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CONSTRUCTION METALLIQUE Ingèni et architectes suisses N" 13 18 juin 1987

Dimensionnement au feu
des charpentes métalliques :

simulations numériques

par Jean Baptiste Schleich, Luxembourg

Lorsqu'un incendie se déclare dans une construction, d'importants dommages sont
inévitablement causés aux personnes et aux biens, si l'ossature du bâtiment vient à

s'effondrer. Une bonne résistance au feu de la structure portante est une condition
insuffisante mais nécessaire pour préserver l'intégrité d'une construction, secourir
les occupants et donner aux sapeurs-pompiers le temps d'intervenir efficacement.
Par conséquent, le besoin de disposer de modèles analytiques permettant de simuler

le comportement thermique et statique des structures en cas d'incendie se fait
de plus en plus sentir.

Des progrès considérables ont été réalisés

en matière de conception de méthodes

analytiques simples, particulièrement

pour l'acier et les éléments mixtes
acier-béton. Désormais, dans plusieurs
pays, l'évaluation pratique de la
résistance au feu des éléments de structure
peut être effectuée au moyen de ces
modèles de calcul simplifiés [1] [2] [3] [4]
[5]».

Malheureusement, cette approche ne
s'applique pas à toutes les situations
pratiques; ces méthodes sont même
sérieusement limitées lorsqu'on veut analyser
une structure de façon plus réaliste.

Simulations numériques

Au Département Ponts et charpentes de

l'Université de Liège (Belgique), de nou-

'Les chiffres entre crochets renvoient à la
bibliographie en fin d'article.

velles recherches ont été réalisées sur des

structures en acier et mixtes acier-béton,
sous la conduite d'Arbed-Luxembourg et

avec l'aide financière de la Communauté
européenne du charbon et de l'acier [6],
Le premier but de cette étude était d'établir

un programme d'ordinateur destiné à

l'analyse de structures en acier et mixtes
exposées au feu. Le calcul numérique en
question est fondé sur la méthode des

éléments finis, utilisant des éléments du
type poutre à section transversale subdivisée

en maillage rectangulaire. La structure

soumise à des charges ou températures

croissantes est analysée par itérations
successives. Le problème thermique est
résolu au moyen d'une méthode aux
différences finies fondée sur l'équilibre
thermique entre les mailles adjacentes de

la section transversale.
Ce programme Ceficoss - abréviation de

«Computer Engineering of the Fire
resistance for Composite and Steel

Structures » - a été essentiellement
développé pour et appliqué à des structures
mixtes et en acier.
En fait, les lois relatives aux propriétés
des matériaux figurant dans ce

programme sont bien sûr fonction de la
température. Les relations pour l'acier et le
béton, prévues pour l'instant mais pouvant

toujours être améliorées par la suite,
sont données aux figures 1 à 3.

La figure 1, représentant le diagramme
contraintes-dilatations de l'acier, montre
que l'effet d'écrouissage a été pris en
considération par le biais d'un palier d'étirage

légèrement incliné. En effet, suivant
des essais pratiques de comportement au
feu, cet effet d'écrouissage de l'acier
influence sérieusement les déformations
totales à température élevée [6] [7].
La figure 2 montre le diagramme
contraintes-dilatations du béton, dont les

contraintes diminuent pour des valeurs
élevées des dilatations [8] [9].
La figure 3 précise les lois de la conductibilité

thermique et de la chaleur spécifique

de l'acier et du béton [2] [10].
Le principe de l'organigramme du
programme Ceficoss est illustré à la figure 4.

A température ambiante, la charge est
appliquée de manière progressive ; à chaque

augmentation de charge, l'équilibre
de la structure est rétabli suivant la
méthode Newton-Raphson. Lorsque la
charge de service est atteinte, elle est
maintenue constante au cours de la
simulation d'incendie qui suit. A
présent, les températures de chaque maille
des sections transversales sont calculées
à des intervalles de temps très courts.
Après simulation de l'incendie pendant
environ une minute, l'analyse thermique
est interrompue. La partie statique du
programme calcule alors les déplacements

de la structure pour les températu-
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Fig. 1. — Diagramme contraintes-dilatations de l'acier à diverses
températures.

Fig. 2. — Diagramme contraintes-dilatations du béton à diverses
températures.
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res obtenues à ce moment, après quoi la
méthode Newton-Raphson est de nouveau

utilisée afin de rétablir l'équilibre.

Cette procédure consistant en des calculs
thermiques et statiques alternés est
poursuivie jusqu'à ce qu'il ne soit plus
possible de rétablir l'équilibre de la structure.

