Zeitschrift: Ingénieurs et architectes suisses

Band: 109 (1983)

Heft: 2

Artikel: Calcul graphique des assises de machines

Autor: Paschoud, Jacques / Wieser, Philippe

DOI: https://doi.org/10.5169/seals-74916

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Calcul graphique des assises de machines

par Jacques Paschoud, Grandvaux, et Philippe Wieser, Romanel

Le but du présent travail est de présenter une méthode graphique pour le calcul du mouvement plan des assises de machines dont la suspension et l'amortissement sont assurés par des matériaux visco-élastiques, tels les lièges, caoutchoucs naturels et artificiels, ainsi que les polymères. L'angle de frottement interne de ces matériaux peut être considéré comme pratiquement indépendant de la fréquence des oscillations. Après avoir écrit les équations des petits mouvements dans le plan vertical, perpendiculaire à l'axe de rotation de la machine dans le cas des assises actives, on en développe une méthode de résolution graphique.

1. Les assises actives

(isolation du sol contre les vibrations d'une machine rotative)

1.1 Les équations des petits mouvements

La figure 1 montre une coupe verticale de l'assise, et du système rotatif suspendu, par un plan vertical perpendiculaire à l'axe de rotation. Les suspensions sont idéalisées en séparant leurs actions horizontale et verticale sur un point quelconque I de l'assise.

Pour appliquer le principe de d'Alembert, les forces et moments appliqués à l'assise se composent de la manière suivante:

— Notations:

M = Masse totale suspendue

 $\rho = \text{son rayon de giration en } G$

m =masse du balourd

r = rayon du balourd

P = Mg

= partie de P réagissant en I

= caractéristique élastique des suspensions

= coefficient de la vitesse dans la force de frottement.

Pour le mouvement horizontal (x > 0 vers la droite)

force horizontale perturbatrice²:

 $-mr\omega^2\sin\omega t$

force de rappel du «ressort» horizontal:

 $-[K_1(x-b\phi)+f_1(\dot{x}-b\dot{\phi})]$ force d'inertie³: $-M\ddot{x}$

En sommant à tous les points I:

$$M\ddot{x} + \sum [K_1(x - b\phi) + f_1(\dot{x} - b\dot{\phi})] =$$

 $-mr\omega^2\sin\omega t$

- Pour le mouvement vertical (y > 0vers le haut)

force verticale perturbatrice²: $mr\omega^2\cos\omega t$

force verticale due au poids: -Pforce de rappel du «ressort» vertical:

$$-[K_2(y+l\phi)+f_2(\dot{y}+l\dot{\phi})]+P_i$$
force d'inertie³: $-M\ddot{y}$ d'où:

$$M\ddot{y} + \sum [K_2(y + l\phi) + f_2(\dot{y} + l\dot{\phi})] + P - \sum P_i$$

= $mr\omega^2 \cos \omega t$

en notant que $\sum P_i = P$ quand la somme est étendue à tous les points de suspension de l'assise, ce qui ne sera pas le cas au § 1.6.

Nous signalons à nos lecteurs que les flèches indiquant des vecteurs sont difficiles à distinguer (p. ex. $\overline{YK_2}$), étant à la limite des possibilités d'impression.

Pour le mouvement de rotation autour de G' ($\phi > 0$, sens positif de rotation)

couple perturbateur: $amr\omega^2 \sin \omega t$ couple de rappel des « ressorts »:

$$-l[K_{2}(y+l\phi)+f_{2}(\dot{y}+l\dot{\phi})] + b[K_{1}(x-b\phi)+ + f_{1}(\dot{x}-b\dot{\phi})] + P_{i}(l-b\phi)$$

couple d'inertie³: $-M\rho^2 \ddot{\phi}$

d'où (car au centre de gravité $\sum (lP_i) = 0$

$$M\rho^{2}\ddot{\phi} + \sum \{l[K_{2}(y+l\phi) + f_{2}(\dot{y}+l\dot{\phi})] - b[K_{1}(x-b\phi) + f_{1}(\dot{x}-b\dot{\phi})]\} + \sum (P_{i}b\phi)$$

$$= amr\omega^{2} \sin \omega t$$

Assises symétriques

Nous nous bornerons au cas des assises symétriques avec points de suspension I à $m\hat{e}me$ hauteur (b = Cte).

En constatant alors que les $\sum ly$ et $\sum l\dot{y}$ sont nulles et que b peut se mettre en

Dans les matériaux visco-élastiques, à une sollicitation vibratoire $\sigma = \sigma_0 e^{j\omega t}$, correspond une déformation $\varepsilon = \varepsilon_0 e^{(j\omega t - \phi_h)}$ déphasée en retard de ϕ_b , angle de frottement interne. On définit alors le module d'élasticité, complexe

$$E^* = \frac{\sigma}{\varepsilon} = \frac{\sigma_0}{\varepsilon_0} e^{j\phi_h}$$

$$= \frac{\sigma_0}{\varepsilon_0} \cos \phi_h + j \frac{\sigma_0}{\varepsilon_0} \sin \phi_h \equiv E_1 + j E_2$$

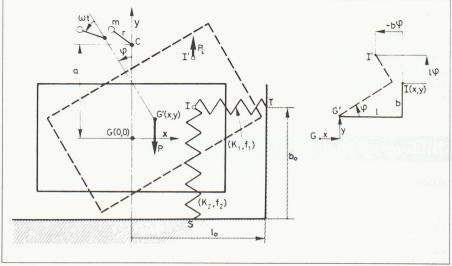
auquel correspond en cisaillement le module
$$G^* = \frac{E^*}{2(1+\mu)} = G_1 + jG_2$$
. L'angle de frot-

tement interne est donc défini par exemple par tg $\phi_h = G_2/G_1$. Des mesures de G_1 et G_2 faites par Harris C. M., Crede C. E. [«Shock and Vibrations Handbook», McGraw-Hill,

New York, 1961], pour 15 matériaux viscoélastiques divers pour des fréquences comprises entre 0,001 Hz et 4000 Hz, donnent des valeurs de ϕ_h pratiquement indépendantes de la fréquence, alors qu'elles devraient lui être proportionnelles si le coefficient f_1 ou f_2 de la vitesse était indépendant de la fréquence comme on l'admet pour les matériaux purement élastiques. Les valeurs mesurées de ϕ_b vont par exemple de 1° pour le polystyrène à 59° pour le polyizobutilène en passant par 30° pour le nitrate de cellulose plastifié.

