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GEOTECHNIQUE

Ingénieurs et architectes suisses n° 5

28 février 1985

La distribution béta et son utilisation
pratique dans les méthodes de calcul

probabilistes

par Philippe L. Bourdeau et Franco Oboni

1. Introduction

Lintérét croissant qui se manifeste pour
les méthodes d’analyse probabilistes en
génie civil, en particulier dans le domaine
de la géotechnique, suscite de la part des
praticiens désireux d’adoper cette nou-
velle approche des interrogations por-
tant sur la maniére de transposer a des cas
réels les modéles proposés.
Parallélement aux travaux de recherche,
le besoin se fait sentir d’'une méthodolo-
gie pratique qui permette a I'ingénieur de
tirer parti des développements récents,
sans pour autant alourdir sa tache et le
coat des calculs de maniere dispropor-
tionnée par rapport aux projets. A notre
connaissance, le traité de Harr [1]' est
actuellement le seul ouvrage qui tente de
rassembler les éléments d’une telle syn-
these.

ILes chiffres entre crochets renvoient a
la bibliographie.

Dans la plupart des applications prati-
ques (stabilité des pentes, tassements,
capacité portante, etc.), le probleme con-
siste a représenter, puis a traiter la distri-
bution de probabilité d’une ou plusieurs
fonctions de variables aléatoires, en
suivant les étapes schématisées par la
figure 1.

Récemment, Recordon [2] a proposé une
méthode de dimensionnement des fon-
dations superficielles qui suit cette
démarche générale. Locher [3] a discuté
les méthodes usuelles de calcul (seconde
étape du diagramme) et les a illustrées
par des exemples pratiques.

La présente étude, qui se situe dans le
méme contexte, porte sur la phase sui-
vante de I'analyse, dans le cas ou la
méthode employée pour déterminer la
fonction permet seulement I’estimation
de ses premiers moments (méthode des
séries de Taylor ou méthode de Rosen-
blueth). Elle résume I'expérience acquise
par les auteurs lors du développement
d’une nouvelle méthode de calcul pour la
stabilité des pentes [4], dans laquelle il est
fait un large usage des distributions béta.

2. Représentation des grandeurs
aléatoires par le modeéle
empirique béta

2.1 Classification des distributions
Les distributions de probabilité peuvent
étre classées selon le systéme de Pearson
[5], illustré par la figure 2. La distinction
est faite d’aprées les valeurs du coefficient
de dissymétrie 3, et du coefficient
d’acuité f3,, qui s’expriment par:
Bi=—ct =
(my) 2 (my)?
m, est le moment central d’ordre / de la
distribution. Pour une variable aléatoire
continue x, il est défini par I'intégrale:

m,

xmax
mo= [ () -f(x)-dx
.xmin
calculée sur le domaine de définition de
x. On désigne par f(x) la fonction de den-
sité de probabilité de x, et par u, sa
moyenne (moment d’ordre 1 par rapport
a lorigine) ou espérance mathématique.
La variance est le moment central d’or-
dre 2.
Notations (selon le contexte):

moyenne de x: E[x], . ou yZ

= 2
variance : V[x] ou S«

écart type: S

Dexamen de la classification conduit a

deux remarques importantes:

a) la distribution béta (Pearson type 1)
couvre une large part du domaine des
distributions possibles;

Rerresentation de la distributicon
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Fig. I. — Schéma de l'analyse probabiliste. Fig. 2. — Classification de Pearson (d ‘aprés Harr [1]).
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b) les distributions dites «classiques»
(uniforme, normale, lognormale,
gamma, exponentielle, etc.) sont des
formes de transition séparant les gran-
des régions du domaine, et correspon-
dent, par conséquent, a des situations
tres particulieres. Il en résulte que
leur emploi lors de la modélisation
du comportement aléatoire d’une
variable ou d’une fonction devrait étre
limité aux cas ou une justification de
ce choix est possible, sur le plan théo-
rique. Cette condition est rarement
remplie, et dans de nombreuses appli-
cations des méthodes probabilistes en
technologie, le choix d’un type de dis-
tribution est opéré uniquement en
fonction de la commodité des calculs.

