Zeitschrift: Ingénieurs et architectes suisses

Band: 110 (1984)

Heft: 9

Artikel: Dimensionnement des fondations superficielles par une méthode

probabiliste

Autor: Recordon, Edouard

DOI: https://doi.org/10.5169/seals-75299

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Dimensionnement des fondations superficielles par une méthode probabiliste¹

par Edouard Recordon, Lausanne

Depuis une quinzaine d'années, un intérêt très grand se manifeste chez les ingénieurs de la mécanique des sols pour les méthodes probabilistes. Cela s'est traduit par la publication de nombreux ouvrages (voir par exemple [3]²) et par la création d'une société internationale qui tient des congrès tous les quatre ans.

Le sol, considéré comme matériau de construction, est particulièrement hétérogène du fait de son origine naturelle. Il est pourtant possible de définir l'écart type et le coefficient de variation de chacun de ses paramètres. Les recherches statistiques dans ce domaine sont suffisamment avancées (voir [3], [5]) pour que l'on puisse actuellement utiliser de manière sûre les méthodes probabilistes pour l'évaluation des déformations ou de la stabilité des fondations d'ouvrages.

1. Introduction

De nombreuses solutions ont été proposées au problème du dimensionnement des fondations superficielles depuis que la mécanique des sols se développe. Ces méthodes ont en commun leur caractère déterministe, c'est-à-dire l'évaluation de la capacité portante du sol d'assise de la fondation à l'aide d'un modèle de calcul dont les variables ne sont pas aléatoires, mais déterminées. Le modèle utilisé (fig. 1) suppose que la rupture survient le long d'une ligne de glissement. La plasticité est atteinte au même instant en chaque point de cette ligne. La rupture est dite rigide-parfaitement plastique.

Selon la méthode déterministe³, le dimensionnement de la fondation nécessite le choix d'un facteur de sécurité F_s qui permet de trouver q_{adm} , la contrainte ad-

missible sur le sol:

$$q_{\rm adm} = \frac{q_p}{F_s} \tag{1}$$

Il faut alors que

$$q_{\rm eff} = \frac{P}{RL} \leqslant q_{\rm adm} \tag{2}$$

Les divers auteurs restent souvent vagues quant aux facteurs de sécurité à adopter pour éliminer tout risque de poinçonnement du sol d'assise. Pour rendre simple et clair le dimensionnement, dans le cadre des cours donnés à l'EPFL, le Laboratoire de mécanique des sols a adopté, il y a une quinzaine d'années, la règle donnée par le tableau 1.

¹ Communication présentée lors du Séminaire sur les méthodes probabilistes en géotechnique, 7 et 8 mars 1983, EPFL, Ecublens.

² Les chiffres entre crochets renvoient à la bibliographie en fin d'article.

Cette règle a été établie après une étude approfondie des théories classiques et des résultats obtenus dans la pratique. Elle a fait ses preuves depuis lors.

La distinction entre sols rigides et sols mous correspond à la définition donnée dans l'ouvrage de K. Terzaghi, chapitre VIII [6]. Les sols dont le comportement est rigide sont ceux dont la courbe contraintes-déformations d'un essai de rupture fait apparaître une rupture nette fragile. Les sols mous au contraire présentent une courbe sans maximum de la charge du fait de la grande déformation de l'éprouvette dont la section horizontale augmente notablement au cours de l'essai.

Le défaut de la méthode déterministe est de faire intervenir un facteur de sécurité variable. Rappelons encore que

pour les sols mous un coefficient de sécurité supplémentaire est introduit en réduisant d'un tiers les valeurs de ϕ et c(angle de frottement interne et cohésion) déterminées en laboratoire. De plus, l'ingénieur ne sait pas s'il doit choisir la valeur moyenne ou minimale parmi les valeurs des paramètres déterminées pour un sol considéré comme homogène.

La méthode probabiliste que nous présentons ici a la mérite de supprimer ces ambiguïtés. Elle n'est pas meilleure que la méthode déterministe qui a fait ses preuves en s'affinant empiriquement, mais elle paraît plus satisfaisante. Elle permet, en outre, d'évaluer le risque de rupture en fonction de la dispersion (écart type ou coefficient de variation) des valeurs géotechniques dont on dispose.

2. Hypothèses du calcul probabiliste

Considérons le cas où le niveau de l'eau souterraine est à une profondeur plus grande que d par rapport au niveau d'appui (fig. 1). Il n'intervient donc pas dans le calcul de la capacité portante. L'équation permettant de calculer la capacité portante est la suivante:

$$q_p = c N_c \lambda_c + \gamma_1 t N_q \lambda_q +$$

$$+ \gamma_2 \frac{B}{2} N_\gamma \lambda_\gamma$$
(3)

Les paramètres géométriques t, B, L (fig. 1), λ_c , λ_q et λ_γ , les facteurs de forme, seront considérés comme constants.

