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Une approche mixte — statique
et cinématique — de la largeur efficace
de trainage de cisaillement

par Charles Massonnet, René Maquoi et Philippe Jetteur, Liége

1. Introduction

A la suite d’une recherche de l'auteur
senior sur les simplifications obtenuesen
meécanique des matériaux, en conclusion
de I’hypothése d’'un corps élastique
transversalement rigide [1]', Maquoi et
Massonnet ont établi une formule simple
permettant d’évaluer la largeur efficace
due au trainage de cisaillement [2]. Cette
formule n’était valable rigoureusement
que dans le cas d’une poutre sur deux
appuis simples d’extrémité, chargée
d’une force transversale uniformément
répartie.

Récemment, les auteurs ont montré que,
par des modifications simples on pouvait,
tout en maintenant I’hypothése du corps
transversalement rigide, généraliser I’ap-
plicabilit¢ de ladite formule a tous les
modes d’appui et de chargement [3]. Les
résultats étaient déduits du principe du
minimum de I’énergie complémentaire ;
en toute rigueur, il s’agissait d’un prin-
cipe de type hybride — puisqu’on se don-
nait simultanément un champ de défor-
mation ¢, (=0) et un champ de contrainte
g, — quine permettait donc pas de confé-
rer un quelconque caractére de borne a
I’énergie associée.

Des résultats presque identiques a ceux
obtenus dans [3] ont été retrouvés par
Sedlacek et Bild [4] selon une démarche
différente.

Dans le présent mémoire, on présente
des approches statique et cinématique.
En raison de propriétés bien connues [35],
[6], elles fourniront respectivement des
bornes inférieure et supérieure de I’éner-
gie associée ; I'écart entre lesdites bornes
permettra d’apprécier la divergence entre
les solutions. Si le caractére des bornes
s’applique bien a I’énergie, il ne s’étend
pas a la largeur effective proprement dite.

2. Position du probléeme

On considere une poutre a section en
caisson doublement symétrique et faite
d’un matériau élastique. Les dimensions
sont: longeur 2 L, largeur B =2 b et hau-
teur A (fig. 1). On suppose que la poutre
est fléchie par une charge uniformément
répartie d’intensité pet par une force con-
centrée P appliquée a mi-portée. Ces
charges agissent par moitiés au droit de
chacune des ames, de maniére a éliminer

'Les chiffres entre crochets renvoient a la
bibliographie en fin d’article.
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toute flexion propre des semelles. Un
systéme d’axes orthogonaux, x, y, z est
lié¢ au centre de gravité de la section
transversale a mi-portée.

3. Considérations énergétiques
préliminaires

Considérons un matériau élastique
obéissant a la loi:
T E. E 0 5
g, = |E E, 0 &, o)
T 0 0 G Vi

ou £, E, et G sont des caractéristiques
¢lastiques du matériau, ayant le méme
ordre de grandeur.

Lénergie potentielle interne Wsécrit, en
négligeant les forces de volume:

w :% S (o, &, +a, £+

+ Ty P) dx dy (2.a.)

ou encore:

W:% \\ (B, 62+ E, e +2E ¢ ¢ +
+ G y%) dxdy (2.b.)
ou les déformations sont liées au champ
de déplacement (u, v), cinématiquement

admissible, selon les relations bien con-
nues:

|

u

X 5

gl = v\

, (3.4.b.c.)
Yo =U, +V,

Un matériau transversalement rigide est
caractérisé par le fait que ¢, = 0; pour un
tel matériau, I'expression de I'énergie
potentielle interne s’écrirait :

W=% \\ (E, 2+ Gyl)dedy (4)

I est dés lors facile de remarquer qu’un
champ de déplacement cinématique-
ment admissible pour le matériau élas-