² En considérant 2 vecteurs de Fresnel e joi et $e^{j(\omega t - \phi)}$, on démontre qu'ils ne diffèrent, en module et direction, que d'un infiniment petit de l'ordre de ϕ ; on peut ainsi assimiler $\omega t - \phi \ a \ \omega t$.

 $^{3}\frac{m}{M}$ étant négligeable vis-à-vis de 1.



Petits mouvements: x, y et \phi sont considérés comme des infiniments petits du premier Fig. 1.

évidence, les 3 équations se mettent facilement sous la forme:

$$M\ddot{y} + \sum [K_2 y + f_2 \dot{y}]$$

$$= mr\omega^2 \cos \omega t$$

$$- M\ddot{x} - \sum [K_1 (x - b\phi) + f_1 (\dot{x} - b\dot{\phi})]$$

$$= M \frac{\rho^2}{a - b} \ddot{\phi} + M \frac{b}{a - b} \ddot{x} + f_2 \frac{l^2}{a - b} [K_2 \phi + f_2 \dot{\phi}] + f_3 \frac{b}{a - b} \phi = mr\omega^2 \sin \omega t$$

$$(2, 3)$$

On constate ainsi que le mouvement en y est découplé des mouvements en x et ϕ , couplés entre eux. Les mouvements permanents, qui seuls nous intéressent, seront bien évidemment traduits par des fonctions x, y et ϕ sinusoïdales en ωt et représentables graphiquement, de manière bien connue, par des vecteurs de Fresnel

1.2 Etude du mouvement permanent vertical (y)

Ce mouvement, découplé des deux autres, permet de définir l'assise et sa suspension. Chaque terme de l'équation (1) est représenté dans la figure 2 par le vecteur de Fresnel qui lui correspond. Ces vecteurs sont tracés au temps t=0 et tournent autour de l'origine 0 dans le sens ωt positif indiqué, l'axe oy restant fixe; leurs projections sur l'axe oy donnent les valeurs correspondantes instantanées, par exemple $y \sum K_2$ projection de $\overline{Y \sum K_2}$, Y étant l'amplitude de y et l'angle β , la phase du mouvement vertical.

On remarque

 Fy est le vecteur de Fresnel de module égal à l'amplitude de la force verticale transmise au sol; - $\operatorname{tg} \phi_b = \frac{\omega \sum f_2}{\sum K_2} = Cte$, où ϕ_b est l'angle *constant* de frottement interne du matériau visco-élastique des suspensions («constant» signifie ici «indépendant de ω »).

1.3 Définition de l'assise

Le cahier des charges de l'assise fixe les amplitudes maximales Fy, de la force verticale transmise au sol et Y, de la vibration verticale de l'assise, pour une force centrifuge maximale $mr\omega^2$ de balourd (précision d'équilibrage) à vitesse donnée (ω) . L'angle O1A, égal aussi à ϕ_b , étant constant, en fonction de données variables M et $\sum K_2$ de l'assise le point 1 se déplace sur un cercle de centre C, lieu des points sous lesquels le vecteur $\overrightarrow{mr\omega}^2$ est vu sous l'angle ϕ_b , connu dès le choix fait du matériau de suspension. L'angle β est alors fixé de façon que l'amplitude Fy ait la valeur maximale imposée, et M de manière à réaliser Y_{\max} , ce qui définit la rigidité verticale $\sum K_2$ de la suspension. On observe que l'angle β doit être plus grand que β limite, correspondant au point 1' tel que $\overline{O1} = \overline{OA} = mr\omega^2$, lui-même

plus grand que $\frac{\pi}{2}$, pour que l'amplitude Fy soit inférieure à $mr\omega^2$ (force transmise au sol sans assise).

Dans ces conditions l'étude importante des variations de Fy et Y pendant le lancement de la machine, soit en fonction de ω , peut se faire par la même figure 2, en divisant tous les modules des vecteurs par ω^2 de façon à garder OA = mr = Cte: ce sont les modules entre parenthèses. Lorsque ω varie, pour une assise donnée (M et $\sum K_2 = Ctes$), le point 1 extrémité de (Fy/ω^2) se déplace sur le même cercle de centre C. On observe

que l'on passe par le point 1" où l'amplitude Y (définie par 1"A = MY =diamètre) est maximale: c'est la résonance avec frottement obtenue à la pul-

sation
$$\omega = \frac{1}{\cos \varphi_h} \sqrt{\frac{\sum K_2}{M}}$$
 qui résulte de la géométrie de la figure; comme $\frac{\sum K_2 Y}{Fy}$ = $\cos \varphi_h = Cte$, Fy est également maxi-

1.4 Etude des mouvements couplés de translation horizontale (x) et de rotation (φ)

L'assise ayant été déterminée (M et $\sum K_2$) par les conditions du mouvement vertical, le choix des formes des suspensions et du massif fixe $\sum K_1$ et ρ ; il convient de vérifier ce choix par l'étude des mouvements couplés de translation horizontale (x) et de rotation (ϕ) pour en connaître les amplitudes X et Φ maximales, pendant le lancement, et en service.

Au temps t = 0, chaque terme des équations (2, 3) est représenté dans la figure 3 par le vecteur de Fresnel correspondant. L'axe t = 0 restant fixe, toute la figure tourne dans le sens positif ωt , les projections des vecteurs sur cet axe donnent également les valeurs instantanées.