TABLEAU 1: Valeur du facteur de sécurité recommandée par le Laboratoire de mécanique des sols de l'EPFL dans un calcul déterministe

	Poinçonnement généralis (sols denses et rigides) $\gamma > 20 \text{ kN} \cdot \text{m}^{-3}$	Poinçonnement localisé (sols peu denses ou mous $\gamma \le 20 \text{ kN} \cdot \text{m}^{-3}$	
$\phi \geqslant 35^{\circ}$	$35^{\circ} > \phi > 30^{\circ}$	φ ≤ 30°	Toutes valeurs de ϕ
$F_s \geqslant 5$	$F_s = 4$	$F_s = 3$	$F_s = 2$

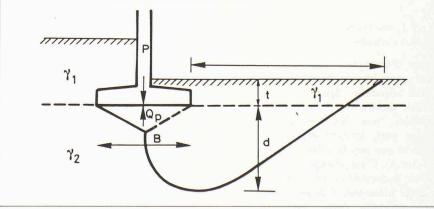


Fig. 1. — Schéma de la rupture du sol sous une fondation superficielle.

capacité portante totale [kN] longueur de la fondation [m] largeur de la fondation [m]

$$\begin{split} q_p &= \frac{Q_p}{B_L} : \ capacit\'e\ portante\ [kN\cdot m^{-2}] \\ La\ fondation\ est\ dite\ superficielle\ si\ t < B. \end{split}$$

³ Il faut rappeler que le dimensionnement complet de la fondation nécessite encore la vérification que les déplacements verticaux ou tassements des diverses fondations de l'ouvrage sont admissibles (totaux et différentiels). Nous n'examinons pas ce problème dans ce texte.

Les paramètres géotechniques ϕ , c, γ_1 et γ_2 seront des variables aléatoires caractérisées par

- leur moyenne: μ_{ϕ} μ_{c} μ_{γ}
- leur écart type: S_{ϕ} S_{c} S_{γ} (nous réservons la lettre σ aux contraintes normales)
- leur coefficient de variation: V_{ϕ} V_{c} V_{γ}

avec la relation:

$$V_i = \frac{S_i}{\mu_i} \tag{4}$$

Les paramètres N_c , N_q et N_γ sont des fonctions de ϕ et de ϕ seulement. Les expressions que nous avons adoptées sont les suivantes:

$$\begin{split} N_{q} &= \frac{\mathrm{e}^{(3\pi/2 - \phi) \, \mathrm{tg} \phi}}{2 \, \mathrm{cos}^{2} (45^{0} + \phi/2)} \\ N_{c} &= \frac{N_{q} - 1}{\mathrm{tg} \, \phi} \\ N_{\gamma} &= 2 (N_{q} + 1) \, \mathrm{tg} \, \phi \end{split} \tag{5}$$

Elles sont relatives au cas d'une *semelle rugueuse*. Ce cas nous semble mieux correspondre aux conditions réelles que celui de la semelle lisse.

Les fonctions de forme sont souvent considérées comme des fonctions de ϕ : De Beer-Vesic:

$$\lambda_{q} = 1 + \frac{B}{L} \operatorname{tg} \phi$$

$$\lambda_{c} = 1 + \frac{B}{L} \frac{N_{q}}{N_{c}}$$

$$\lambda_{\gamma} = 1 - 0.4 \frac{B}{L}$$
(6)

Meyerhof:

Si $\phi > 10^{\circ}$

$$\lambda_q = 1 + 0.1 \frac{B}{L} \operatorname{tg}^2(45^\circ + \phi/2)$$

$$\lambda_c = 1 + 0.2 \frac{B}{L} \operatorname{tg}^2(45^\circ + \phi/2)$$

$$\lambda_\gamma = \lambda_q$$
Si $\phi \le 10^\circ$

 $\lambda_q = 1$

 λ_c et λ_γ ont les mêmes valeurs que ci-dessus.

A titre d'exemples, nous donnons les valeurs numériques dans le tableau 2, qui fait apparaître dans certains cas de grandes différences entre les valeurs proposées par les divers auteurs. D'autre part, les paramètres λ_i n'influencent que peu la valeur de q_p en regard des N_i . C'est pourquoi, nous avons renoncé à considérer les λ_i comme des variables aléatoires. Ces paramètres seront introduits dans l'équation (3) comme des constantes dont la valeur est calculée à partir de la valeur moyenne de ϕ , à l'aide des équations (7) de Meyerhof, par exemple.

TABLEAU 2: Valeurs des fonctions de forme données par divers auteurs

Forme de la fondation	Auteur	λ_q	λ_c	λ_{γ}
Très longue $\frac{B}{L} = 0$	De Beer/Vesic Meyerhof	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Carrée $\frac{B}{L} = 1$ $\phi = 0$	De Beer/Vesic Meyerhof	1	1,18 1,20	0,60 1
Carrée $\frac{B}{L} = 1$ $\phi = 45^{\circ}$	De Beer/Vesic Meyerhof	2 1,58	2 2,17	0,60 1,58

3. Dispersion des paramètres géotechniques

Depuis une quinzaine d'années, de nombreuses études statistiques sur des massifs de sols homogènes ont permis de constater que l'ordre de grandeur du coefficient de variation des paramètres géotechniques varie peu quel que soit le sol considéré. Cet ordre de grandeur change beaucoup plus d'un paramètre à l'autre que d'un sol à l'autre.

Le tableau 3 donne les résultats de quelques-unes de ces études, tirés de Harr [3], des rapports internes du Laboratoire de mécanique des sols (LMS) de l'EPFL et de Recordon et Despond [5]. Ce tableau montre que, dans la pratique du dimensionnement, il n'est pas nécessaire de redéterminer chaque fois les coefficients de variation par une étude statistique, on peut adopter simplement les valeurs suivantes:

$$V_{\phi} = 0.10$$
 $V_{c} = 0.50$
 $V_{\gamma} = 0.03$

Ces valeurs sont plutôt élevées par rapport à celles du tableau 3, à l'exception de la deuxième valeur de V_{γ} qui nous paraît anormalement grande et que nous éliminons.