Résume

On développe deux approches, respecti-
vement cinématique et statique, pour
I’évaluation de la largeur efficace de trai-
nage de cisaillement. Les résultats sont
comparés a ceux obtenus dans une publi-
cation antérieure, ou I'on faisait ’hypo-

thése du matériau transversalement
rigide.
tique transversalement rigide restera

cinématiquement admissible pour le
matériau élastique obéissant a (1). Il per-
mettra donc de trouver une borne éner-
gétique inférieure de la solution exacte.
DLénergie interne complémentaire W*
s’écrit :

ou le champ de contrainte ¢, g,, 7 est
statiquement admissible, c’est-a-dire
satisfait aux équations d’équilibre :

Oxx St T.V\ = 0

Tz @y, =0 (6.a.b.)

Ici, on ne peut imposer a priori g, = 0, car
du choix de o, et 7, résulte généralement
une valeur non nulle de g, indispensable
pour assurer I’é¢quilibre. Dés lors, un
champ statiquement admissible pour le
matériau élastique transversalement
rigide — ayant seulement a satisfaire la
premiere équation d’équilibre — ne reste
en général pas statiquement admissible
pour le matériau élastique obéissant a
(1); il ne peut donc garantir une borne
énergétique supérieure de la solution
exacte.

On notera au passage que la solution sta-
tiguement admissible donnée par
Maquoi et Massonnet pour le cas de la
charge uniformément répartie [2] est la
solution exacte pour le matériau ; en effet
le champ de contrainte choisi satisfait les
équations de compatibilité et d’équilibre
en tout point.

4. Approche cinématique

Sur base des conclusions obtenues au
paragraphe précédent, on peutici adopter
la simplification du corps transversale-

p
XXX

M+dM

‘CL |77

|_dx ,‘ T+dT

Fig. 1. — Poutre étudiee.
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ment rigide sans altérer le caractére de
borne énergétique. On aura donc:

S — U.\' } T.\'\‘

= ’.l} = )

£ G (7)

On admet aussi que la contribution des
ames a l’inertie de la poutre est négli-
geable.
La recherche de la solution variation-
nelle cinématique repose sur le principe
du minimum de ’énergie potentielle in-
terne, exprimée comme fonction qua-
dratique des seuls déplacements. Cette
énergie prend la forme suivante:

E G
o, ( 3 Ui 2 14%‘:)

dxdz+21¢)

[ g Uz 5 g ( Uy F vu‘) 3}

" L
dxdy—Z\
J O

=21

v dx —

SRS

P
=2 5 |Vx=(|
(8)

aveclesnotations suivantes: ,: épaisseur
de semelle; ¢,: épaisseur d’ame; u,:
déplacement selon x dans la semelle
inférieure; u,: déplacement selon x
dans I’ame; v: déplacement selon y
dans I’ame.

La notation (,x) (resp. ,z) placée en
indice d’une fonction sert a désigner la
dérivée premiére de ladite fonction par
rapport a x (resp. z).

4.1 Choix du champ de déplacement

Le champ de déplacement est défini par
les expressions suivantes:

/
11_\=57 [l("+ﬁ <3:2 —b2>}

=2 (g + ) 6

u . a. buc)

vV =%

La distribution des déplacements longi-
tudinaux u, dans la semelle est celle de la
figure 2.

Les parameétres u,, u, et v, ne dépendent
que de la coordonnée x; ils se détermi-
nent a partir des conditions d & =0 expri-
mant le fait qu’elles rendent minimum
I’énergie potentielle totale 7.

En introduisant (9.a.b.c.) dans (2), il
vient:

Ugtu,

Y- U2

Fig. 2. — Distribution des deplacements axiaux
dans la semelle.

= ‘% |:Il/,,‘+——‘/7211]\:| +

3GR Q, G
Z+ZI%+259"(M]+

+uy +w,)2— py ‘ dx =Py | o

(10)
avec:

Q. =2 bt,: aire de la section transversale
d’une semelle;

Q, = ht,: aire de la section transversale
d’une ame;

= Q, h?/2: inertie de la poutre réduite a
ses seules semelles.