2.2 Géneéralités sur la distribution béta

Par son caractére général, sa souplesse
(illustrée par la fig. 3) et son aptitude a
représenter des variables dont I’intervalle
de définition est limité, la distribution
béta offre la possibilité d’unifier les cal-
culs, sans pour autant hypothéquer leur
précision. En outre, comme il s’agit
d’une distribution empirique, son utilisa-
tion n’est pas restreinte aux problémes
liés a un processus particulier.
Harr [1] a montré que 'usage de cette
distribution convenait particuliérement
bien dans le domaine de la géotechnique,
ou de nombreuses grandeurs sont bor-
nées. Il a présenté une formulation géné-
rale du modele béta, sur la base des
quatre parametres suivants:
W, moyenne a: borne inférieure
S, : écart type b: borne supérieure
Les bornes a et b sont des réels quelcon-
ques, avec a < b.
En posant: 5
o He—a

; V:(S* )
b—a b—a

on peut exprimer les coefficients de
forme :

!
~

{1 = %) =1+ %)

<i|*

a +1

—(a +2)

B =
X
qui interviennent dans la fonction de
densité de probabilité :
l .

(b —a) =B (e + 1,0+ 1)

" B

] (.\'—a) ] (b —.\')

b —a b—a

Le terme B désigne la fonction béta cal-
culée pour (a + 1, § +1):

Bl + 1,54 1= L8 LW
F(a+p+1)

Jix) =

1
= [x-(1-x)f dx
0

Si I'un des coefficients «, f est négatif
ou nul, la distribution prend une forme
particuliére, que nous appellerons «dé-
générée» (tableau 1).

66

TABLEAU 1: Formes de la distribution en fonction des coefficients a et 8

a B Forme

0 0 Distribution uniforme

0 1 Distribution triangulaire

1 0 Distribution triangulaire inverse
négatif négatif Forme en U
positif négatif Forme en J
négatif positif Forme en J inversé

S(x)p

S(x)4

Fig. 3. — Formes de la distribution béta (d’aprés Harr [1]).

Dans tous les autres cas, on obtient une
forme en cloche symétrique ou dissymé-
trique.

Lorsque I’on cherche a représenter par ce
modele la distribution d’une grandeur
aléatoire dont on ne connait que la
moyenne et I’écart type, on doit estimer
les valeurs des bornes a et b. Cette opéra-
tion est le point le plus délicat de 'utili-
sation des distributions béta. Les déve-
loppements qui suivent portent sur les
criteres de choix utilisables, et les consé-
quences qui peuvent en découler.

2.3 Criteres pour le choix des bornes

On distingue trois critéres principaux
qui, selon le type de probléme, peuvent
étre utilisés simultanément ou indépen-
damment:

2.3.1 Signification physique
de la quantité représentée
Les grandeurs aléatoires qui nous inté-
ressent peuvent fluctuer seulement a
’intérieur de I’ensemble des valeurs pour
lesquelles elles ont un sens physique. Ce
principe, d’apparence triviale, est tou-
jours valable en technologie.

Il s’applique aussi bien aux variables
qu’aux fonctions de variables aléatoires.
Il a des conséquences importantes quant
a la validité des modéles basés sur des
distributions non bornées, comme par
exemple la distribution normale.

Le tableau Il indique les limites de signi-
fication physique de quelques parame-
tres géotechniques. On voit que de nom-
breuses grandeurs ne sont définies que
dans le domaine positif, et la valeur 0
peut étre considérée comme représenta-
tive de leur borne inférieure. En particu-
lier, il y a toujours une probabilité non
négligeable que la cohésion d’un sol
prenne des valeurs trés faibles. Par
contre, le critére de signification physi-
que est insuffisant pour I’estimation de la
borne supérieure, car il conduit souvent a
des valeurs manifestement surestimeées.