Cette conclusion est très importante par son caractère de généralité. Cela signifie qu'un sol, en tant que matériau «homo-

TABLEAU 3: Synthèse de quelques études statistiques sur les paramètres géotechniques

Auteur	Année	Type de sol	Moyenne	Nombre d'échantillons	Coefficient et variation
Poids vol	umique	apparent γ	[kN·m ⁻³]		V _Y [%]
Hammitt	1966	Argile très plast.	17,78	97	2,5
Hammitt	1966	Argile plast. moy.	18,16	99	12,3
Hammitt	1966	Argile faible plast.	17,64	97	1,9
LMS - EPFL	1977	Argile limoneuse	19,32	176	1,8
LMS - EPFL	1977	Argile limoneuse	22,37	126	3,1
Angle de	frotter	nent interne φ	[degrés]		V _{\$\phi\$} [%]
Holz		Gravier	36,2	38	6,0
Holz		Sable	38,8	73	7,0
Holz		Sable	36,4	136	11,0
Holz		Sable	40,5	30	11,0
Schultze	1972	Sable graveleux	37,3	81	5,3
LMS - EPFL	1977	Argile limoneuse	26,8	32	13,6
LMS - EPFL	1977	Argile limoneuse	35,9	30	13,0
Résistance	e à la c	compression simple q_{u}	[kN·m ⁻²]		V _{qu} [%]
Fredlund	1972	Argile	97,6	279	49,1
Fredlund	1972	Argile	66,0	295	40,9
Fredlund	1972	Argile	56,5	187	39,6
Fredlund	1972	Argile	59,3	53	47,7
Matsuo	1974	Argile	24,9	231	29,0
Ladd	1972	Argile		97	30 - 40
LMS - EPFL	1977	Argile limoneuse	30,0	145	53,7
Cohésion d	u		[kN·m ⁻²]		V _{cu} [%]
LMS - EPFL	1977	Argile limoneuse	16,0	30	77,0

gène » est caractérisé en ce qui concerne la dispersion de chacun de ses paramètres par une valeur unique du coefficient de variation.

4. La capacité portante q_n considérée comme une fonction des variables aléatoires ϕ , c et γ

La fonction $q_p(\phi, c \text{ et } \gamma)$ peut être exprimée sous forme analytique, équ. (3) et (5). Elle peut donc être développée en série de Taylor. Dans ce cas, il a été montré par Hahn et Shapiro [2], qu'en se limitant aux termes d'ordre le plus bas non nuls, on peut calculer l'espérance mathématique \bar{y} et la variance S_{ν}^2 d'une fonction $y = f(x_1 x_2 ... x_n)$. Les x_i sont les variables aléatoires définies par leur moyenne μ_i et leur variance S_i^2 :

$$\bar{y} = f(\mu_1 \, \mu_2 \dots \mu_n) + \frac{1}{2} \sum_{i=1}^{n} \frac{\delta^2 f}{\delta_{x_i}^2} (S_i^2)$$
(8)

$$S_y^2 = \sum_{i=1}^n \left(\frac{\delta f}{\delta x_i}\right)^2 (S_i^2) \tag{9}$$

Le coefficient de variation de y sera

$$V_y = \frac{S_y}{\bar{y}} \tag{10}$$

Dans le cas de $q_p(\phi, c, \gamma)$ les expressions (8) et (9) sont les suivantes:

$$\mu_q = \overline{q_p} = c N_c \lambda_c + \gamma t N_q \gamma_q +$$

$$+ \gamma \frac{B}{2} N_\gamma \lambda_\gamma +$$

$$+\frac{1}{2}\left(c\lambda_{c}\frac{\delta^{2}N_{c}}{\delta\phi^{2}}+\gamma t\lambda_{q}\frac{\delta^{2}N_{q}}{\delta\phi^{2}}+\right.$$

$$\left.+\gamma\frac{B}{2}\lambda_{\gamma}\frac{\delta^{2}N_{\gamma}}{\delta\phi^{2}}\right)S_{\phi}^{2}$$
(11)

$$S_q^2 = \left(c\lambda_c \frac{\delta N_c}{\delta \phi} + \gamma t \gamma_q \frac{\delta N_q}{\delta \phi} + \right)$$

$$+ \gamma \frac{B}{2} \lambda_{\gamma} \frac{\delta N_{\gamma}}{\delta \phi} \Big)^{2} S_{\phi}^{2} + N_{c}^{2} \lambda_{c}^{2} S_{c}^{2} + \tag{12}$$

$$+ \left(t\lambda_q\,N_q + \frac{B}{2}\,\lambda_\gamma\,N_\gamma\right)^2 S_\gamma^2$$

Le calcul de $\overline{q_p}$ et S_q^2 nécessite donc la connaissance des dérivées partielles premières et secondes des N_i par rapport à ϕ , c et γ . Ces dérivées sont données par le tableau 4. Leurs valeurs numériques figurent dans le tableau 5 et les figures 2, 3 et 4 représentent l'allure graphique des fonctions N_i et de leur dérivées.

