Zeitschrift: Ingénieurs et architectes suisses

Band: 115 (1989)

Heft: 20

Artikel: Des colonnes résolument modernes: les colonnes mixtes

Autor: Meili, Andreas / Mayor, Guy / Wium, Jan

DOI: https://doi.org/10.5169/seals-76988

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

avec les chercheurs et les groupes de recherche à la pointe de leur spécialité à l'étranger. La présence systématiquement voulue de Suisses romands, de Suisses alémaniques et d'étrangers d'origines diverses dans chacune de nos équipes de recherche a largement contribué à la créativité de ces mêmes équipes. La présence occasionnelle d'un Tessinois n'a fait qu'amplifier cette synergie essentielle. En effet, l'approfondissement de mêmes problèmes ardus par des coéquipiers d'origine, de formation et de sensibilité très diverses a toujours contribué à susciter des résultats concrets aux questions de la recherche.

La gestion d'une équipe de recherche exige beaucoup de liberté et de discipline pour chacun des chercheurs. La direction du personnel doit être fondamentalement différente de celle qu'on peut et doit rencontrer dans une usine. sur un chantier et même dans un bureau technique. La recherche a absolument besoin de la grande motivation de chercheurs très compétents techniquement, très créatifs. Il est bon de souligner que les résultats les meilleurs seront ceux obtenus par des chercheurs encore jeunes, dont la situation matérielle et les conditions de travail seront très bonnes ou excellentes.

En conclusion, depuis plus de vingt

ans, l'ICOM veut assumer une responsabilité de recherche et d'enseignement, de formation et d'information. Grâce aux moyens obtenus de l'Ecole polytechnique fédérale de Lausanne et d'ailleurs, il a été possible de mener ces activités dans un esprit de service et avec le sentiment du devoir accompli.

Adresse de l'auteur:

Jean-Claude Badoux, professeur Ecole polytechnique fédérale de Lausanne ICOM - Construction métallique GC - Ecublens 1015 Lausanne

Des colonnes résolument modernes: les colonnes mixtes

1. Le domaine des colonnes mixtes

De nos jours, aucun ouvrage de génie civil n'est réalisé sans que le concepteur recoure aux matériaux acier et béton. Le choix du matériau dépend fortement de critères esthétiques, mais aussi des coûts liés à la nature et au type de la construction. L'acier et le

PAR ANDREAS MEILI, GUY MAYOR ET JAN WIUM, LAUSANNE

béton possédant chacun ses avantages spécifiques, on peut choisir le matériau le plus approprié à l'ouvrage.

Le domaine du béton armé est considéré comme une discipline à part entière mais, par définition, il fait partie du domaine de la construction mixte, car les éléments en béton armé sont également tributaires de la liaison qui existe entre l'acier des barres d'armature et le béton. Le domaine du béton armé a cependant fait l'objet de recherches depuis plus longtemps que celui de la construction mixte, c'est pourquoi tous les détails de construction (distance minimale entre les barres, enrobage de l'armature, relief de la surface des barres) garantissent un comportement satisfaisant du béton armé, fondé sur le monolithisme des sections. La définition d'une colonne mixte, en revanche, ne répond pas actuellement à ce même critère, elle repose sur la contribution plus ou moins importante de l'acier à la force nécessaire pour provoquer l'écrasement de la colonne. On pourrait tout aussi bien définir un élément mixte selon le même principe admis pour le béton armé – ne pas tolérer de rupture à l'interface des deux matériaux – mais satisfaire un tel principe nécessiterait des moyens de connexion entre acier et béton suffisants pour résister aux efforts de cisaillement jusqu'à la charge de ruine. La recherche dans le domaine des colonnes mixtes a pour but de résoudre ce problème de la liaison acier - béton.