2.3.2 Calcul direct des valeurs extrémes

Si la fonction étudiée est d’'une forme
simple, et si ’'on connait les bornes de la
distribution de chaque variable, il est
possible de calculer directement les bor-
nes de la fonction a I’aide des combinai-
sons appropriées de valeurs extrémes des
variables.

TABLEAU 11: Domaine de signification physique de quelques paramétres géotechniques

Domaine de signification physique

Parameétre géotechnique
minimum maximum

Teneur en eau w [%] 0 + o
Poids volumique
apparent saturé y g, [kN - m 3] A Vs
Porosité n [%] 0 100
Indice des vides e 0 + o
Degré de saturation S, [%] 0 100
Coefficient de perméabilité k 0 + o
Cohésion ¢ 0
Angle de frottement interne @ 0
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TaBLEAU III1: Valeurs extrémes d’une fonction linéaire de deux variables aléatoires

Valeurs
des
constantes

C|>0
(‘2>0

(']>0
C2<0

C1<0
[‘z<0

C|<O
C2>O

Borne
inférieure
a,

cyay,tcra;

cray+cy bz

C]b]“"('zaz C]b["’('gbz

Borne
supérieure
b,

] b| -t (&) bz

€] b[ + ¢ a3

C|a|+(‘1b3 cya;tieyay

Considérons par exemple y =¢, *x, + ¢, -
X, ou y est fonction des deux variables
aléatoires indépendantes x, et x,. Les
bornes de x, sont a, et b,. Celles de x,
sont a, et b,. Les coefficients ¢, et ¢, sont
constants. Les bornes g, et b, de la fonc-
tion sont indiquées par le tableau III,
pour les différents cas possibles.

En pratique, on rencontre rarement une
situation aussi simple. Dans la plupart
des cas, la fonction est trop complexe, ou
les variables trop nombreuses, et I’on ne
peut plus former d’une maniére certaine
les combinaisons déterminantes de
valeurs extrémes.

2.3.3 Critére probabiliste

Ce mode d’estimation, applicable aux
variables et aux fonctions, repose uni-
quement sur la notion de leur variabilité.
Il est possible d’estimer la probabilité
qu’une grandeur aléatoire soit située
hors d’un intervalle considéré, autour de
sa moyenne. L’étendue de cet intervalle
est généralement exprimée en fonction
de I’écart type.

Naturellement, cette prédiction est étroi-

tement liée aux informations disponi-

bles:

— l’inégalité de Chebyshev (Lipschutz
[6]) est applicable lorsqu’on ne dis-
pose pas d’informations autres que
les valeurs de la moyenne et de I’écart
type. Elle s’exprime par:

plx—ml >h-S]<—
h?

ou h est un nombre (réel) d’écart
type mesurant l'intervalle {u, —h - S,,
U, +h-S.t.
pllx—u| >h-S.]désigne la probabi-
lit¢ que x prenne une valeur située
hors de cet intervalle ;

— Pinégalité de Gauss (Parzen [7])
permet une estimation analogue lors-
que I’on sait en outre que la distribu-
tion est symétrique et unimodale. On
a alors:

4
=
9 h?

Le tableau IV montre comment varie la
probabilité pen fonction de A, selon I'iné-
galité de Chebyshev, I'inégalité de Gauss,
et, a titre de comparaison, si la distribu-
tion est normale.

Létendue probable du domaine de varia-
tion est d’autant plus grande que les
informations dont on dispose sont limi-
tées.

pllx—ul >h-S]

En pratique, on choisit souvent, sur la
base de ce critére, de fixer les bornes
d’une distribution béta a une distance de
trois ou quatre fois I’écart type de part et
d’autre de la moyenne.

Les valeurs indiquées au tableau IV mon-
trent qu’un tel choix ne peut étre fait
selon une regle systématique. On doit
d’abord tenir compte des informations
disponibles sur la distribution, afin de
choisirjudicieusement I’inégalité a appli-
quer. Puis la valeur de 4 doit étre sélec-
tionnée de maniére cohérente avec
I’ordre de grandeur du résultat que I’on
obtiendra par la suite. En effet, une pro-
babilité de rupture de 10-¢ obtenue a par-
tir d’une distribution béta bornée selon
I'inégalité de Chebyshev avec h =3 n’a
pas grande signification. Ce dernier point
conduit souvent a effectuer certains
tatonnements.