Ce moment correspond au temps de

résistance ultime au feu de l'élément de

structure étudié.

Afin de vérifier les résultats de simulation

fournis par le programme Ceficoss
et d'évaluer de manière plus précise
certains paramètres physiques fondamentaux,

il fut décidé de procéder à une
nouvelle série d'essais de comportement au
feu à l'échelle réelle et en se fondant sur
la courbe de température ISO-834. Cela
permit de mieux comparer les résultats
de la simulation numérique aux résultats
des essais pratiques. Il s'en dégagea par
ailleurs des enseignements des plus
intéressants au sujet d'un nouveau type de

structure mixte mis au point par l'Arbed
[11] [12] [13] [14].

Essais à l'échelle réelle

1. Tests du comportement au feu
sous charge de colonnes en acier,
protège ou non, et de colonnes mixtes

A l'Université de Gand [15] furent réalisés

des essais sur colonnes d'une
longueur de 4,14 m, soumises à une charge
longitudinale présentant une excentricité

de 180 mm par rapport à l'axe faible.
Le profil d'acier testé était une poutrelle
américaine à larges ailes W 14 x 16 x 500

qui, dans le cas d'une colonne, n'était pas
protégé contre l'action directe du feu.
Ces essais ont montré qu'une massivité
importante - le facteur de forme F/V de
ce profilé d'acier était de 27 m -' - fournit
une bonne résistance au feu même à des
profilés en acier non protégé. Seuls des

logiciels de calcul numérique, définissant

le gradient de température sur
l'épaisseur de l'acier, permettent de
prédire correctement le comportement au
feu d'éléments en acier massif non
protégé. De fait, l'essai donna lieu à un

temps de résistance au feu de 45 min,
alors que la simulation suivant Ceficoss
permettait de prédire 46 min. Le champ
des températures calculées, correspondant

à ce premier type d'essais, est donné
à la figure 5.

Des colonnes mixtes spéciales furent
testées dans le four d'essai à Gand. L'une de

ces colonnes était composée de trois
profilés laminés en double T, soudés
ensemble et remplis de béton entre les
ailes. Le béton de cette colonne, de
section transversale octogonale, ne comportait

pas d'armature (fig. 6). Le programme
Ceficoss donnait une résistance au feu de
170 min, correspondant à 99% du temps
effectif mesuré de 172 min. Au cours de

l'essai, cette colonne d'une longueur de

4,14 m eut un comportement excellent,
malgré les quatre ailes en acier visibles et
donc directement exposées à l'action du
feu.
Deux colonnes du type AF 30/120 furent
testées à l'Université de Brunswick [16],
avec une excentricité de charge de 98 mm
par rapport à l'axe faible. Ces colonnes
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Fig. 3. — Acier et beton : conductibilité thermique et chaleur spécifique. Fig. 4. — Organigramme d'une simulation d'incendie.
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avaient des longueurs respectives de
3,74 m et 5,71 m. Pour cette dernière
colonne, l'essai de comportement au
feu fournit un temps de résistance de
120 min, alors que la simulation par Ceficoss

donnait 114 min (95%).
Afin de pouvoir reprendre des moments
de flexion plus grands autour de l'axe
faible, il est avantageux de remplacer les
barres d'armature du béton par des profilés

en T soudés sur l'âme du profil principal

(fig. 6). Deux colonnes de ce type,
d'une longueur de 5,71 m, furent testées
avec succès à Brunswick [16]. Pour la
colonne présentant une excentricité de

charge de 150 mm, le temps de résistance
au feu mesuré fut de 157 min, alors que la

simulation numérique prévoyait 140 min.
Les valeurs calculées et mesurées des
déformations longitudinales et transversales

correspondent par ailleurs fort bien.

2. Tests du comportement au feu
sous charge de poutres mixtes

Quatre poutres furent testées dans le four
d'essai adéquat à Gand [15]. Ces poutres
étaient constituées du profil mixte AF
supportant une dalle en béton, normalement

reliée par l'intermédiaire de gou¬

jons connecteurs à l'aile supérieure du
profil en acier. La première poutre testée,
à section transversale en forme de T, était
isostatique avec une portée de 6 m. En
appliquant le critère de la flèche/S L/30
pour définir le temps de résistance au feu,
la correspondance entre le résultat de
l'essai (171 min) et la simulation (165 min)
se révèle très bonne (96%).
Pour le quatrième essai, aucun goujon
connecteur n'avait été installé entre la