5. Calcul du risque de rupture

Si l'on considère P, la sollicitation et Q_n , la capacité, comme des variables aléatoires, dont la distribution est

Tableau 4: Fonctions N_q , N_c , N_γ et leurs dérivées

$$\begin{split} & N_{q} = \frac{e^{\left(3\pi/2 - \phi\right)} \ tg \ \phi}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = \frac{2 \cos^{2}(45^{9} + \phi/2)}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = \frac{e^{\left(3\pi/2 - \phi\right)} tg \ \phi}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = \frac{e^{\left(3\pi/2 - \phi\right)} tg \ \phi}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = \frac{e^{\left(3\pi/2 - \phi\right)} tg \ \phi}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = \frac{e^{\left(3\pi/2 - \phi\right)} tg \ \phi}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = \frac{\delta N_{q}}{\delta \phi} \cdot A + N_{q} \frac{\delta A}{\delta \phi} = N_{q} \left(A^{2} + \frac{\delta A}{\delta \phi}\right) \\ & \frac{\delta N_{q}}{\delta \phi} = \frac{\delta N_{q}}{\delta \phi} \cdot A + N_{q} \frac{\delta A}{\delta \phi} = N_{q} \left(A^{2} + \frac{\delta A}{\delta \phi}\right) \\ & \frac{\delta N_{q}}{\delta \phi} = 2 \frac{\delta N_{q}}{\delta \phi} \cdot A + N_{q} \frac{\delta N_{q}}{\delta \phi} + \frac{1}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = 2 \frac{\delta N_{q}}{\delta \phi} \cdot A + N_{q} \frac{\delta N_{q}}{\delta \phi} + \frac{1}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = 2 \frac{\delta N_{q}}{\delta \phi} \cdot A + N_{q} \frac{\delta N_{q}}{\delta \phi} + \frac{1}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = 2 \frac{\delta N_{q}}{\delta \phi} \cdot A + N_{q} \frac{\delta N_{q}}{\delta \phi} + \frac{1}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = 2 \frac{\delta N_{q}}{\delta \phi} - A + \frac{1}{2 \cos^{2}\left(45^{9} + \phi/2\right)} \\ & \frac{\delta N_{q}}{\delta \phi} = 2 \frac{\delta N_{q}}{\delta \phi} - \frac{\Lambda}{\sin^{2}\phi} + \frac{\delta N_{q}}{\delta \phi} \frac{1}{\delta \phi} + \frac{1}{tg \phi} - \frac{1}{\sin^{2}\phi} + \frac{\delta N_{q}}{\delta \phi} \frac{1}{\delta \phi} + \frac{1}{\sin^{2}\phi} + \frac{\delta N_{q}}{\delta \phi} + \frac{1}{\cos^{2}\phi} + \frac{2}{\cos^{2}\phi} + \frac{2}{\cos^{2$$

TABLEAU 5: Méthode probabiliste — Valeur des paramètres Sol compact — Semelles rugueuses

φ 0	0	5	10	15	20	25	30	35	40	4.5
Nq	1	1,642	2,695	4,448	7,438	12,728	22,458	41,495	81,303	173,22
N _C	5,714	7,337	9,631	12,886	17,687	25,167	37,189	57,850	95,713	172,22
N	0	0,462	1,301	2,920	6,143	12,795	27,071	59,493	138,10	348,44
δ Να/δφ	5,712	9,300	15,348	25,825	44,665	80,134	151,36	304,32	662,29	1605,4
δ N _C /δφ	15,220	21,769	30,993	44,890	67,670	106,68	176,49	311,65	595,02	1433,2
δ Νγ/δφ	4,000	6,952	13,022	25,521	51,628	108,28	237,22	562,97	1391,8	3907,7
δ ² N ₀ /δφ ²	31,627	52,504	89,550	157,79	287,24	559,61	1150,0	2560,8	6278,9	17'498,1
δ ² N _Q /δφ ²	60	83,307	129,61	201,80	327,83	583,38	1079,6	2159,8	4741,2	11'765,4
δ ² N ₂ /δφ ²	22,848	47,611	97,504	201,55	425,36	943,84	2206,6	5576,5	15'521	49'233

connue (fig. 5), la probabilité de rupture est donnée par la surface hachurée de la

Chacune des variables aléatoires est définie par sa moyenne et son écart-type

$$\mu_q \qquad S_q \mu_p \qquad S_p$$

Dans le cas de la capacité portante d'une fondation, comme dans celui de la charge P exercée sur la fondation, les valeurs des variables sont toutes positives, la distribution normale ne convient pas. Par contre, la distribution «bêta» (type I de Pearson) est bien adaptée à ces 2 cas. L'ouvrage de Harr [8], chap. C8, annexe C, donne tous les éléments nécessaires au calcul de ces distributions dont l'équation est:

(15b)

$$f(x) = \frac{(b-a)^{-1-\alpha-\beta}}{B(\alpha+1,\beta+1)} \times (x-a)^{\alpha} (b-x)^{\beta}$$
(16)

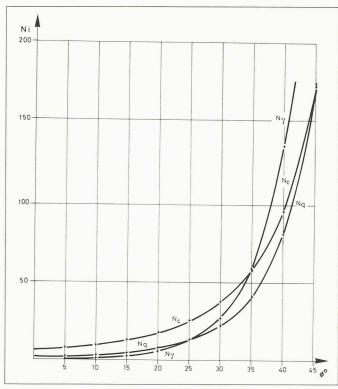


Fig. 2. — Fonctions N_q , N_c , N_γ de Φ .

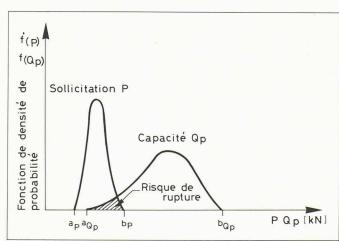


Fig. 5. — Modèle capacité-sollicitation.

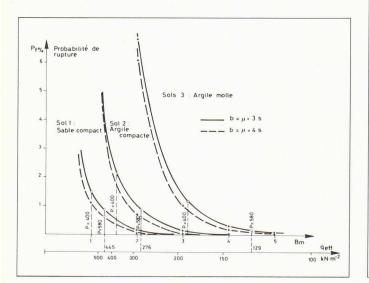


Fig. 6. — Probabilité de rupture en fonction de la largeur de la semelle ou de la contrainte effective sous la semelle.