Le tracé de l'équation (2) est déterminé par le polygone O1XB2R aboutissant à l'extrémité R de $\overline{mr\omega}^2$ perpendiculaire à l'axe t=0; le tracé de l'équation (3) est déterminé par le polygone O34567R aboutissant à la même extrémité R. On remarque immédiatement qu'en traçant le parallélogramme 7RBA, on obtient ainsi, aboutissant au même point A, les deux polygones: O1XA ne contenant que des vecteurs en X et O34567A ne contenant que des vecteurs en Φ . Ceci conduit directement à la solution graphique pour un ω donné:

1) tracer un polygone O34567A (dit polygone Φ) pour une direction $\overline{\Phi}$ choisie ($\overline{O5}$ au temps t=0), par exemple verticale, pour une valeur Φ choisie (par exemple 1 rad) et à une échelle convenable; on aboutit à un point A_{Φ} ;

2) tracer, sur un calque, un polygone O1XA (dit polygone X) également pour une direction X choisie ($\overline{1O}$ au temps t=0), par exemple également verticale, pour une valeur X choisie (par exemple 1 mm) et à la même échelle que le polygone Φ (si l'échelle devait être différente, on en tiendrait compte ultérieurement dans la mesure du rapport OA_X/OA_{Φ}); on aboutit à un point A_X ;

3) le rapport $n = \frac{\Phi/\text{rad}}{X/\text{mm}} = \frac{OA_x}{OA_{\Phi}}$. La superposition des directions des vecteurs $\overrightarrow{OA_x}$ et $\overrightarrow{OA_{\Phi}}$ donne la position relative des deux polygones Φ et X. Enfin, en traçant sur le polygone Φ , et à partir du point 7, le vecteur $\overline{7R} = \frac{\omega^2 M}{n}$

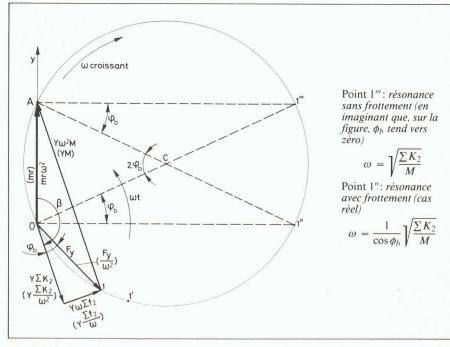


Fig. 2.

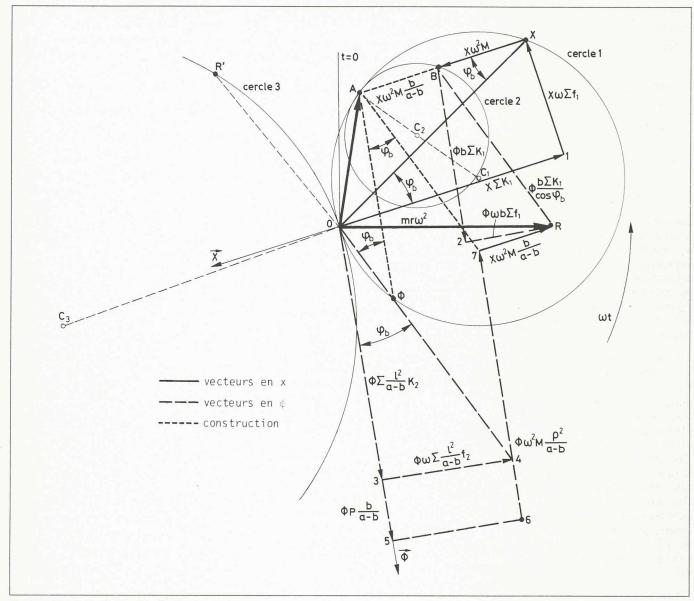


Fig. 3. — Figure tracée avec
$$b > 0$$
.

$$OX = X \frac{\sum K_1}{\cos \phi_b}$$

$$XA = X\omega^2 M \frac{a}{a-b}$$

$$O\Phi = \Phi \frac{\sum \frac{l^2}{a-b} K_2 - b \sum K_1}{\cos \phi_b}$$

$$\Phi A = \Phi \left[\omega^2 M \frac{\rho^2}{a-b} - P \frac{b}{a-b} \right]$$

 $\frac{b}{a-b}$, le vecteur \overline{OR} ainsi formé, correspondant à $\overline{mr\omega}^2$, fixe les échelles vraies des deux tracés en X et Φ et détermine ainsi \overline{X} et $\overline{\Phi}$ en direction et module pour cette valeur de ω .

1.5 Etudes des mouvements x et φ en fonction de ω (graphique des trois cercles) *

La solution graphique précédente, répétée pour un assez grand nombre de valeurs de ω , devient vite lassante. Des considérations géométriques permettent cependant de simplifier considérablement la répétition des opérations.

1) Si l'on trace à partir du point A la parallèle $A\Phi$ à O35, on voit du point Φ le vecteur \overline{OA} sous l'angle constant ϕ_b ; il en est de même du point X. Il est possible de considérer un tracé où le vecteur \overline{OA} reste fixe en grandeur et direction à condition de lui faire correspondre, à chaque instant, une échelle et une direction de l'axe t=0 à déterminer

par le vecteur $\overline{mr\omega^2}$, trouvé à partir du point B en traçant \overline{BR} . Les points X et Φ de ce tracé décrivent donc un même cercle, noté cercle 1 sur la figure 3, en fonction de ω .

2) Le point B, étant sur XA à distance de A telle que $\frac{\overline{BA}}{\overline{XA}} = \frac{b}{a} = Cte$, décrit un cercle, noté cercle 2 sur la figure 3, passant par A et de centre C_2 sur OC_1 tel que $\frac{\overline{AC_2}}{\overline{AC_1}} = \frac{b}{a}$. On notera que la figure 3 est tracée conventionnellement avec b > 0, alors que généralement b est < 0 et que le cercle 2 serait donc extérieur au cercle 1.

