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ANALYSE DES CONTRAINTES

Ingénieurs et architectes suisses 3 septembre 1981

Corps creux

par Jacques Paschoud et Philippe Wieser, Lausanne

Les méthodes qui sont exposées dans cet article ont été développées a I'IMM
(Institut des métaux et machines de ’EPFL, anciennement LEMEPUL) dés
1945. Elles ont fait ’objet de nombreuses confrontations individuelles avec des
mesures expérimentales et ont été méme appliquées a des corps fort éloignés de
présenter la symétrie de révolution, tels que des pas de vis ou des baches spi-
rales. Constamment améliorées au cours de ces trente-cinq années, nous pen-
sons que leur état actuel en justifie la publication. Ces méthodes font ’objet de
développements plus étendus dans un cours de ’EPFL.

1. Introduction

Le but de cette étude est de déterminer
les équations générales caractérisant les
champs de contraintes et de déforma-
tions, et de calculer ces champs dans les
enveloppes minces de révolution sou-
mises a des charges «circulaires» (uni-
formes le long de la circonférence).

1.1 Définition du corps a étudier

Une enveloppe de révolution est un
corps creux rigide a la flexion, par op-
position aux membranes, présentant
une symétrie de révolution autour d’un
axe, dit axe de l’enveloppe, et dont
I’épaisseur est faible relativement aux
autres dimensions.

La forme d’une telle enveloppe est dé-
terminée complétement par le tracé
d’une coupe méridienne (fig. 1).
L’enveloppe est ainsi définie par les
points de sa «couche moyenne» (dont
la trace, dite fibre moyenne, est détermi-
née par le rayon normalement a I'axe,
I’abscisse x le long de I’axe ou I'arc s le
long de la fibre moyenne a partir du
point origine O) et par I’épaisseur h
comptée normalement a la couche
moyenne.

Une telle enveloppe est généralement li-
mitée par deux sections coniques de ré-
volution coupant normalement la
couche moyenne. L’enveloppe peut tou-
tefois étre fermée, donc couper 'axe a
I'une ou l'autre de ses extrémités.

7/
Tl
e S e

x=l

Fig. 1. — Coupe méridienne d'un élément de
coque de révolution.

1.2 Hypothéses

La détermination des équations géneé-
rales sera faite sur la base des hypo-
theses suivantes:

— le corps étudié et les charges qui lui
sont appliquées sont de révolution,
les contraintes et les déformations
résultantes seront donc «circu-
laires ».

Les hypothéses qui suivent sont basées
sur des approximations classiques dans

la théorie des enveloppes empruntées a

la théorie de la flexion des piéces pris-

matiques et comme telles justifiées par
la pratique:

— les déformations sont parfaitement
elastiques, répondent a la loi de
Hooke et sont suffisamment petites
pour négliger leurs influences réci-
proques les unes sur les autres. Elles
pourront donc étre assimilées a des
différentielles. Le principe de super-
position est alors applicable. D’autre
part, cette hypothése permettra de
calculer les efforts intérieurs de I’en-
veloppe sur la base de la surface
moyenne non déformée;

— les sections planes et normales a la
couche moyenne avant déformation
restent telles apres déformation (hy-
pothése de Bernoulli);

— les tensions tangentielles 7 et nor-
males a la couche moyenne o. n’en-
gendrent que des déformations né-
gligeables.

1.3 Conventions

Les sens positifs des cotes, des efforts in-
térieurs et des déplacements sont définis
par la figure 2.

2. Equations genérales

La détermination des équations géné-
rales sera développée de la maniere
montrée par le tableau I.

2.1 Calcul des déformations

Un élément d’enveloppe est découpé
par deux plans méridiens faisant entre
eux I’angle circonférentiel dy (fig. 3).

TABLEAU I

Calcul des

Equations

Contraintes

déformations

générales

Loi de Hooke

Principe
d’équivalence

Efforts int. ’

Equilibre
d’un élément
de coque

Y Mextp

Xp !

Fig. 2. — Notations et conventions.

Fig. 3. — Elément de coque de révolution d'angle circonférentiel dy.
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Fig. 4. — Déplacements d'un élément de coque dans son plan méridien.

