Zeitschrift: Ingénieurs et architectes suisses

Band: 114 (1988)

Heft: 18

Artikel: Cogénération électricité-vapeur à la raffinerie Moto Oil de Corinthe:

économies d'énergie et résultats d'exploitation

Autor: Calyvas, Athanase-Phoebus

DOI: https://doi.org/10.5169/seals-76829

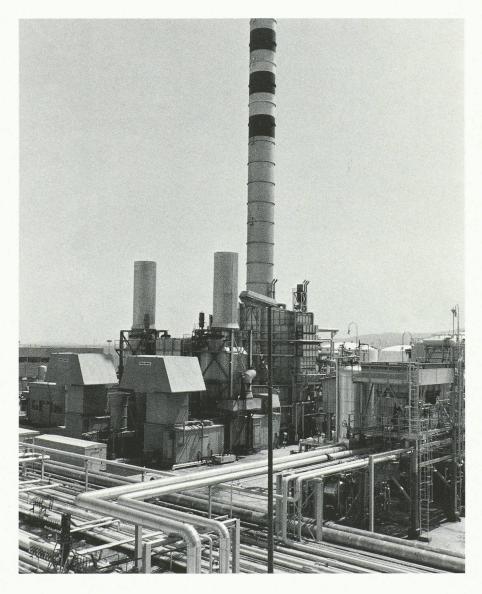
Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use


The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Cogénération électricité-vapeur à la raffinerie Motor Oil de Corinthe¹

Economies d'énergie et résultats d'exploitation

Introduction

La raffinerie de pétrole de la société Motor Oil à Corinthe est une raffinerie complexe, tant sur le plan des différents procédés et techniques de raffinage utilisés qu'en ce qui concerne la gamme et la qualité de ses produits. Cette raffinerie produit en effet toute

PAR ATHANASE-PHOEBUS CALYVAS, ATHÈNES

la gamme des produits pétroliers et des huiles en utilisant diverses techniques comme la distillation atmosphérique et sous vide, la reformation, le cracking catalytique (Fluid Catalytic Cracking, FCC), l'alkylation, etc. D'autre part, pour la conduite des opérations de raffinage, on utilise la technique de la pro-

grammation linéaire à l'aide d'un IBM 4331/MB.

Pour couvrir ses besoins en électricité, la raffinerie recourait au réseau de l'entreprise publique d'électricité PPC. Quant à ses besoins en vapeur pour les différents procédés de raffinage, ils étaient couverts par la production de chaudières à combustible liquide ou gazeux.

Au cours de ces dernières années d'exploitation, un excès de gaz combustible est apparu, provenant des opérations de raffinage, qui brûlait «à la torche». En outre, la décision d'accroître, dans un proche avenir, la capacité des installations du cracking catalytique contribuerait à augmenter encore l'excès des gaz combustibles perdus «à la torche».

Dans ces conditions, une étude fut menée en 1983 pour voir s'il serait possible d'utiliser une partie des gaz en excès pour l'autoproduction d'électricité.

Les résultats de cette étude, qui prenait également en compte les pertes économiques dues aux fréquentes interruptions du réseau public, ont incité la direction de la société à entreprendre immédiatement l'exécution du projet.

«Projet de démonstration d'économies d'énergie», cette réalisation a reçu une aide financière de la Communauté européenne et du Gouvernement grec; elle a d'autre part été financée par la Banque Européenne d'Investissements, le Crédit Lyonnais et la Banque Nationale d'Investissements et de Développement Industriel.

Caractéristiques techniques de l'installation de cogénération

Les caractéristiques essentielles de l'installation sont les suivantes:

Système de compression des gaz et vaporisation de LPG (gaz liquéfiés)

Pression 3,5 kg/cm² Température 35°C Poids moléculaire 20,2-16,3

Après compression à 16,4 kg/cm², la pression des LPG vaporisés est de 14,3 kg/cm² et leur température de 95°C.

Tableau 1. - Production globale pour la période de novembre 1984 à octobre 1985.

	1984-1985	Estimations initiales
Production d'électricité (106 kWh/an) - couverture des besoins	151,5 94,3 %	174,4 96%
Production de vapeur (10 ³ Mt/an) - couverture des besoins	457 51,3 %	544 66,7 %
Consommation de gaz (10 ³ Mt/an) - diminution des pertes	51,8	68,5
de gaz «à la torche» (10 ³ Mt/an)	11,04	11,0

¹Communication présentée à la conférence «Efficacité énergétique dans l'industrie», organisée par la Commission des communautés européennes, le 20 octobre 1987 à Berlin.

