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ANALYSE DES CONTRAINTES Ingénieurs et architectes suisses 3 septembre 1981

Corps creux

par Jacques Paschoud et Philippe Wieser, Lausanne

Les méthodes qui sont exposées dans cet article ont été développées à l'IMM
(Institut des métaux et machines de l'EPFL, anciennement LEMEPUL) dès

1945. Elles ont fait l'objet de nombreuses confrontations individuelles avec des

mesures expérimentales et ont été même appliquées à des corps fort éloignés de

présenter la symétrie de révolution, tels que des pas de vis ou des bâches
spirales. Constamment améliorées au cours de ces trente-cinq années, nous
pensons que leur état actuel en justifie la publication. Ces méthodes font l'objet de

développements plus étendus dans un cours de l'EPFL.

1. Introduction

Le but de cette étude est de déterminer
les équations générales caractérisant les

champs de contraintes et de déformations,

et de calculer ces champs dans les

enveloppes minces de révolution
soumises à des charges «circulaires»
(uniformes le long de la circonférence).

1.1 Définition du corps à étudier

Une enveloppe de révolution est un
corps creux rigide à la flexion, par
opposition aux membranes, présentant
une symétrie de révolution autour d'un
axe, dit axe de l'enveloppe, et dont
l'épaisseur est faible relativement aux
autres dimensions.
La forme d'une telle enveloppe est
déterminée complètement par le tracé
d'une coupe méridienne (fig. 1).

L'enveloppe est ainsi définie par les

points de sa «couche moyenne» (dont
la trace, dite fibre moyenne, est déterminée

par le rayon normalement à l'axe,
l'abscisse x le long de l'axe ou l'arc 5 le

long de la fibre moyenne à partir du
point origine O) et par l'épaisseur h

comptée normalement à la couche

moyenne.
Une telle enveloppe est généralement
limitée par deux sections coniques de
révolution coupant normalement la
couche moyenne. L'enveloppe peut
toutefois être fermée, donc couper l'axe à

l'une ou l'autre de ses extrémités.

0

\h

r

i_

L

X

x=l

Fig. I. — Coupe méridienne d'un élément de

coque de révolution.

1.2 Hypothèses

La détermination
raies sera faite sur
thèses suivantes:

— le corps étudié et les charges qui lui
sont appliquées sont de révolution,
les contraintes et les déformations
résultantes seront donc
«circulaires».

Les hypothèses qui suivent sont basées

sur des approximations classiques dans

des équations géné-
la base des hypo-

la théorie des enveloppes empruntées à
la théorie de la flexion des pièces
prismatiques et comme telles justifiées par
la pratique:

— les déformations sont parfaitement
élastiques, répondent à la loi de
Hooke et sont suffisamment petites

pour négliger leurs influences
réciproques les unes sur les autres. Elles

pourront donc être assimilées à des
différentielles. Le principe de
superposition est alors applicable. D'autre
part, cette hypothèse permettra de
calculer les efforts intérieurs de
l'enveloppe sur la base de la surface

moyenne non déformée;

— les sections planes et normales à la
couche moyenne avant déformation
restent telles après déformation
(hypothèse de Bernoulli);

— les tensions tangentielles r et nor¬
males à la couche moyenne cr-

n'engendrent que des déformations
négligeables.

1.3 Conventions

Les sens positifs des cotes, des efforts
intérieurs et des déplacements sont définis

par la figure 2.

2. Equations générales

La détermination des équations générales

sera développée de la manière
montrée par le tableau I.

2.1 Calcul des déformations

Un élément d'enveloppe est découpé
par deux plans méridiens faisant entre
eux l'angle circonférentiel dip (fig. 3).

Tableau I

Calcul des
déformations Contraintes Efforts int. Equations

générales

Loi de Hooke Principe
d'équivalence

Equilibre
d'un élément

de coque

RI M«,.'y: p/

YpTvMext

y V

M0

Xp

dV

«

Fig. 2. Notations el conventions. Fig. 3. — Elément de coque de révolution d'angle circonférentiel dip.
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y<0,z)

5 O.z

y.dy

5.d8

Fig. 4. — Déplacements d'un élément de coque dans son plan méridien.