3) L'équation (2) montre que pour trouver le vecteur de Fresnel F_x correspondant à la force horizontale transmise au sol, on doit porter à partir de X un vecteur identique à \overline{BR} , tout comme on doit tracer ce même vecteur \overline{BR} pour trouver $\overline{mr\omega^2}$. Au lieu de faire ces deux opérations parallèles, il est tout indiqué

de porter à partir de O un vecteur \overrightarrow{OR}' de sens opposé et de même module que \overrightarrow{BR} . $\overrightarrow{R'B}$ est égal à $\overrightarrow{mr\omega}^2$ et $\overrightarrow{R'X}$ est égal à $\overrightarrow{F_X}$. On notera que

$$\frac{\overline{OR'}}{\overline{\Phi O}} = \frac{\overline{BR}}{\overline{O_{\phi}}} = \frac{b \sum K_1}{\sum \frac{l^2}{a - b} K_2 - b \sum K_1}$$

indépendant de ω ; R' décrit donc un cercle, noté cercle 3 sur la figure 3, de centre C_3 sur la droite C_1O et tel que

$$\frac{\overline{OC_3}}{\overline{C_1O}} = \frac{b \sum K_1}{\sum \frac{l^2}{a-b} K_2 - b \sum K_1}.$$

Il reste à connaître la position des points Φ et X sur le cercle I en fonction de ω . Calculons:

$$\rho_x = \frac{\overline{OX}}{\overline{XA}} = \frac{1}{\omega^2} \frac{\sum K_1}{M \frac{a}{a - b} \cos \phi_b}$$

^{*} Voir remarque en encadré à la page précédente.

$$\begin{split} \rho_{\phi} &= \frac{\overline{O\Phi}}{\overline{\Phi A}} \\ &= \frac{\sum \frac{l^2}{a-b} K_2 - b \sum K_1}{\omega^2 M \frac{\rho^2}{a-b} \cos \phi_b \left(1 - \frac{Pb}{\omega^2 M \rho^2}\right)} \end{split}$$

d'où

$$R' = \frac{\rho_X}{\rho_{\phi}}$$

$$= \frac{\rho^2}{a} \frac{\sum K_1}{\sum \frac{l^2}{a - b} K_2 - b \sum K_1} \times \left(1 - \frac{Pb}{\omega^2 M \rho^2}\right)$$

et en remplaçant $\frac{1}{\omega^2}$ par son expression en ρ_x , on peut écrire

$$R' = R(1 - C\rho_{r})$$

avec

$$R = \frac{\rho^2}{a} \frac{\sum K_1}{\sum \frac{l^2}{a-b} K_2 - b \sum K_1}$$

$$C = \frac{P \frac{ab}{a-b} \cos \phi_b}{\rho^2 \sum K_1}$$

sans dimension et indépendants de ω .

Cette relation permet, comme on va le montrer, de déterminer sur le cercle 1 un des deux points X ou Φ , l'autre étant choisi.

Considérons le cercle 1, les points O, A, X et un point quelconque D également

sur le cercle. Effectuons la construction suivante (fig. 4):

parallèlement à DO traçons deux droites, l'une dite $[\Phi]$ à distance 1 arbitraire, l'autre dite [X]' à distance R'. De D projetons X sur [X]', d'où le point (X)'; menons par (X)' une parallèle à DA qui coupe $[\Phi]$ au point (Φ) et projetons, de D, le point (Φ) sur le cercle, en Φ . Montrons que ce point est le point Φ cherché. La droite DA coupe les droites $[\Phi]$ et [X]' respectivement en O_{ϕ} et O'_{X} . Les triangles AXO et $(X)'O'_xD$ sont semblables (deux angles égaux: en X et $O'_{X} = \phi_{b}$ et en O et D: même arc \widehat{AX}); les triangles $A\Phi O$ et $(\Phi)O_{\phi}D$ sont semblables (deux angles égaux: en Φ et O_{ϕ} $= \phi_b$ et en O et D: même arc $\widehat{A}\widehat{\Phi}$).

Ainsi

$$\rho_{x} = \frac{\overline{OX}}{\overline{XA}} = \frac{\overline{DO}_{x}'}{\overline{O}_{x}'(\overline{X})'}$$

et

$$\rho_{x} = \frac{\overline{O\Phi}}{\overline{\Phi A}} = \frac{\overline{DO_{\phi}}}{\overline{O_{\phi}(\Phi)}}$$

et par division membre à membre

$$R' = \frac{\rho_x}{\rho_{\phi}} = \frac{\overline{DO_x'}}{\overline{DO_{\phi}}} \cdot \frac{\overline{O_{\phi}(\Phi)}}{\overline{O_x'(X)'}};$$

or par construction $\overline{O_{\phi}(\Phi)} = \overline{O'_{x}(X)'}$ et

$$\frac{\overline{DO_X'}}{\overline{DO_\Phi}} = R' \text{ c.q.f.d.}$$

En soi, cette construction n'est guère intéressante puisque R' dépend de ω par ρ_x . Mais supposons tout d'abord que la constante C, dans R', est nulle. La construction faite avec R' doit être faite

avec R indépendant $de \ \omega$, avec la droite [X] au lieu de [X]'. Partant alors de Φ choisi, nous trouverons comme précédemment un point (X)'' sur [X] au lieu du vrai point (X) projection de X par D sur [X]. Si l'on connaissait la distance $\overline{(X)''(X)}$, il serait alors possible de trouver le point X sur le cercle par une construction unique, quel que soit ω . Calculons $\overline{(X)''(X)}$:

par construction: $\overline{O_x'(X)'} = \overline{O_x(X)''}$ par triangles semblables

$$\frac{\overline{O_x'(X)'}}{\overline{O_x(X)}} = \frac{R'}{R}$$

d'oi

$$\overline{O_{X}(X)''} = \frac{R'}{R} \overline{O_{X}(X)}$$
$$= (1 - Cp_{X}) \cdot \overline{O_{X}(X)}$$

Or $\rho_{x} = \frac{\overline{OX}}{\overline{XA}}$ par définition, et par triangles semblables:

$$\frac{\overline{OX}}{\overline{XA}} = \frac{\overline{DO'_X}}{\overline{O'_Y(X)'}} = \frac{\overline{DO_X}}{\overline{O_Y(X)}}$$

d'où

$$\overline{O_x(X)''} = \overline{O_x(X)} \cdot \left(1 - C\frac{\overline{DO_x}}{\overline{O_x(X)}}\right)$$
$$= \overline{O_x(X)} - C \cdot \overline{DO_x}$$

et enfin:

$$\overline{O_x(X)} - \overline{O_x(X)''}$$
= $\overline{(X)''(X)} = C \cdot \overline{DO_x}$
= Cte indépendante de ω .

