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CONSTRUCTION DE MACHINES

Ingénieurs et architectes suisses

19 février 1981

Phénomenes vibratoires
dans un bras de robot industriel

par Olivier Bernasconi, Lausanne

Dans la plupart des cas, il est souhaitable que la trajectoire de la charge mani-
pulée par un bras de robot industriel (RI) soit aussi proche que possible de la
trajectoire de consigne. La difference entre ces trajectoires est due, en particu-
lier, aux vibrations provoquées par les éléments constituant le bras du robot.

Le preésent article propose une demarche qui permette d’etudier les principaux

Définitions et notations

5 parties forment le modéle du bras de

RI:

(0)

Cet élément caractérise l'inertie
constante agissant sur le mouvement

(1) et (-3) sont des solides indéformables.
(2) et (4) sont des masses ponctuelles.

Les 4 degrés de liberté sont des mouve-
ments a caractere oscillatoire:

r

Déplacement vertical autour de
I’équilibre (z = 0).
Deéplacement radial du tout autour
de I'équilibre (rg).

aspects de ces vibrations.

6 Rotation du tout autour de I’équili-
bre (8 = 0).

1. Modele mécanique et modéle
mathematique du bras

Le but de I'étude n’est pas d’analyser les
grands mouvements qui caractérisent la
«puissance» d'un bras de RI mais les
mouvements fins qui déterminent sa
précision de travail.

Soient F, la plus petite fréquence propre
des éléments faisant partie de la struc-
ture du bras et f; la plus grande fré-
quence propre du bras considéré
comme systeme discret, c’est-a-dire
formé d’éléments indéformables pesants
et d’éléements déformables sans inertie,
au sens de la figure . Dans la mesure
ou Fy > fy, il est légitime de prendre
pour modele de bras un systeme discret.
La démarche proposée dans cette étude
s’applique a tout bras de RI qui satisfait
cette hypothese.

Par contre, les reésultats exposés ne
concernent que les robots dont la ciné-
matique est conforme au modéle de la
figure 1. Ce dernier correspond a un
montage expérimental réalisé pour véri-
fier certains résultats théoriques et sert
de référence dans cet article.

La trajectoire de consigne de la charge
est définie par 4 fonctions du temps z,,
ro, By et ¢, alors que les vibrations per-
turbatrices autour de ces grandeurs sont
désignées z, r, 6 et ¢. Nous admettons,
ce qui est une simplification importante,
que les fonctions zy, ry, 0, et ¢, varient
suffisamment lentement pour que leurs
dérivées premieres et secondes soient
négligeables. D’autre part, le mouve-
ment selon z est découplé des 3 autres et
correspond a celui d’un oscillateur éleé-
mentaire dont il est inutile de parler ici.

Apres I'établissement des formes éner-
gétiques et les dérivations de Lagrange,
on obtient pour r, ¢ et 6 les équations
(1).

2. Equations simplifiees

Des mesures sur un robot réel ! nous ont
permis d’estimer la valeur relative des
differents termes des équations (1). En

I'Robot « Manta» de I'Institut de microtech-
nique de I'EPFL.

¢ Rotation relative de (3) par rapport a
(1) autour de I’équilibre (¢).

supposant que les mouvements sont pé- m; Masss des(l)

riodiques, ce qui est une hypothese rai- m> Masse de (2).
sonnable, il ressort que les termes non- m3 Masse de (3).
linéaires, méme estimés par exces, sont my Masse de (4).

Iy Moment d’inertie de (0).
I, Moment d’inertie de (l) autour de
son Centre d'inertie.

tout a fait négligeables en comparaison
des termes linéaires. Les équations (1) se

simplifient alors considérablement et se Iy Moment d'inertie de (3) autour de
réduisent a un systéme linéaire a carac- son Centre d’inertie.

téristiques constantes (2). /; Distance de (2) au centre de gravité
On remarque que les matrices de rigi- de (1). .
dité et de dissipation sont diagonales s ?ésg)nce de (2 au: centre de pravite
alors que la matrice des masses est com- d Distance de (2) & (4).

plete et symétrique. Cela signifie que le k; Rigidité associée au degré de liberté i
systéme ne comporte que des couplages (i=r0,0).

de masses. d; Coefficient de frottement visqueux

Ce résultat montre qu'il serait dange- équivalent associ¢ au degre de liberté
{8

reux de considérer a priori le systeme

(my +my 4+ my +my) i —(msls + myd) (6 + @) sin (¢ + @)
—(my L5 +myd) (04 @) cos (pg + @) +m, [, 62
—(my+my+my+my)(rg+r)0>+di+kr=0