Les déplacements et les déformations de cet élément seront
circulaires donc uniformes le long des circonférences
moyennes de I’enveloppe.

Il résultent de:

— un déplacement perpendiculaire a ’axe: y

— un déplacement paralléle a I'axe: §

— une rotation dans le plan méridien: 9

— un déplacement relatif des deux faces de I’élément: d(ds)
— une rotation des deux faces de I’élément: d9

La figure 4 représente la coupe méridienne, avant et aprés dé-
placements d’un élément. Les grandeurs négligées sont du 2¢
ordre, en h/r et les déformations.

Nous obtenons alors:

— larotation: 9 = tg9 =

a+c
— la déformation longitudinale: ¢, = %(b'—b)

I
"(2)

En développant ces expressions et en négligeant les infini-
ments petits d’'un ordre supérieur, nous obtenons enfin:

— la déformation circulaire: &. =

[r(Z)—r(2)]

dy do .
Q—Ecosw—gsm(p
do dy . a9
ss—zcosq)+ dssm(p—zd—s 2.1)

_y_ 9.
£ = = zrsm(p

2.2 Des déformations aux contraintes

Lions les contraintes aux déformations par la loi de Hooke, en
rappelant que nous négligeons I'action de o. sur les déforma-
tions.

Eg; = o, —po.

EE(' = O, — UO;

Ee.= —p(o,+ o) = —ﬁ(6s+ &)
donc:

E
o = I_—uz(ﬁs“l' HE)

__E J(4 Cod z
= l—uz[( X cosp + T siInQ + [ ’ )
d9 I .
—Z(E-}- ,uTsmq))]
2.2)
E
O, = 1__#2'(8(+ /J.b‘x)
E ds dy . y
=l—_;12 #_(ZS-COS¢+#ESII](D+T
g 39 .
—z(,ud—s+75m(p)]
2.3 Des contraintes aux efforts intérieurs
Le principe d’équivalence permet d’écrire (fig. 5):
N=ffG’dQ et M=ffo;de
[#) o
alors:
g, = % + ]MX z 2.3)
avec:
Q2 =hrdy
[ (fig.6)
I = ]—2‘ rdu/

en négligeant les termes du 2¢ ordre en A/r.

Fig. 5. — Contraintes normale et circulaire.

Fig. 7. — Projections de N, et M, respectivement dans et perpendiculai-
rement au plan médian d'un élément de coque d'angle circonferentiel dy.
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Xp, Yp, M,,: éléments de réduction en P de tous les efforts
extérieurs agissant entre O et P
dM, dv: efforts résultant des actions latérales.
L’équilibre de cette bande élémentaire s’exprime par les trois
équations suivantes:
Hp = HO —Xp
¥ Pd vV
VP =; VO — ip + f
o 2.7)
PM,. . PN,
Mp = Ms,a,P+f Lsingds —f —< (xp—x) ds
o T o r
Fig. 6. — Effort normal et moment longitudinaux. avec:

en négligeant les termes du 2¢ ordre en h/r.
L’identification des équations (2.2) et (2.3) revient a égaler les
termes fonction et indépendant de z:

_ Edy dé dy . y

N = 1—#2hr( s cos @ + + sing + u p )
2.9

Edy ,, (d9 9 .

o l2(l—u3)h r( as THT sm(p)

Dans le sens circulaire, les tensions o, peuvent également étre

composées en une force normale N, et un moment M, qui, par

raison d’uniformité seront également totalisés sur une surface

Q = hrdy, donc:

ds = rdy et

M

L=1

Nous obtenons alors, en faisant le méme raisonnement que
pour N et M:

- Edy (Y, A Y g
N, = l—,uzhr(r +u T cosq;+,uds sm(o)
(2.5)
__Edy 5 (I [
M, 12(1_#2)h r( rsm(p+/1ds)

2.4 Réactions secondaires des bandes éléementaires les unes
sur les autres

Pour exprimer I'équilibre de la bande dans son plan médian, il
convient de remplacer N.et M. par leurs actions dans ce plan
meéridien soient: N, par sa projection dans ce plan et M, par sa
projection perpendiculaire a ce plan (fig. 7).

