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Phénomènes vibratoires
dans un bras de robot industriel

par Olivier Bernasconi, Lausanne

Dans la plupart des cas, il est souhaitable que la trajectoire de la charge manipulée

par un bras de robot industriel (RI) soit aussi proche que possible de la
trajectoire de consigne. La différence entre ces trajectoires est due, en particulier,

aux vibrations provoquées par les éléments constituant le bras du robot.
Le présent article propose une démarche qui permette d'étudier les principaux
aspects de ces vibrations.

1. Modèle mécanique et modèle
mathématique du bras

Le but de l'étude n'est pas d'analyser les

grands mouvements qui caractérisent la

«puissance» d'un bras de RI mais les

mouvements fins qui déterminent sa

précision de travail.
Soient F0 la plus petite fréquence propre
des éléments faisant partie de la structure

du bras et f0 la plus grande
fréquence propre du bras considéré
comme système discret, c'est-à-dire
formé d'éléments indéformables pesants
et d'éléments déformables sans inertie,
au sens de la figure 1. Dans la mesure
où F0 > fi, il est légitime de prendre
pour modèle de bras un système discret.
La démarche proposée dans cette étude
s'applique à tout bras de RI qui satisfait
cette hypothèse.
Par contre, les résultats exposés ne
concernent que les robots dont la
cinématique est conforme au modèle de la
figure I. Ce dernier correspond à un
montage expérimental réalisé pour vérifier

certains résultats théoriques et sert
de référence dans cet article.
La trajectoire de consigne de la charge
est définie par 4 fonctions du temps z0,
r0, 8n et (ptt, alors que les vibrations
perturbatrices autour de ces grandeurs sont
désignées z, r, 0 et tp. Nous admettons,
ce qui est une simplification importante,
que les fonctions z0, r0, 0O et 0O varient
suffisamment lentement pour que leurs
dérivées premières et secondes soient
négligeables. D'autre part, le mouvement

selon z est découplé des 3 autres et

correspond à celui d'un oscillateur
élémentaire dont il est inutile de parler ici.
Après l'établissement des formes
énergétiques et les dérivations de Lagrange,
on obtient pour r, (p et 9 les équations
(I).

2. Equations simplifiées

Des mesures sur un robot réel ' nous ont
permis d'estimer la valeur relative des
différents termes des équations (I). En

1 Robot «Manta» de l'Institut de microtechnique

de l'EPFL.

supposant que les mouvements sont
périodiques, ce qui est une hypothèse
raisonnable, il ressort que les termes non-
linéaires, même estimés par excès, sont
tout à fait négligeables en comparaison
des termes linéaires. Les équations (1) se

simplifient alors considérablement et se

réduisent à un système linéaire à

caractéristiques constantes (2).
On remarque que les matrices de rigidité

et de dissipation sont diagonales
alors que la matrice des masses est complète

et symétrique. Cela signifie que le

système ne comporte que des couplages
de masses.
Ce résultat montre qu'il serait dangereux

de considérer a priori le système

Définitions et notations

5 parties forment le modèle du bras de
RI:
(0) Cet élément caractérise l'inertie

constante agissant sur le mouvement
e.

(1) et (3) sont des solides indéformables.
(2) et (4) sont des masses ponctuelles.

Les 4 degrés de liberté sont des mouvements

à caractère oscillatoire:
z Déplacement vertical autour de

l'équilibre (r 0).
r Déplacement radial du tout autour

de l'équilibre (ro).
9 Rotation du tout autour de l'équili¬

bre (0 0).
<p Rotation relative de (3) par rapport à

(1) autour de l'équilibre (fo).

m\ Masse de (1).
mi Masse de (2).
my Masse de (3).
m4 Masse de (4).

Iq Moment d'inertie de (0).
/i Moment d'inertie de (1) autour de

son Centre d'inertie.
Iy Moment d'inertie de (3) autour de

son Centre d'inertie.

f Distance de (2) au centre de gravité
de(l).

h Distance de (2) au centre de gravité
de (3).

d Distance de (2) à (4).

k. Rigidité associée au degré de liberté t

(i r, 0, <P).

d, Coefficient de frottement visqueux
équivalent associé au degré de liberté
i.