2.4 Influence du choix des bornes
sur la forme d’une distribution béta
Supposons que les bornes soient définies
par un certain nombre d’écarts types de
part et d’autre de la moyenne, désignés
respectivement par / et k (fig. 4).
On peut exprimer les variables auxiliaires
Xet Ven fonction de /et k:
o y:(_L»
k+1 k+1

2

Fig. 4. — Position des bornes définie par des
multiples k et | de l'écart type:

borne inférieure: a = pu, —1- S,

borne superieure: b =y, + k - S,

Par substitution, les coefficients a et
deviennent :

_ kU =2k —1
k+1

kI* = 21—k
B=
k+1

Lorsque la distribution est symétrique,
on a:

k=1 e a=§f

La condition pour que la distribution ne
soit pas d’une forme dégénérée s’écrit
alors:

2

k> (a > 0)
2 -1
2k

[ > >0
o #>0

Cette formulation trés simple permet
d’étudier sans calcul la «géographie » des
distributions béta, a I’aide de la carte
représentée a la figure 5.

Il suffit en effet de connaitre (ou de choi-

sir) les paramétres k et / pour savoir

quelle sera la forme de la distribution, en
la représentant dans le graphique par le
point correspondant.

On distingue, en tenant compte de la

symétrie :

— trois zones principales (formes en
cloche, en Ueten J);

— deuxzones de transition (surles cour-
bes);

— un certain nombre de points particu-
liers, qui correspondent le plus sou-
vent a des distributions théoriques,
comme les distributions normales,
uniformes, exponentielles.

Par ailleurs, il est intéressant de noter
comment évolue la forme sur I’axe de
symétrie, passant progressivement de la
distribution ponctuelle a la distribution
normale (fig. 6).

Remarque

Le coefficient de dissymétrie de la distri-
bution béta a été exprimé en fonction des
coefficients de forme a et §:

ﬁ=2([3’—a) H (S 3
" arpt+d Va+n@+)
(Bury [8])

En utilisant les parameétres k et /, on
obtient I’expression trés simple:

S 2(k=0)

4 kil + 1

TABLEAU 1V : Inégalités de Chebyshev et de Gauss, et comparaison
avec une variable distribuée normalement

h 1 2 3 4 5
:Jl]cégﬂicltfy shev 1 0,250 0,111 0,063 0,040
iinccfél“}fs 0,444 0,111 0,049 0,028 0.018
?J?fﬂfﬁi“(’” 0318 0,046 0,003 1,7-107° 1,2 -1077
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Fig. 5. — Variations de la forme de la distribution béta en Jfonction de la position des bornes.

2.5 Influence de la position des bornes
sur les probabilités calculées
Considérons la distribution d’une varia-
ble ou d’une fonction x, approximée par
une distribution béta.
La position des bornes est caractérisée
par la valeur des paramétres k et /.
Le probleme consiste a calculer la proba-
bilité p [x < x,] que x soit inférieur a une
valeur x, (fig. 7). La validité du modéle
dépend en particulier de I'insensibilité
du résultat a la position des bornes, si cel-
les-ci ont été choisies en fonction d’un
critére probabiliste.

Létude est faite en faisant varier les fac-
teurs suivants:

— ket [/k qui représentent I’éloigne-
ment des bornes et la dissymétrie ;

— n /[ qui représente la position de la
valeur caractéristique de x, pour la-
quelle la probabilité est calculée.

Certains résultats sont représentés gra-

phiquement a la figure 8.

2.6 Comparaison avec les résultats
obtenus a l'aide d’une distribution
normale

Une option extréme dans le choix des
bornes d’une distribution béta consiste a
les choisir infiniment éloignées de la
moyenne (voir fig. 6).