poutrelle mixte AF et la dalle de béton,
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qui reposait donc simplement sur l'aile
supérieure du profil métallique. La dalle
devait être prise en compte dans le calcul
de la distribution des températures, mais
n'intervenait pas dans la résistance statique

de la poutrelle. Dans ce cas également,

les temps de résistance au feu
mesurés au cours de l'essai (92 min) et
calculés par Ceficoss (90 min) concordent

fort bien (98%). Les deuxième et
troisième poutres mixtes, toutes deux
avec une portée libre de 6 m, furent tes-
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tées avec une extrémité simplement
appuyée et l'autre extrémité pratiquement
encastrée. Dans les deux cas, une rotule
plastique prévue par la simulation numérique

fut observée à proximité de
l'encastrement. Les temps de résistance au feu
selon le critère de la fièche/â L/30,
calculés suivant Ceficoss et mesurés au
cours des essais, concordent parfaitement.

La figure 7 montre l'évolution de la
flèche mesurée et simulée pour la
troisième poutre testée.
Des conclusions pratiques très intéressantes

peuvent être tirées de ces quatre
essais sur poutres mixtes. Comme
illustré lors du quatrième essai, la classe
ISO F 90 peut être garantie par ce type de

poutre, même sans aucune collaboration
statique de la part de la dalle en béton, et
malgré un niveau de charge très élevé
(46,1 kN/m). Il est bien sûr important de

profiter de l'avantage de la collaboration
entre dalle en béton et poutrelle mixte
AF, étant donné que le temps de
résistance au feu monte de 92 min, cas de la
quatrième poutre testée, à 171 min, pour
la première poutre. De plus il est avantageux

de tenir compte de la continuité
réelle des poutres, sans pour autant
renforcer la dalle en béton, comme illustré
par l'essai sur la seconde poutre mixte,
dont le temps de résistance au feu est allé
jusqu'à 244 min. Cependant, le meilleur
choix consiste évidemment à renforcer
la dalle en béton au droit de l'appui
continu, ce qui permet de reprendre des

charges de loin supérieures; en effet,
la troisième poutre testée, soumise à

une charge de 74,5 kN/m, pouvait ainsi
pratiquement être rangée dans la classe

ISO F 180 (fig. 7).

3. Tests du comportement au feu
sous charge de cadres mixtes

Une étude fort utile, dorénavant
réalisable au moyen du programme de calcul
numérique Ceficoss, est l'analyse de l'effet

d'un feu sur l'ensemble d'une ossature.

Bien entendu, il n'existe aucun four
capable de tester une construction
entière soumise à l'action d'un incendie.
Cependant, l'un des fours de l'Université
de Brunswick permet de tester des cadres
simples composés d'une colonne et
d'une poutre. Dès lors, deux essais pratiques

furent réalisés en 1985 par l'Arbed
sur des demi-cadres à l'échelle réelle [17].
Ces essais confirmèrent par ailleurs les
résultats numériques fournis par le
programme de simulation [6]. Les types de
colonnes et de poutres composant ces
deux cadres sont donnés à la figure 8.

Pour l'ossature 3.10 soumise à la plus
forte charge, cette figure montre également

la bonne concordance entre les
déplacements horizontaux mesurés et
calculés pratiquement à mi-hauteur de la
colonne.
Afin d'apprécier pleinement cette tentative

réussie, sans précédent, de simuler
des essais plus complexes que de simples
poutres ou colonnes mixtes, il serait utile
210
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d'examiner la liaison rigide entre poutre
et colonne. L'effort de cisaillement y est
repris par l'intermédiaire d'une plaque
épaisse soudée à l'aile de la colonne, alors
que le moment de flexion négatif peut
être repris grâce aux boulons situés dans
la dalle de béton relativement froide. De
plus, cet assemblage poutre-colonne est
très commode, puisqu'il permet de monter

sur chantier des éléments mixtes
entièrement préfabriqués.
En conclusion de ces résultats d'essais et
de simulations, il faut admettre qu'un
calcul numérique à l'aide de Ceficoss
permet de décrire de façon très réaliste le

comportement d'une structure soumise à

un feu ISO. La figure 9 montre une
présentation générale de tous les essais
réalisés jusqu'à présent. On peut y relever
la remarquable concordance entre les
résultats théoriques et les résultats des
essais [6] [18].