Les déplacements et les déformations de cet élément seront
circulaires donc uniformes le long des circonférences
moyennes de l'enveloppe.
Il résultent de:

— un déplacement perpendiculaire à l'axe: y
— un déplacement parallèle à l'axe: 8
— une rotation dans le plan méridien : S

— un déplacement relatif des deux faces de l'élément: d(ds)
— une rotation des deux faces de l'élément: dQ

La figure 4 représente la coupe méridienne, avant et après
déplacements d'un élément. Les grandeurs négligées sont du 2e

ordre, en h/r et les déformations.
Nous obtenons alors:

— la rotation: 9 s tg5
a + c

— la déformation longitudinale: es -j-(b'-b)

— la déformation circulaire: £, —— [r(Z') — r(ZYj\
r\Z.)

En développant ces expressions et en négligeant les infini-
ments petits d'un ordre supérieur, nous obtenons enfin:

o dy d8
3 -j- cos tp —t sin <p

ds as

d8 dy dS
e. —r cos m + -f- sin <p — z-r-ds ds ds

y S
£r -—z—sin©

r r

(2.1)

2.2 Des déformations aux contraintes

Lions les contraintes aux déformations par la loi de Hooke, en
rappelant que nous négligeons l'action de o. sur les déformations.

Ees ct, -fUTc
Eec CT( -jia.
Ee: - IJ- (cts + CTf)

donc:
\-jl

(Es+ ec)

CTt

-fi
E

:
(Es + l^c)

Id8 dy y\
\-y

IdS S

-z[^+msm<p)

CT, J—2 (£c + t&s)

dS dy y\
i-y

I dS S \

2.3 Des contraintes aux efforts intérieurs
Le principe d'équivalence permet d'écrire (fig. 5):

N JI GsdQ et M U oszdQ

alors:

avec:

[ Q — h r dip

N M
a^Q±Tz

(fig. 6)

en négligeant les termes du 2e ordre en h/r.

f =y^ÏÏrd\p

(2.2)

(2.3)

dV

jds.
dV c rdV

mm
<w

dV
/m< iV

ds-sinP-

M.^r'S;,sinrdV

Fig. 5. — Contraintes normale el circulaire.
Fig. 7. — Projections de Nt et M,, respectivement dans et perpendiculairement

au plan médian d'un élément de coque d'angle circonférentiel dip.
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N
M

Fig. 6. — Effort normal et moment longitudinaux.

en négligeant les termes du 2e ordre en h/r.
L'identification des équations (2.2) et (2.3) revient à égaler les

termes fonction et indépendant de z:

N

M

E dtp dS dy
-r cos (p + -j-sm<p+ uds dsyhr[

iw (dd S \h' r\ -r + u — sin tp \

-H~) \ds r y

t)
(2.4)

E dip

Dans le sens circulaire, les tensions <r(. peuvent également être

composées en une force normale Nc et un moment M, qui, par
raison d'uniformité seront également totalisés sur une surface
Q h r dip, donc:

ds rdip et /, Is

Nous obtenons alors, en faisant le même raisonnement que
pour N et M:

i — y \ r
dS dy \

- jt -r- cos <p + ji -j- sin tp I

(2.5)

M.
E dip

2(1
y ts ds\

T-W r\ — sin<» + u-r--ji1) \r * ^ ds

2.4 Réactions secondaires des bandes élémentaires les unes
sur les autres

Pour exprimer l'équilibre de la bande dans son plan médian, il
convient de remplacer Nc et M( par leurs actions dans ce plan
méridien soient: N( par sa projection dans ce plan et Mc par sa

projection perpendiculaire à ce plan (fig. 7).
Nous obtenons ainsi:

N MdV — ds et dM —Lsma>ds
r r

avec les sens positifs de la figure 8.