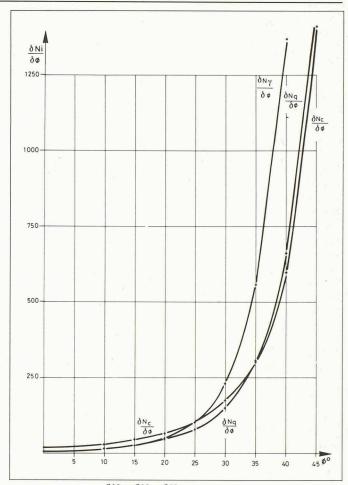


Fig. 3. — Fonctions $\frac{\delta N_q}{\delta \phi}$, $\frac{\delta N_c}{\delta \phi}$, $\frac{\delta N_{\gamma}}{\delta \phi}$.

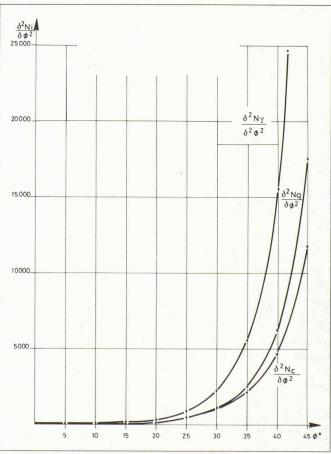


Fig. 4. — Fonctions $\frac{\delta^2 N_q}{\delta \phi^2}$, $\frac{\delta^2 N_c}{\delta \phi^2}$, $\frac{\delta^2 N_{\gamma}}{\delta \phi^2}$

dans laquelle a et b sont les valeurs minimales et maximales de la variable aléatoire x (bornes de la distribution)

$$B(\alpha+1,\beta+1) = \frac{\Gamma(\alpha+1)\Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)}$$
(17)

 Γ = fonction gamma $\Gamma(N+1) = N!$ ou $\Gamma(N) = (N-1)!$ N = nombres entiers de 1 à N.

Le calcul des valeurs de Γ est décrit dans le chapitre C7 de l'ouvrage de Harr.

Le procédé de calcul de la distribution de la sollicitation P et de la capacité Q_p est le suivant:

- a) Choisir les bornes a et b de chacune des deux distributions. Pour la charge P, la borne inférieure sera donnée par les charges permanentes seules et la borne supérieure sera donnée par les charges les plus défavorables cumulées (surcharges des dalles, neige, vent, séisme, etc.). Dans le cas de la capacité Q_n , la borne inférieure pourra être choisie comme suit: a = 0 $a = \mu_q - 3 S_q$ ou $a = \mu_q - 4 S_q$ avec dans tous les cas $a \ge 0$. La borne supérieure sera $b = \mu_q + 3 S_q$ ou $b = \mu_q + 4S_q.$
- b) Déterminer la moyenne et l'écarttype. Dans le cas de la charge P, la différence b-a est faible. La moyenne doit être plus proche de a

que de b, on pourra par exemple déterminer S_p comme le cinquième ou le sixième de b-a et la moyenne $\mu_p=a+2S_p$ ce qui correspond à $\mu_p=b-3S_p$ ou $\mu_p=b-4S_p$. Dans le cas de la capacité, μ_q et S_q sont donnés par les équations (11) et (12). μ_Q et S_Q sont obtenus en multipliant μ_q et S_q kN·m⁻² par BL la surface d'appui de la fondation.

c) Calculer les valeurs de α et β de chaque distribution:

$$\alpha = \frac{\tilde{x}^2}{\tilde{V}}(1-\tilde{x}) - (1-\tilde{x})$$

$$\beta = \frac{\alpha+1}{\tilde{x}} - (\alpha+2)$$
(18)

avec

$$\tilde{x} = \frac{\mu_x - a}{b - a} \qquad \tilde{V} = \left(\frac{S_x}{b - a}\right)^2 \quad (19)$$

(ici x correspond soit à P soit à Q_p).

- d) Calculer les distributions par l'équation (16).
- e) Calculer le pourcentage de risque.

Note: Le laboratoire de mécanique des sols de l'EPFL dispose d'un programme qui effectue les calculs correspondant aux points c), d), e) à partir des valeurs a, b, μ et S des deux distributions, il

donne directement en chiffre le pourcentage de risque.

6. Exemples

Le tableau 6 donne les résultats du calcul dans le cas des trois sols suivants:

- 1 Sol sableux compact
- 2 Sol argileux compact
- 3 Sol argileux mou.

Les calculs sont faits aussi bien par la méthode probabiliste que par la méthode déterministe.

La fondation est une semelle très longue pour laquelle

$$\lambda_c = \lambda_q = \lambda_{\gamma} = 1$$

 $t = 1 \text{ m}$ $B = 2 \text{ m}$

La charge à transmettre au sol est caractérisée par les valeurs ci-après. Elle est la même pour les trois types de sols.