Nous obtenons ainsi:

dV=%ds et dM=%sin(pds (2.6)

avec les sens positifs de la figure 8.

2.5 Equilibre d'une bande élémentaire d'angle dy

Il est désormais possible d’exprimer I’équilibre, dans son plan
médian, de la bande élémentaire, de longueur fixée OP, isolée
et sollicitée dans son plan par I’ensemble des efforts suivants:

Hy, Vi, M. efforts dans la section origine
Hp, Vp, Mp: efforts dans la section au point P
Ve
Mp
Yi
Ho A
Mext
P Xp
Fig. 8. — Equilibre, dans son plan médian, d'une bande élémentaire de

coque d'angle circonférentiel dy.
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Mo, = Mo+ Ho(rp—ro) — Vo xp— My,

2.6 Egquations générales

En rassemblant et combinant les équations (2.1), (2.4), (2.5) et
(2.7), et en effectuant le changement de variables:

()=(=a%a" ()

nous obtenons alors le syst¢éme d’équations générales des
corps creux sous forme intégrale:

2.8)

P
a) up =u0+f CMds
0
1 . P P
b) vp =v0+f udx+fFNds
0 0

. B PN
©) Np = Ngap+ sm(pp(foAv ds+uJ; Tds)

2.9)
P *
d) Mp = Ms(atp—j(; Av (xp—x)ds
P
—u[ E(xp—x)ds
o r
P P
+f Buds+f D M ds
0 0
et les équations parfois utiles:
a) N. =Arv'+uN
b) M.= Bu——+uM (2.10)
sin ¢
a) Hp = HO_XP
P ” PN
b) Vp = Vsm,,+f Av ds+/,zf LIPS
0 o r
s 5 " Yoyt 2.11)
) 8 = b0 [ ar—y [ dx
I'[)
1 (**N
-+ E . mdx
avec:
MS“”I’ = My—VoXp+ HO(rP_rO)-Mele
Nyap = (Hy cospp + Vysingp)
— (Xp cos@p + Ypsin ¢p)
Vsuup = Vo—¥p
< E dy
O = (-m°%
2
4= 12 (1 ]—+;t ) h
= 2.12)
(I —u?) h¥sin? ¢ (2.
p=t=b e
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C=r'““h3
_ sing

D =
__sing

F = 12hrt-u

2.7 Effets de l'effort normal N sur les déformations

L’allongement de la couche moyenne dd aux forces longitudi-
nales N n’a généralement qu’une influence faible sur les défor-
mations de I'enveloppe. D’autre part, le fait qu’une valeur de
N approximative (par exemple: N = N cmprane) €St pratique-
ment toujours connue a priori permet de simplifier grande-
ment les équations générales.

En effet, posons:

P
vp = v;;—j(; F Nds

(2.13)
P P mn
m\l:llp = M\lulp _f (XP_X)(AJ' FNds +T N) ds
0 0
Remarquons que:
0
vy = v[‘,—f FNds =v
0
Les équations (2.9) s’écrivent alors:
P L
a) up = u0+f CMds = uL—f CMds
0 P
Xp N,
b) v =v+f udx=v—f u dx
i % 1 Lk (2.14)

c) Mp=m x) ds

SlillP

P P
+f Buds+fDMds
0 0

La solution de ces équations, trouvée a partir de cette premiére
approximation de N, peut étre au besoin améliorée par récur-
rence avec I’équation (2.10a).

Nous avons ainsi établi les équations générales des corps
creux. Leur forme intégrale a permis d’y introduire directe-
ment les conditions aux limites. Nous avons par exemple écrit
les équations (2.14 a et b) avec les conditions en O ou en L.

P
—f Av(xp—
0

3. Meéthodes de résolution

3.1 Introduction

Nous présentons trois méthodes de résolution différentes s’ap-
pliquant pratiquement a trois types différents de corps creux
caractérisés par leur longueur axiale | comprise entre les points
O et L (fig. 1 et 2 et tableau II).

TasLEAU 11

1 M<2 /(rk cos @),,: corps court méthode par approximations successives
2 125 /(rh cos @),,: corps long

3 dans et hors de ces deux limites

méthode par amortissement

méthode générale

(L’indice « m » signifie moyen entre O et L.)