(lﬂ+l])()+m|(rn+r—1[) G4+2m,0(ry+r—1,)r
+(ma+m1+m4)(r0+r) 9+2(n11 +mz+m4)9(r0+r)r

+ (15 +m;l3 +m4d)(9+¢)—(m1l1+m4d)rsm(¢0+¢)
—(myly+myd)F cos (¢g+ @) +(myls + myd) i (20 + @) cos (¢ + @)
+(myly +myd) (ry+r) 20+ @) cos (¢ + @)

—(myly +myd) (rg+1) 20+ @) dsin (g +¢)+dyO+ky6 = 0

(I +m3l3 +myd?) (¢ + ) —(my s+ myd)F sin (¢ + @)

+(myly 4+ myd) (rg+r)6 cos (¢g + @) +2(my L5 + myd) 0 cos (¢ + @)
+(m3ly+myd) (rg+r) 07 sin (pg+ @) +dyd+ky¢ = 0

(N

Fig. 1. — Modcle de bras de robot a un instant « de son fonctionnement
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comme un ensemble de masses reliées
par des ressorts et des résistances vis-
queuses, ce qui conduirait au contraire a
des couplages ¢lastiques et visqueux
seulement.

On peut, bien entendu, effectuer dans
I’équation (2) un changement de varia-
bles qui diagonalise la matrice des
masses. Cependant, ces nouvelles varia-
bles ne sont pas «naturelles», c’est-
a-dire qu’elles ne sont pas mesurables.

3. Frequences propres du bras

Les méthodes qui permettent d’explici-
ter la solution générale du systeme (2)
sont bien connues. Elles consistent a se
ramener a un probleme aux valeurs et
vecteurs propres. En pratique, on ob-
tiendra une approximation suffisante
des fréquences propres f du bras en né-
gligeant I'amortissement. On est ainsi
conduit a résoudre I’équation caracteéris-
tique (3).

En résolvant I’équation (3), on obtient 3
fréequences propres f, f>, f3 qui dépen-
dent des 3 parametres my, ry et ¢@.
Connaissant dans quels intervalles ces 3
parametres peuvent varier, il est possi-
ble de déterminer le domaine de varia-
tion de chaque fréquence propre f;, 1 =
1, 2, 3, que I'on note D[ f].
Remarquons que nous avons en général
Ni» o < f; car la rigidité &, de I’actuateur
linéaire est relativement élevée.

Dans ces conditions, il est possible de
supposer r = 0 et d’obtenir ainsi facile-
ment avec une bonne approximation f
et f>, car I’équation caractéristique est
alors bicarrée.

Les considérations qui précedent pren-
nent leur signification dans le fait que
les vibrations qui apparaissent au cours
du fonctionnement d’un robot sont des
régimes forcés aléatoires auxquels se su-
perposent des composantes périodiques.
Les courbes de réponse du bras se mo-
difient en fonction de la valeur instanta-
née des parametres my, ry et ¢,. Les ris-
ques de résonance, au sens ordinaire du
terme, s’en trouvent ainsi augmentes.

4. Vibrations lorsque le bras
fonctionne

Les fréquences propres, ou plus exacte-
ment les domaines de variation des fré-
quences propres, sont des caractéristi-
ques importantes d’un bras de robot. Il
importe de les connaitre dés le stade de
la conception. L'idéal serait, a ce stade
également, d’étre en mesure de calculer
avec une précision suffisante I’écart en-
tre la trajectoire réelle et la trajectoire de
consigne lorsque le bras fonctionne. Il
existe de nombreuses raisons qui font
que cette approche théorique n’est pas
realisable. Parmi celles-ci, on peut noter
I'impossibilite de connaitre a priori I'im-
portance des perturbations qui font vi-
42

M, M, Mp; P d 0 0
12 M:: Mu 61+ 0 (1;/ 0
My Myy My || @ 0 0 d,

Mll =m|+m3+m3+m4
M, = —(myl3 +myd)sin g,
M]_] — —(m3/3+m4d)8in¢0

5
It

kK, 0 0][r 0
0 0 k ||o 0

1()+1| +]3+m](r(,—/|)3+(m:+m3+m4)r%

+m3/§+m4d3 +2(m3/3 +m4d)r(, COS¢“
Mw_} = [3+m3/§+m4d1+(m313 +m4d)rnCOS¢(]

M}:( = 13+m3[§+m4(13
(kr_a):M]I) _Mlja): _All:‘a)2
-Mpot  (kg—Mpow’) —Myo? =0 3)
—M,;a): —sz,a)z (k¢—M_13CU2)

avec @ = 2nf = pulsation propre.

brer le bras ainsi que la méconnaissance
des différents types de frottements a ef-
fets non linéaires qui jouent un role es-
sentiel; le stick-slip par exemple.