Turbines à gaz et alternateurs

Deux turbines et alternateurs de 11,5 MW à 35°C chacun.

Unité de récupération de chaleur et production de vapeur

Vapeur haute pression

Production 52 t/h
Pression 48 kg/cm²
Température 420°C

Vapeur basse pression

Production 16 t/h
Pression 2,5 kg/cm²
Température 138°C

L'installation visait à compenser les 97,8% des besoins de la raffinerie en énergie électrique.

Exploitation et mesures

Les études, puis les travaux de construction et enfin l'ensemble des essais furent achevés en octobre 1984. L'installation fut mise en exploitation normale en novembre 1984. Des mesures systématiques eurent lieu entre novembre 1984 et octobre 1985 pour permettre l'évaluation des résultats. De nouveaux paramètres furent introduits et pris en considération dans la programmation linéaire afin d'optimaliser l'ensemble (production de la raffinerie et installation de cogénération), et notamment pour la production et la qualité des gaz, surtout en provenance du FCC et des unités de reformation. Les tableaux 4 et 5 donnent une vue d'ensemble des mesures effectuées, et la figure 1 illustre sommairement les mesures et systèmes étudiés pour l'évaluation des résultats.

Résultats d'exploitation

Les fondements théoriques d'un certain nombre de calculs et d'évaluations sont inspirés de l'ouvrage *Thermodynamique et énergétique*, de Lucien Borel, professeur à l'EPFL, ainsi que de l'article « Efficacité et rendement exergétique d'une petite centrale électricité-chaleur », par André Tastavi du Laboratoire de thermodynamique de l'EPFL (*Ingénieurs et architectes suisses*, 13/1982, du 24 juin 1982).

Nous avons aussi calculé un cas extrême d'exploitation, au cas où l'on ne réussirait pas à réduire les pertes des gaz « à la torche » $(L_F=0)$.

Les figures 2 et 3 représentent et illustrent l'évaluation des différentes grandeurs pendant la période examinée. Les principaux résultats de ces évaluations sont regroupés dans les tableaux 1, 2 et 3.

Fig. 1. – Système énergétique avec ou sans cogénération.

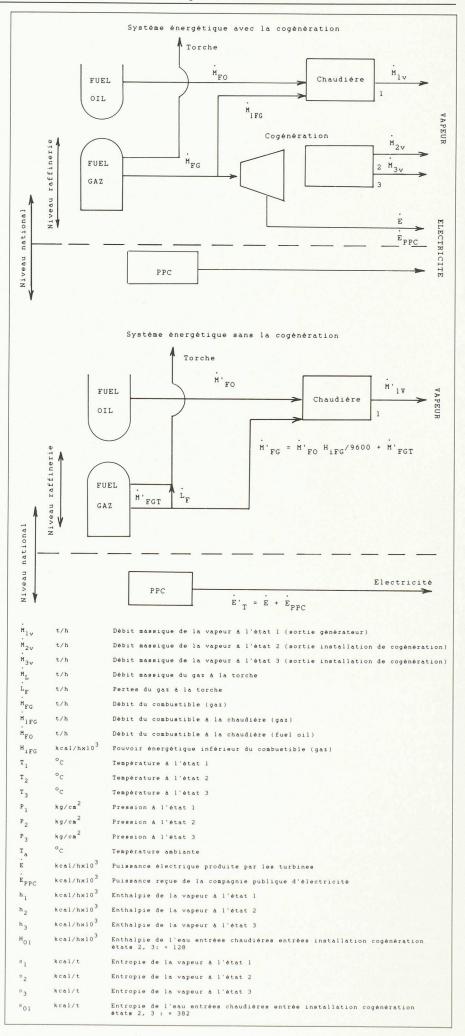


TABLEAU 2. - Rendements et économies d'énergie.

	1984-1985	Estimations initiales
Efficacité énergétique	75,64%	75,91%
Rendement exergétique	43,95%	42,63 %
Economies d'énergie au niveau de la raffinerie (TEP ² par an)	9139	8418
Economies exergétiques au niveau de la raffinerie (TEP par an)	36923	37931
Economies d'énergie au niveau national (TEP par an)	36229	37 345
Economies exergétiques au niveau national (TEP par an)	36668	37 182

² TEP = tonnes équivalent pétrole.

TABLEAU 3. - Résultats d'exploitation.

	1984-1985	Estimations initiales
Coût de l'électricité produite (\$/1000 kWh)	43,95	45,02
Diminution du coût de la vapeur (\$/Mt)	1,76	2,68
Gains annuels de la raffinerie (10 ³ \$)	6489	6306
Rentabilité de l'investissement	33,06%	32,04%
Estimation des gains annuels au niveau de l'économie nationale $(10^3 \$)^3$	4999	6132

³ En ne tenant compte que des économies de combustible liquide dans la production d'électricité d'origine thermique du réseau public.