On se trouve alors en présence d’une dis-
tribution normale dont I'intégrale est
tabulée dans la littérature, ce qui facilite
considérablement les calculs.

Ce choix a pour conséquence de suppri-
mer toute valeur limite dans les fluctua-
tions de la variable, et de négliger I’éven-
tuelle dissymétrie de sa distribution
réelle. Il appartient a 'ingénieur de juger,
selon le probleme traité et le but pour-
suivi, de I'opportunité d’une telle stra-
tégie.

Lerreur commise sur une probabilité
calculée avec une distribution normale,
par rapport a sa valeur obtenue avec une
distribution béta ayant mémes moyenne
et écart type, peut étre appréciée au
moyen de la figure 9.

Comme dans le cas précédent, / / k repré-
sente la dissymétrie de la distribution
bétaet n //la position du point caractéris-
tique. Lerreur 4 est définie par:

Py — P
PN

4= -100 (en %)

A0

p [X<X0]

T

a Xo Px

R—

n.sy

£ sy

k. sy

Fig. 7. — Définition d'une valeur x,de x parun multiple n de l'écart type : on désire calculerp [x < x,].
Certte probabilité correspond a la surface hachurée de la figure.

Fig. 6. — Evolution de la forme de distribution béta le long de la droite k = [ de la figure 5.
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Fig. 8. — Abaques pour le calcul de p [x < xq].

avec:
py . probabilité calculée

avec la distribution normale
py . probabilité calculée

avec la distribution béta.

3. Exemples

3.1 Application a un probleme
geotechnique

Oboni & Martinenghi [9] ont proposé une

méthode simplifiée pour I’étude de la sta-

bilité d’un talus a profil triangulaire et a
surface de rupture plane. Les variables
aléatoires considérées sont I'angle de
frottement interne et la cohésion du sol.
Pour le cas traité, I'analyse probabiliste
donnait :
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Fig. 9. — Zonedans laquelle la valeur absolue de A est inférieure a 10 %. Ce résultat simplifié doit étre

utilisé avec prudence.

— moyenne du facteur de sécurité:
F, =139
— écart type: S, = 0,358

En admettant une distribution normale
pour F, on trouvait la probabilité de
rupture :

pr=plF<1]=13,8%

En utilisant le modéle béta selon la pro-
cédure décrite ici, on a (par définition,

= 1’39—_1 = 1’089
0,358

m_ 0,281
[

En fixant k = 2, on obtient:
11k =19%

D’aprés la figure 8, avec k=2:1/k =194
etn/l=0,281, p,=1535%.

B =0) On désire étudier les variations de p,
e 139 — 0 selon le choix de la borne supérieure
| =2—— =388 de F.
0,358
TABLEAU V
k 1/ k p/bm 4 1/k . 4 1/k p’hm 4
[%] [%] (%] (%] [%] [%]
2 3,48 4.3 65 1,94 15,3 11 0,99 32 10
3 2,32 35 35 1,29 14,9 8 0,66 33 14
4 1,74 3,1 19 0,97 14,5 ) 0,49 33 14
5 1,39 2,8 8 0,77 14,3 3,5 0,40 33 14
S, =020 S, = 036 S, = 0,70
I =695 /= 388 I = 198
P =2,6% P, i 13,8% P. .= 29%
normal norma norma
n/l =028

Le tableau V donne les résultats pour dif-
férentes valeurs de k et de I’écart type, la
moyenne restant constante.

On voit que les probabilités obtenues
avec la distribution béta tendent a se
stabiliser lorsque la borne supérieure
s’¢loigne de la moyenne. Cette stabilisa-
tion est plus rapide pour les grands écarts
types.

Lerreur provoquée par ’utilisation d’une
distribution normale, bien que faible en
valeur absolue, peut étre importante en
valeur relative. Elle conduirait, dans le
cas étudié, a une surestimation de la
sécurité.