La méthode générale (3) est toujours applicable. Elle conduit a
des calculs plus étendus que les deux autres méthodes, valables
par contre uniquement pour des formes particuliéres de corps
creux.

3.2 Méthode par approximations successives

La forme intégrale des équations générales suggére de calculer
de facon élémentaire les valeurs des inconnues par approxi-
mations successives en partant d’une loi de variation, numeéri-
que ou graphique (méme analytique), arbitraire mais logique
pour I'une d’entre elles, par exemple M ?, et en la corrigeant

successivement et progressivement au moyen des équations
elles-mémes.

Ayant obtenu trois approximations successives de la fonction
cherchée (M,, M,;;, My;;), il est possible d’extrapoler le proces-
sus de convergence vers une valeur sensiblement égale a la va-
leur définitive My par I'expression:

(M —My;)?
My= M, —————"———
g MM —2My + My,
3.3 Méthode par amortissement

En dérivant par rapport a I'abscisse x et en combinant les
équations (2.14), on obtient une seule équation différentielle en
v, qui s’écrit:

(Rappelons que v représente un déplacement radial)

v Qe +ﬂvl'+yv’+77v = 5 (31)
avec:
(rlthicospy u tge
= r'=#h3 cos 2 r
p =t cosp)”  tge (r'7th cospy
T T4 W cosp r r'-#hicose
t n(tee )
(s 0-unfse)
ok (r' = h? cos )’ (32)
= - '“)[( r) r'=1h3cos g

+ 252 (%) ]

_12(-pY
" (rhcosg)?

£ — mblill
r'=4 h3 cos

Il s’agit d’'une équation différentielle linéaire du 4¢ ordre a
coefficients et 4 second membre variables qui n’a pas de solu-
tion analytique connue.

Considérons le cas particulier du cylindre & épaisseur
constante, I’équation (3.1) devient ainsi:

//H+ nv g
12 (1 —p?
avec: n= # = constante
r* h?
e Mg _
¢ = RETyA constante

admettant alors comme solution:
v = v +e 9 (C, coswx + C, sin wx)
+e~@U=Y[Cycosw (I —x) + Cysinw (I —x)]

) . . . ,
v, = #— :  solution particuliére qui représente la
(1=p?) déformation de membre
ey 1
= 7 n

La solution générale est la somme de deux termes qui sont le
produit d’une exponentielle décroissante par une fonction pé-
riodique (fig. 9).

L'expérience et I'analyse montrent que pour les corps de révo-
lution de rayon et d’épaisseur variables (cas général), ayant
une longueur axiale / > 5,/(rhcos¢), , le phénoméne de
flexion est créé par les conditions limite O et L, et I'influence
d’une extrémité sur I'autre est négligeable.

D Cette limite, résultant d’une simplification d'un critére de conver-
gence trouvé sous une forme compliquée inapplicable, n'est qu'ap-
proximative, il peut donc arriver excepnonnellement que méme dans
cette limite la méthode diverge, ce qu’on voit trés rapidement.

2) Les valeurs de départ pourraient dans ce cas étre Mgai.
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Il y a donc analogie avec le cas du cylindre a épaisseur
constante et la solution trouvée pour ce cas peut étre étendue
au cas général pour en trouver une solution approximative
suffisante.

Considérons en x = 0, un «petit domaine» ou I’équation dif-
ferentielle est a coefficients constants (calculés en x = 0).

Les valeurs des efforts et déplacements seront calculés en
x = 0, 'amortissement se faisant de O a L.

I1 s’agit alors de déterminer les coefficients d’une fonction du

type:

v =v,+e " (C, cosp,x + C,sinp,x) (3.3)
v, étant la solution particuliére:
m', r't# cos
y = Zsa !~ COSP (3.4)

125 (1—u2)

et p;, p» a déterminer a partir des coefficients «, f3, y et n de
I’équation sans second membre.