2.5 Equilibre d'une bande élémentaire d'angle dy
Il est désormais possible d'exprimer l'équilibre, dans son plan
médian, de la bande élémentaire, de longueur fixée OP, isolée
et sollicitée dans son plan par l'ensemble des efforts suivants:

H0, V0, M0: efforts dans la section origine
HP, VP, MP: efforts dans la section au point P

dMMo
Mext

dV P y x

Fig. 8. — Equilibre, dans son plan médian, d'une bande élémentaire de

coque d'angle circonférentiel dip.

XP, YP, Msxl: éléments de réduction en P de tous les efforts
extérieurs agissant entre O et P

dM, dV: efforts résultant des actions latérales.

L'équilibre de cette bande élémentaire s'exprime par les trois
équations suivantes:

Hp H0 — XP

VP Vn-YP+ dVïJo

CM f N
MP Mslal + —c-s\ntpds - y(xP-x)dsJo r Jo r

(2.7)

avec:

Ma Mo + H0 (/>- r0) - V0 xP - Me:

2.6 Equations générales

En rassemblant et combinant les équations (2.1), (2.4), (2.5) et

(2.7), et en effectuant le changement de variables:

E dip
12 (l-^2) r" C) (2.8)

nous obtenons alors le système d'équations générales des

corps creux sous forme intégrale :

a) uP u0 + I C M ds
Jo

rp rp
b) Vp v'0 + udx + \ FNds

Jo Jo

c) Np Nslalp+ sintppl j Av'ds+ßj — ds\

d) MP Msmp-j A v' (xp-x) ds

C N
-ß\ --(xp-x)ds

Jo r

- j Buds+ \ DMds
Jo Jo

(2.9)

+

et les équations parfois utiles:

a) Nc A rv* +ju N

(2.6) b) Mc Bu-
sin tp

a) Hp Hq — Xp

Lt M
(2.10)

rpN
Jo r

dsb) VP V,lMp+ I Av'ds+jif'
Jo Jo

OSp =80-^-dr-jt)o —^dx
(2.11)

+
Uo hr dx

avec:

MsiMP M0-V0XP + H0(rP-r0)- MeMp

^s.atp (HQcos<pP+ V0smtpP)
— (Xp cos tpP + YP sin tpP)

Vsulp Yo-Yp
Edip

ÖF- I2(l-jii)dp
2(\-ji2)hA

B

fJ+M

(1 — jt2) h? sixv-tp
(2.12)

r\+n
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c
i

D u

F

sin<p

r
sin tp

12 /î r1-"

2.7 Effets de l'effort normal N s«r les déformations
L'allongement de la couche moyenne dû aux forces longitudinales

A'n'a généralement qu'une influence faible sur les
déformations de l'enveloppe. D'autre part, le fait qu'une valeur de
N approximative (par exemple: N A,membrane) est pratiquement

toujours connue a priori permet de simplifier grandement

les équations générales.
En effet, posons:

C
Vp Vp— i F N ds

J°
(2.13)

'slal/> M. ~>-[<»-x)(A£ FNds +^- N\ds

Remarquons que:

(2.14)

ro
v0 "Ô- ENds v0

Jo

Les équations (2.9) s'écrivent alors:

a) uP «„ + I C M ds uL— \ C M ds
Jo Jp

rxp rxi
b) Vp v0 + u dx vL — u dx

Jo JxP

c) MP mslMp — \ A v(xp—x)ds

+ I Buds + I D Mds
Jo Jo

La solution de ces équations, trouvée à partir de cette première
approximation de N, peut être au besoin améliorée par récurrence

avec l'équation (2.10a).
Nous avons ainsi établi les équations générales des corps
creux. Leur forme intégrale a permis d'y introduire directement

les conditions aux limites. Nous avons par exemple écrit
les équations (2.14 a et b) avec les conditions en O ou en L.

3. Méthodes de résolution

3. 1 Introduction
Nous présentons trois méthodes de résolution différentes s'ap-
pliquant pratiquement à trois types différents de corps-creux
caractérisés par leur longueur axiale I comprise entre les points
O et L (fig. 1 et 2 et tableau II).