Sollicitation P

Borne a:

$$P = 300 \text{ kN}$$

$$S_p = 60 \text{ kN} = \frac{b - a}{4,67}$$

Borne b:

$$P = 580 \text{ kN}$$

TABLEAU 7: Résultats du calcul probabiliste

$$\mu_p = b - 3 S_p = 400 \text{ kN}$$

ou
$$\mu_p = a + 1,67 S_p = 400 \text{ kN}.$$

Tableau 6: Calcul de μ_q et de S_q

Sol	l Sableux compact		2 Argileux compact			3 Argileux mou			
	ф с ү		ф с ү		φ.	c	γ		
		kN·m ⁻²	kN·m ⁻³	degré	kN·m ⁻²			kN·m ⁻²	
Moyenne µ	35	5	21	20	30	21	15	25	18
Coeff. de variat. V	0,10	0,50	0,03	0,10	0,50	0,03	0,10	0,50	0,03
Ecart type S	3,5	2,5	0,63	2	15	0,63	1,5	12,5	0,54
Variance S ² (radians)	0,0037	6,25	0,397	0,0012	225	0,397	0 00069	156,25	0,292
C N _C		289			530,6			322,2	
yt Nq		871			156,2			80,1	
γ B/2 N _γ		1250			129,0			52,6	
q _p [kN·m ⁻²]		2410		815,8			454,9		
$1/2~C~\frac{\delta^2~N_C}{\delta\varphi^2}~S_{\varphi}^{~2}$	20		6,0			1,7			
$1/2\gamma t {\delta^2N_Q\over\delta\varphi^2}S_{\varphi}^{2}$	100			3,7			1,0		
$1/2 \gamma B/2 \frac{\delta^2 N_{\gamma}}{\delta \phi^2} S_{\phi}^2$		219		5,4			1,2		
Σ		339		15,1			3,9		
μ _q [kN·m ⁻²]		2749		830,9			458,8		
() ² S _{\$\phi\$} ²		1'458'8	51	19'998			2'867		
N _C ² S _C ²		20'916	i .	70'387			25'945		
$(t N_q + \frac{B}{2} N_Y)^2 S_Y^2$	4048		73			16			
Sq ²	1'483'825			90'458			28'828		
Sq [kN·m ⁻²]		1218,1		300,8			169,8		
$V_{\mathbf{q}} = \frac{S_{\mathbf{q}}}{\mu_{\mathbf{q}}}$		0,443		0,362			0,370		

Large	eur B [m]	1	2	3	4	5
	μ ₀ [kN]	2015	5498	10'449	16'868	24'755
	SQ [kN]	860	2436	4734	7752	11'495
6.1.1	b [kN]	4595	12'806	24'648	40'124	59'235
Sol 1	a [kN]	0	0	0	0	0
b = μ + 3 S	α	1,644	1,478	1,383	1,314	1,282
	β	2,385	2,293	2,238	2,204	2,178
	Pf [%]	1,56	0,17	0,05	0,02	0,009
	μQ [kN]	764	1662	2694	3860	5165
	S _Q [kN]	292	602	930	1280	1655
So1 2	b [kN]	1641	3466	5487	7704	10'135
301 2	a [kN]	0	0	0	0	0
$b = \mu + 3S$	α	2,193	2,488	2,780	3,037	3,267
	β	2,665	2,786	2,919	3,020	3,105
	P _f [%]	12,1	1,03	0,14	0,02	0,004
	μ _Q [kN]	432	918	1458	2052	2695
	SQ [kN]	168	340	516	696	880
Sol 3	b [kN]	936	1936	3003	4140	5345
	a [kN]	0	0	0	0	0
$b = \mu + 3S$	α	2,099	2,359	2,622	2,888	3,146
	β	2,615	2,275	2,838	2,957	3,077
	Pf [%]	44,5	6,83	1,38	0,32	0,08
Sol 1	P _f [%] a = μ - 4 S = 0	1,12	0,09	0,02	0,007	0,003
So1 2 So1 3	$a = \mu - 4S = 0$ $b = \mu + 4S$	11,4 45,3	0,72 6,09	1,02	0,010	0,0015

La distribution bêta de P est caractérisée par:

$$\tilde{x} = 0.357$$
 $\tilde{V} = 0.0459$ $\alpha = 0.429$ $\beta = 1.571$.

Capacité Qn

Il est nécessaire de calculer plusieurs fonctions de densité de probabilité de la capacité Q_p , car celle-ci dépend de B que l'on cherche.

On obtiendra donc une série de valeurs de probabilité de rupture p_f , selon fig. 5 par calcul de la surface hachurée pour chaque courbe de la capacité. Ces résultats permettent de tracer les courbes de la figure 6: probabilité de rupture en fonction de B, c'est-à-dire en fonction de la contrainte effective sous la semelle.

Le calcul des courbes de la capacité pour diverses valeurs de B nécessite au préalable la détermination de μ_q et de S_q . Le tableau 6 donne ce calcul pour B=2 m (équ. 11 et 12). On obtient ensuite rapidement les valeurs de μ_q et S_q pour les autres B car seuls les termes en B du tableau 6 changent.

Le tableau 7 donne les valeurs de μ_Q et S_Q pour les 3 sols et pour B compris entre 1 et 5. ($\mu_Q = \mu_q \cdot BL$ et $S_Q = S_q \cdot BL$). Ce tableau donne également a=0 et $b=\mu_Q+3\,S_Q$ ainsi que les valeurs des paramètres α et β des distributions de Q_p .

Enfin, les dernières lignes du tableau 7 donnent pour chaque sol la valeur de la probabilité de rupture p_f en pourcent. Ce calcul se fait à l'ordinateur à partir de a, b, μ , S, α et β des deux distributions P et Q_p .

La figure 6 représente graphiquement la probabilité de rupture P_f en fonction de la largeur de la semelle B.

Méthode déterministe

Le calcul de la largeur *B* de la fondation nécessite également le calcul des courbes

$$\begin{aligned} q_{\text{adm}} &= \frac{q_p}{F_S} \\ &= \frac{1}{F_S} \left(c N_c + \gamma t N_q + \gamma \frac{B}{2} N_\gamma \right) \\ &= f(B) \\ q_{\text{eff}} &= \frac{P}{B \cdot L} = f(B) \end{aligned}$$

L'intersection de ces deux courbes donne la valeur de *B* cherchée. Les résultats de ce calcul classique sont donnés par le tableau 8.