<P)(ml +m2 +my + m4)r — (m,/, + m4d)(0 + tp) sin (tp0 ¦

— (my ly + m4 d) (Ô + (p)1 cos (0O + (p) + m, /, Ô2

— (m] + m2 + my + m4) (r0 + r)Ô2 + d,f + k,.r 0

(I0 + I])8 + ml(r0 + r-ll)29 + 2m]d(r0 + r-l])f
+ (m2 + my + m4) (r0 + r)29 + 2 (m: + my + m4)Ô(r0 + r)f
+ (Iy +myl] +m4d2)(8 + tp)-{myly + m4d)fs\n(tp0 + (f>)

— (myly + m4d)r cos (tp0 + tp)<j> + (myly + m4d)f(2Ô + <p) cos (<p0 + (p)

+ {myly + m4d) (/•„ + r) (26 + <p) cos (<p0 + tp)

-(myly+m4d)(rt) + r)(2ê + tp)(f>sin (tpo + (p) + dt)l) + kß0 0

(/, +myTy +m4d2)($ + 0)-(myly +m4d)r sin (<t>0 + <t>)

+ (myly +m4d)(r{) + r)8 cos (<p{) +<p) + 2(myly +m4d)fÔ cos (<pü + <p)

(1)

+ (my ly + m4 d) (r0 + r) Ô2 sin (0O + tp) + d^ci + k. 0

^

ig I — Modele de hras de rohni a un instant 1 de w>/r l<>in noimemenf
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comme un ensemble de masses reliées

par des ressorts et des résistances

visqueuses, ce qui conduirait au contraire à

des couplages élastiques et visqueux
seulement.
On peut, bien entendu, effectuer dans
l'équation (2) un changement de variables

qui diagonalise la matrice des

masses. Cependant, ces nouvelles variables

ne sont pas «naturelles», c'est-
à-dire qu'elles ne sont pas mesurables.

3. Fréquences propres du bras

Les méthodes qui permettent d'expliciter
la solution générale du système (2)

sont bien connues. Elles consistent à se

ramener à un problème aux valeurs et

vecteurs propres. En pratique, on
obtiendra une approximation suffisante
des fréquences propres /du bras en
négligeant l'amortissement. On est ainsi
conduit à résoudre l'équation caractéristique

(3).
En résolvant l'équation (3), on obtient 3

fréquences propres fi, fi, fy qui dépendent

des 3 paramètres m4, r0 et cp0.

Connaissant dans quels intervalles ces 3

paramètres peuvent varier, il est possible

de déterminer le domaine de variation

de chaque fréquence propre fi, i
1, 2, 3, que l'on note D[fi].
Remarquons que nous avons en général

fi, f2 <fy car la rigidité k,. de l'actuateur
linéaire est relativement élevée.
Dans ces conditions, il est possible de

supposer r 0 et d'obtenir ainsi facilement

avec une bonne approximation fi
et fii, car l'équation caractéristique est
alors bicarrée.
Les considérations qui précèdent prennent

leur signification dans le fait que
les vibrations qui apparaissent au cours
du fonctionnement d'un robot sont des

régimes forcés aléatoires auxquels se

superposent des composantes périodiques.
Les courbes de réponse du bras se
modifient en fonction de la valeur instantanée

des paramètres m4, r0 et tpn. Les

risques de résonance, au sens ordinaire du
terme, s'en trouvent ainsi augmentés.

4. Vibrations lorsque le bras
fonctionne

Les fréquences propres, ou plus exactement

les domaines de variation des

fréquences propres, sont des caractéristiques

importantes d'un bras de robot. Il
importe de les connaître dès le stade de
la conception. L'idéal serait, à ce stade
également, d'être en mesure de calculer
avec une précision suffisante l'écart entre

la trajectoire réelle et la trajectoire de

consigne lorsque le bras fonctionne. Il
existe de nombreuses raisons qui font
que cette approche théorique n'est pas
réalisable. Parmi celles-ci, on peut noter
l'impossibilité de connaître a priori
l'importance des perturbations qui font vi-
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- m4

avec:

Mn w, + m2 + my

A/12 — (myly +m4d) sin 0O

My
My

- m4d2

M-_

M.

12 — (myly+m4d) sin çp0

13 — (/W3/3+m4i/)sin^0
22 /q + /, + F +m](rQ — /])2 + (m2 + my + m4)r^

+ my l\ + m4 d2 + 2 (my ly + m4 d) r0 cos tp0

k h + mylj + m4d2 +(m}ly + m4d)rn cos<p0

33 /3 +myl] + m4d2

(k,—a>2M]]) —M]2co2 —M^co2
— MyW2 (kn — M22co2) —M2yùk
— MnCÙ2 — M2yW2 (k,p — MyyCÜ1)

avec co 2cn.fi pulsation propre.