4.2 Détermination des parametres uy, Uy, v
Les variations de 7 par rapport aux para-

meétres uy, 1, et v fournissent les relations
suivantes:
Oy — \ [El uy Sty +2 G 2, (4 +

+u +v,) o) dx =0

[ EQ R
ou, —»\ [ 1"0 U Oty +
3 Gh? Q
2 Yb S oy +2 G Q(u +
+u +v,)ou ] dx =10

(1l.a.b.c.)
ov—)12 G 2, (wtw+ vy) vy —
—p8ldx—Pév |,o=0
De larelation (11.c.), ontire aprés intégra-

tions par parties:
—p—2G 82, (uy +u tv,),=0
(12.a.)
RGQ, (u+u+v)—Po | =0

o=

(12.b.)

d’ol on déduit immédiatement, 7 dési-
gnant 'effort tranchant total:

2GR, (g +u +v,)=T (13)

Cet effort tranchant est discontinu sous

la charge concentrée; ailleurs, on a:

T,=—p(x#0).

En intégrant par parties les relations

(11.a.) et (11.b.), on obtient les équations
différentielles suivantes:

El v . —T=0 (14)

_£4, W Uy x -!~—GQ L u +T =20
10 2 b

(15)

équation (14) permet de retrouver la
solution élémentaire de la mécanique
des matériaux:

c_ M
=— 16
£l (16)

qui traduit simplement la loi de Navier;
les contraintes dues a u, sont données
par:
g = Euo\ 5 = Mh/2l.

Quant a I’équation (15), elle permet de
déterminer la correction a apporter a la
Mécanique des Matériaux; dans le cas de
la figure 1, I’effort tranchant varie linéai-
rement le long d’un demi-axe Ox et pre-
sente une discontinuité en x = 0. On
trouve d’emblée la solution particuliere :

0 _ 2T h?

“TTIGa an
tandis que la solution générale de I’équa-
tion (15) rendue homogene s’écrit:

= A e~ + Be®* (18)

; G
: @ =15 — 19
ou £ (19)

Les constantes 4 et B se déterminent par
les conditions aux limites suivantes, pour
le domaines des x positifs:

enx =0 w, =0
en x — oo u; = constante finie.

On en tire aisément:

T, + b
361

En désignant par 7, et 7_ les valeursres-
pectives de I'effort tranchant Ta droite et
a gauche de la charge concentrée, on a
donc, compte tenu de [ = Q, h?/2:

A= B=0

bl
0 00 —
W=k Uy ST
3Gl (20.a.)
(T=T,, e=) pour x >0
et tenant compte que u, (—x) = — u, (x),

on obtient par analogie:

W = =

0 €~2%).pour. x < O
(20.b.)

Dans le cas de charge symétrique envi-
sagé ici (fig. 1), ona: Ty, = — T;_, d’ou:

AT=0, ~ K-~

3Gl

Tie=10)=~ (p.\' +§)

Tilx<0) = — <p.\'—§>

Les contraintes additionnelles dans la
semelle, associées au déplacement u,
valent:

h
do, = Euy,,— (3 22 — P 21
oy u, 1 hz( ) (2D
et sont auto-équilibrées pour toute

expression de u, . Il est en effet facile de
voir que|”, 4g dz=0. Compte tenu des
expressions (20) de u,, les contraintes
(21) sont maximales en x=0et valenta la
jonction ame-semelle (z = + b):

/
(Ao)mnv - ( E“l.\ 5’)\:0 =
(22)