TABLEAU 4. - Résultats des mesures.

YMBOL	Mesur		Debit a			r ne	W DE							e 02,03	
LUBUL	UN11E2	DE219W	NOV 84	Dec 84	Jan 85		mar 85	AVE 83	Mai 85	Jul 85	Jul 82	ADU 85	Sep 85	Uct 85	Moy
Ĥ Iv	t/ _h	34.000	62.367	44.024	46.774	54.250	55.361	39.847	44.619	45.986	43.653	45.753	47.124	71.647	50.
ų ^{SA}	t/ _h	52.000	25.574	45.750	39.699	39.139	43.431	42.656	43.817	41.931	45.072	44.843	41.786	15.031	39.
H _{3v}	t/ _h	16.000	8.257	14.975	15.524	14.299	16.038	15.418	15.815	14.932	15.257	15.588	14.614	5.264	13.
AL	t/ _h	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.
Ĺ	t/ _h	1.375	1.528	1.621	1.042	0.896	1.341	1.465	1.532	1.372	1.425	1.561	1.248	0.303	1.
A F6	t/ _h	8.568	4.979	6.300	6.031	5.799	6.488	6.204	6.922	6.919	7.365	7.090	5.931	1.931	5.
A 1FG	t/ _h	1.318	0.601	0.119	0.040	0.040	0.000	0.000	0.489	0.688	0.744	0.503	0.049	0.007	0.
A _{FO}	t/ _h	1.187		3.272		4.147	4.278	3.094	2.888	2.779	2.529	2.944	3.582	5.513	3.
H iF6	10 ³ kcal/ _t	11000	11304	10703	10834	10418	11500	11488	11672	11305	11125	11427	11720	10987	11
T 1	°C	390	375	370	360	370	370	360	370	370	370	360	350	380	
ı L	°c	420	405	405	405	405	405	405	405	405	405	405	405	405	
T ₃	°c	138	143	143	143	143	143	143	143	143	143	143	143	143	
P 1	kg/cm ²	47	45	45	45	45	45	45	46	46	46	46	46	46	4
P 2	kg/cm ²	48	48	48	48	48	48	48	48	46	46	46	46	46	4
P 3	kg/cm ²	2.5	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	
T a	°c	25	16	13	12	11	13	19	24	28	29	29	26	20	
Ė	10 ³ kcal/ _t	18748	17824	16397	15806	15407	18144	17518	18189	16662	18823	19313	16781	4606	168
È PPC	10 ³ kcal/t	774	4778	1292	161	306	106	76	76	306	497	268	101	3860	

Conclusions

Il paraît incontestable que l'investissement de cogénération à la raffinerie de Corinthe donne des résultats impressionnants, aussi bien en économies d'énergie qu'en rentabilité économique, dans les conditions du marché des années 1984-1985.

Il s'agit maintenant d'étudier les conditions extrêmes de fonctionnement et de généraliser les résultats: à partir des mesures et des résultats présentés dans cet article, on peut tirer les conclusions suivantes.

Les facteurs principaux à prendre en considération sont :

- pertes «à la torche»
- prix du fuel oil
- prix de l'électricité achetée au réseau public.

Dans le cas extrême où l'on ne réussit pas à réduire les pertes «à la torche» $(L_F = 0)$, le seuil de rentabilité de l'investissement est encore intéressant :

a) sans réduction des pertes « à la torche »

	Prix de l achetée (\$)	'électricité '1000 kWh
Niveau raffinerie	30-40	50-60
Prix fuel oil en \$/Mt <	90	190
Niveau national ⁴		
Prix fuel oil en \$/Mt >	110	110

b) avec réduction des pertes «à la torche»

Au niveau de 11 000 Mt/an	Prix de l'électricité achetée (\$/1000 kW)				
Niveau raffinerie	30-40	50-60			
Prix fuel oil en \$/Mt <	180	430			
Niveau national ⁴	14				
Prix fuel oil en \$/Mt >	70	70			

⁴En ne tenant compte que des économies de combustible liquide dans la production d'électricité d'origine thermique du réseau public.