(3)

brer le bras ainsi que la méconnaissance
des différents types de frottements à

effets non linéaires qui jouent un rôle
essentiel ; le stick-slip par exemple.
Devant l'impossibilité d'effectuer une
approche globale du problème, il faut
donc se contenter de mettre en évidence
des règles qui, au stade de la conception,

permettent de minimiser l'importance

des vibrations.
Les vibrations qui apparaissent au cours
des différents mouvements d'un bras de
RI sont la résultante de plusieurs
actions perturbatrices dont l'influence
respective varie d'un robot à l'autre. Parmi
ces différentes perturbations, nous en
retiendrons deux dont la particularité
est d'être présentes dans tous les bras de

RI, à un degré plus ou moins élevé
selon le soin apporté à leur réalisation. Il
s'agit d'une part, du stick-slip et, d'autre
part, d'excitations à caractère aléatoire.
Le stick-slip est un phénomène vibratoire

qui se produit lorsque une force
élastique est opposée à une force de
frottement sec. Il est inhérent à chaque
degré de liberté d'un bras de RI parce
que, même en prenant un certain nombre

de précautions, on peut réduire au
maximum les frottements secs mais il est
exclu d'envisager de les supprimer. En
outre, les actuateurs introduisent la
flexibilité antagoniste. Le résultat est

que chaque degré de liberté oscille
autour de la valeur de consigne avec
une fréquence égale à la fréquence propre

qui lui correspond.
Dans un système comme un bras de RI,
il y a plusieurs sources de vibrations
aléatoires. U y a celles d'origine électrique

qui agissent par l'intermédiaire des

actuateurs, et celles d'origine mécanique
provoquées par les frottements, les
roulements, etc. Enfin, selon le travail réalisé

par le RI, la charge peut, elle-aussi,
engendrer des excitations à large spectre.

Or, de telles excitations ont la
particularité de faire «ressortir» les

fréquences propres du bras; en
conséquence, les mouvements sont aléatoires

mais avec des densités spectrales surtout
significatives autour des fréquences
propres, ce qui revient à considérer que les

mouvements sont approximativement la
superposition d'harmoniques, chacune
ayant une pseudo-fréquence égale à

chaque fréquence propre.
En résumé, le stick-slip et les excitations
aléatoires ont approximativement le
même effet: celui de faire vibrer le bras
avec des fréquences égales aux
fréquences propres du système.
Si aucune précaution préalable n'a été
prise et que D[fi] et D[f2] ont une partie

commune, il peut arriver que les

fréquences f\ et fi soient proches ou égales

pour plusieurs combinaisons des
paramètres m4, r0 et tp0. Comme D[fiy] est,
généralement, bien distinct de D[fi2] et
de D[fi[], la fréquence fi n'intervient
pas ici. Dans ces conditions, les
couplages de masses peuvent entraîner
d'importantes vibrations; elles sont la
résultante d'instabilités dues à la
résonance.

Par conséquent, dans la mesure où l'on
souhaite que la trajectoire de la charge
manipulée s'écarte le moins possible de
la trajectoire de consigne, on s'arrangera

à construire et à manipuler le robot
de telle manière que D[fi] soit distinct
dcD[f2].

5. Importance des termes
non linéaires

Comme le montre le système (1), le

comportement vibratoire d'un bras de
RI est régi par des relations non
linéaires. Il n'existe pas de méthode générale

pour traiter de telles équations.
Jusqu'ici, nous avons négligé les termes
non linéaires parce que des mesures
montrent que leur valeur absolue est
négligeable dans des conditions
«normales» de fonctionnement. Cela nous a
permis de définir et de calculer les

fréquences propres du bras.
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Il est cependant raisonnable de se

demander s'il peut, dans des circonstances
exceptionnelles, apparaître d'importantes

vibrations provoquées par des

termes non linéaires, conduisant à de

grands écarts entre la trajectoire réelle et
la trajectoire de consigne.
L'idée de base est d'examiner
l'influence de deux degrés de liberté sur le

troisième en considérant que, si deux
mouvements sont imposés, le troisième
est défini par une équation linéaire à
coefficients explicitement variables dans
le temps. Les grandeurs r, 9, <p et leurs
dérivées étant considérées comme
«petites» du 1er ordre, les grandeurs «petites

» d'ordres supérieurs sont négligeables.

