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Une approche mixte — statique
et cinématique — de la largeur efficace
de traînage de cisaillement

par Charles Massonnet, René Maquoi et Philippe Jetteur, Liège

1. Introduction

A la suite d'une recherche de l'auteur
senior sur les simplifications obtenues en
mécanique des matériaux, en conclusion
de l'hypothèse d'un corps élastique
transversalement rigide [l]1, Maquoi et
Massonnet ont établi une formule simple
permettant d'évaluer la largeur efficace
due au traînage de cisaillement [2]. Cette
formule n'était valable rigoureusement
que dans le cas d'une poutre sur deux
appuis simples d'extrémité, chargée
d'une force transversale uniformément
répartie.
Récemment, les auteurs ont montré que,
par des modifications simples on pouvait,
tout en maintenant l'hypothèse du corps
transversalement rigide, généraliser
l'applicabilité de ladite formule à tous les
modes d'appui et de chargement [3]. Les
résultats étaient déduits du principe du
minimum de l'énergie complémentaire;
en toute rigueur, il s'agissait d'un principe

de type hybride — puisqu'on se donnait

simultanément un champ de
déformation £, 0) et un champ de contrainte
a, — qui ne permettait donc pas de conférer

un quelconque caractère de borne a

l'énergie associée.
Des résultats presque identiques à ceux
obtenus dans [3] ont été retrouvés par
Sedlacek et Bild [4] selon une démarche
différente.
Dans le présent mémoire, on présente
des approches statique et cinématique.
En raison de propriétés bien connues [5],
[6], elles fourniront respectivement des
bornes inférieure et supérieure de l'énergie

associée ; l'écart entre lesdites bornes
permettra d'apprécier la divergence entre
les solutions. Si le caractère des bornes
s'applique bien à l'énergie, il ne s'étend
pas à la largeur effective proprement dite.

2. Position du problème

On considère une poutre à section en
caisson doublement symétrique et faite
d'un matériau élastique. Les dimensions
sont : longeur 2 /_, largeur B 2 èet hauteur

h (fig. 1). On suppose que la poutre
est fléchie par une charge uniformément
répartie d'intensité p et par une force
concentrée P appliquée à mi-portée. Ces

charges agissent par moitiés au droit de
chacune des âmes, de manière à éliminer

'Les chiffres entre crochets renvoient à la

bibliographie en fin d'article.

toute flexion propre des semelles. Un
système d'axes orthogonaux, x, y, z est
lié au centre de gravité de la section
transversale à mi-portée.

3. Considérations énergétiques
préliminaires

Considérons un matériau élastique
obéissant à la loi :

(D

où Ex, £, et G sont des caractéristiques
élastiques du matériau, ayant le même
ordre de grandeur.
L'énergie potentielle interne l^s'écrit, en
négligeant les forces de volume:

c, Ex E' 0 \£*
a ' 1

E' E, 0 Ie'
r m

J Lo 0 G. l)\

W

ou encore :

(<7\ £, + (7, £, +

+ r„ yu dx dy
(2. a.)

W -\\ (E, e\ +£_ ej +2 E' exe}

+ G yi) dx dy (2.b.)

où les déformations sont liées au champ
de déplacement (u, v), cinématiquement
admissible, selon les relations bien
connues:

£, v,

j\, u, + v,
(3.a.b.c.)

Un matériau transversalement rigide est
caractérisé par le fait que £, 0; pour un
tel matériau, l'expression de l'énergie
potentielle interne s'écrirait:

W ¦¦ \\(Exel + Gyi) dx dy (4)

Il est dès lors facile de remarquer qu'un
champ de déplacement cinématiquement

admissible pour le matériau élas-

Rèsume

On développe deux approches, respectivement

cinématique et statique, pour
l'évaluation de la largeur efficace de
traînage de cisaillement. Les résultats sont
comparés à ceux obtenus dans une
publication antérieure, où l'on faisait l'hypothèse

du matériau transversalement
rigide.

tique transversalement rigide restera
cinématiquement admissible pour le
matériau élastique obéissant à (1). Il
permettra donc de trouver une borne
énergétique inférieure de la solution exacte.
L'énergie interne complémentaire W*
s'écrit :

W* -

E, £
ExEy - E'1-

a\ ^a] E'
x+jr2TE-t^a'

G
dx dy (5)

où le champ de contrainte erv, c,, t est
statiquement admissible, c'est-à-dire
satisfait aux équations d'équilibre:

°\.v + T,
T., + CT,,,

(6. a.b.)