Si donc on porte, à partir de O_{ϕ} et sur $[\Phi]$, le segment $\overline{O'_{\phi}O_{\phi}} = C \cdot \overline{DO_{x}}$ les droites $O'_{\phi}O_{x}$ et $(\Phi)(X)$ sont parallèles. D'où la

Construction finale pour trouver, sur le cercle 1, un des deux points X ou Φ , l'autre étant donné:

- 1) Choisir un point D judicieusement placé 4 sur le cercle 1.
- 2) Tracer les droites $[\Phi]$ et [X] parallèlement à DO et à distance 1 et R (échelle arbitraire) avec

$$R = \frac{\rho^2}{a} \frac{\sum K_1}{\sum \frac{l^2}{a-b} K_2 - b \sum K_1};$$

on trouve les points origines O_{ϕ} et O_x sur DA.

3) Sur la droite $[\Phi]$, porter le segment $\overline{O'_{\phi}O_{\phi}} = C \cdot \overline{DO_{x}}$ avec

$$C = \frac{P\frac{b}{a-b}\cos\phi_b}{\rho^2 \sum K_1}$$

et \overline{DO}_x étant compté à l'échelle du segment 1 (si C>0, O'_{ϕ} est à gauche de O_{ϕ} ; si C<0, O'_{ϕ} est à droite de O_{ϕ}).

Fig. 4. — Figure faite pour a > b > 0, donc c > 0.

 $Q_{\varphi}^{(X)}$ $Q_{\varphi}^{(X)}$

⁴ Pour les maxima des modules X, Φ et F_X , les points X et Φ étant voisins de A sur le cercle 1, D sera voisin du point diamétralement opposé à A.

- 4) Sur les droites [X], à partir de O_x , et $[\Phi]$ à partir de O'_{ϕ} , vers la droite, porter deux échelles millimétriques cotées.
- 5) Les projections par D des deux points de même cote sur [X] et $[\Phi]$ donnent les points X et Φ qui se correspondent sur le cercle 1.
- La construction des cercles 2 et 3 de la figure 3 donne, pour chaque point X ou Φ , les points B et R' déterminant $\overline{mr\omega}^2$ par $\overline{R'B}$ (donc l'échelle relative à $mr\omega^2$ et les phases) ainsi que le vecteur de Fresnel \overline{R} par $\overline{R'X}$.
- Si un point X ou Φ correspond à des résultats particuliers, on pourra trouver la valeur de ω par l'intermédiaire de

$$\rho_x = \frac{\overline{OX}}{\overline{XA}} = \frac{1}{\omega^2} \frac{\sum K_1}{M \frac{a}{a - b} \cos \phi_b}$$

1.6 Composition des forces agissant sur le sol (fig. 5)

Par rapport aux forces considérées jusqu'ici, appliquées sur l'assise, les forces agissant sur le sol sont les réactions aux forces transmises à l'assise par les suspensions. L'action de la rotation rend opportun de décomposer la résultante des forces en une résultante à droite et une résultante à gauche du centre de gravité G de l'assise. En admettant, à titre d'exemple, que les figures 2 et 3 correspondent à une même assise, nous reprenons en les inversant, pour en avoir les réactions, les vecteurs de Fresnel $\vec{F}_y = \vec{O1}$ de la figure 2 et $\vec{F}_x = \vec{R'X}$ de la figure 3, en agrandissant \vec{F}_1 pour que les vecteurs $mr\omega^2$ des deux figures aient le même module. Construisons par exemple *la force de droite* (fig. 5 dont l'échelle est fixée par $mr\omega^2$): $\overline{F_{x_d}}$ est évidemment égal à $\frac{1}{2}\vec{F_x} = \vec{OF}$ et sa projection sur l'axe oy donne l'amplitude instantanée de la force horizontale de droite. Pour le vecteur de Fresnel \overline{F}_{ij} , il convient de partir des termes de l'équation (a) du § 1.1, car $\sum lK_2$ et $\sum lf_2$, qui s'éliminaient par symétrie sur la totalité de l'assise, donnent ici $\sum_d l K_2$ et $\sum_d l f_2$; en outre $\sum_d P_i = \frac{P}{2}$ agit évidemment sur le sol, P n'agissant que sur l'assise. Les termes $\sum K_2 y + \sum f_2 \dot{y}$ étant représentés par le vecteur de Fresnel $\frac{1}{2}\vec{F_y} = \vec{OG}$, il

$$|\overline{GH}| = \phi \frac{\sum_d l K_2}{\cos \phi_b},$$

faut ainsi y ajouter le vecteur

qui *ici* fait l'angle ϕ_b avec la direction opposée à $\overline{\mathcal{D}}$, et le vecteur $\overline{P}/2$ dans la direction opposée à oy. Mais au lieu de porter ainsi $\overline{P}/2$ vers le bas à partir de H, on peut le porter à partir de O vers le haut sur l'axe oy: \overline{OI}_0 . Le vecteur de Fresnel \overline{F}_{id} est alors \overline{I}_0H . Si maintenant, au lieu de faire tourner les vecteurs de Fresnel autour de O dans le sans positif, nous les maintenons fixes, mais faisons

tourner l'axe oy, de l'angle ωt , dans le sens négatif, $\bar{P}/2$ tournant avec l'axe oy qui fixe toujours la verticale, les projections sur oy(t) de \overrightarrow{OF} et de $\overrightarrow{I(t)H}$ donnent les intensités instantanées des forces de droite, respectivement horizontale et verticale. Pour que ces deux projections représentent les vecteurs forces, il suffit de rabattre la projection de \overrightarrow{OF} sur l'axe perpendiculaire à y(t); ces deux vecteurs forces peuvent alors se composer. Au lieu de projeter \overline{OF} , de rabattre et composer, rabattons \overrightarrow{OF} sur sa perpendiculaire dans le sens négatif de rotation, en $\overline{OF_{\perp}}$. Pour obtenir la composition cherchée des forces, il suffit de prendre le point J d'intersection de la parallèle à y(t) par F_{\perp} et de sa perpendiculaire par H. Quand ωt varie, le point I(t), restant sur l'axe tournant Oy(t), décrit un cercle de centre O et de rayon P/2 et le point J décrit (deux fois) un cercle de diamètre $\overline{F_{\perp}H}$ (de centre C) car l'angle $\widetilde{F_{\perp}}JH$ est droit. Les deux parallèles OI(t) et $\overline{F_{\perp}J}$ déterminent les points I(t) et J, donc la résultante des forces de droite $\vec{F_d} = \vec{I(t)J}$, ainsi que la direction verticale instantanée Oy(t) = OI(t).