I méthode par approximations successives/"<2 J(rh cos tp)m: corps court

2 méthode par amortissementl>5j{rh cos <p)m: corps long

3 dans et hors de ces deux limites méthode générale

(L'indice « m » signifie moyen entre O et L.)
La méthode générale (3) est toujours applicable. Elle conduit à
des calculs plus étendus que les deux autres méthodes, valables
par contre uniquement pour des formes particulières de corps
creux.

3 .2 Méthode par approximations successives

La forme intégrale des équations générales suggère de calculer
de façon élémentaire les valeurs des inconnues par approximations

successives en partant d'une loi de variation, numérique

ou graphique (même analytique), arbitraire mais logique
pour l'une d'entre elles, par exemple M2), et en la corrigeant

successivement et progressivement au moyen des équations
elles-mêmes.
Ayant obtenu trois approximations successives de la fonction
cherchée (Mh Mlh Mm il est possible d'extrapoler le processus

de convergence vers une valeur sensiblement égale à la
valeur définitive A/fpar l'expression:

(Mnl-Mu)2MF M,
M,-2Mi, + M,

3 .3 Méthode par amortissement
En dérivant par rapport à l'abscisse x et en combinant les
équations (2.14), on obtient une seule équation différentielle en
v, qui s'écrit:

(Rappelons que v représente un déplacement radial)
v"" + 2av'"+ßv" + yv' + nv ç (3.1)

avec:

(r]~-u h2, cos tp)' jL t%tp

t%tp (rl~u A3 cos tp)'ß

r]"u h2, costp

(r['" h2 costp)"
r1 " h2 costp ' r r'~

-m)-<mm
tgtp\2 (/¦l~-u h2 costp)'

costp

1

+ 2

12(

C-."2)

tgç>/tgç>

(3.2)
r1-" h2 costp

r \ r
-n2)

(r h cos<^)2

m"
r]~uh2costp

Il s'agit d'une équation différentielle linéaire du 4e ordre à
coefficients et à second membre variables qui n'a pas de solution

analytique connue.
Considérons le cas particulier du cylindre à épaisseur
constante, l'équation (3.1) devient ainsi:

v"" + t]v t,

\2(\-pt2)avec: 1

Ç

r2 h2 constante

constante

admettant alors comme solution:
v v, + e ~ m C, cos ûxx + C2 sin wx)

+ e-<»(/- m [Q cosco(l- x) + C4 sin w(l- x)]
m" r ' + ¦"

'i ^''" tt : solution particulière qui représente la
*¦ " ' déformation de membre

La solution générale est la somme de deux termes qui sont le
produit d'une exponentielle décroissante par une fonction
périodique (fig. 9).
L'expérience et l'analyse montrent que pour les corps de
révolution de rayon et d'épaisseur variables (cas général), ayant
une longueur axiale / > 5 J(rh costp),,,, le phénomène de
flexion est créé par les conditions limite O et L, et l'influence
d'une extrémité sur l'autre est négligeable.

"Cette limite, résultant d'une simplification d'un critère de convergence

trouvé sous une forme compliquée inapplicable, n'est
qu'approximative, il peut donc arriver exceptionnellement que même dans
cette limite la méthode diverge, ce qu'on voit très rapidement.
-' Les valeurs de départ pourraient dans ce cas être msm.
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Il y a donc analogie avec le cas du cylindre à épaisseur
constante et la solution trouvée pour ce cas peut être étendue
au cas général pour en trouver une solution approximative
suffisante.
Considérons en x 0, un «petit domaine» où l'équation
différentielle est à coefficients constants (calculés en x 0).
Les valeurs des efforts et déplacements seront calculés en
x 0, l'amortissement se faisant de O à L.
Il s'agit alors de déterminer les coefficients d'une fonction du
type:

v V|+e~/'iv(C| cosp2x+C2 s\np2x) (3.3)

v, étant la solution particulière:
m'a., r[ +fl costp ,„" Î2h(l-,2) (3'4)

et pi, pi à déterminer à partir des coefficients a, ß, y et t] de
l'équation sans second membre.
En résolvant l'équation caractéristique de cette équation
différentielle du type:

ou

¦2an2 + ßn2 + yn + 77 0

(n2 + an + b)(n2 + a"n + b') 0

nous obtenons:

a
Pt 2

et P

avec:

*nr* lA a2~ß'

m

b

et:

ß' - 1 +

4n* n

+ a

- 2a/a + ß/a2 + y/a2
1 — a/a

1 m/a)2 y
2 \—2a/a 2a

4 |
(2a/a)2 lia 1-
1 —2aja \ a \—'.