Ici, on ne peut imposer a priori cr, 0, car
du choix de cr, et r, résulte généralement
une valeur non nulle de o\, indispensable
pour assurer l'équilibre. Dès lors, un
champ statiquement admissible pour le
matériau élastique transversalement
rigide — ayant seulement à satisfaire la
première équation d'équilibre — ne reste
en général pas statiquement admissible
pour le matériau élastique obéissant à

(1); il ne peut donc garantir une borne
énergétique supérieure de la solution
exacte.
On notera au passage que la solution
statiquement admissible donnée par
Maquoi et Massonnet pour le cas de la
charge uniformément répartie [2] est la
solution exacte pour le matériau ; en effet
le champ de contrainte choisi satisfait les
équations de compatibilité et d'équilibre
en tout point.

4. Approche cinématique

Sur base des conclusions obtenues au
paragraphe précédent, on peut ici adopter
la simplification du corps transversale-

Ti P

M*dM

>•C V'T*dTKH

Fig. I. Poutre étudiée.
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ment rigide sans altérer le caractère de

borne énergétique. On aura donc:

£jc —
E

y, Li
G

(7)

On admet aussi que la contribution des
âmes à l'inertie de la poutre est
négligeable.

La recherche de la solution variation-
nelle cinématique repose sur le principe
du minimum de l'énergie potentielle
interne, exprimée comme fonction
quadratique des seuls déplacements. Cette
énergie prend la forme suivante:

n =2 L
E

2
G

2

2 "- +
2 ""

dx dz + 2 t„

G

2
«„,, + »\

dx dy 2 - v dx
U 2

(8)

avec les notations suivantes : /, : épaisseur
de semelle; ta: épaisseur d'âme; u/.
déplacement selon x dans la semelle
inférieure; u„: déplacement selon x
dans l'âme; v: déplacement selon y
dans l'âme.
La notation (,x) (resp. ,z) placée en
indice d'une fonction sert a désigner la

dérivée première de ladite fonction par
rapport à x (resp. r).

4.1 Choix du champ de déplacement

Le champ de déplacement est défini par
les expressions suivantes:

u„ +¦
2 b2

3

«0 =)' («o + "l> (9. a. b.c.)

La distribution des déplacements
longitudinaux us dans la semelle est celle de la

figure 2.

Les paramètres »„, u, et v0 ne dépendent
que de la coordonnée x; ils se déterminent

à partir des conditions ön 0 exprimant

le fait qu'elles rendent minimum
l'énergie potentielle totale n.
En introduisant (9. a. b.c.) dans (2), il

vient:

\. s d"

\^_ Js^~
0

Z3

i

d"

ZJ
=7

rS

1
'

Fig. 2. — Distribution des déplacements axiaux
dans la semelle.

I ul, +~li2 «?.x

3 G h2 Q. - G n i+ 4—j^u]+2-QAuo +

+ », + vx)2 pv dx - Pv

(10)

avec :

ß, =2 bts: aire de la section transversale
d'une semelle;
ß„ ht„ : aire de la section transversale
d'une âme;
/ ß, h112 : inertie de la poutre réduite à

ses seules semelles.

4.2 Détermination des paramètres 14» u,, v

Les variations de n par rapport aux
paramètres «0, », et v fournissent les relations
suivantes :

<5»0 — \ [El it„, ôu0x + 2 G ß„ («0 +

+ », + »,) öUq] dx 0

EU, h2
011^ -

3 Gh2 Q
10

(/, ôu] +

2 b2

+ (/, + V J ÔUy

- u, ôit\ + 2 G Qa(u0 +

dx 0

(11.a.b.c.)

ôv \ [2 Gfi,(n + H, + v,) r5r,

-p ô,} dx- P ÔV L.o =0

De la relation (U.c.), on tire après intégrations

par parties :

- P -2 G Qa (u0 + », + vj., =0
(12.a.)

[2 G Q„ (u0 + u, + vf - P] <5, |0+ =0

(12.b.)

d'où on déduit immédiatement, T
désignant l'effort tranchant total :

2 G Q„ («b + », + vj T (13)

Cet effort tranchant est discontinu sous
la charge concentrée; ailleurs, on a:

TiX -p (x f 0).

En intégrant par parties les relations
(H.a.) et (ll.b.), on obtient les équations
différentielles suivantes :

£/»„.„ -7 0

E ß, h1 L3Cfl. h2 T-Tc7-""'+2-l^-"1+T

(14)

0

(15)

L'équation (14) permet de retrouver la

solution élémentaire de la mécanique
des matériaux:

T dx
El

M.
El

(16)

qui traduit simplement la loi de Navier;
les contraintes dues à ;/0 sont données

par:
a E (f„, y Mh/21.