Les valeurs de B et de $q_{\rm eff}$ sont également reportées sur la figure 6. Le calcul est effectué pour deux valeurs de P: la borne supérieure 580 kN et la moyenne $400~\rm kN$

Influence de la dispersion des caractéristiques du sol sur la capacité portante

Les équations (11) et (12) permettent de calculer μ_q et S_q comme des fonctions des coefficients de variation, puisque: $S = \mu \cdot V$. Ces deux équations peuvent donc s'écrire avec $\lambda_c = \lambda_q \quad \lambda_\gamma = 1$

$$\mu_{q} = c N_{c} + \gamma t N_{q} + \gamma \frac{B}{2} N_{\gamma} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{q}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \frac{1}{2} \left(c \frac{\delta^{2} N_{c}}{\delta \phi^{2}} + \gamma t \frac{\delta^{2} N_{c}}{\delta \phi^{2$$

$$\begin{split} S_q^2 &= \left(c\,\frac{\delta\,N_c}{\delta\phi} + \gamma t\,\frac{\delta\,N_q}{\delta\phi} + \right. \\ &+ \gamma \frac{B}{2}\,\frac{\delta\,N_\gamma}{\delta\phi}\right)\mu_\phi^2\,V_\phi^2 + \\ &+ N_c^2\,\mu_c^2\,V_c^2 + \\ &+ \left(t\,N_q + \frac{B}{2}\,N_\gamma\right)^2\mu_\gamma^2\,V_\gamma^2 \end{split} \tag{12a}$$

A l'aide de ces deux équations, nous avons étudié, pour les sols 1 et 3, l'influence de la variation de V_{ϕ} sur q_{p} en admettant $V_{c}=cte=0,50$ et $V_{\gamma}=cte=0,03$, puis l'influence de V_{c} en admettant V_{ϕ} et V_{γ} comme constants et enfin l'influence de V_{γ} avec V_{ϕ} et V_{c} constants

Les abaques donnés dans l'ouvrage de Harr [8], figure C 17 de l'annexe C facilitent grandement ces calculs. La marche à suivre est la suivante: μ_q et S_q sont donnés par (11 a) et (12 a) puis on admet a=0 et $b=\mu_q+3\,S_q$ d'où $\tilde{x},\,\tilde{V},\,\alpha$ et β . Les abaques de la figure C 17 donnent alors la fonction F à partir de α et β et $q_k=F\cdot b$ (si a=0) q_{k_1} et q_{k_2} sont les valeurs de q_p telles qu'il y ait une probabilité de 1%, respectivement 5%, pour que q_p soit égal à q_k .

Les valeurs de q_{p_1} et q_{p_3} sont reportées en fonction de V_{ϕ} , V_c et V_{γ} sur les figures 7 et 8.

Tableau 8: Détermination de la largeur de la fondation (méthode déterministe)

Sol	Sable compact		2 Argile compacte		3 Argile molle	
F_s	4	,5	3		2	
P kN	580	400	580	400	580	400
$q_{\text{adm}} = q_{\text{eff}} \text{kN} \cdot \text{m}^{-2}$ $B \text{m}$	446 1,30	400 1,00	276 2,10	258 1,55	129 4,50	129 3,10

8. Conclusions

La méthode de calcul présentée est une méthode probabiliste pour l'étude des fondations superficielles.

— Elle permet de dimensionner les fondations moyennant le choix d'une probabilité de rupture que l'on adoptera pour le dimensionnement. La figure 6 montre que si l'on se base sur la pratique de la méthode déterministe traditionnelle, cette probabilité de rupture est comprise dans le cas de nos exemples entre $p_f = 1\%$ et $p_f = 2\%$ si l'on adopte pour la méthode déterministe la valeur moyenne de P = 400 kN. Elle est comprise entre $p_f = 0,2\%$ et $p_f = 0,9\%$ si l'on adopte la valeur maximale de P = 580 kN.

Le nombre d'exemples étudié est insuffisant pour que l'on puisse dès maintenant fixer le p_f à adopter pour le dimensionnement. Le cas 3 de l'argile molle est un cas extrême pour la charge de 580 kN. On est conduit à une largeur B de 4,5 m, ce qui conduirait pratiquement pour un bâtiment à construire un radier général.

Au vu des exemples traités, il semble que l'on doive s'orienter vers le choix d'une borne supérieure de la distribution $b = \mu_Q + 3 S_Q$ et que dans ce cas, on puisse adopter $p_f = 0.8$ à 1% pour les sols compacts (dimensionnement basé sur la valeur maximale de P). Dans le cas des sols mous p_f devrait être plus faible semble-t-il, mais cela doit être vérifié par d'autres exemples numériques.

Les calculs par la méthode probabiliste sont plus longs que par la méthode déterministe traditionnelle. L'élaboration

Bibliographie

- [1] DE BEER, E. E. 1970. Proefondervindelikje bijdrage tot de studie van let gransdraagvermogen can zand on der funderingen op stall. Géotechnique vol. 20, n° 4 (Abbreviated English Version).
- [2] HAHN G. J. et SHAPIRO S. S. 1967. Statistical Models in Engineering. John Wiley and Sons Inc. New York.
- [3] HARR M. E. 1981. Mécanique des milieux formés de particules. Traduction française par E. Recordon. Presses Polytechniques Romandes, Lausanne
- [4] MEYERHOF G. G. 1963. Some Recent Research on the Bearing Capacity of Foundations. Canadian Geotechnical Journal vol. 1, nº 1.
- [5] RECORDON E. et DESPONDS J. M. 1977. Dispersion des caractéristiques des sols naturels considérés comme homogènes. Session spéciale IXe Congrès international MSTF, Tokio.
- [6] TERZAGHI K. 1951. Mécanique théorique des sols. Traduction française, Dunod, Paris.
- [7] VESIC A. S. 1973. Analysis of Ultimate Loads of Shallow Foundations. Journal Soil Mechanics and Foundations Division ASCE No. SM 1.