(3.5)

(3.6)

a/a Y
la/a)

(Yßa)2
1

(3.7)

Il y a plusieurs façons de résoudre la lre équation (3.6), signalons

que si l'on procède par approximations successives, la
convergence est généralement très rapide à partir de B' ß et

rf n.
v(x) étant ainsi connu, déterminons les efforts et les déplacements

agissant au point O, c'est-à-dire M0, V0, H0, u0 et v0.

Les équations (2.14) donnent:
u'

u v' et M -p; • cos tp ou

d'autre part l'équation (2.11 b):

M
C costp

+ ji( —ds+ f f FNds+ I Av
Jo r Jo Jo Jo

ds

' slal/>

en y introduisant l'équation (2.14c) dérivée, nous obtenons:

f :

BgBZaEBBZBB&aqBBBatnBB L

?—

vP va, ¦m,lMp +
B D M-M'

cos tp cos tp

i ï \
f(v') f(v") f(V")

En dérivant l'expression (3.3) et en la remplaçant par sa valeur
en x — 0, (v'(0), v"(0), v'"(0), dans ces différentes relations,
nous arrivons enfin aux deux équations suivantes:

Mo Zw % + Z20 «0 + Lm w"lal()

^0 Zlo "0 + 220 "d + Im m'm
avec

Z10= -b(ri-fh2costp)0

H0tg<p0
(3..

Zîo-Z,.-(«-«+f**)Q
Zio= -a(r1'" h2 cos tp)0

mi20 — 2j20

¦a +

b
a

a

M tg<p

m (3.9)

230

230

-rArh costp)i12(l-.u2)'

v Z10
Lia ' vZilO

Signalons que H0 est généralement connu à priori par un simple

équilibre statique31.
Nous avons ainsi déterminé les équations des efforts intérieurs
en x 0, en fonction de déplacements de ce point.
La résolution de ce système impose deux conditions fournies
par des conditions de liaison, de symétrie ou d'appuis.

Remarque: pour certains types de géométrie de corps creux,
une méthode plus simple a été développée qui évite le calcul
de «a et b» pour déterminer les coefficients 2, et Z'¦ Cette
méthode est décrite en annexe 1.

3 .4 Méthode générale
Cherchons tout d'abord à éliminer u et v des trois équations
intégrales (2.14). Les deux premières en u et v s'écrivent
(fig. 10):

JQ "L -\L (CMds)R
Jr q

Vp vL-\ (u
Jq p

(3.10)

dx).

Q et R étant des points courants respectivement entre P et L,
et Q et L. Remplaçons dans vP, Uq par son expression, il vient:

31 Hq peut parfois dépendre de conditions de déformation axiale et
être hyperstatique: nous devrons alors tenir compte de l'équation
(2.11c).

1.

Rx£

P^^*^"ta

Tt Xp

1

1

-H
1

1 »H
1

1

Fig. 9. — Corps long: amortissement en fix) du déplacement radial. Fig. 10. — Méthode générale: définition des points courants Q. R.
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VP VL-UL(l-XP) +
Q P

dXr ¦(L (CMds)R
Jr q

La troisième équation (2.14) du moment MP s'écrit:

\ (Buds),
Jq=o

f (xp-xQ)(Avds)Q+r (DMds)QJo=o Jq-o

(3.11)

Mp mslMp + i
(2.14 c)

Pour que l'inconnue M n'apparaisse au maximum que sous
un seul signe «intégral», nous allons transformer les équations