Les premières réalisations utilisant des éléments «mixtes» remontent à la fin du XIXe siècle, l'acier constituant l'entier de la structure porteuse et le béton étant utilisé comme matériau de remplissage. Ce principe de construction était analogue à celui des maisons à colombages, avec poutres en bois constituant la charpente, façades et cloisons en torchis et planchers en hourdis. Les premières colonnes mixtes furent construites en Angleterre vers 1900 [1]1. Il s'agissait de profils ouverts enrobés de béton afin de protéger l'acier en cas d'incendie, le béton n'étant pas considéré dans le calcul de la colonne. Cette façon de construire était très conservatrice et peu économique, car le béton autour du profilé augmentait la résistance de la colonne, mais aucune méthode de calcul ne tenait compte de cet apport positif. Il fallut une première série d'essais sur ce type de colonne et la comparaison des résultats avec des essais de colonnes en acier pour que soient développées les premières méthodes de calcul. Cellesci étaient fondées sur le comportement élastique-linéaire des matériaux, sans tenir compte d'une plastification des fibres les plus sollicitées. Les études les

plus récentes incluent le comportement non linéaire et la plastification des matériaux.

Il existe plusieurs méthodes de calcul différentes qui sont reprises dans les normes des pays de leurs auteurs [2] [3] [4]. La plupart de ces méthodes sont empiriques et soumises à certaines limites restrictives (élancement, excentricité, type de section), et elles ne conviennent en général pas à un calcul manuel rapide, mais elles permettent de calculer tous les types de sections conventionnelles. Au Japon, la méthode de calcul [5] est fondée sur la superposition des charges que supportent l'acier et le béton armé; seule cette méthode permet de dimensionner des sections asymétriques. En Suisse, la norme SIA 161 (1979) [2] (article 3 134) ne fournit pas d'indications explicites pour dimensionner une colonne soumise à un effort normal et à un moment de flexion. Il est donc nécessaire de combler ce vide soit par l'emploi d'une méthode existante, par exemple l'une des deux méthodes que propose le projet d'Eurocode 4 [3], soit par une nouvelle méthode.

2. Pourquoi opter pour des sections mixtes

Le développement des sections mixtes connaît deux cheminements différents: d'une part l'amélioration de la résistance d'une section en béton armé et d'autre part la protection d'une section en acier contre le feu.

D'un côté, donc, on retrouve les colonnes en béton armé qui sont fabriquées avec le taux d'armature le plus grand possible (fig. 1 a, b). Les limites théoriques maximales de ce taux d'armature sont fixées par l'enrobage des barres d'armature, la bonne mise en place du béton et la garantie de la transmission des efforts de cisaillement entre les barres d'armature et le béton. La stabilité locale doit être garantie par un fret-

Les chiffres entre crochets renvoient à la bibliographie en fin d'article.

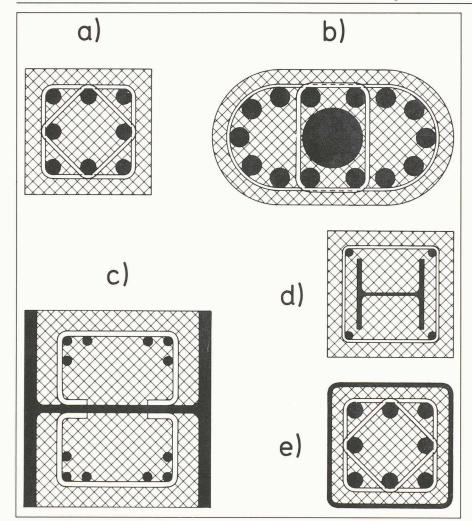


Fig. 1. – Les différents types de sections mixtes:

- a) béton armé avec un grand taux d'armature
- b) béton armé avec un noyau massif
- c) profilé laminé partiellement enrobé
- d) profilé laminé totalement enrobé
- e) profilé creux rempli de béton.

tage des barres. Ces sections donnent à l'architecte la possibilité de choisir des éléments relativement minces et ayant une grande capacité portante.