Devant I'impossibilité d’effectuer une
approche globale du probléme, il faut
donc se contenter de mettre en évidence
des reégles qui, au stade de la concep-
tion, permettent de minimiser I'impor-
tance des vibrations.

Les vibrations qui apparaissent au cours
des différents mouvements d’un bras de
RI sont la résultante de plusieurs ac-
tions perturbatrices dont I'influence res-
pective varie d’un robot a 'autre. Parmi
ces difféerentes perturbations, nous en
retiendrons deux dont la particularité
est d’étre présentes dans tous les bras de
RI, a un degré plus ou moins élevé se-
lon le soin apporté a leur réalisation. Il
s’agit d’une part, du stick-slip et, d’autre
part, d’excitations a caractére aléatoire.
Le stick-slip est un phénomeéne vibra-
toire qui se produit lorsque une force
élastique est opposée a une force de
frottement sec. Il est inhérent a chaque
degré de liberté d'un bras de RI parce
que, méme en prenant un certain nom-
bre de précautions, on peut réduire au
maximum les frottements secs mais il est
exclu d’envisager de les supprimer. En
outre, les actuateurs introduisent la
flexibilit¢ antagoniste. Le résultat est
que chaque degré de liberté oscille
autour de la valeur de consigne avec
une fréquence égale a la fréquence pro-
pre qui lui correspond.

Dans un systeme comme un bras de RI,
il y a plusieurs sources de vibrations
aléatoires. 1l y a celles d’origine électri-
que qui agissent par I'intermédiaire des
actuateurs, et celles d’origine mécanique
provoquées par les frottements, les rou-
lements, etc. Enfin, selon le travail réa-
lise par le RI, la charge peut, elle-aussi,
engendrer des excitations a large spec-
tre. Or, de telles excitations ont la parti-
cularite de faire «ressortir» les fré-
quences propres du bras; en conse-
quence, les mouvements sont aléatoires

mais avec des densités spectrales surtout
significatives autour des fréquences pro-
pres, ce qui revient a considérer que les
mouvements sont approximativement la
superposition d’harmoniques, chacune
ayant une pseudo-fréquence égale a
chaque fréquence propre.

En résumé, le stick-slip et les excitations
aléatoires ont approximativement le
méme effet: celui de faire vibrer le bras
avec des fréquences égales aux fré-
quences propres du systeme.

Si aucune précaution préalable n'a été
prise et que D[ f;] et D[ /5] ont une par-
tie commune, il peut arriver que les fré-
quences f, et f> soient proches ou égales
pour plusieurs combinaisons des para-
metres my, ry et ¢,. Comme D[ f3] est,
généralement, bien distinct de D[ f5] et
de D[ /], la fréquence f; n’intervient
pas ici. Dans ces conditions, les cou-
plages de masses peuvent entrainer
d’importantes vibrations; elles sont la
résultante d’instabilités dues a la réso-
nance.

Par conséquent, dans la mesure ou I’on
souhaite que la trajectoire de la charge
manipulée s’écarte le moins possible de
la trajectoire de consigne, on s'arran-
gera a construire et @ manipuler le robot
de telle maniere que D[ /] soit distinct
de D[ /3]

5. Importance des termes
non linéaires

Comme le montre le systeme (1), le
comportement vibratoire d’un bras de
RI est régi par des relations non li-
néaires. Il n’existe pas de methode géné-
rale pour traiter de telles équations.
Jusqu'ici, nous avons négligé les termes
non linéaires parce que des mesures
montrent que leur valeur absolue est né-
gligeable dans des conditions «nor-
males» de fonctionnement. Cela nous a
permis de deéfinir et de calculer les fré-
quences propres du bras.
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Il est cependant raisonnable de se de-
mander s’il peut, dans des circonstances
exceptionnelles, apparaitre d’impor-
tantes vibrations provoquées par des
termes non linéaires, conduisant a de
grands écarts entre la trajectoire réelle et
la trajectoire de consigne.

L’idée de base est d’examiner [I'in-
fluence de deux degrés de liberté sur le
troisiéme en considérant que, si deux
mouvements sont imposeés, le troisiéme
est défini par une équation linéaire a
coefficients explicitement variables dans
le temps. Les grandeurs r, 6, ¢ et leurs
dérivées étant considérées comme « pe-
tites» du 1¢" ordre, les grandeurs « pe-
tites» d’ordres supérieurs sont négligea-
bles.