Eh b? wd T
—E0 P —p

2 3GI ( 2 )
13
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4.3 Largeur efficace
La largeur efficace réduite de la semelle
est définie par:

contrainte moyenne a,

contrainte maximale g, .,

_1fo. dy

23.a.
b T max ( d)

ou o, n’est rien d’autre que la somme de
la contrainte ag,,,, donnée par la théorie
classique de Mécanique des Matériaux,
etde la contrainte additionnelle 4 ¢ obte-
nue plus haut. Comme les 4¢ consti-
tuent un état d’autocontrainte, la défini-
tion de y ci-dessus se réduit donc, dans la
section x =0, a:

_ O mm
=—— MM ____ (23.b.)
W G.lIM s (A 0.\‘)mux
M}
AVEC: Oy = 2—17 . (24)

Tenant compte de (22), (23.b.) et de I’ex-
pression (19) de w?, remplagant b par B/2
et, pour plus de généralité, le rapport £E/G
par le coefficient d’orthotropie &, (voir
[2]), on obtient finalement:

1

g =
1 pB? ~ AT
¥ k22 pnamik L= B

Lt ko 0 M
(25)

Dans le cas particulier d’un caisson a
semelles non raidies (k, = 2,3), continu
sur trois appuis (M = — pL2/8et 4 T =
1,25 pL), la valeur de w s’€crit:
1

W = 2 o (26)

1+ 5,208 = - 1,733 —

5,208 7 b I

Le tableau numérique 1 ci-aprés permet
de comparer les valeurs de y obtenues
par I'approche statique pour matériau
transversalement rigide (voir [3], formule
(29')) et cinématique (présent mémoire).
On constate que les deux approches four-
nissent des résultats fort proches.

5. Approche statique

5.1 Choix du champ de contrainte

On considere un matériau ol g, et g, sont
simultanément présents en négligeant
toutefois I’influence du coefficient de
Poisson de maniére a aboutir a une for-
mulation aussi simple que possible ; cela
revient donc a poser £ =0 dans (1). Seul
le cas de la charge concentrée a mi-portée
est analysé ici.

05 cinémalique
+ |vks%
0.5 1 15
Fig. 3. — Poutre isostatique avec charge concentrée a mi-portée.
. P . ; S g

On adonc: M= 7 (I =%y iGe=0) 5.2 Détermination des parametres a, et
P Comme on ne s’intéresse qu’a la largeur
r =73 (27.a.b.) efficace au voisinage immédiat de la

Pour des raisons de symétrie évidentes,
on peut se borner a n’étudier qu’une
demi-poutre, tant en largeur qu’en lon-
gueur.

[énergie interne complémentaire de la
semelle située dans le plan xz s’écrit:

hJ“(ﬁ o ﬁ) ]

w 2 (E + E + C dx dz (28)
et le principe du minimum de I’éner-
gie interne complémentaire entraine
0 W*=0. On choisit a priori le champ de
contrainte statiquement admissible sui-
vant, dépendant des parametres o, et w.

Mh b?
= — + —wx/b :2 = 2
=gy TN ( 3 )
wz —WX
g. —ﬁ (o il
2oz
4 2 4
(29.a.b.c.)
Th:z w
= - —— - 4+ — —wx/b :J - 2 z
3l TagmrTileod e

En se laissant guider par les résultats déja
acquis dans [3]. ¢. est choisi tel qu’il s’an-
nule au droit des ames, celles-ci étant
supposées dépourvues de toute raideur
flexionnelle pour la flexion hors de leur
plan.

TABLEAU 1: Valeurs de y.

B/L
0,05 0,1 0,2 0,4 0,6 0,8 1
W
cinémat. 0,793 0,665 0,507 0,357 0,286 0,247 0,224
statique 0,824 0,705 0,555 0,406 0,330 0,285 0,255

14

charge concentrée, on peut considérer
qu’aux extrémités de la poutre, les ter-
mes en et fournissent une contribu-
tion négligeable. En introduisant les rela-
tions (29) dans (28) et en effectuant res-
pectivement les variations sur w et g, de
maniére a minimiser W* on obtient:

1,20, 2

& — + =
@ B 2E e
i 2.4 o 4 of
5 2 e B =
i E. 216G &G§E| ”
_Pho
27156 G0.ah)

Eliminant o entre les deux derniéres
relations, on tire:

Pho 3 G1)

(32)

5.3 Largeur efficace
A la jonction ame-semelle de la section
médiane x =0, on a une contrainte longi-
tudinale valant:
Mh 2,

Oy max — o +§b‘ a. (33)
Puisque la contrainte moyenne @, dans la
méme section est simplement donnée
par g, = Mh/2 I, la largeur effective
réduite y, définie par (23.a.), s’écrit donc
explicitement:

T
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statique

matériau transv.
05 |

cinématique

0.5

1
—|m

1 15

Fig. 4. — Poutre continue a deux travees égales chargées uniformement.

Dans le cas d’'une semelle isotrope, on a:
E.=E etenadmettant £/G =2,6 pour les
matériaux métalliques, w? vaut 2,191. La
largeur effective vaut alors:
B 1
U=——— (395)

1+0,757 22
M

On peut généraliser au cas d’une charge
supplémentaire uniformément répartie,
on trouve aisément :

1
=
4 M(Z+2
(E\‘ 21)

(36)

Il n’y a plus de relation simple entre w et
k, et il n’est plus possible d’obtenir une
formule générale équivalente a (295).
Dans le cas d’un matériau isotrope, pour
lequel k, = 2,6, on a:

1

1 [732 —Ad4T - B
1 + [»» -— ! -
12 ' M O’ - l‘j M

(37

W =

puisque B=2bet AT =— P.

S. Conclusions genérales
Lexpression de la largeur efficace réduite
s’écrit, en toute généralité, sous la forme
simple suivante:
B I
W= (38)

R

ou k, est un coefficient d’orthotropie
(pour plus de détails, consulter [2], [3]),
qui dans le cas d’une semelle isotrope se
réduit au rapport E£/G.

En développant successivement ['ap-
proche «exacte» (r) pour le matériau
transversalement rigide [3], puis 'ap-
proche cinématique (¢) et 'approche sta-

tique (s), on trouve que le coefficient a
correspondant prend les valeurs ci-apres:

@, =0270  « =0323  a,=0,235

Cette derniére valeur «, n’est valable
que pour un matériau isotrope; si la
valeur de k, augmente, elle se rapproche
de a,.

Les figures 3 et 4 fournissent respective-
ment les résultats obtenus pour la largeur
efficace d’une part, a mi-portée d’une
poutre sur deux appuis, chargée d’une
force concentrée dans cette méme sec-
tion, et d’autre part, sur appui intérieur
d’une poutre continue a deux travées
égales, chargée uniformément. On obser-
vera que l'approche basée sur [I’hypo-
thése du matériau transversalement
rigide est sensiblement la moyenne des
deux autres.

Tout en gardant a ’esprit que, en toute
rigueur, les solutions proposées ne don-
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Ultimate Load Behaviour
of Longitudinally and Transversally
Web Plates Loaded in Shear

by. Michele Mele, Rome and Roberto Puhali, Trieste

1. Introduction

In more recent years alot of experimental
and theoretical work has been devoted to
the study of stiffened web panels loaded
beyond the critical load until the point
of collapse. Among the design methods

which have been developed as a result of

these research works the one by Rockey,

Evans and Porter [1]' named Cardiff

Method, is well known and has already
been introduced into some codes. Ano-

I'See references at the end,

Summary

The paper briefly reports a general
method for designing stiffened webs
loaded in shear, which allows for any kind
of stiffening. The cases of compact and
stiffened flanges are separately dealt with.
The theoretical procedures, the experi-
mental and numerical research pro-
grammes carried out during the last ten
years, as well as the comparison with
other design methods are described.

ther design method, named Trieste
Method (2], was proposed by the authors
[3].[4] and was introduced into the Italian
Code in 1973. Its main features are to
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