Quant à l'équation (15), elle permet de

déterminer la correction à apporter à la

Mécanique des Matériaux; dans le cas de

la figure 1, l'effort tranchant varie
linéairement le long d'un demi-axe O.v et
présente une discontinuité en x 0. On

trouve d'emblée la solution particulière :

2 Tb2
3 G Q, h2

(17)

tandis que la solution générale de l'équation

(15) rendue homogène s'écrit:

+ Be"

of 15
Eb2

(18)

(19)

Les constantes A et B se déterminent par
les conditions aux limites suivantes, pour
le domaines des x positifs :

en x =0 u, 0

en x—> co ut constante finie.

On en tire aisément :

A
T0 + b2

3 Gl
0

En désignant par ru+ et Tü les valeurs
respectives de l'effort tranchant 7"à droite et
à gauche de la charge concentrée, on a

donc, compte tenu de / ß, h212:

b2

3 Gl

(T- T0+ e-™) pour .v > 0
(20. a.)

et tenant compte que », (-a) - », (.v)
on obtient par analogie:

b2

3 Gl (T-T0. pour .y < 0

(20.b.)

Dans le cas de charge symétrique envisagé

ici (fig. 1), on a: 770+ - ro_, d'où:

AT= T0+ - T0 - P

T(x>0) - (--f
T (x < 0) - (,,-f

Les contraintes additionnelles dans la

semelle, associées au déplacement »,,
valent :

h
Ao, Eu,

4 b
(3 />') (21)

et sont auto-équilibrées pour toute
expression de », Il est en effet facile de

voir que j' A o d: 0. Compte tenu des

expressions (20) de »,, les contraintes
(21) sont maximales en .v 0et valent à la

jonction âme-semelle (2 ± b):

Eh b2

2 3 67
P +

m AT
(22)

13
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4.3 Largeur efficace

La largeur efficace réduite de la semelle
est définie par:

¥
contrainte moyenne o\

contrainte maximale a. _,

1 J g, dy
b o-mdK

(23. a.)

où a, n'est rien d'autre que la somme de
la contrainte oMM, donnée par la théorie
classique de Mécanique des Matériaux,
et de la contrainte additionnelle A a obtenue

plus haut. Comme les Ao constituent

un état d'autocontrainte, la définition

de if/ ci-dessus se réduit donc, dans la
section x 0, à:

W

avec: a.

wo.
_Mh

<~ 2/

(23. b.)

(24)

Tenant compte de (22), (23.b.) et de

l'expression (19) de co2, remplaçant èpar B/2
et, pour plus de généralité, le rapport EIG
par le coefficient d'orthotropie ks (voir
[2]), on obtient finalement:

1

12

pB2

M
A T

0,323 {ks^rr B
M

(25)

Dans le cas particulier d'un caisson à

semelles non raidies (fc, 2,3), continu
sur trois appuis (M — /;L2/8 et A T
1,25 pL), la valeur de y/ s'écrit:

W

1 + 5,208
L

,733 El
L2

(26)

Le tableau numérique 1 ci-après permet
de comparer les valeurs de yi obtenues
par l'approche statique pour matériau
transversalement rigide (voir [3], formule
(29')) et cinématique (présent mémoire).
On constate que les deux approches
fournissent des résultats fort proches.

5. Approche statique

5.1 Choix du champ de contrainte
On considère un matériau où a, et a, sont
simultanément présents en négligeant
toutefois l'influence du coefficient de
Poisson de manière à aboutir à une
formulation aussi simple que possible; cela
revient donc à poser £" 0 dans (1). Seul
le cas de la charge concentrée à mi-portée
est analysé ici.

Y

1.
I

-B.

L

srahque

/ matériau transv

\><T ngide

0-5
cinématique ^-^

—t/k B

0.5 1 1.5
V •» L

Fig. 3. — Poutre isostatique avec charge concentrée à mi-portée.

On a donc : M |(l-x) (x>0)

T
P
2 (27. a.b.)

Pour des raisons de symétrie évidentes,
on peut se borner à n'étudier qu'une
demi-poutre, tant en largeur qu'en
longueur.

L'énergie interne complémentaire de la
semelle située dans le plan x: s'écrit:

et le principe du minimum de l'énergie

interne complémentaire entraîne
ô H/* 0. On choisit a priori le champ de

contrainte statiquement admissible
suivant, dépendant des paramètres tj, et co.

o~
-,

Mil
2 1

+ a, e^

^ o
3 b2

e -wxlb

b2 :2

2
+ l)

(29 a.b. c

co

—r a. e~'«/» -3 -- b2 -IJL1 +
2 1 5 b

En se laissant guider par les résultats déjà
acquis dans [3]. a, est choisi tel qu'il s'annule

au droit des âmes, celles-ci étant
supposées dépourvues de toute raideur
flexionnelle pour la flexion hors de leur
plan.

TABLEAU 1 : Valeurs de y/.

