau 2 donne une liste des principales publications éditées à ce jour.

D010

4. Conclusion

Ce bref survol montre l'évolution rapide intervenue au niveau de la recherche et du développement en énergie solaire: très rapidement on a dépassé la stricte problématique de l'énergie pour s'intéresser plus globalement à la qualité et au confort des bâtiments. Aujourd'hui un bâtiment solaire n'est plus seulement un bâtiment qui consomme peu d'énergie, c'est également un bâtiment confortable, bien intégré à son environnement et, partant, respectueux de celui-

Jean-Bernard Gay

Tableau 1 Principales dates liées au développement de l'énergie solaire en	Suisse.
Premier choc pétrolier	1973
Fondation de la Société suisse pour l'énergie solaire (SSES)	1974
Création du Groupe de recherches en énergie solaire à l'EPFL	1975
Adhésion de la Suisse à l'Agence internationale pour l'énergie	1975
Premier symposium sur la recherche et le développement en énergie solaire	
en Suisse, à l'EPFL	1976
Création du Fonds national pour la recherche énergétique (NEFF)	1977
Deuxième choc pétrolier	1979
Premier «Wärmeschutzseminar» de l'EMPA	1980
Premier atelier solaire pour architectes organisé à l'EPFL	1981
Mise en service du Laboratoire d'énergie solaire à l'EPFL	1982
Premier prix romand d'architecture solaire	1989
Début du programme d'action énergies renouvelables (PACER)	
de l'Office fédéral des questions conjoncturelles (OFQC)	1990
Début du programme «Energie 2000» de l'Office fédéral de l'énergie	1991

TABLEAU 2. - Principales publications de la SIA en relation avec l'utilisation de l'énergie solaire. 48 Sonnenenergienutzung im Hochbau Meteodaten fur Sonnenenergienutzung 64 1983 L'énergie dans le bâtiment 1985 80 1986

Handbuch der passiven Sonnenenergienutzung

D011 Passive Sonnenhäuser	1987
D024 Energiekennzahlen von Gebäudegruppen	1988
D025 Base de dimensionnement des systèmes exploitant la chaleur du sol	
à basse température	1988
D028 Guide du stockage saisonnier de la chaleur	1988
D035 Demonstrationprojekt Schulhaus Gumpenwiesen Dielsdorf	1989
D049 Photovoltaïk Nutzung	1990
D056 Le soleil - chaleur et lumière dans le bâtiment	1990
D058 Zwei Solarhäuser unter der Lupe	1990