3.2 Application au calcul des structures

Les mesures effectuées sur un ouvrage
ont permis de déterminer les caractéristi-
ques d’une réaction d’appui:

Moyenne: P = 1210 kN
Ecart type: §, = 105 kN
Bornes: P.in = 1000 kN

Pou = 1560 kN

En représentant cette variable aléatoire
par une distribution béta, on a:

1210 — 1000
= — =

1560 — 1210
B 70
Llk=3l5=0,6

On désire connaitre la valeur P, quia une
probabilité p = 5% d’étre dépassée.
Pour pouvoir utiliser les abaques de la
figure 8, il est nécessaire d’inverser la dis-
tribution. On travaille donc avec:

/ 2

k =.3.33

I'= k=333
K=1=2
I'1K =166

Pour p, = 5%, on lit sur ’abaque: n/ /=
0,54, donc:

n=0,54-333 =18
et
Py, =P+n -§,=1210 + 1,8 - 105 =
= 1399 kN
(avec une distribution normale, on aurait
obtenu: P, = 1383 kN).

4. Conclusions

Lanalyse probabiliste du comportement
d’un systéme dans le cadre particulier de
la géotechnique, et plus généralement du
génie civil, nécessite souvent la représen-
tation quantitative de grandeurs aléatoi-
res dont on ne connait que la moyenne et
I’écart type.

Ladistribution béta est présentée comme
le puissant instrument de cette modéli-
sation.

Les ¢éléments de la méthodologie prati-
que proposée permettent d’apprécier
objectivement, et avant tout calcul, I'in-
fluence de la position des bornes sur la
forme de la distribution. Des critéres
pour le choix de ces bornes sont indi-
qués.
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Le calcul de la probabilité cherchée, qui
dans le cas de la distribution béta exige
habituellement des moyens informati-
ques, peut étre fait au moyen d’abaques
d’usage simple.

Un accent particulier est mis sur les diffé-
rences entre les résultats obtenus a partir
d’une distribution normale et d’une dis-
tribution béta. Ils montrent que I’on peut
commettre des erreurs appréciables en
négligeant les dissymétries.

Adresse des auteurs:

Philippe L. Bourdeau et Franco Oboni
Laboratoire de mécanique des sols,
département de génie civil,

Ecole polytechnique fédérale

de Lausanne

1015 Lausanne
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Meédaille d’or de I’UIA:
Hassan Fathy

La premiére citation pour la Médaille d’Or
d’Architecture de 'UIA a été prononcée en
faveur de 'architecte égyptien Hassan Fathy.

Le jury s’est réuni au Siége de 'UIA, a Paris,
les 29 et 30 novembre 1984. Les membres du
jury ont examiné toutes les propositions qui
lui ont été soumises. Ils se sont basés, dans
leurs délibérations, sur les critéres établis
pour le prix ainsi que sur le préambule des
statuts de 'UIA.

Hassan Fathy est né en Alexandrie, Egypte,
le 23 mars 1900. 11 est diplomé de la «High
School of Engineering» de Giza, au Caire,
en 1926, a une époque ou le systéme éducatif
en vigueur pour les architectes est encore
fondé sur les principes de I'Ecole des Beaux-
Arts. Il a vécu et travaillé dans une période
de croissance démographique fulgurante,
d'un développement technologique sans pré-
cédent. Tout au long de sa vie professionnel-
le, il a observé les problemes que posent la
répartition des profits dus aux technologies
nouvelles, la perte du savoir-faire tradition-
nel sans la contrepartie d’acquisitions nou-

Vue de la Mosquée du nouveau village de Gourna,
Egypte

velles ainsi que la coexistence de la pauvreté
et de la prospérité, dans la création des abris
pour les étres humains. Travaillant au cceur
de ces problemes, Fathy a cherché les racines
culturelles de la construction et a amené les
architectes, les artisans et les communautés,
a participer ensemble a la création de leur
habitat.