L'ingénierie de la résistance au feu

Ceficoss est un programme de calcul
numérique général et thermomécanique
permettant de prédire le comportement
au feu des éléments constitutifs d'une
construction tels que colonnes, poutrelles

ou cadres rigides. Ces éléments de
structure peuvent être composés soit de
profilés métalliques, protégés ou non,
soit de profilés mixtes de sections
transversales quelconques (fig. 6). Ceficoss est
un nouvel outil permettant de procéder à

une multitude d'analyses, en vue d'améliorer

de façon substantielle nos connaissances

dans le domaine de la sécurité
réelle au feu des structures.
En tout premier lieu, les champs des
températures el des contraintes intérieures

peuvent être déterminés pour n'importe
quelle section transversale. De ce fait le
dimensionnement au feu est optimalisé
el les frais d'une protection excessive
contre l'incendie sont évités. Les armatures

métalliques peuvent être prévues
à des endroits judicieusement choisis
grâce à la connaissance des champs
thermiques (comme ceux de la fig. 10). Les
champs des contraintes intérieures peuvent

nous fournir l'explication physique
correcte pour certains types de
défaillances.

Dans cette optique, la figure 11 montre
une colonne mixte soumise à une charge
excentrée, composée du profil européen
à larges ailes HE 400 AA et renforcée par

deux demi-profils 1/2 HE 180 M noyés
dans du béton. On peut y observer le

champ des contraintes intérieures provoquées

par l'action simultanée de la

charge excentrée N et du champ des
températures différentielles intérieures,
donné à 140 min d'un échauffement ISO ;

c'est à ce moment que se produit le flam-
bement de la colonne. La représentation

tridimensionnelle des contraintes
montre la compression du béton, dont les
couches extérieures sont écrasées bien
avant le flambement. Alors que l'âme du
profil principal HE 400 AA se trouve en
état de compression due à son niveau
d'échauffement supérieur à celui des

demi-profils, ces derniers comprennent
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Fig. 18. — Colonnes mixtes à sections
transversales rectangulaires avec semelles en acier
visibles.

Fig. 19. — Colonnes mixtes à sections
transversales polygonales avec surfaces en acier
visibles.

Fig. 20. — Construction mixte AF avec assemblages

poutrelle-colonne.

des zones de traction et de compression
et supportent dès lors principalement le

moment de flexion (test 1.8 [6]).
De plus, la déformation globale d'une
construction peut être calculée afin de

montrer soit son évolution en fonction
du temps, soit sa situation juste avant la

ruine. L'exemple de la figure 12 montre
la déformation d'une ossature à deux
niveaux soumise à un feu ISO local.
Cette ossature, comportant des colonnes
et des poutres constituées de sections
transversales mixtes identiques à celles
de la figure 8, présente une déformation
continue et logique encore juste avant la

ruine. L'effondrement se produit après
216 min de feu ISO local, par flambement
de la partie inférieure chauffée de la
colonne centrale.
L'ingénieur-conseil disposera à l'avenir
d'outils pratiques de dimensionnement
au feu, par exemple pour colonnes
soumises à des charges centrées ou pour
colonnes supportant charges verticales N
et moments de flexion M [19]. Ces

diagrammes d'interaction N-M, tenant
compte de la longueur de flambement
des colonnes, seront établis pour
différentes classes au feu ISO.
En outre il sera dorénavant possible de

considérer, à côté de la courbe standard
ISO-834, toute autre courbe d'échauffement

naturel. La figure 13 montre les
courbes naturelles MM1 à MM4,
déterminées sur base d'essais pour différentes
charges au feu de 60 à 15 kg de bois par m2

de plancher et un facteur d'ouverture de
0,157 m"2 [20] [21]. C'est la courbe d'enveloppe

globale CN2 qui sera utilisée dans
les exemples de calcul suivants.
Notre connaissance du comportement au
feu des structures sera sérieusement
enrichie par l'étude de l'évolution des
champs des températures intérieures de
sections transversales mixtes soumises à

un feu naturel. La figure 14, correspon-
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dant à une section renforcée par des profils

en T, montre que ces demi-profils
n'atteignent que 240°C au maximum.
Cela signifie que, dans le cas d'un échauf-
fement naturel, il existe un seuil critique
de charge en dessous duquel l'élément de

structure ne saurait plus périr. La figure
15 donne une généralisation de ce concept

en définissant le temps de résistance
ISO équivalent pour lequel la résistance
de la structure soumise à un feu ISO est

identique à la résistance minimale de
la structure soumise à un feu naturel
donné [22].
Une première tentative fut réalisée de

calculer par Ceficoss le temps de
résistance ISO équivalent par rapport à la

courbe d'échauffement naturel CN2,
pour un cadre de structure d'un niveau,
illustré à la figure 16. Lors du calcul de

cette structure soumise à un niveau de

chargement de base y/ 1, la résistance
au feu ISO est de 118 min. Cependant, il
n'apparaît aucune défaillance pour ce

même niveau de charge lors de l'échauf-
fement naturel CN2. Afin d'atteindre la

résistance minimale de la structure
soumise à ce feu naturel, le niveau de charge
doit être augmenté à i// 1,8. Néanmoins,
le temps de résistance correspondant au
feu naturel CN2 est alors encore supérieur