En résolvant I'équation caractéristique de cette équation diffé-
rentielle du type:

n*+2an*+pn*+yn+n =0
ou
(n*+an+b)(n*+a'n+b") =0

nous obtenons:

a 2
pi=75 et py=7Vb—pj (3.5)
avec:
a=4y4n" - l+az—_’é‘+a
/4
(3.6)
a’ 1 —2aja+ Bla® + yl|a’
b=,
2 1 —ala
et
- _pgyl Qaja? v
p=F 2 1-2a/a 2a
(3.7)

a 1-2aja

. 2a/a)? (2a 1-— 2 (y2a)?
an’ = |4+ 220 (20 Lo2le ) (a)

Il y a plusieurs fagons de résoudre la 17 équation (3.6), signa-
lons que si I'on procéde par approximations successives, la
convergence est généralement trés rapide a partir de 8° = ff et
n =

v(x) étant ainsi connu, déterminons les efforts et les déplace-
ments agissant au point O, c’est-a-dire My, V,,, H, u et v,.

Les équations (2.14) donnent:
M,
@

d’autre part I’équation (2.11b):

PN P (P P
Vp = Vsmp+;1f—ds+ff FNds+f Avds
o’ 0 Jo 0

V,

stat p

vll
f cos¢p ou M=?cosq)

u=v et M=

en y introduisant ’équation (2.14c) dérivée, nous obtenons:

= B D
+

Ve = Vaap + Miap + L cosq)'M_Ml
4 1 S
S Sy SfO™)

En dérivant I’expression (3.3) et en la remplagant par sa valeur
en x = 0, (v'(0), v"(0), v""(0), dans ces différentes relations,
nous arrivons enfin aux deux équations suivantes:

My = Ziovo + Zao o + 30 M,

* * * 3-8

Vo = Ziovo + Zao o + X30 myu, + Hotgpg e
avec

Zio= —b(r'#hcosp)

* t
zm=zm(a_a+g§§k

X = —a(r'=#hdcosp),

20 b 1—p?(tgp\?

Z”_Zm{a_a— a (r) (3.9)

2 T |

3 —L(rhcos )3

YT R—u) o

<y Zio

230 = 230 3

Signalons que H, est généralement connu a priori par un sim-
ple équilibre statique?).

Nous avons ainsi déterminé les équations des efforts intérieurs
en x = 0, en fonction de déplacements de ce point.

La résolution de ce systéme impose deux conditions fournies
par des conditions de liaison, de symétrie ou d’appuis.

Remarque: pour certains types de géométrie de corps creux,
une méthode plus simple a été développée qui évite le calcul
de «a et b» pour déterminer les coefficients }; et 37. Cette
méthode est décrite en annexe 1.

3.4 Meéthode générale
Cherchons tout d’abord & éliminer u et v des trois équations
intégrales (2.14). Les deux premiéres en u et v s'écrivent
(fig. 10):
L
UQ=llL—f (CMdS)R
e (3.10)

Vp

L
v — u dx
L fQ:P( )o

Q et R étant des points courants respectivement entre P et L,
et Q et L. Remplagons dans vp, uy par son expression, il vient:

3) Hy peut parfois dépendre de conditions de déformation axiale et
étre hyperstatique; nous devrons alors tenir compte de I’équation
(2.11¢).

Fig. 9. — Corps long: amortissement en f(x) du déplacement radial.

Fig. 10. — Méthode générale: définition des points courants Q, R.
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Vp = VL—uL([—XP)'i'fL ’:dXQJ.L (CMdS)R] (311)
0=p -0

La troisiéme équation (2.14) du moment M s’écrit:

P
Mp = mslalp"'f (BudS)Q
0-0 (2.14¢)

P P
—fQ=0(x,,—xQ)(Avds)Q +fQ=0(D Mds),

Pour que I'inconnue M n’apparaisse au maximum que sous
un seul signe «intégral», nous allons transformer les équa-
tions (3.11) et (2.14c) a I'aide de la formule de Dirichlet:

L L
[ [KI (S, 0) dz- f K (Q. R) f(R) dig ]
0=F k=g (3.12)

i R
= f [f(R) dig- f K, (S, Q) K» (0. R) dZQ]
R=P Q=P

le point § étant quelconque mais fixe pendant I'intégration et
K,, K>, f(R) des fonctions continues quelconques de n’im-
porte quelle variable des points indiqués.