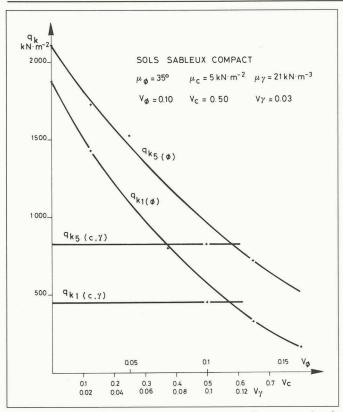


Fig. 7. — Exemple 1: Contraintes effectives sous la semelle correspondant à une probabilité de rupture de 1 % et de 5 % en fonction de la variabilité des paramètres.

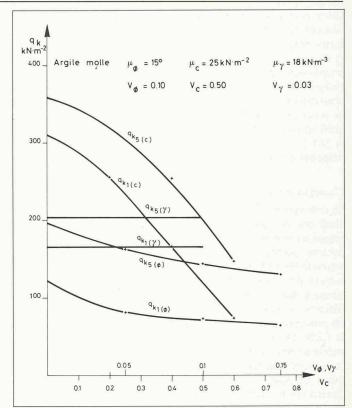


Fig. 8. — Exemple 3 : Contraintes effectives sous la semelle correspondant à une probabilité de rupture de 1 % et de 5 % en fonction de la variabilité des paramètres.

d'un programme de calcul pour ordinateur rendrait ces calculs commodes et rapides.

L'avantage essentiel de la méthode probabiliste est d'être plus logique puisqu'elle permet de se passer des facteurs de sécurité variables, peu satisfaisants.

Elle fait apparaître que dans la pratique on admet avec la méthode déterministe une probabilité de rupture de l'ordre de 1% pour les sols compacts. Cela peut paraître élevé. Mais pour en juger, il faudrait définir de manière claire ce que l'on appelle une rupture. Un ouvrage comportant un grand nombre de fondations peut en avoir une qui se comporte mal. Les charges sont alors reportées sur

les autres et les désordres peuvent rester faibles.

— La méthode probabiliste montre en outre, par les figures 7 et 8, que seuls ϕ et c sont de véritables variables aléatoires. Dans les calculs, γ peut être choisi comme une constante, du moins dans le cas sans eau que nous avons examiné.

La méthode probabiliste proposée pour le dimensionnement des fondations superficielles doit encore être améliorée:

— La valeur de la probabilité de rupture p_f à adopter pour le dimensionnement doit être précisée par le calcul d'un certain nombre d'autres exemples.

- Il faudra tenir compte de l'influence de la nappe souterraine, lorsqu'elle est haute, en introduisant sa profondeur comme une variable aléatoire. Cela reviendra à déjauger plus ou moins les poids volumiques apparents γ₁ et γ₂ de la figure 1.
- L'élaboration d'un programme pour ordinateur qui effectue l'ensemble des calculs de dimensionnement est à faire.

Adresse de l'auteur: Edouard Recordon professeur de mécanique des sols Ecole polytechnique fédérale 1015 Lausanne

Vie de la SIA

La Commission centrale des normes (CCN) a 20 ans

Rétrospective

C'est en date du 5 juillet 1963 que la CCN a tenu sa première séance, à l'initiative de M. A. Métraux, ingénieur, membre du Comité central. Il avait alors su reconnaître que beaucoup de points dans le domaine des normes étaient encore imparfaitement réglés. Fort de son expérience dans le secteur de la normalisation, tant sur le plan national qu'international, il réussit à convaincre le Comité central de la nécessité de mettre sur pied une commission spéciale chargée de diriger et de coordon-

ner les travaux relatifs aux normes SIA. Un aspect lui tenant particulièrement à cœur était l'introduction d'une procédure de consultation donnant à tous les milieux intéressés la possibilité de prendre position et d'être entendus en cas de divergences d'opinion. Dans le rapport de gestion de 1963, on peut lire: «La commission centrale des normes est l'organe consultatif du Comité central pour toutes les affaires relatives aux normes de la SIA. Elle a pour tâche de coordonner et surveiller les travaux lors de l'élaboration de nouvelles normes ou la révision des normes existantes, d'établir des directives à l'intention des groupes de travail techniques pour l'étude de nouveaux problèmes et de veiller à ce que la procédure relative à la ratification des normes soit appliquée strictement.»

Organisation des travaux

Outre ces tâches permanentes, la CCN s'est occupée de problèmes d'ordre général touchant l'établissement des normes, tels que but, structure, volume et aspects juridiques des normes, ainsi que de la collaboration avec d'autres organisations nationales ou internationales élaborant également des normes. En 1963, sous la présidence de M. A. Métraux, la CCN a, en six séances, mis au point un règlement concernant la procédure d'adoption des normes SIA. Le règlement confère à tout membre de la SIA le plein droit d'intervenir en temps opportun et contribue à simplifier au cours des assemblées des délégués, les discussions portant sur les normes. De plus, la CCN a entrepris la classification des normes existantes afin que les prescriptions nécessitant une réadap-