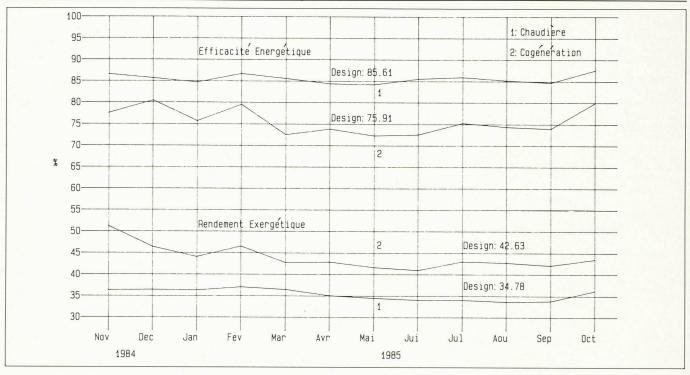


Fig. 2. - Motor Oil Hellas: installation de cogénération électricité-vapeur.

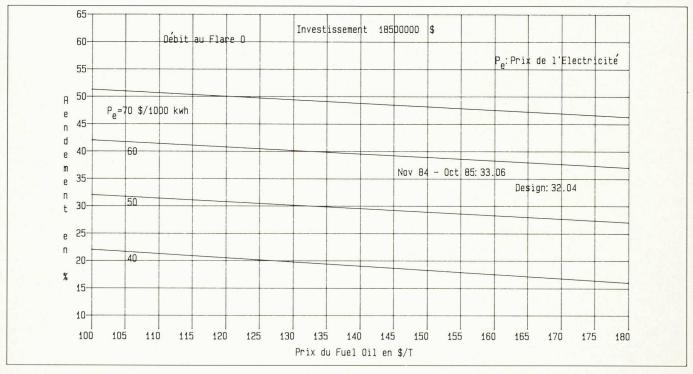


Fig. 3. - Rentabilité de l'investissement.

TABLEAU 5. - Composition des gaz.

COMPOSA	NT											
MOLE %	NOV. 84	DEC. 84	JAN. 85	FEBR. 85	MARCH 85	APRIL 85	MAY 85	JUNE 85	JULY 85	AUG. 85	SEPT. 85	OCT. 85
12	35.4900	23.2700	27.1400	5.4810	40.4500	41.9830	42.4000	38.9720	23.6000	33.2400	45.1900	14,1800
01	18.2800	22.3300	18.2500	14.6220	17.9500	16.3900	17.2000	15.8570	19.5000	18.7900	13.9400	4.1900
2	7.7900	7.4200	11.7400	8.3620	8.9900	11.8650	12.1700	14.0170	15.9500	13.7000	11.9500	3.7700
22=	5.7200	5.6800	7.0100	6.7130	6.3000	7.3250	6.6200	7.5580	8.3400	7.1700	4.4300	1900.0000
03	12.5000	17.4000	11.9500	16.8180	10.6300	7.4520	7.8000	7.4790	17.4000	12.6200	12.8300	37.0200
C3=	9.9300	6.5700	10.8000	27.5520	8.9400	7.3940	4.6000	5.2890	7.1000	6.4200	3.5400	13.2400
i-D4	2.3600	4.9800	2.3600	3.7050	1.1400	1.7190	2.2000	2.9690	1.9000	1.7400	1.9800	6.1400
n-D4	2.5800	4.8400	2.1500	3.4590	2.0600	1.8870	3.1000	2.7690	2.2500	2.7300	3.3400	15.9500
1-D4=	1.0000	0.5900	1.1500	1.9920	0.4000	0.4020	0.7400	0.5100	0.2300	0.4000	0.2500	1.1700
c-D4=	0.1900	0.2500	0.8200	1.2910	0.2100	0.2070	0.4800	0.2800	0.1000	0.2100	0.0900	1.1400
t-D4=	1.1000	0.1600	0.7500	1.4070	0.1800	0.1940	0.4900	0.2700	0.0800	0.1200	0.0900	0.9100
i-D5=	0.0000	0.0000	0.1300	0.4090	0.0800	0.0370	0.1700	0.2600	0.0800	0.4600	0.3300	0.0500
n-D5	0.0000	0.0000	0.0000	0.1250	0.0000	0.3300	0.0700	0.0500	0.0600	0.1500	0.2000	0.1600
C5=	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CO	0.1400	0.2600	0.1000	0.1050	0.1000	0.0970	0.1000	0.1800	0.1400	0.1400	0.1000	0.0800
202	0.0500	0.1400	0.0400	0.0430	0.0500	0.0700	0.0600	0.0600	0.0700	0.0700	0.0600	0.0400
N2	2.8700	6.1100	5.6100	7.9140	2.5200	2.9450	1.8000	3.4790	3.2000	2.0400	1.6800	1,7700

Adresse de l'auteur: Athanase-Phoebus Calyvas Ingénieur EPFL/SIA Economiste, Université de Lausanne 2, Karageorgi Servias str. 105 62 Athènes