(3.11) et (2.14c) à l'aide de la formule de Dirichlet:

fL \ K{ (S, Q) dzQ ¦ IL K2(Q,R)f(R)dt
Jq-p L Jr q

f" \f(R) dtR ¦ (R K, (S, Q) K2 (Q, R) dzQ
Jr p L Jq p

(3.12)

le point S étant quelconque mais fixe pendant l'intégration et

K\, K2, f(R) des fonctions continues quelconques de
n'importe quelle variable des points indiqués.
En appliquant cette formule à l'équation (3.11), nous
obtenons:

VL-UL(l-Xp) /'Jr.
[(xR-Xp) CMdsR] (3.13)

où M n'apparaît en effet que sous un seul signe « intégral ».
En introduisant les valeurs u par (3.10) et v par (3.13) dans
(2.14c) et en effectuant un changement de limites d'intégration
de façon à pouvoir appliquer à nouveau la formule de
Dirichlet, nous obtenons finalement l'équation intégrale
fondamentale en M:

Jq=o
Mp mMlp+uL [B-(l-xQ)(xp-xQ)Ads]ç

-V/J (xP-xQ)(Ads)Q
Jq=o

i
(3.14)

M(Q)K(Q,P)dsQ

en posant:

X(Q,P)= C(Q)s:
Q^P

[B + (xp-xR)(xQ-xR)A]R dsR

f 0 si: Q P Q

- D(Q) si: 0<Q<P
\ 0 si: Q>P

Nous pouvons mettre cette équation (3.14) sous la forme simple:

Mp =f(P, données)- f M (Q) K (Q, P) ds„ (3.15)
Jq=o

où M est la fonction inconnue du point P ou Q.
Après détermination de M, le calcul de « et v se fera par les

équations (3.10) et (3.11).
Voyons comment résoudre numériquement l'équation (3.15)
en M.
Fixons momentanément le point P P,, l'équation s'écrit
alors:

M(P,) f(P,, données) + f g(Q) dsQ
Jq-o

où g(Q)= -M(Q)K(Q,P,)
La fonction inconnue g, fonction de Q, est représentable par
une courbe inconnue. Supposons un instant les valeurs de
g(Q) aux points Q„ connues. Un polynôme de Lagrange (par
exemple) permet d'interpoler la fonction g (Q) entre ces
points (fig. 11):

' r t -\

(3.16)g(Q)- Z \g{Q„)- Z m,s')
1-0

donc:

i g(Q)dsQ= -Z [A„M(Q„)-K(Q,„P,)]
0=o „=o

avec A„= Z
Js 0 j=

Z {A si)
o '

Remarquons que ces coefficients A„ sont indépendants de la
fonction g inconnue et sont connus sitôt que la répartition des
Q„ est choisie.

L'équation fondamentale s'écrit donc:

M(Pj) f(P,, données)
L (3.17)

-2 [A„M(Q„)K(Q„,Pi)]
n=0

Si l'on choisit maintenant le point P, arbitraire identique
successivement à chacun des points Q„ choisis, on aura autant
d'équations algébriques linéaires que d'inconnues M(P,
Q„) aux points Qt QL. Donc:

P\ ßi M\ =/(Ôi. données)

i -2 A„M„K(Q„,Ql)

Pt g, M, f(Q„ données)

(3.18)
; -2 A„M„K(Q,„Q,)

n-0

PL= L ML f(QL L, données)
L

-2 A„M,,K(Q,„L)
n=0

Cette méthode de résolution conduit à la systématique
suivante, établie pour 5 intervalles As.

1. Diviser l'arc total sL en 5 intervalles As égaux (numérotation:

points extrémités: 0, 2, 4, 6, 9, 10; points milieux: 1, 3,
5, 7, 9).

Calculer successivement:

2. Les coefficients A, B, C, D aux milieux et aux extrémités
des intervalles ainsi que msiM à chaque extrémité des
intervalles.