D'un autre côté, les colonnes mixtes issues typiquement de la construction métallique sont constituées de profilés laminés, partiellement ou totalement enrobés de béton, ou alors de profilés creux remplis de béton (fig. 1 c, d, e). La grande contribution du profilé à la résistance de la colonne induit de grands efforts de cisaillement entre la surface de l'acier et celle du béton. Le comportement monolithique de la section mixte est à vérifier, et des moyens de connexion comme des goujons ou un frettage conventionnel autour du profilé permettent d'y parvenir. Pour le cas des profilés creux remplis de béton, le tube rectangulaire ou circulaire remplace le frettage. Si l'on respecte ces conditions, les résistances ultimes seront plus élevées que celles d'une structure en acier. En outre, le béton qui enrobe l'armature ou la section d'acier (profilé laminé ou profilé massif) protège le métal de la chaleur de l'incendie, mais aussi de la corrosion.

L'emploi du béton permet de réaliser une infinité de sections différentes permettant à l'architecte de s'exprimer librement et à l'ingénieur d'élaborer des sections optimales. L'emploi d'une colonne mixte offre un grand nombre d'avantages à l'ingénieur si celui-ci respecte quelques règles de base.

Résistance au feu adaptable à chaque cas

Recouvrement suffisant de l'acier par le béton pour atteindre la résistance au feu exigée par la nouvelle recommandation SIA 183 [6]. Mesures pratiques évitant l'éclatement du béton, assemblage de la colonne avec les éléments voisins pour profiter de l'effet d'un encastrement partiel.

Augmentation de la ductilité

Utilisation des profilés creux remplis de béton; les sections composées d'un profilé creux rempli de béton permettent une augmentation importante de la ductilité et une grande absorption d'énergie lors de chocs dus à des véhicules, ainsi que lors de tremblements de terre.

Coûts

Réduction des dimensions ou plus grande résistance de la colonne pour une emprise identique. Diminution de la quantité d'acier compensée par la prise en considération de la résistance du béton. Si la colonne est préfabriquée, la qualité du béton mis en place sera plus élevée et mieux contrôlée, la pose sur chantier sera rapide.

Esthétique

Le choix des profilés creux remplis de béton permet de réaliser des éléments verticaux attrayants, ne nécessitant qu'un faible travail de second œuvre et ayant l'avantage d'utiliser les moyens de liaison typiques de la construction métallique, autorisant un montage rapide. Cependant, les assemblages entre les colonnes et les éléments horizontaux nécessitent une étude soignée car les faibles dimensions induisent des efforts très concentrés dans ces assemblages.

L'importance de chaque avantage diffère selon le type de section. Par exemple, la meilleure section pour une grande résistance en cas d'incendie est celle qui possède un profilé en acier totalement protégé par le béton, ce qui n'est pas le cas pour une section optimale à température ambiante.

3. Travaux effectués à l'ICOM

Comme nous le disions plus haut, les recherches concernant les colonnes mixtes ont débuté il y a quelques décennies, et l'ICOM a su percevoir la nécessité de suivre l'évolution des travaux à travers le monde, mais également d'y apporter sa contribution par des recherches menées sur le comportement des colonnes fléchies et comprimées. En premier lieu, seul le problème des colonnes métalliques a été abordé et d'importants travaux théoriques et expérimentaux ont abouti au développement de modèles de calcul [7].

L'approche et la systématique choisies ayant fait leurs preuves, elles ont également été employées pour aborder et obtenir déjà de nombreux résultats sur le comportement non linéaire des colonnes mixtes. Une précédente publication inventorie l'ensemble des travaux effectués et définit les étapes futures de la recherche, dont certaines ont d'ores et déjà été franchies [8]. La plus importante a été le passage d'un programme décrivant le comportement de la section à celui représentant le comportement de la colonne. La motivation profonde de ces travaux sur ordinateur est d'obtenir des valeurs à moindres frais, les essais en laboratoire étant toujours onéreux, leur nombre restreint et leur réalisation parfois dif-

