Zeitschrift: Ingénieurs et architectes suisses

Band: 114 (1988)

Heft: 6

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

polluante organique, le raccordement de ces eaux à la station d'épuration de Bex ne se justifierait pas de ce point de vue.

Cependant, le rejet dans les eaux impose une teneur finale en phosphore de 1 mg/l au maximum, ce qui implique un rendement d'épuration extrêmement élevé, supérieur à 99,6%. L'étude des diverses méthodes d'élimination des phosphates, c'est-à-dire précipitation par des sels de fer ou d'aluminium ou par la chaux, a montré que cette dernière était celle le mieux appropriée dans le cas particulier. Elle est fondée sur la réaction chimique suivante:

(1) 5 Ca⁺⁺ + 4 OH⁻ + 3 HPO₄⁻⁻
$$\rightarrow$$
 Ca₅ (OH) (PO₄)₃ + 3 H₂O

Le produit insoluble de la réaction (1), l'hydroxylapatite Ca₅ (OH) (PO₄)₃, se forme à un pH supérieur à 9,5. Le degré d'élimination du phosphore est en effet proportionnel au pH et non au taux de dosage de chaux, qui est, lui, fonction de l'alcalinité des eaux à traiter. Le rapport molaire calcium: phosphore est de 5:3 en théorie et varie dans la pratique entre 1,3:1 et 2,0:1. Si la chaux permet la précipitation du phosphore sous forme de phosphate, tel n'est par contre pas le cas avec les autres formes, phosphites et hypophosphites. Il est donc indispensable d'oxyder ces substances en phosphates avant de pouvoir les éliminer. Ce traitement d'oxydation est effectué par le chlore, oxydant puissant, selon les réactions suivantes, en milieu acide:

(2) $Cl_2 + H_2O \rightarrow HCl + HClO$ (3) $H_3PO_2 + 2 HClO \rightarrow H_3PO_4 + 2 HCl$ (4) $H_3PO_3 + HClO \rightarrow H_3PO_4 + HCl$ Les équations (3) et (4) indiquent des rapports molaires Cl_2 : hypophosphite de 2:1 et Cl_2 : phosphite de 1:1. En d'autres termes, l'oxydation de 1 g d'acide hypophosphoreux en acide phosphorique nécessite 2,15 g de chlore gazeux, et celle de 1 g d'acide phosphoreux 0,87 g de chlore.

3.3. Schéma de principe de l'installation

Le schéma de principe de l'installation (voir fig.) illustre divers procédés de traitement physiques (homogénéisation, décantation) et chimiques (oxydation, neutralisation) qui ont été décrits précédemment (voir 2.3).

Les eaux résiduaires industrielles arrivent dans un bassin d'égalisation (position l du schéma) assurant un temps de séjour supérieur à 24 h pour amortir les pointes polluantes. Elles sont ensuite pompées dans un bassin de chloration (position 2) où s'effectue l'oxydation des phosphites et des hypophosphites en phosphates par le chlore.

Ce traitement, par charge, se déroule en circuit fermé selon le schéma suivant:

- analyse automatique de la concentration des substances à oxyder dans la charge à traiter
- chloration à débit de chlore constant (20 kg/h) durant un temps proportionnel à la teneur analysée
- observation d'une durée de réaction
- analyse automatique de contrôle de l'absence de substances à oxyder (sinon, deuxième cycle de chloration)
- vidange du contenu du bassin de chloration dans le bassin intermédiaire (position 3).

La durée totale d'un cycle de chloration est de 3 h, ce qui permet le traitement de huit charges par jour au maximum.

La suite du traitement des eaux résiduaires est un traitement en continu, qui comprend les étapes suivantes:

- pompage des eaux à traiter avec un débit de 3 m³/h
- dosage automatique de lait de chaux afin d'assurer un pH minimal de 11,5
- dosage automatique de chlorure ferrique pour améliorer la décantation
- décantation de l'hydroxylapatite formée dans un ouvrage cylindroconique comprenant une partie lamellaire (position 4)
- neutralisation des eaux décantées par dosage d'acide chlorhydrique jusqu'à un pH de 8,5 (position 7.1)
- contrôle final et enregistrement du pH des eaux évacuées à la canalisation des eaux claires (position 7.2).

