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MÉCANIQUE Ingénieurs et architectes suisses 12 iuin 1980

Les critères de rupture en analyse
des contraintes

2e partie : Sollicitations statiques

par Nicolas Xenophontidis, Lausanne

3. Critères de rupture basés sur la
limite d'écoulement

3.1 Généralités

La condition d'écoulement dans l'état de
contrainte tridimensionnelle est
essentiellement la généralisation du concept
d'écoulement lors d'une charge monoaxiale.

En général, la condition d'écoulement

peut être exprimée soit par
l'équation

f(oi}) Ce (3.1)

où Ce représente une constante liée à la
limite d'écoulement
soit encore par l'équation

Lors du début de l'écoulement, ces
critères correspondent assez bien aux
résultats expérimentaux.

3.2 Critère du plus grand cisaillement
(Tresca)

Selon le critère de Tresca l'écoulement
survient dès que la plus grande
contrainte de cisaillement atteint la valeur
limite Ce. Quand on utilise les contraintes
principales, cette condition prend une
forme simple. En effet, en supposant
que G\ > 02 > (73, le critère de Tresca
est donné par l'expression

Vi (oï-ffs) C, (3.5)

A (0«) 0 (3.2)
ou

A (0«) s'appelle fonction d'écoulement. égale à

La contrainte maximum de cisaillement
d'un essai de traction monoaxiale, au
moment du début de l'écoulement, est

Pour les matériaux isotropes, la condition

d'écoulement doit être indépendante
de la direction et peut par conséquent
être exprimée comme une fonction des
invariants de l'état de contrainte ou
encore comme une fonction symétrique
des contraintes principales. La relation

(3.1) prendra ainsi la forme :

où ae représente la contrainte d'écoulement.

Ainsi, en se référant à la contrainte
d'écoulement d'un essai de traction, le
critère de Tresca devient (voir fig. 3.1).

0i- 02 0e (3.6)

h (0i. 02. 03) C, (3.3)

L'expérience montre que l'écoulement
n'est pas affecté par une pression
hydrostatique modérée. Ceci permet d'exprimer

la relation (3.2) au moyen des
invariants du déviateur des contraintes
Izd e* 'sd '•

AihD,IW) 0 (3.4)

Parmi les divers critères d'écoulement
qui ont été proposés, nous citerons les
critères de Tresca et de von Mises.

Lors d'un essai de cisaillement pur le
critère de Tresca prend la forme (voir
fig. 3.1)

01—08 2k (3.7)

Dans l'hypothèse où l'on omet de définir
l'ordre de grandeur des contraintes, les

sollicitations ti^^ Cy) sont données

par une des trois relations (3.8):

Tl

T2

±'/î(01-0a)
±'/i (er2-03)

±V4(ff8-ffi))
(3.8)

* T

O-i Oi-.Q
02

Traction simple Cisaillement pur

D'autre part, puisque re ae/2, il vient

01—02 ±0«
02—03

03—01

±0«
±0e

(3.9)

En admettant que er3 est nul, on trouve
les deux cas suivants, étant donné que
la condition d'écoulement dépend
évidemment des signes de ai et a^:

a) Pour ai et 0% de signes opposés

01 — 02 ±0e (3.10)

b) Pour oï et <72 de même signe

0i ±0e. 02 ±0« (3.11)

La figure 3.2 représente graphiquement
les relations (3.10) et (3.11).
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Fit. 3.1. — Cercles de Mohr dans le plan a, t.

Fig. 3.2. — Théories de rupture basées sur la
limite d'écoulement.

Critère de Tresca
_- — Critère de von Mises

3.3 Critère du plus grand travail de
distorsion (Von Mises)

Les conditions d'écoulement de Tresca,
appliquées aux problèmes tridimensionnels,

présentent certaines difficultés
mathématiques. Ce fait a conduit von
Mises à l'idée de remplacer le prisme
hexagonal des figures 3.2 et 3.6 par le
cylindre circonscrit :

(01-02)2 + (02 -03)* +
+ (0s-0i)a 2(7? (3.12)

Cette relation montre que l'écoulement
survient quand le second invariant du
déviateur des contraintes I%d (voir relation

(2.18)) atteint la valeur spécifique

ho=C. (3.13)

Dans le cas où a3 0, la relation (3.12)
devient

of—O-iffa + a\ (7? (3.14)

L'expression (3.14) est celle d'une
ellipse, représentée à la figure 3.2.
De l'avis de plusieurs auteurs, la démonstration

de Novozhilov que nous
donnons ci-après conduit à une bonne
compréhension physique du critère de von
Mises.
Les données expérimentales montrent
que la déformation plastique des matériaux

polycristallins est intimement liée

aux contraintes de cisaillement. Ainsi,
il est logique de rechercher un critère
d'écoulement basé sur ces contraintes.
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Prenons la moyenne des contraintes de
cisaillement agissant sur tous les plans
autour d'un point et examinons si cette
valeur présente une signification
physique. L'équation (2.22) donnant la
contrainte de cisaillement en fonction de
l'orientation du plan de référence ; on
peut écrire

t% a\n\ + a\n\ -f a\n\—
— (axn\ + a2n\ + £r3n§)