3. Les valeurs des intégrales suivantes aux extrémités des in¬
tervalles:

MQ) -r Ads J,(Q)
ÇQ

A:
Jo

Ji(Q) fQ A x2 ds Ji(Q)=fQB
Jo Jo

J4(P) XpJ0(P)-J[(P)

x ds

ds

g(Q)

9si9, '93

Sq

a,

Fig. 11. — Interpolation par un polynôme de Lagrange de la fonction
inconnue glQ) entre les points Q„.
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si: Q=P 0
si: 0<Q<P
si: Q>P

J5(Q,P) xQxPJ0(Q<P)
-(xQ+xP)Jt(Q<P)
+ J2(Q<P) + f(Q<P)

Jb(P) Ji(Q L,P)

K(Q,P)= C(Q)J5(Q,P)-\ D(Q)
l 0

Les valeurs de J5 (Q, P) et K (Q, P) donnent un tableau à

double entrée suivant Q et P (tableau III).

Ce tableau comprendra 3 lignes pour chaque case:

— lre ligne: J5(Q,P): on calculera seulement les valeurs

pour Q «s P et on complétera symétriquement par
rapport à la diagonale;

— 2e ligne: K(Q, P) calculé pour toutes les cases;
— 3e ligne: coefficient des M,. On multipliera les valeurs

des K(Q, P) de chaque colonne par le coefficient A„ en
ajoutant 1 aux termes diagonaux.

Coeff. (M,) K (Q, P) ¦ A„ (Q) (+ \ pour les termes
diagonaux).

4. J7 (P) m%lMp + uL J6 (P) - vL J4 (P)

5. Nous obtenons ainsi un système de 5 équations à 5 inconnues

qui se résoudra par les méthodes numériques usuelles.

Q
p 2 4 6 8 10

2

Ji J5

K K

Coeff. + 1 Coeff.

4

Ji

K

Coeff. Coeff. + 1

6

Coeff. + 1

8

Coeff. + 1

10

Coeff. + 1

A„
75- st
288

50 sL
288

50 sL
288

75 sL
288

\9sL
288

(A suivre)

Actualité

Les «blow-outs» sous la mer
ne devraient plus poser de
problèmes

Une importante première étape
vient d'être franchie pour un des
plus gros problèmes affrontés
par l'industrie pétrolière
offshore, les explosions sous-marines

incontrôlées provenant des
plates-formes de forage mobiles.
On trouve derrière ce projet un
Norvégien, O. C. Ostlund, qui
aura battu plusieurs de ses
concurrents à travers le monde,
si son projet réussit. Ce projet est
encore aux essais, et il est trop
tôt pour dire quand l'équipement
en question sera mis en production.

En simplifiant, on peut dire que
M. Ostlund a créé une cloche
sous-marine rattachée aux
installations où le blow-out s'est
produit. Le pétrole et le gaz sont
séparés avant d'être collectés à la
surface, le gaz étant brûlé et le
pétrole recueilli. On pourra
mieux se rendre compte des
dimensions de la cloche quand on
sait qu'il faudra qu'elle soit
remorquée par trois navires
jusqu'à la zone de l'explosion.
D'après les calculs, si on place
correctement deux cloches sous-
marines, il sera possible d'atteindre

le lieu de l'explosion en deux
jours, depuis la côte
norvégienne.

M. Ostlund possède une vaste
expérience dans les compagnies
pétrolières norvégiennes et
internationales. Il a développé son
idée de sa propre initiative, mais
le projet a été soutenu par dix
compagnies norvégiennes en
relation avec l'industrie pétrolière.
La production de l'équipement
sera assurée dans le nord de la
Norvège, si le projet obtient un
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soutien suffisant. Cela dépend en
partie des résultats des essais en
cours. Le Secrétariat au pétrole
s'est montré favorable au projet
et les syndicats rattachés à

l'industrie pétrolière fondent de gros
espoirs à son sujet.

Scandinavie: toujours autant
de pollution venant du
continent

Les précipitations acides au-dessus

de la Norvège sont toujours
aussi acides. Des milliers de
tonnes de soufre sont déversées
sur la Norvège — pollution
provenant des cheminées d'usines
d'Angleterre et du Continent.
C'est dans les départements
d'Adger, dans le sud de la
Norvège, qu'on observe les pires
résultats. Le chercheur Einar Jo-
ranger de l'Institut Norvégien de
Recherche Aérienne déclare
qu'en ètè 1980, 100 kg de soufre
par km- sont tombés sur cette
région.