La force de gauche se trouverait de la même manière.

On doit observer qu'en général P/2 est beaucoup plus grand que la distance \overrightarrow{OJ} et qu'en conséquence, $\overline{P}/2$ restant un

vecteur constant vertical dans l'espace, il suffit de considérer le vecteur \overline{OJ} variable, repéré par la verticale instantanée $\overline{F_\perp}$ \overline{J} parallèle à l'axe Oy(t). On en trouve alors immédiatement les modules maximal \overline{OK} et minimal \overline{OL} selon OC, repérés par rapport aux verticales respectives $\overline{F_\perp}$ \overline{K} ou $\overline{KF_\perp}$ et $\overline{F_\perp}$ \overline{L} ou $\overline{LF_\perp}$.

2. Les assises passives

(isolation d'un appareil contre les vibrations du sol)

2.1 Equations des petits mouvements

En se limitant à une assise symétrique à deux suspensions de même hauteur, il est possible de représenter le mouvement ondulatoire horizontal et vertical du sol comme un simple mouvement de translation (x_0, y_0) et de rotation ϕ_0 d'un sol rigide. Comme ces mouvements résultent du passage d'une onde, on peut admettre que x_0 , y_0 et ϕ_0 ont la même pulsation ω_0 . Pour établir les équations des petits mouvements de l'assise, il faut dans les équations du §1.1 éliminer la force centrifuge du balourd, et tenir compte maintenant des déplacements des points S et T d'attache des suspensions au sol (fig. 1).

Le déplacement horizontal $(x_0 - b_0 \phi_0)$ du point T engendre sur l'assise un supplément de force horizontale:

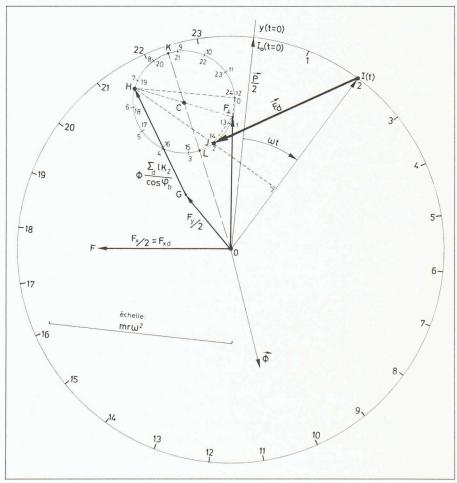


Fig. 5. — Intensité et direction de la force de droite. L'axe y(t) tourne. Les points numérotés sur les deux cercles sont les points I(t) et J qui se correspondent.

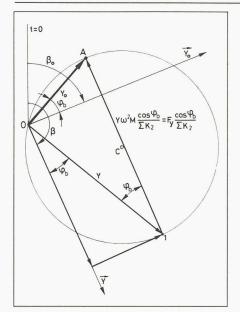


Fig. 6.

+
$$[K_1(x_0-b_0\phi_0)+f_1(\dot{x}_0-b\dot{\phi}_0)]$$

de la suspension.

Le déplacement vertical $(y_0 + l_0 \phi_0)$ du point S engendre un supplément de force verticale:

+
$$[K_2(y_0 + l_0\phi_0) + f_2(\dot{y_0} + l_0\dot{\phi_0})]$$

de la suspension.

Les simplifications, rencontrées au § 1.1, intervenant également ici, les trois équations des petits mouvements s'écrivent ainsi:

$$M\ddot{y} + \sum [K_{2}y + f_{2}\dot{y}] = \sum [K_{2}y_{0} + f_{2}\dot{y}_{0}] = (\overline{OR_{2}}) (1')$$

$$M\ddot{x} + \sum [K_{1}(x - b\phi) + f_{1}(\dot{x} - b\dot{\phi})] = \sum [K_{1}(x_{0} - b_{0}\phi_{0}) + f_{1}(\dot{x}_{0} - b_{0}\dot{\phi}_{0})] = (\overline{OR_{1}}) (2')$$

$$M\frac{\rho^{2}}{b}\ddot{\phi} + M\ddot{x} + \sum \frac{l^{2}}{b} [K_{2}\phi + f_{2}\dot{\phi}] + P\phi$$

$$= \sum \frac{ll_{0}}{b} [K_{2}\phi_{0} + f_{2}\dot{\phi}_{0}] = (\overline{OR_{1}}) (3')$$

les écritures $(\overline{OR_2})$, $(\overline{OR_1})$, $(\overline{OR_3})$ signifiant qu'en mouvement permanent les seconds membres ont les valeurs instantanées données par les projections des vecteurs de Fresnel $\overline{OR_2}$, $\overline{OR_1}$, $\overline{OR_3}$. Les mouvements permanents imposant $\omega \equiv \omega_0$, les solutions graphiques des paragraphes 1.2, 1.3 et 1.4 restent valables en principe à condition de remplacer les vecteurs de Fresnel $\overline{mr\omega^2}$ par les vecteurs $\overline{OR_2}$, $\overline{OR_1}$ et $\overline{OR_3}$ considérés comme définis par l'étude des mouvements (x_0, y_0, ϕ_0) du sol.