Hassan Fathy

1930-1946:
Professeur a la Faculté des Beaux-Arts, Université
du Caire

1946-1953:

Conception et réalisation du nouveau village de
Gourna, a Louxor (Egypte), pour le Département
des Antiquités égyptiennes

1949-1953:

Directeur du Département de I'Enseignement de la
Construction pour le Ministére égyptien de I'Edu-
cation

1950:

Délégué, consultant du Secours des Nations Unies
aux réfugiés dans le monde

1953-1957:

Consultant de I’Agence Dioxadis, a Athénes;
conférencier a I'Institut Technique d’Athénes sur
I'architecture climatique. Membre du Projet «Re-
cherche pour la ville du futur», il entreprend des
recherches sur I’Afrique de I'Ouest et le Moyen-
Orient et publie des articles sur I'esthétique, la mo-
dernité, le logement et la religion dans la ville de
l'avenir

1963-1965:

Directeur des projets pilotes de logement pour le
Ministére égyptien de la Recherche scientifique:
conception de I'Institut supérieur d’Anthropologie
sociale et d’Art populaire, pour le Ministere égyp-
tien de la culture; conception et exécution du pro-
jet pilote du village de Bariz dans 'oasis de Kharga,
pour I'Organisation du Développement égyptien;
consultant du Ministére égyptien du Tourisme, au
Caire; expert auprés de I'Organisation des Nations
Unies pour un Projet de Développement en Arabie
Saoudite.

1966:
Professeur de philosophie et d’esthétique urbaine, a
I'Université de Azhar

1975-1977:

Professeur a la Faculté d’agriculture du Caire ou il
donne des cours sur I'habitat rural.

1977:

Directeur-Fondateur de I'Institut international des
Technologies appropriées; il occupe toujours cette
fonction; travaille actuellement a I'adaptation du
nouveau village de Gourna en village touristique.

Membre du Conseil Supérieur des Arts et Lettres
en Egypte, Honorary Fellow de I'American Institu-
te of Architects (USA), Honorary Fellow de I'Ame-

rican Research Center, Le Caire (Egypte), conseil-
ler pour I'Architecture a I'Université de La Mecque
(Arabie Saoudite), membre du Commité Directeur
du Prix Aga- Khan pour I’Architecture, Médaille
d’or et Prix pour I'encouragement des Beaux-Arts
(1959), Prix national des Beaux-Arts et Médaille de
la République (1967), Prix du Président du Prix,
Prix Aga-Khan d'Architecture (1980), Médaille
d’Or de I'Union Internationale des Architectes
(1984).

*

De nombreux prix d’architecture sont décer-
nés au niveau national. Cependant, ce Prix
de I'UIA est particulierement remarquable
par le fait qu'il incarne la plus haute et
I'unique récompense de la seule organisation
internationale d’architectes existante. Il est
jugé par des architectes et des professionnels
en relation directe avec l'architecture, de
toutes les régions du monde. Le jury était
composé comme suit:

Rafael de la HOZ, pour I'Union internatio-
nale des architectes; Hans Hallen, pour les
architectes d’Afrique; Randall Vosbeck,
pour les architectes d’Amérique; Kenzo Tan-
ge, pour les architectes d’Asie; Antonio La-
mela, pour les architectes d’Europe; Prof.
Mahdi Elmandjra, pour les Ecoles d’Archi-
tecture ; Ing. Jorge Glusberg, pour le Comité
International des Critiques d’architecture
(CICA).

Architectes : qui veut collaborer
a la commission des traductions ?

Pour mieux respecter I’équilibre des pro-
fessions représentées par la SIA, la com-
mission des traductions en langue fran-
caise souhaite accueillir un ou deux
architectes ayant le don d’écrire dans un
francgais correct, souhaitant ’exercer et
faisant preuve de disponibilité.
Latache de la commission (rédaction des
reglements et normes SIA en langue
frangaise) est d’une grande importance
pour la société et pour les utilisateurs
des normes: une rédaction correcte de
celles-ci en facilite I'application.
Nous remercions d’ores et déja les archi-
tectes intéressés de bien vouloir adresser
leurs offres au Secrétariat général de la
SIA, case postale, 8038 Zurich.
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