En appliquant cette formule a I’équation (3.11), nous obte-
nons:

L
vp = v —uy (I —xp) +f

[(xg —xp) C M dsg] (3.13)

ou M n’apparait en effet que sous un seul signe «intégral ».
En introduisant les valeurs u par (3.10) et v par (3.13) dans
(2.14¢) et en effectuant un changement de limites d’intégration
de fagon a pouvoir appliquer a nouveau la formule de Diri-
chlet, nous obtenons finalement I'’équation intégrale fonda-
mentale en M:

P
Mp = oyt [ 1B=(1=x0) (xn=30) A dslg

P
- VLJ-Q=0(XP_XQ) (A ds)g (3.14)

—fL M(Q) K(Q, P) ds,
0=0

en posant:

Q<P
K@ P) = C(@ """ 1B + (xp—xa) (xg—x1) Al ds

0 si: Q=P=0
— 1 D(Q) si: 0<Q<P
0 si: 0> P

Nous pouvons mettre cette équation (3.14) sous la forme sim-
ple:

L
Mp = f(P, données)—f M(Q) K(Q, P)ds, (3.15)
0=0
ou M est la fonction inconnue du point P ou Q.
Apres détermination de M, le calcul de u et v se fera par les
équations (3.10) et (3.11).
Voyons comment résoudre numériquement I’équation (3.15)
en M.
Fixons momentanément le point P = P, I’équation s’écrit
alors:

M (P)) = f(P;, données) +J‘L ng(Q) dsg

ou g(Q)=—-M(Q)K(Q P)
La fonction inconnue g, fonction de Q, est représentable par
une courbe inconnue. Supposons un instant les valeurs de
g(Q) aux points Q, connues. Un polyndme de Lagrange (par
exemple) permet d’interpoler la fonction g (Q) entre ces
points (fig. 11):

L

L
g(Q) = Z‘ g(Qn) Z()(A,,/S/) (3I6)
j=

n=_

donc:

O[AIIM(QII) g K(QIH 1)1)]

n=

7 L
f g(Q)dsy = — 3
0=0

S| L .
avec An = Z (A,,,S/)

s=0 j=0 '
Remarquons que ces coefficients 4, sont indépendants de la
fonction g inconnue et sont connus sitot que la répartition des
0, est choisie.

L’équation fondamentale s’écrit donc:
M(P)) = f(P;, données)
L
) Z [An M(Qn) K(Qn’ Pl)]

n=0

3.17)

Si 'on choisit maintenant le point P, arbitraire identique suc-
cessivement a chacun des points Q, choisis, on aura autant
d’équations algébriques linéaires que d’inconnues M (P, =
0,) aux points Q, ... @;. Donc:

P = Q, M, = f(Q,, données)
/i
i Z—O Au Mn K(Q/n QI)
P = Qi M; = f(Q, données)

L (3.18)
= ZO An Mn K(an QI)

n=

P=L M,;= f(Q,=L,données)

L
= Z An Mn K(Qua L)

n=0
Cette méthode de résolution conduit a la systématique sui-
vante, établie pour 5 intervalles As.

1. Diviser I'arc total 5; en 5 intervalles As égaux (numérota-
tion: points extrémités: 0, 2, 4, 6, 9, 10; points milieux: 1, 3,
5,7,9).

Calculer successivement:

2. Les coefficients 4, B, C, D aux milieux et aux extrémités
des intervalles ainsi que m, a chaque extrémité des inter-
valles.

3. Les valeurs des intégrales suivantes aux extrémités des in-
tervalles:

(0] Q
Jo(Q)=J; Ads J|(Q)=f0 Ax ds

Q Q
Jz(Q)=J; Ax*ds J;(Q)=J(; B ds

Jo(P) = xp Jo (P)—J, (P)

a(Q)
——\\r/‘l
I

| I ’ |
| [} |
I I{ : | : {
A B IV
I S

9 :gn % 19 9. 195 19
PR IR PAERE A e
| D et o e |

I T VU W
Q Q, Q Q, Qg Q. Q
Fig. 11. — Interpolation par un polynome de Lagrange de la fonction

P P pol] 8 y

inconnue g(Q) entre les points Q,,.
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Js(Q, P) = xpxpJy(Q<P)

—(xp+xp) J1 (Q<P)
+ JL,(Q<P)+ J;(Q<P)

Jo(P) = Js(Q=L, P)

K(Q,P)= C(Q)-J5(Q, P)—

0 si: OQ=P=0
D(Q) si: 0<Q<P
0 si: O>P

Les valeurs de J5 (Q, P) et K (Q, P) donnent un tableau a
double entrée suivant Q et P (tableau III).