Les boues déposées dans le fond du décanteur sont périodiquement déshydratées dans un filtre-presse (position 5). Elles peuvent ensuite être prises en charge par une unité de production d'engrais ou de phosphore.

Le schéma de principe comprend également une unité de filtration sur sable de quartz (position 6). Celle-ci ne sera cependant mise en place que si la décantation ne permettait pas d'obtenir une concentration finale en phosphore conforme aux normes de rejet. Le fonctionnement de l'installation est entièrement automatique et est commandé par des mesures de niveau et de concentrations. Seule la filtration des boues est commandée manuellement. Les différents paramètres de fonctionnement (marche des pompes, durée de chloration, pH de précipitation, pH final, etc.) sont enregistrés en continu, permettant ainsi le suivi des opérations de traitement.

Adresse de l'auteur: Werner Hirsbrunner D^r ès sciences, ing. EPF/SIA Bureau Hydrostep SA 1093 La Conversion

Bibliographie

Le dépérissement des forêts

Une brochure A5, 32 pages avec de nombreuses illustrations. Editée par le Service cantonal vaudois des forêts et de la faune, Lausanne, 1987.

Même si d'autres sujets touchant à l'environnement ont quelque peu relégué à l'arrièreplan la «mort des forêts», le phénomène n'en a pas pour autant disparu, loin de là. Cette discrétion est peut-être préférable, car elle délivre les spécialistes du fardeau d'une information – sommaire, parce que ponctuelle – sollicitée par la presse. Un certain recul est indispensable en la matière pour

permettre d'appréhender une situation trop complexe pour se plier à des simplifications irréfléchies. On pense à ce que nous ont dit, il y deux ou trois ans, de hauts fonctionnaires: si leurs prédictions avaient été exactes, nous n'aurions aujourd'hui plus de forêts dans notre pays. Nous n'en sommes heureusement pas encore arrivés là, mais le crédit des spécialistes en est resté fort amoindri.

C'est avec cet indispensable recul que le Service vaudois des forêts et de la faune présente les Moyens mis en œuvre pour en saisir l'importance et synthèse des observations effectuées dans le canton de Vaud sous la forme d'un opuscule où la clarté n'exclut pas la précision scientifique.

Les conclusions en sont intéressantes; nous en extrayons ici

un passage: «Le risque majeur qu'encourt la forêt tient davantage de la dégradation persistante du marché du bois, spécialement sur le plan international - rendant aléatoires toutes exploitations rentables dans notre pays et provoquant l'abandon progressif de forêts trop coûteuses à entretenir que des menaces que fait peser sur elle le dépérissement des forêts. C'est pourquoi la création de chemins d'accès dans les forêts les moins bien desservies doit à tout prix être encouragée, faute de quoi l'on verra apparaître une raison supplémentaire de négliger l'entretien des peuplements. » Si l'on peut souscrire à cette constatation, elle appelle toutefois deux remarques:

 les spécialistes de la construction en bois déplorent que les bois suisses ne supportent pas la comparaison avec les bois étrangers quant à la qualité, faute d'un tri rigoureux:

on souhaitera que le service qui a édité la brochure se souvienne qu'il s'occupe également de la faune et renonce à bétonner (comme cela a été le cas lors des améliorations foncières) ou à goudronner les chemins d'accès dont on reconnaît sans conteste la nécessité. Des rubans de béton ou de bitume ne conviennent pas à la faune, pour de multiples raisons.

A tous ceux qui douteraient du dépérissement des forêts comme à ceux qui s'en inquiètent, on ne peut que recommander instamment la lecture de cette brochure.

Jean-Pierre Weibel