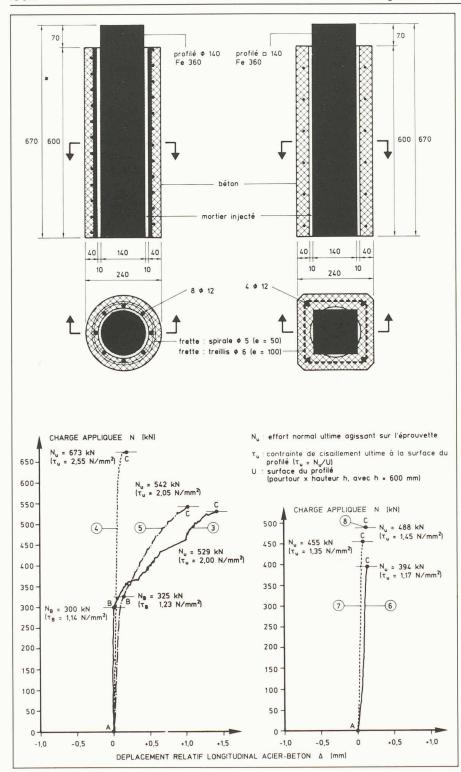


Fig. 2. - Description des essais «push-out».

Les buts à long terme de cette recherche comprennent une analyse des paramètres prépondérants du comportement des colonnes mixtes, une comparaison des diverses méthodes de calcul proposées par les normes de différents pays, et surtout l'étude de sections quelconques qu'il est difficile ou même impossible de dimensionner avec les méthodes de calcul existantes. Le but ultime est d'obtenir un outil permettant d'effectuer des calculs non seulement à température ambiante, mais également à température élevée,

afin de déterminer la résistance au feu de ces éléments. Ce dernier but est d'autant plus important que de nouvelles sections, souvent non symétriques, sont développées actuellement par l'industrie de la construction.

Dans le cadre de ces développements, des essais du type «push-out» (fig. 2) ont été effectués afin de décrire la transmission des efforts rasants à l'interface acier - béton [9]. Le résultat de ces essais, la courbe charge - déplacement, a été intégrée au programme avec lequel plusieurs simulations ont

été effectuées. Il ressort de l'analyse de ces simulations que la transmission des efforts rasants à l'interface acierbéton n'influence pas le comportement global des colonnes à section symétrique; en revanche, l'introduction des forces extérieures dans la colonne par l'entremise du profilé seul serait dans certains cas un problème, mais que l'on peut aisément résoudre en employant des moyens de liaison mécaniques tels que les goujons connecteurs.

4. Programme «Colmixte»

4.1. But

En dehors des buts assignés au travail de recherche en cours, le but intrinsèque du programme est de décrire exactement le comportement d'une colonne mixte comprimée et fléchie depuis le début du chargement jusqu'à la ruine, soit par écrasement, soit par flambage, cela quelles que soient les conditions aux limites. Pour cela, il faut considérer les facteurs suivants:

- comportement non linéaire des matériaux
- effet du second ordre
- changement de rigidité sur la longueur de la colonne en fonction de la sollicitation et de la fissuration du béton
- imperfections géométriques
- imperfections structurales.

Des programmes complémentaires permettent d'introduire rapidement les données géométriques de la section (fig. 3) et de la colonne, ainsi que les caractéristiques des matériaux. Un programme annexe calcule l'échauffement de la section pour une sollicitation thermique extérieure et fournit la distribution des températures dans la section, en fonction du temps d'exposition au feu de la colonne.

4.2. Détermination des sollicitations d'une colonne comprimée et fléchie

Le calcul des sollicitations d'un élément uniquement fléchi comme une poutre simple s'effectue sans tenir compte de la redistribution de la rigidité le long de l'axe de la poutre. Il est donc possible de procéder au calcul suivant sans itération.

- 1. Détermination des sollicitations en fonction des charges extérieures.
- Détermination de la rigidité en fonction des sollicitations trouvées sous 1.
- 3. Détermination des déformations en fonction des sollicitations et de la rigidité trouvées sous 1 et 2.