Ce tableau comprendra 3 lignes pour chaque case:

— 1 ligne: Js(Q, P): on calculera seulement les valeurs
pour Q< P et on complétera symétriquement par rap-

port a la diagonale;

— 2¢ligne: K (Q, P) calculé pour toutes les cases;

— 3¢ ligne: coefficient des M;. On multipliera les valeurs
des K (Q, P) de chaque colonne par le coefficient 4, en
ajoutant | aux termes diagonaux.

Coeff. (M;) = K(Q, P) - A, (Q) (+1 pour les termes dia-

gonaux).

4. J7(P) = myy, + up Js (P) — v, J4(P)

5. Nous obtenons ainsi un systeme de 5 équations a 5 incon-
nues qui se résoudra par les méthodes numeériques usuelles.

TasLeau 111

7 9] 2 4 6 8 10 J;
Js Js £
2 K K —
Coeff. + | CoefT. J;
Js =
4 K —
CoefT. Coeff. + 1 Jq
6 =
Coeff. + 1 e
8 s
Coeff. + 1 Jq
10 =1
Coeff. + 1 Jy

A 75-5; 50-5; 50-5; 75-s1 19-5;

il 288 288 288 288 288

(A suivre)

Actualité

Les «blow-outs» sous la mer
ne devraient plus poser de
problémes

Une importante premiére étape
vient d’étre franchie pour un des
plus gros problémes affrontés
par [I'industrie pétroliere off-
shore, les explosions sous-ma-
rines incontrolées provenant des
plates-formes de forage mobiles.
On trouve derriére ce projet un
Norvégien, O. C. Ostlund, qui
aura battu plusieurs de ses
concurrents a travers le monde,
si son projet réussit. Ce projet est
encore aux essais, et il est trop
tot pour dire quand I’équipement
en question sera mis en produc-
tion.

En simplifiant, on peut dire que
M. Ostlund a cré¢ une cloche
sous-marine rattachée aux instal-
lations ou le blow-out s’est pro-
duit. Le pétrole et le gaz sont sé-
parés avant d’étre collectés a la
surface, le gaz étant brulé et le
pétrole recueilli. On pourra
mieux se rendre compte des di-
mensions de la cloche quand on
sait qu'il faudra qu’elle soit re-
morquée par trois navires
jusqu’a la zone de I'explosion.
D’aprés les calculs, si on place
correctement deux cloches sous-
marines, il sera possible d’attein-
dre le lieu de I’explosion en deux
jours, depuis la cote norve-
gienne.

M. Ostlund possede une vaste
expérience dans les compagnies
pétroliéres norvégiennes et inter-
nationales. Il a développé son
idée de sa propre initiative, mais
le projet a été soutenu par dix
compagnies norveégiennes en re-
lation avec I'industrie pétroliére.
La production de I'equipement
sera assurée dans le nord de la

Norvége, si le projet obtient un
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soutien suffisant. Cela dépend en
partie des résultats des essais en
cours. Le Secrétariat au pétrole
s’est montré favorable au projet
et les syndicats rattachés a I'in-
dustrie pétroliere fondent de gros
espoirs a son sujet.

Scandinavie: toujours autant
de pollution venant du
continent

Les précipitations acides au-des-
sus de la Norvege sont toujours
aussi acides. Des milliers de
tonnes de soufre sont déversées
sur la Norvege — pollution pro-
venant des cheminées d’usines
d’Angleterre et du Continent.
C’est dans les départements
d’Adger, dans le sud de la Nor-
vege, qu'on observe les pires reé-
sultats. Le chercheur Einar Jo-
ranger de I'Institut Norvégien de
Recherche  Aérienne  déclare
qu’en été 1980, 100 kg de soufre
par km? sont tombés sur cette ré-
gion.