Examinons les 3 cas possibles:

a) 0 et ¢ sont imposés; la premiére
équation du systeme (1) est de la
forme suivante, r étant la fonction
inconnue:

g,

=Jfo+Js 4)

k, d,

S BNY ) W g

M, M,

b) r et ¢ sont imposés; la deuxiéme
équation du systeme (1) s’écrit, 0
étant la fonction inconnue:

(I+ar+bg)-G+ 215+ ar+ bg)-
0+0dy0=1f+Sf, O

k d
[‘4—’2*1:2,1,,=M—f1’2

f+2/1,r‘+w5,.(1—9—§)r=

avec: g, =

avec: wjy =

2
a= M—zz(ml (ro—=1)+

+(m2 +m3 +m4)r0+
+(m3 13 + my d) Cos ¢())
-2 .

b = M—zz(m3[3 +myd)rysin ¢,

c) r et 6 sont imposés; la troisieme
équation du systéeme (1) prend la
forme suivante, ¢ étant la fonction
inconnue:

§+24, 6 + 03, (l ——SCEZ% Fo

el RV AV
4

k d
i I V=
M3 ? T My
S = m3[3 + m4d

avec: o, =

Les seconds membres des équations (4),
(5) et (6) ne présentent rien de nouveau
par rapport a ce qui précede parce qu’ils
figurent dans les équations simplifiées
(2) sous forme de couplages de masses.
En revanche, ce sont les termes des pre-
miers membres, qui font que les inerties,

les amortissements et les rigidités ne
sont pas des constantes, qui nous inté-
ressent. En effet, de telles équations sont
en mesure de mettre en évidence des
instabilités qui résultent de ce que I'on
appelle la résonance parameétrique. Ces
instabilités n’ont cependant lieu que
dans des circonstances exceptionnelles
parce que plusieurs conditions doivent
étre satisfaites pour qu’elles se produi-
sent.

Dans le cas d'un bras de RI, les risques
de résonance parameétrique sont extré-
mement réduits. Ils sont nuls si I'ampli-
tude de la variation de la rigidité (notée
h) est inférieure a un seuil donné qui dé-
pend de I'amortissement; on a la condi-
tion:

h<—=4p (7)

En admettant que les mouvements im-
posés sont harmoniques:

0 = B sinwyt

I = Inax-Sino, t (8)

¢ = Pmax-sinw,t
la relation (7) permet de montrer qu'il
suffit  que O, @y < 20,427, pour
qu’il n’y ait aucun risque de résonance
paramétrique sur r; de méme, si

5 41,k
Binax w”<(m3l3+m4d)r0
et que

Pz OF € __47eky

max r (,n3 [3 + m4d) ’
il n’y a aucun risque de résonance para-
métrique sur ¢. Il n’est malheureuse-
ment pas possible d’appliquer la condi-
tion (7) pour le mouvement # parce que
I’équation (5) a une forme plus générale
que les équations (4) et (6).
L'utilisation de ces inégalités, qui tra-
duisent une condition suffisante pour
qu’il n’y ait aucun risque de résonance
paramétrique, nécessite de connaitre les
facteurs d’amortissement. Ceux-ci ne
peuvent étre déterminés qu’a partir de
mesures.

6. Exemple d’application

La démarche proposée dans cet article
est, en résume, la suivante:

— définir un modele mécanique du
bras;

— mettre en équations ce modele
(équations non linéaires);

— écrire les équations simplifiées
(équations linéaires a coefficients
constants);

— résoudre les équations simplifiées;

— comparer les domaines DJ[f] et
D[ Al

— examiner l'importance de certains
termes non linéaires.

A partir d’un robot industriel réel dont

le bras peut étre représenté par le mo-

dele de la figure I, nous avons obtenu

les valeurs suivantes:

m, =3kg;, m=3kg;, my=3kg
I, =4kg-m?; I, =0,2kg-m?;

I; = 0,05kg-m?

I, =0,5m; I =0025m;

d =0,17m

k, = 85-10°N/m;
ky = 2,54-105N-m:
ky = 3,14-10°N-m

avec:
M, quivariede 0 a2 kg
ro quivariede0,2a0,5m

L .21
¢y quivariede 0 a 3
Au moyen d’un programme de calcul,
on résout I’équation caractéristique (3).
En faisant varier les paramétres M, r,
et ¢y, on obtient:

D[f]: 24a 37Hz
D[f,]: 3la 42Hz
D[ fi]: 140 a 156 Hz

Les calculs montrent que pour plusieurs
valeurs des 3 parameétres, les fréquences
/) et f>sont voisines.

Dans le cas du robot dont il est question
dans ce paragraphe, il serait favorable
de modifier une ou plusieurs de ses ca-
ractéristiques afin que D[ f;] soit bien
distinct de D[ f5].
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