Le calcul des sollicitations d'une colonne à la fois comprimée et fléchie ne peut pas s'effectuer de cette manière, car le comportement non linéaire des matériaux influence direc-

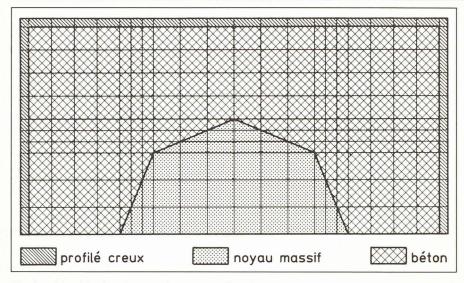


Fig. 3. - Modélisation des sections avec «Colmixte».

tement la valeur de la rigidité flexionnelle sur la longueur de la colonne en fonction de la sollicitation extérieure. Trois effets interviennent dans le calcul.

a) Non-linéarité du comportement des matériaux

La non-linéarité des propriétés mécaniques des matériaux doit être considérée pour le calcul de la rigidité flexionnelle des sections, mais aussi pour le calcul de la résistance ultime de la colonne. On tient compte de ces effets en choisissant des lois de comportement des matériaux appropriées (fluage du béton, plastification des deux matériaux, écrouissage de l'acier).

b) Effet du second ordre

L'effet du second ordre doit être considéré pour des éléments comprimés et fléchis, mais il ne peut pas être pris en compte par un facteur global comme c'est le cas pour les colonnes calculées élastiquement à l'aide de courbes de flambage. La déformation finale se calcule en chargeant la colonne avec les efforts externes et les efforts résultant des déformations du premier ordre.

c) Rigidité flexionnelle

La rigidité flexionnelle *EI* est un terme déterminant pour le calcul des pièces comprimées ayant un grand élancement, car elle intervient directement dans le calcul des sollicitations de chaque section. Elle influence fortement les déformations et par conséquent la résistance ultime calculée de la colonne peut varier largement à cause de cet effet.

A titre d'exemple, considérons la section d'une colonne mixte (fig. 4) soumise à un effort normal N_1 et à un moment M_1 agissant selon l'axe 1-1. La relation entre la sollicitation et la déformation de la section s'exprime sous la forme matricielle :

$$\begin{bmatrix} N_1 \\ M_1 \end{bmatrix} = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \emptyset \end{bmatrix}$$

où

 N_1 : effort normal agissant sur l'axe

 M_1 : moment de flexion agissant autour de l'axe 1-1

 ε_1 : allongement de la fibre sur l'axe 1-1

Ø: angle de rotation du plan déformé

Les termes intervenant dans la matrice de rigidité sont les suivants:

 $k_{11} = \Sigma A_i E_i$

 $k_{12} = \sum A_i E_i y_i$

 $k_{21} = \sum k_{12}$

 $k_{22} = \sum A_i E_i y_i^2$

où

A_i: aire de l'élément i

E_i: module d'élasticité de l'élément *i* en fonction de la sollicitation de l'élément *i*

y_i: distance entre le centre de gravité de l'élément i et l'axe de référence 1-1

Pour une poutre simple soumise uniquement à un moment, la rotation est définie par l'équation $\emptyset = M/EI$. Dans notre cas, deux facteurs compliquent le calcul. Tout d'abord N_1 induit dans la colonne un moment à cause de l'excentricité entre son point d'application et l'axe de gravité de la colonne. On réduit la sollicitation N_1 , M_1 , sur l'axe 2-2 en N_2 , M_2 de sorte que N_2 ne provoque pas de moment dans la colonne. L'axe 2-2 est déterminé en égalant k_{12} et k_{21} à zéro. On retrouve donc le cas de la poutre avec $\emptyset = M_2/k_{22}$, et $E_2 = N_2/k_{22}$ k_{11} . Deuxièmement, en raison de la non-linéarité du comportement des matériaux, l'axe 2-2 n'est pas fixe car ε_i varie en fonction de l'état de sollicitation du matériau, de même que l'inertie de la section change à cause de la fissuration du béton. L'axe 2-2 est donc défini pour des caractéristiques

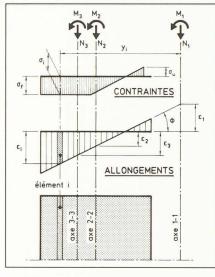


Fig. 4. – Détermination de la rigidité flexionnelle

des matériaux avant sollicitation, et l'axe 3-3 selon des caractéristiques dépendant d'un état de sollicitation donné. Ce calcul doit être effectué pour chaque état de sollicitation de la section.