2.2 Le mouvement de translation vertical(y)

Ce mouvement détermine l'assise et donne lieu à la figure 6 où les vecteurs

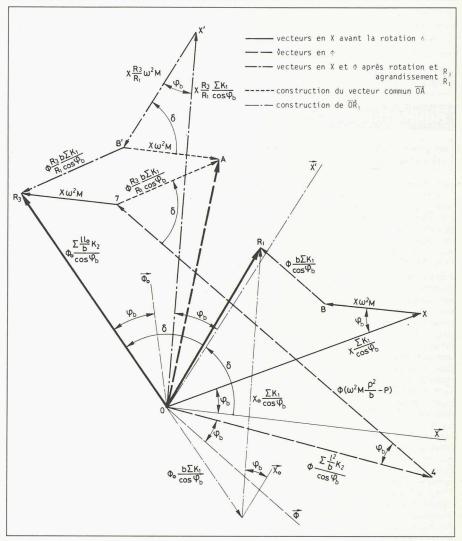


Fig. 7. — Figure faite avec b et $b_0 > 0$.

de Fresnel, représentant directement les termes de l'équation (1'), ont tous été $\operatorname{multiplié} \operatorname{par} \frac{\cos \phi_b}{\sum K_2}$, de façon à faire apparaître le vecteur \overline{OA} de module Y_0 connu et indépendant de l'assise (M et $\sum K_2$) à la place du vecteur $\overline{OR_2}$. Le point 1 voit donc \overline{OA} sous l'angle constant ϕ_b et, quand M et $\sum K_2$ varient, décrit un cercle de centre C d'où l'on voit \overline{OA} symétriquement sous l'angle $2\phi_b$. La valeur imposée de Y fixe le point 1 sur le cercle et la longueur

$$\overline{A1} = \omega^2 Y \frac{M \cos \phi_b}{\sum K_2} = F_y \frac{\cos \phi_b}{\sum K_2}$$

fixe $\sum K_2$ et M pour une valeur imposée de F_y . Comme $\omega = \omega_0$ est fixé, l'étude en fonction de ω est généralement sans intérêt.

2.3 Les mouvements de translation horizontal et de rotation (x, ϕ)

Les constructions des deux diagrammes de Fresnel superposés sont les mêmes qu'au §1.4, mais les polygones doivent aboutir respectivement aux deux vecteurs différents $\overline{OR_1}$ et $\overline{OR_3}$ sur la figure 7, parente de la figure 3, avec même numérotation. On a ainsi les polygones

 $OXBR_1$ et $O47R_3$, $\overline{OR_1}$ et $\overline{OR_3}$ étant les vecteurs de Fresnel seconds membres, connus et provoqués par le sol. En faisant tourner, de l'angle connu $\delta = \overline{R_1OR_3}$, le polygone $OXBR_1$ de façon à amener $\overline{OR_1}$ sur $\overline{OR_3}$ et simultanément en amplifiant ce polygone dans le rapport $\overline{\frac{OR_3}{OR_1}}$, on est ramené, par $OX'B'R_3$,

au problème du § 1.4 et à la figure 3. Ainsi, et comme précédemment, il suffit de tracer 7A de même module mais opposé à $\overline{B'R_3}$ et $\overline{B'A}$ de même module mais opposé à $7R_3$ pour avoir deux polygones aboutissant au même vecteur OA inconnu, dont l'un, OX'B'A, ne dépend que de X et l'autre, O47A, ne dépend que de Φ . Avec des directions et des modules choisis arbitrairement pour \overrightarrow{X} et $\overrightarrow{\Phi}$, on peut tracer ces deux polygones (dont l'un sur calque), puis par rotation et agrandissement faire en sorte que les deux vecteurs OA, trouvés, se confondent. En rétablissant alors le tracé A7R3 ou AB'R3, connu, on trouve OR3 connu qui fixe l'échelle et les phases, puis par rotation de $(-\delta)$ et réduction de OX'B'R3 dans le rapport \overline{OR}_1 on retrouve enfin le polygone \overline{OR}_3 OXBR1.

Comme pour le mouvement de translation vertical, la pulsation ω étant imposée par le mouvement du sol, il n'y a pas lieu de faire l'étude des variations continues en fonction de ω ; le problème est ainsi résolu.

Adresses des auteurs: Jacques Paschoud Professeur EPFL En Prahys 1603 Grandvaux

Philippe Wieser Ingénieur dipl. EPFL Ch. Covatannaz 9 1032 Romanel

Bibliographie

Das grosse Buch der Furka-Oberalp-Bahn

par Kurt Seidel. — Un vol. 27 × 33 cm, relié pleine toile, 374 pages avec 370 photographies, partiellement en couleurs, et 310 dessins, plans et reproductions de documents techniques. Edition Dumjahn, Mayence, 1982. Prix: Fr. 98.—.

Edité comme «livre officiel» du chemin de fer Furka-Oberalp, cet ouvrage pourrait porter en sous-titre «Une étude en rouge!» En effet, la reliure, les pages et les nombreuses photographies en couleurs accordent une prépondérance à cette couleur, qui est celle du matériel roulant. Cela nous donne des vues magnifiques avec les paysages valaisans, uranais et grisons en arrière-plan.

Ce livre a vu le jour dans le très large enthousiasme suscité par la construction et la mise en service du tunnel de base de la Furka, donc de la réalisation du vieux postulat d'une liaison hivernale entre le Valais et les Grisons. Il constitue une documentation très complète sur l'histoire et la vie du chemin de fer Furka-Oberalp, dont l'existence a connu jusqu'ici plus de difficultés que d'heures fastes (IAS nº 12/82, p. 168-171). Loin de se limiter aux aspects techniques, il examine longuement le rôle de la ligne dans la vie et l'économie des vallées qu'elle traverse.

L'amateur de chemin de fer y trouvera à peu près tous les renseignements qu'il peut souhaiter tant sur l'infrastructure, l'équipement et le matériel roulant que sur les ouvrages d'art. S'il désire approfondir ces sujets, une bibliographie imposante lui facilitera les recherches.

On sait que le projet du tunnel de base avait suscité d'acerbes critiques, mettant notamment en doute l'utilité de l'ouvrage. Trois mois seulement après la mise en service du transport d'automo-

La photographie qu'on ne trouvera pas dans le livre: le conseiller fédéral L. Schlumpf s'adressant aux invités lors du percement, le 30 avril 1981, au kilomètre 10.