Examinons les 3 cas possibles:

a) 0 et <p sont imposés; la première
équation du système (1) est de la
forme suivante, r étant la fonction
inconnue:

r + 2Àrf + û)lA\-—r )r
: fie + fief, (4)

"> K-r o 1 "/¦
avec:ft>ô,=^-;2A, —

b) r et <p sont imposés; la deuxième
équation du système (l) s'écrit, 9
étant la fonction inconnue:

l + ar + bip) ¦ 9 + (2AR + ar + bcp)-
¦0 + 0)^-9 fi+fL (5)

avec: eo* h ~, _
da

~Mk ' 2À" ~ ~Mk

a=Ä7^('"l(''0~/|) +

+ (m2 + my +m4)r0 +
+ (my ly + m4d) cos <p0)

-2b -j— (my ly + m4 d) r0 sin <p0

c) r et 9 sont imposés; la troisième
équation du système (l) prend la
forme suivante, tp étant la fonction
inconnue:

$+2^4- >u,(l-
scos<p0

les amortissements et les rigidités ne
sont pas des constantes, qui nous
intéressent. En effet, de telles équations sont
en mesure de mettre en évidence des

instabilités qui résultent de ce que l'on
appelle la résonance paramétrique. Ces
instabilités n'ont cependant lieu que
dans des circonstances exceptionnelles
parce que plusieurs conditions doivent
être satisfaites pour qu'elles se produisent.

Dans le cas d'un bras de RI, les risques
de résonance paramétrique sont
extrêmement réduits. Ils sont nuls si l'amplitude

de la variation de la rigidité (notée
h) est inférieure à un seuil donné qui
dépend de l'amortissement; on a la condition:

h< — 4n
ûj0

(7)

En admettant que les mouvements
imposés sont harmoniques:

0max • sin co,, t
rm.M • sin <or t

<P 0max-sinûV

0

r (8)

la relation (7) permet de montrer qu'il
suffit que 9malt ¦ tolt < 2co0rJ2T)r pour
qu'il n'y ait aucun risque de résonance
paramétrique sur r; de même, si

¦w-H<
(m3ly + m4d)r0

et que

• û)j <
(myly + m4d)'

il n'y a aucun risque de résonance
paramétrique sur tp. Il n'est malheureusement

pas possible d'appliquer la condition

(7) pour le mouvement 9 parce que
l'équation (5) a une forme plus générale
que les équations (4) et (6).
L'utilisation de ces inégalités, qui
traduisent une condition suffisante pour
qu'il n'y ait aucun risque de résonance
paramétrique, nécessite de connaître les
facteurs d'amortissement. Ceux-ci ne
peuvent être déterminés qu'à partir de
mesures.

(j\ ¦ <p =/;,+/; (6) 6. Exemple d'application

avec: cot\. M
s myly + m4d
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Les seconds membres des équations (4),
(5) et (6) ne présentent rien de nouveau
par rapport à ce qui précède parce qu'ils
figurent dans les équations simplifiées
(2) sous forme de couplages de masses.
En revanche, ce sont les termes des
premiers membres, qui font que les inerties,

La démarche proposée dans cet article
est, en résumé, la suivante:

— définir un modèle mécanique du
bras;

— mettre en équations ce modèle
(équations non linéaires);

— écrire les équations simplifiées
(équations linéaires à coefficients
constants);

— résoudre les équations simplifiées;

— comparer les domaines D[fi] et

Dl.fi]:
— examiner l'importance de certains

termes non linéaires.

A partir d'un robot industriel réel dont
le bras peut être représenté par le
modèle de la figure l, nous avons obtenu
les valeurs suivantes:

m, 3 kg; m2 3 kg; my 3 kg

/„ 4kg-m2; /, 0,2kg-m2;
/, 0,05 kg-m2
/, 0,l5m; U 0,025 m;
d =0,17 m

k, 8,5-IO6 N/m;
kg 2,54-105N-m;
kà 3,14-103N-m

avec:
M4 qui varie de 0 à 2 kg
r0 qui varie de 0,2 à 0,5 m

4>o qui varie de C in
aT'

Au moyen d'un
on résout l'equati
En faisant varier
et 0O, on obtient:

programme de calcul,
an caractéristique (3).
les paramètres My, r0

Ot/.]: 24 à 37 Hz

D[fi2}: 31 à 42 Hz

Dlfiy}: 140 à 156 Hz

Les calculs montrent que pour plusieurs
valeurs des 3 paramètres, les fréquences

/ et f2 sont voisines.
Dans le cas du robot dont il est question
dans ce paragraphe, il serait favorable
de modifier une ou plusieurs de ses

caractéristiques afin que D[/i] soit bien
distinct de £>[/].
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