4.3. Procédure de calcul

On distingue deux méthodes de calcul pour un système sans déchargement des fibres de la section. La première méthode permet de suivre la relation moment - courbure par augmentation incrémentielle de la charge P. Dans cette méthode, l'imprécision du calcul dépend de la grandeur de l'incrément. La deuxième méthode permet de calculer un état de sollicitation spécifique dû à une charge donnée P_c . Cette méthode est plus rapide même si une partie de la section est plastifiée.

a) Première méthode: calcul avec la rigidité tangente EI_t par augmentation de la charge avec des incréments Δ P

Le chargement du système s'effectue avec des pas incrémentiels de ΔP . La rigidité tangente EI_t est corrigée après chaque boucle d'itération pour chaque section le long de la colonne. L'effet du $2^{\rm e}$ ordre est pris en compte en calculant des boucles avec une sollicitation supplémentaire.

Le calcul suivant avec une charge augmentée de ΔP est exécuté avec la rigidité tangente EI_t (fig. 5) trouvée au calcul précédent. L'erreur de calcul dépend de la grandeur de l'incrément ΔP .

b) Deuxième méthode: calcul avec la rigidité sécante EI_s avec une charge fixe P_c

Cette méthode permet de connaître les déformations et contraintes de chaque section pour une charge constante P_c (fig. 6). Lors de la première boucle, la rigidité sécante n'est pas encore connue, le calcul s'effectue donc avec

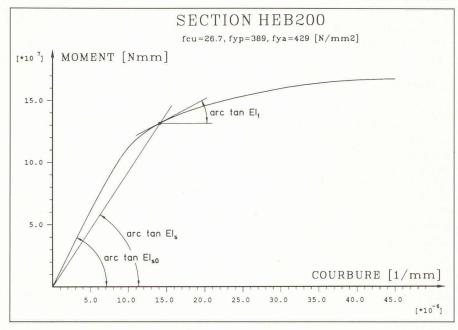


Fig. 5. - Relation moment - courbure d'une section mixte.

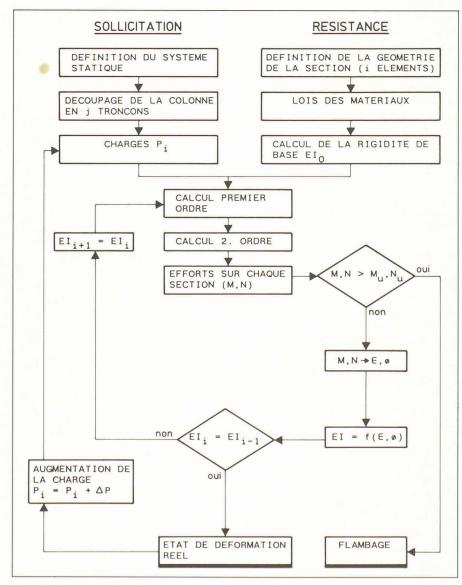


Fig. 6. - Organigramme du programme «Colmixte».

une rigidité sécante EI_{sO} qui est la valeur maximale, déterminée en considérant la section non sollicitée et non fissurée, ce qui correspond à la rigidité

tangente EI_t avant sollicitation. L'itération de EI_s en fonction de la sollicitation donne des valeurs plus petites que EI_{sO} , les déformations augmentant, ce