Même sur le plateau de Finn-
marksvidda, au nord, on trouve
un niveau élevé de pollution,
aussi étendu que dans l'intérieur
des régions du sud-est de la
Norvège. Néanmoins, sur ce plateau,
l'effet est réduit de moitié, car les

précipitations pluvieuses sont
peu importantes. En été 1980, un
total de 16 kg de soufre par km2
tombèrent au-dessus de Finn-
marksvidda, par rapport à la

moyenne de 21 kg durant la
période avril-août l'année précédente.

La pollution du soufre a des
variations météorologiques nettes.
M. Erik Lykke du Ministère de
l'Environnement souhaite que le
rapport récent de l'OCDE sur les
déversements de soufre contribue

à une rapide solution des
problèmes relatifs aux déversements

industriels. Le rapport
conclut en disant qu'il ne serait

pas très onéreux de réduire les
déversements de soufre, et par
conséquent la cause des retombées

acides. Le rapport renverse
totalement les idées acquises
précédemment.

Les efforts faits par les pays
nordiques afin que les autres pays
comprennent ce problème vont
être considérablement renforcés,
car le Canada également s'est
lancé dans la bataille contre la
pollution de l'air.

Bibliographie

Astronomie
Méthodes et calculs

par A. Acker et C. Jaschek. —
Un vol. 16x24 cm, 210 pages,
Editions Masson, Paris 1981.
Prix: FF 75.
Les propriétés des astres sont
connues dans la limite des
erreurs d'observation et d'interprétation

des données. Les
méthodes simples des anciens ont
conduit aux premières
approximations; les méthodes sophistiquées

actuelles permettent
d'extraire de meilleures informations
des signaux venus des étoiles.
Tout enseignement d'astronomie
doit donner une vision de l'univers

« pondérée» par le degré de
certitude des méthodes utilisées.
Ce livre rassemble les exercices
d'astronomie que les auteurs ont
traités depuis une quinzaine
d'années à Strasbourg. Dans la
troisième partie, on a repris la
plupart des exercices de C.
Jaschek, publiés en anglais par
l'Observatoire de Genève.

Sommaire

Repérage des astres par l'observateur

terrestre (coordonnées,
réfraction astronomique; mouvements

apparents; mouvement

propre; repérage d'un astre). —
Le système solaire (distances et
mouvements; dimensions et
formes; masses; luminosité,
température, composition chimique,
âge). Les étoiles (rayonnement,
luminosité, température; dimensions,

rotation, champs magnétiques;

masses; distances; étoiles
et galaxie, âges).

L'habitation captive
Essai sur la spatialité du
logement de masse

par C. Barbey. — Un vol.
16x24 cm, 136 pages, Editions
Georgi, St-Saphorin 1980. Prix
broché: 24 fr.
Cet ouvrage s'efforce de combler
une double lacune, en expliquant
d'abord l'éclatement des villes au
XIXe siècle sous la pression
démographique et la multiplication
du logement de masse, et en
apportant ensuite une information
sur l'intérieur de l'habitation et le

micro-espace. « L'habitation
captive» fait le point sur la spatialité
de la ville et du logement à l'appui

des sciences sociales et de
l'histoire, esquisse des orientations

passées sous silence par la
littérature consacrée à l'habitation,

et analyse un certain nombre

de caractéristiques de la relation

individuelle à l'espace do-
micilaire.
Ce livre se situe à la rencontre de
plusieurs domaines (l'histoire
sociale, la sociologie urbaine,
l'analyse spatiale) en cherchant à

cerner la problématique de
l'habitat de masse et du vécu de
l'habitant.

Sommaire:
Introduction. — Naissance du
logement de masse. —
Mécanismes du logement de masse. —
Morphologie du logis. — Le
vécu du logis. — La spécialité
domestique. — Bibliographie.
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