(Photo J.-P. Weibel)

Le premier train officiel sort du tunnel de base à Realp, le 25 juin 1982. (Photo J.-P. Weibel)

biles par le tunnel, les pronostics les plus optimistes sont dépassés et il va falloir envisager prochainement l'augmentation prévue de la capacité de ces trains. C'est dire que se confirme pleinement la vocation de la ligne, qui est de permettre aux régions desservies l'accès à de nouvelles ressources économiques.

Au moment où le FO atteint enfin les objectifs de ses promoteurs, ce livre regroupe pour la première fois toute la documentation le concernant. Bien qu'il s'adresse au grand public l'abondante illustration en facilite grandement l'accès ouvrage est digne de figurer dans la bibliothèque de l'amateur de chemin de fer. Un grand regret cependant, c'est qu'il n'existe qu'en allemand (le fait qu'il soit imprimé à Genève ne contribue pas à consoler le lecteur romand). A ce sujet, on nous permettra un petit reproche à nos amis de la direction du FO: leurs efforts pour promouvoir la nouvelle liaison hivernale sont axés sur la Suisse alémanique avant tout; pourtant, nul doute que de nombreux Romands ne demandent pas mieux que de profiter des nouvelles possibilités qui leur sont offertes d'atteindre aisément les pistes de ski (fond et des-cente) du massif du Saint-Gothard et des Grisons, à condition de savoir en quoi les concernent ces innovations.

Notons que cet ouvrage peut être commandé contre facture à la direction du FO, case postale 97, 3900 Brigue. *Jean-Pierre Weibel*

Ausklang der modernen Architektur

par *Paolo Portoghesi.* — Un volume de 240 pages, 233 photos, esquisses et plans; bibliographie et répertoire des noms. Paperback, éd.: les Editions d'Architecture Artemis, Zurich, 36 fr.

Bien que traduit en français sous le titre *Au-delà de l'architecture moderne*, nous avons reçu en allemand seulement cet ouvrage, qui mérite d'être signalé, tant chaque étude de Paolo Portoghesi est importante pour l'histoire de l'architecture.

Rappelons que l'auteur est professeur au Poly de Milan, et directeur du secteur «architecture» à la Biennale de Venise. En tant qu'éditeur des 6 volumes du fameux «Dizionario enciclopedio di architettura e urbanistica» (1968-69), il est mieux placé que personne pour parler de l'architecture post-moderne, ce qu'il fait dans le petit volume dont il est question ici.

Partant du changement, il analyse la situation de l'après-modernisme, et les conséquences de la crise de l'énergie sur l'architecture. Paraphrasant Louis Sullivan, il intitule le chapitre le plus important — nous semble-t-il — de son ouvrage «la forme suit le fiasco». Mais il constate que de ces événements naît une nouvelle sensibilité, sonnant aussi le glas des «stars» de l'architecture moderne

Après un chapitre entier consacré à la situation de l'Italie dans ce débat, il aborde l'expérience américaine, avec les travaux de Louis I. Kahn, qui, dit-il, «a traversé le firmament de l'architecture comme un météore, et a ainsi changé le monde».

Il décrit aussi l'influence certaine de Robert Venturi, et la démarche de Charles Moore, qui développe ses principes à partir du lieu, les comparant à celle décrite par L. B. Alberti dans « De re aedificatoria ». Ce chapitre, partant de la position de Philip Johnson, est illustré par des projets moins connus d'auteurs significatifs tels que Michael Graves, Robert A. M. Stern, ou R. Machado et J. Silvestri.

L'ouvrage s'achève sur une étude exhaustive de ce que Portoghesi appelle «l'horizon européen». C'est l'occasion pour lui de mettre en évidence l'importance des travaux d'Aldo Rossi, de l'équipe GRAU, de Mario Botta, ou de James Stirling, de Léon Krier, d'Aldo van Eyck ou de Taller de Arquitectura.

De par sa position et sa sensibilité, l'auteur est plus enclin à nous présenter des architectes méridionaux que des nordiques: on ne peut lui en vouloir, le fait est si rare!

Cet ouvrage, particulièrement bien documenté, et qui porte un œil critique sur l'ensemble de la production actuelle, ne devrait manquer dans aucune bibliothèque de lecteur intéressé par l'architecture post-moderne.

F. N.

Les pompes à chaleur

par *Roger Dumon* et *Gérard Chrysostome*. — Un vol. 16×24 cm. 176 pages, Editions Masson, Paris 1982, 2^e édition, prix broché 110 ffr.

La deuxième édition de l'ouvrage donne les informations techniques et industrielles les plus récentes sur la pompe à chaleur, système important et efficace pour progresser dans la voie des économies d'énergie. L'auteur explique les principes de base des pompes à chaleur et ceux des machines frigorifiques qui ont de, nombreux points communs.

Il décrit les différents types de pompes à chaleur: à compression, à absorption, à résorption, thermoélectriques et tubes de Ranque.

Il détaille la technologie des pompes à compression, les plus répandues: compresseur, échangeur, fluides utilisés, auxiliaires. Sont décrits également les organes essentiels des pompes à absorption, à résorption et thermoélectriques.

L'ouvrage compare les rendements et les avantages des différents types de pompes.

Il situe les applications domestiques pour les pavillons particuliers et les appartements. Il donne les résultats obtenus dans les immeubles de bureaux, les bâtiments à usage collectif.

L'ouvrage décrit les avantages obtenus dans ces différents cas d'application et en particulier dans la climatisation liée au chauffage, dans le développement du système PERCHE.

Il passe en revue les utilisations dans les divers secteurs industriels: ceux où la pompe à chaleur s'est déjà imposée comme ceux où elle est encore en période d'essai.

Un paragraphe nouveau traite de la recompression mécanique de vapeur, appelée parfois pompe à chaleur directe ou simplifiée, dont l'importance s'affirme dans différents domaines.

Enfin le livre brosse un tableau des améliorations à attendre des pompes à chaleur, de leurs développements futurs et de leur impact sur le bilan énergétique de la France.