Bibliographie

- [1] LAREDO, M.; BARD, J.: «Etude des poteaux mixtes acier béton et leur application aux gratte-ciel», Annales de l'Institut technique du bâtiment et des travaux publics, N° 254, Paris, 1969, pp. 389-391.
- [2] Norme SIA 161 « Constructions métalliques », Société suisse des ingénieurs et des architectes, Zurich, 1979.
- [3] Eurocode Nº 4 «Règles unifiées communes pour les constructions mixtes acier - béton», Commission des Communautés européennes, Bruxelles-Luxembourg (Rapport EUR 9886 FR).
- [4] DIN 18806, Teil 1 «Verbundkonstruktionen, Verbundstützen», DIN Deutsches Institut für Normung, Berlin, 1984.
- [5] WAKABAYASHI, M.: «Japanese standards for the design of composite buildings», Proceedings of an Engineering Foundation Conference, Henniker, June 7-12, 1987, American Society of Civils Engineers, New York, 1988, pp. 53-70.
- [6] Recommandation SIA 183 « Protection contre l'incendie, vade-mecum pour les ingénieurs et les architectes», Société suisse des ingénieurs et des architectes, Zurich, 1989.
- [7] MATTHEY, P. A.: Comportement des poutres-colonnes métalliques en double té, thèse 592, EPFL, Lausanne, 1985.
- [8] GLUECK, R.; CLENIN, D.: «Colonnes mixtes acier-béton», Construction métallique, vol. 24, N° 4, Saint-Rémy-lès-Chevreuse, 1987, pp. 3-21.
- [9] GLUECK, R.: «Colonnes composites GRAM - Essais 'push-out'», EPFL, ICOM-Construction métallique, Lausanne, 1986 (rapport du mandat 625-2).

qui influence la rigidité de la section. Le calcul est répété avec la nouvelle rigidité sécante EI_s jusqu'à ce que cette rigidité EI_s reste constante, ce qui correspond à la rigidité réelle. Cet état de déformation correspond à l'état réel trouvé avec la première méthode.

5. Calcul à température élevée

Le principe du calcul des colonnes mixtes à température élevée repose sur la prise en considération des relations contrainte - allongement en fonction de la température de la fibre observée. Des températures élevées réduisent les valeurs du module d'élasticité, mais aussi la limite d'élasticité des matériaux. La résistance ultime de la colonne est réduite à cause de la diminution des propriétés mécaniques des matériaux, ce qui signifie d'une part une réduction de la rigidité et d'autre part une réduction de la résistance ultime de la section. La résistance au feu d'une colonne exprimée en minutes correspond à l'intersection par la

Remerciements

Nos remerciements s'adressent à toutes les personnes, organismes et entreprises, avec lesquelles nous collaborons dans le cadre de ce travail pour leur amabilité et disponibilité, ainsi qu'au Fonds national suisse de la recherche scientifique et à l'industrie suisse du ciment, qui permettent la réalisation de ces travaux grâce à leur soutien financier. Les auteurs remercient également toutes les personnes ayant participé à l'élaboration et à la bonne facture de cet article.

charge à considérer en cas d'incendie avec la courbe de la résistance ultime calculée par le programme en fonction du temps d'exposition au feu.

Ces modélisations sont soumises à un certain nombre d'incertitudes dues à des phénomènes tels que l'éclatement du béton non fretté ou la dilatation différentielle des différents matériaux qui se désolidarisent au sein de la section. La modélisation de la section doit prendre en considération ces faits qui ont été observés lors d'essais effectués dans des fours.

De plus, les calculs doivent être étalonnés pour chaque type de section par des essais. Le programme remplace de

nombreux essais en considérant une série de cas représentatifs et permet ainsi de procéder à la vérification de la modélisation.

6. Travaux actuels et futurs

Près de 300 essais effectués à température ambiante à travers le monde ont été répertoriés afin de comparer les plus représentatifs aux résultats fournis par le programme «Colmixte». Ce répertoire permettra également de définir des essais particuliers à réaliser au laboratoire de l'ICOM. Dès que la modélisation sera vérifiée, il sera possible d'atteindre l'objectif fixé au début de la recherche, qui est de trouver les paramètres importants qui régissent le comportement de la colonne. Le même travail sera fait pour l'étude du comportement de la colonne pour des températures élevées.

D'un point de vue plus large, les recherches en cours à travers le monde portent sur le comportement de la colonne sous charges cycliques, sous des charges de longue durée (à cause des caractéristiques rhéologiques du béton), sous des charges horizontales liées aux séismes (ces recherches sont principalement conduites aux Etats-Unis et au Japon). D'autres équipes de

chercheurs mettent au point des programmes analogues à «Colmixte», car le but de tous est de trouver une méthode analytique simple ce qui, selon certains, n'est possible qu'avec de nombreuses hypothèses restrictives.