Méme sur le plateau de Finn-
marksvidda, au nord, on trouve
un niveau élevé de pollution,
aussi étendu que dans I'intérieur
des régions du sud-est de la Nor-
vege. Néanmoins, sur ce plateau,
I’effet est reduit de moitié, car les
précipitations  pluvieuses sont
peu importantes. En été 1980, un
total de 16 kg de soufre par km?
tombérent au-dessus de Finn-
marksvidda, par rapport a la
moyenne de 21 kg durant la pé-
riode avril-aolt I’année preécé-
dente.

La pollution du soufre a des va-
riations meétéorologiques nettes.
M. Erik Lykke du Ministére de
I’Environnement souhaite que le
rapport récent de 'OCDE sur les
déversements de soufre contri-
bue a une rapide solution des
problémes relatifs aux déverse-
ments industriels. Le rapport
conclut en disant qu'il ne serait

pas trés onéreux de réduire les
déversements de soufre, et par
conséquent la cause des retom-
bées acides. Le rapport renverse
totalement les idées acquises pre-
cédemment.

Les efforts faits par les pays nor-
diques afin que les autres pays
comprennent ce probléme vont
étre considérablement renforcés,
car le Canada également s’est
lancé dans la bataille contre la
pollution de I'air.

Bibliographie

Astronomie
Meéthodes et calculs

par A. Acker et C. Jaschek. —
Un vol. 16x24 cm, 210 pages,
Editions Masson, Paris 1981.
Prix: FF 75.

Les propriétés des astres sont
connues dans la limite des er-
reurs d’observation et d’interpré-
tation des données. Les mé-
thodes simples des anciens ont
conduit aux premieres approxi-
mations; les méthodes sophisti-
quées actuelles permettent d’ex-
traire de meilleures informations
des signaux venus des eétoiles.
Tout enseignement d’astronomie
doit donner une vision de 'uni-
vers « pondérée» par le degré de
certitude des méthodes utilisées.
Ce livre rassemble les exercices
d’astronomie que les auteurs ont
traités depuis une quinzaine
d’années a Strasbourg. Dans la
troisiéme partie, on a repris la
plupart des exercices de C. Jas-
chek, publiés en anglais par
I'Observatoire de Geneve.

Sommaire

Repérage des astres par I'obser-
vateur terrestre (coordonnees, reé-
fraction astronomique; mouve-
ments apparents; mouvement

propre; repérage d'un astre). —
Le systeme solaire (distances et
mouvements; dimensions et
formes; masses; luminosité, tem-
pérature, composition chimique,
age). Les étoiles (rayonnement,
luminosité, température; dimen-
sions, rotation, champs magnéti-
ques; masses; distances; étoiles
et galaxie, ages).

L’habitation captive
Essai sur la spatialite du
logement de masse

par G. Barbey. — Un vol.
16 x 24 cm, 136 pages, Editions
Georgi, St-Saphorin 1980. Prix
broché: 24 fr.

Cet ouvrage s’efforce de combler
une double lacune, en expliquant
d’abord Iéclatement des villes au
XIXe siecle sous la pression dé-
mographique et la multiplication
du logement de masse, et en ap-
portant ensuite une information
sur I'intérieur de I’habitation et le
micro-espace. « L’habitation cap-
tive » fait le point sur la spatialité
de la ville et du logement a I'ap-
pui des sciences sociales et de
I’histoire, esquisse des orienta-
tions passées sous silence par la
littérature consacrée a I’habita-
tion, et analyse un certain nom-
bre de caractéristiques de la rela-
tion individuelle a I'espace do-
micilaire.

Ce livre se situe a la rencontre de
plusieurs domaines (I’histoire so-
ciale, la sociologie urbaine,
I'analyse spatiale) en cherchant a
cerner la problématique de I'ha-
bitat de masse et du vecu de I'ha-
bitant.

Sommaire:

Introduction. — Naissance du
logement de masse. — Méca-
nismes du logement de masse. —
Morphologie du logis. — Le
vécu du logis. — La spécialité
domestique. — Bibliographie.
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