à 180 min, tandis que le temps de
résistance ISO équivalent n'est plus que
de 50 min. Etant donné que réchauffement

naturel correspondant à la courbe
CN2 peut toutefois être considéré
comme un incendie relativement sévère,
cet exemple confirme clairement que
des structures partielles ou globales
devraient être dimensionnées, soit en
fonction d'un échauffement naturel, soit
en fonction d'une classe inférieure de feu
ISO, par exemple F 60 au lieu de F 120.

Bien entendu, l'analyse statique sous
charges de service et à température
ambiante doit toujours être effectuée et

X

T
Fig. 21. — Eléments mixtes AF complètement
préfabriqués.

deviendra probablement plus souvent le

cas de charge déterminant.
Ces considérations conduisent à la
matrice de la figure 17 montrant les

relations possibles entre les modèles
d'échauffement et les modèles de calcul
statique. Ceficoss, en tant que
programme numérique, thermomécanique
et général, permettra d'exploiter
pratiquement la matrice H-S proposée par la

CECM et le CIB [22] [23].
Néanmoins, pour être complet, il faut
relever que le dimensionnement d'une
structure soumise à un feu naturel n'est
possible actuellement que de façon
qualitative. En effet, les lois de comportement

du béton sont encore trop mal
connues pour la phase de refroidissement
d'un feu naturel.
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Le point de vue de l'architecte

En fin de compte, cette méthode de calcul

numérique contribuera à améliorer
l'image de marque de la construction en
acier.
En effet, d'une part, le maître d'œuvre
pourra être convaincu que des économies

substantielles sont désormais
garanties, étant donné qu'un niveau précis

de sécurité incendie pourra être
atteint sans entraîner de protection
incendie excessive. De plus, tout
élément de structure n'offrant pas la sécurité

requise sera éliminé en connaissance
de cause, de sorte que les pertes résultant
de l'effondrement d'une construction
suite à un incendie seront considérablement

diminuées.
D'autre part, l'architecte aura enfin le

libre choix en matière de forme et de

composition des sections mixtes
transversales des éléments de structure.
Cependant, ce sont des éléments de

construction à faces visibles en acier qui
deviendront disponibles pour n'importe
quel niveau de sécurité incendie. Cet
aspect important est illustré dans les figures

18 el 19, qui montrent quelques
possibilités de sections transversales pour
colonnes mixtes, fondées sur les profils
laminés en double T et présentant une
alternance systématique des surfaces en
acier et en béton. Ce «système de
construction universelle AF» permet assurément

la création d'éléments de construction

parfaitement esthétiques et offre de
vastes possibilités architecturales.
D'ailleurs, les caractéristiques suivantes
rendent ce système mixte tout à fait
compétitif:

- une flexibilité extrêmement élevée est
garantie, étant donné que de
nombreux types d'assemblage sont
disponibles, offrant toujours une solution
pratique réalisable comme le montre la

figure 20;
- une rapidité de construction insoupçonnée

peut être assurée, étant donné
qu'une préfabrication complète est
réellement possible suivant, par
exemple, la figure 21;

- les sections transversales les plus petites

possibles sont concevables, conduisant

à des constructions plus élancées.

Conclusions

Les considérations qui précèdent
expliquent pourquoi, jusqu'à présent, plus
d'une trentaine de bâtiments ont été érigés

en Europe sur la base des éléments de

construction traditionnelle AF [3] [4] [5].
L'utilisation appropriée du programme
numérique Ceficoss devrait cependant
donner lieu à une plus grande expansion
des éléments de construction universelle
AF adaptables à n'importe quelle
configuration technique [14] [24] [25] [26].
Cependant, il sera aussi possible, à l'avenir,

d'apporter la preuve d'une certaine
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résistance au feu des constructions en
acier même non protégé [27] [28] ; en
effet, il faut savoir procéder à une simulation

plus réaliste des conditions
d'environnement, notamment en analysant le

comportement global des structures, en
simulant l'incendie naturel et localisé,
ainsi qu'en réduisant de façon logique les

surcharges statiques en cas d'incendie.
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