D'autres travaux devront être abordés dans le futur, tels que l'étude de la rigidité de la colonne en fonction du frettage (diamètre des barres de frette, espacement), l'étude approfondie du comportement de la connexion poutre colonne pour les divers types de sections. Et n'oublions pas le travail de collaboration avec l'industrie concernant l'amélioration ou le développement de nouveaux types de sections mixtes, l'optimalisation de l'emploi des matériaux aussi bien à température ambiante que pour des températures élevées.

Adresse des auteurs:
Andreas Meili, ing. dipl. EPFZ/SIA
Guy Mayor, ing. dipl. EPFL
Jan Wium, MSc Ing.
Ecole polytechnique fédérale
de Lausanne
ICOM - Construction métallique
GC - Ecublens
1015 Lausanne

Recherche sur les ponts mixtes

1. Introduction

Durant ces vingt dernières années, l'intérêt de l'ICOM pour les ouvrages d'art en général et pour les ponts mixtes acier-béton en particulier s'est constamment développé. Cet intérêt s'est manifesté notamment par la volonté

PAR JEAN-PAUL LEBET, LAUSANNE

d'avoir une meilleure compréhension du comportement réel des ouvrages. Ce domaine est d'ailleurs de plus en plus d'actualité, spécialement lorsque l'on aborde l'aspect durée de vie restante des ponts, pour lequel une connaissance de ceux-ci au sens large (matériaux, comportement, charges) la plus proche de la réalité est primordiale. Concrètement, l'accent a été mis sur l'approche expérimentale de ce comportement, souvent accompagnée par la mesure des charges effectives s'exerçant sur l'ouvrage. Par exemple, en 1976, une vaste campagne de mesures a été effectuée sur le viaduc de la Venoge (autoroute N1 Lausanne-Genève) avec en parallèle une mesure

des caractéristiques du trafic lourd passant sur cet ouvrage. Ce type de mesures a permis de connaître pour la première fois une relation fondée sur des résultats expérimentaux suffisants, entre les charges du trafic routier et leurs effets sur les ponts mixtes. La base de connaissances ainsi acquise a constitué une aide appréciable pour l'analyse du comportement à la fatigue des ponts-routes [1]¹. Des essais similaires ont aussi été effectués pour les ponts-rails en 1978 [2].

Le comportement transversal des ponts mixtes et la répartition des charges sur les différentes poutres maîtresses des ponts à section ouverte ont également été abordés au moyen de mesures *in situ* sur des ponts à deux poutres principales [3] et des ponts multipoutres [4]. Ce type de mesures a permis de contrôler la participation torsionnelle de ces ouvrages à section ouverte et d'en tenir compte dans le dimensionnement.

La question de la durabilité des ponts mixtes a également été un sujet de préoccupation constante. D'une part, le problème des ouvrages vieillissants nécessite une réflexion globale qui doit tenir compte de l'état des ouvrages, de leur histoire et de l'évolution des charges pour déterminer si une simple réfection est suffisante ou si un renforcement est nécessaire. Chaque cas est un cas particulier et la décision finale peut être lourde de conséquences (économiques, pour la conservation du patrimoine) si la solution aboutit au remplacement de l'ouvrage. D'autre part, le maintien en bon état des ouvrages récents ou la construction de nouveaux ouvrages nécessitent du point de vue de la durabilité une remise en question constante concernant le choix des matériaux et le soin à apporter lors de la construction et de l'élaboration des détails de construction. A ce sujet, les multiples observations que nous avons effectuées sur des ponts mixtes récents révèlent que les ouvrages se maintiennent fort bien. Notamment, l'utilisation judicieuse d'acier patinable se révèle extrêmement satisfaisante. Concernant la dalle de roulement en béton, on peut généralement observer des dalles sans précontrainte longitudinale pratiquement sans fissures transversales. La question de la nécessité d'une précontrainte

Les chiffres entre crochets renvoient à la bibliographie en fin d'article.