\^ BIL
0,05 0,1 0,2 0,4 0,6 0,8 1

cinémat.

statique

0,793

0,824

0,665 0,507 0,357

0,705 0,555 0,406

0,286

0,330

0,247

0,285

0,224

0,255

5.2 Détermination des paramètres <x, et m

Comme on ne s'intéresse qu'à la largeur
efficace au voisinage immédiat de la

charge concentrée, on peut considérer
qu'aux extrémités de la poutre, les
termes en e~axlb fournissent une contribution

négligeable. En introduisant les
relations (29) dans (28) et en effectuant
respectivement les variations sur w et ct, de
manière à minimiser H7*, on obtient:

>2 2
ôw lûL

E, co 21 £ 21 G
0

2,4 co2 4 w4\
— + + (7,
E, 21 G 63 E,

P b co .-,„
11 Tg (30a-b)

Eliminant co entre les deux dernières
relations, on tire :

Phm 1

2» (!+£)

[-1+1/f+«|]

(31)

(32)

5.3 Largeur efficace

A la jonction âme-semelle de la section
médiane x 0, on a une contrainte
longitudinale valant :

Mh 2

77+3* <" (33)

Puisque la contrainte moyenne o\ dans la
même section est simplement donnée
par o\ Mh/2 /, la largeur effective
réduite y/, définie par (23. a.), s'écrit donc
explicitement :

W
1

1 +
Pcob

'Mr
(34)
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\ J

1

srahque

t M U 1 1 1 1 1

JS7~

I—

M,
1

1

L

-1

* \\\
matériau Iransv.

Nj/ rigide

0.5.

cinématique

\/k"B
0.5 1 1.5

•"Vi l
Fig. 4. — Poutre continue à deux travées égales chargées uniformément.

Dans le cas d'une semelle isotrope, on a :

Ex Es et en admettant EIG 2,6 pour les

matériaux métalliques, of- vaut 2,191. La
largeur effective vaut alors:

¥
1 + 0,757

Pb

M

(35)

On peut généraliser au cas d'une charge
supplémentaire uniformément répartie,
on trouve aisément:

¥
1 + I UEÈl

3 G M
Pcob

'[2± + fL
\E, 21

(36)

Il n'y a plus de relation simple entre co et
ks et il n'est plus possible d'obtenir une
formule générale équivalente à (25).
Dans le cas d'un matériau isotrope, pour
lequel k, 2,6, on a:

¥

X+flk
pB2

M - 0,235 fks AT- B

M
(37)

puisque B 2 b et AT — P.

5. Conclusions générales

L'expression de la largeur efficace réduite
s'écrit, en toute généralité, sous la forme
simple suivante :

¥
it ML + A ail

' M 12 M

(38)

où ks est un coefficient d'orlhotropie
(pour plus de détails, consulter [2], [3]),
qui dans le cas d'une semelle isotrope se

réduit au rapport El G.

En développant successivement
l'approche «exacte» (r) pour le matériau
transversalement rigide [3], puis
l'approche cinématique (c) et l'approche sta¬

tique (s), on trouve que le coefficient a
correspondant prend les valeurs ci-après :

a, 0,270 a, 0,323 as, 0,235

Cette dernière valeur as, n'est valable

que pour un matériau isotrope; si la

valeur de ks augmente, elle se rapproche
de a,.
Les figures 3 et 4 fournissent respectivement

les résultats obtenus pour la largeur
efficace d'une part, à mi-portée d'une
poutre sur deux appuis, chargée d'une
force concentrée dans cette même
section, et d'autre part, sur l'appui intérieur
d'une poutre continue à deux travées
égales, chargée uniformément. On observera

que l'approche basée sur l'hypothèse

du matériau transversalement
rigide est sensiblement la moyenne des
deux autres.
Tout en gardant à l'esprit que, en toute
rigueur, les solutions proposées ne don-
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Ultimate Load Behaviour
of Longitudinally and Transversaily
Web Plates Loaded in Shear

by. Michèle Mêle, Rome and Roberto Puhali, Trieste

1. Introduction

In more récent years a lot ofexpérimental
and theoretical work has been devoted to
the study of stiffened web panels loaded

beyond the critical load until the point
of collapse. Among the design methods
which hâve been developed as a resuit of
thèse research works the one by Rockey,
Evans and Porter [l]1 named CardifF
Method, is well known and has already
been introduced into some codes. Ano-

1 Sec références at the end,

Summary
The paper briefly reports a gênerai
method for designing stiffened webs
loaded in shear. which allowsforany kind
of stiffening. The cases of compact and
stiffened Hanges are separately dealt with.
The theoretical procédures, the expérimental

and numerical research
programmes carried oui during the last ten
years. as well as the comparison with
other design methods are described.

thcr design method, named Trieste
Method [2], was proposed by the authors
[3], [4] and was introduced into the Italian
Code in 1973. Us main features are to

15
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