Etudions la valeur moyenne de cette
expression et comparons le résultat aux
données expérimentales.
Dans le développement qui suit, nous
considérerons autour du point donné
une sphère complètement couverte
d'éléments plans de même surface. La valeur
moyenne de t| sur ces plans est donnée

par les expressions :

£t% 27 t2 AQ
k <• n /m oy

EAQ
i

N

avec

N nombre de facettes

AQ surface de la facette

En supposant que AQ tend vers dQ, on a

(TÎ)n
dQ

Q

En se référant à la figure 3.3, où les

axes sont orientés selon les directions
principales et en choisissant des coordonnées

sphériques, les cosinus directeurs de
l'élément de surface dQ s'écrivent

«x sinö cos ^
«a sinö sin <j>

w8 COS0

où

dQ r2 sinö d<f> dQ (ß 4 7tr2)

En introduisant la valeur de x\ dans
l'intégrale (3.15), on a

2jï n

(f»)moy JI / d4> \ a\ sin2 6- si

0 0

+ of sin20-cos2^ + (7§ COS20 —

((7i sin20-sin2^ + 02 sin20'COs2^ +

(78 cos20)2 sinfM»

À 3

W"\BÂ\ \
1 ° 2

' ^^ m
Fig. 3.3. — Sphère élémentaire autour du point O.
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L'intégration donne ainsi

V^nvmoy
1

Ï5 [(01-02)2 + (02-03)2 +

+ (03-0l)2] (3.16)

Cette relation est proportionnelle à I2d
et montre que le critère de von Mises est
équivalent au postulat suivant :

« L'écoulement plastique débute quand
(fn)moy dépasse une valeur critique. »

3.4 l'espace des

von Mises :
Représentation dans
critères Tresca et
courbes d'écoulement

Considérons l'espace repéré par trois
axes de coordonnées rectangulaires, portant

les contraintes principales oï, a% et
(73. Dans cet espace, l'état de contrainte
en un point peut être représenté par le

vecteur OP (fig. 3.4) dont les composantes

sont égales à ai, a% et a3.

(3-15) Fig.3.4. Espace des contraintes.

Décomposons OP selon la droite OZ,
dont l'équation est a\ a% as, et le
plan n perpendiculaire à OZ à l'origine O.

La composante OÂ représente la
contrainte hydrostatique et c'est pour cette
raison que la droite OZ est appelée axe

hydrostatique. La composante OB dans
le plan n représente le déviateur de l'état
de contrainte. Le plan n étant uniformément

incliné par rapport aux axes ait
il est donné par l'équation

01 + 02 + 03 0 (3.17)

Ce plan est appelé « plan du déviateur
de contrainte ».
Dans l'espace repéré par les axes ai, a%

et 03, la condition d'écoulement (3.3).

k (0i. 02. 0s) Cy (3.3)

définit une surface appelée surface
d'écoulement. Les conditions d'écoulement

étant indépendantes de la pression
hydrostatique, il est évident que ces
surfaces sont des cylindres ayant leurs
génératrices parallèles à l'axe
hydrostatique. Les points de l'espace qui sont
à l'intérieur de la surface cylindrique
correspondent à un état de contrainte
du domaine élastique, tandis que les
points qui se situent sur la surface
correspondent à l'état du passage du
domaine élastique au domaine plastique.
Nous appelons « courbe d'écoulement »
la trace de la surface d'écoulement sur
le plan du déviateur.
Si l'on considère le plan n depuis l'axe
hydrostatique, les contraintes principales -

liO

Fig. 3.5. — Proiection des axes ai. ai et as sur
le plan n.

*°'l

Y3

3^\

X*ffi

Fig. 3.6. — Courbes d'écoulement correspondant
aux critères de Tresca et de von Mises.

apparaissent placées symétriquement à
120° (fig. 3.5).
Examinons quelles sont les courbes
d'écoulement correspondant aux critères
de Tresca et de von Mises. Les conditions

3.9 définissent un prisme hexagonal
régulier dont l'axe ai a% as est
perpendiculaire au plan n (par exemple,
l'équation a^— a3 — ±0« représente un
couple de plans parallèles au plan défini
par les axes ai et ai a% <t3). La
projection du prisme sur le plan n est
donc un hexagone régulier (fig. 3.6).
Nous remarquons que le prisme de la
figure 3.6 découpe sur les axes ai, era et
a8 (voir aussi fig. 3.2) des segments de
longueur ae et que le rayon du cercle

/r
circonscrit à l'hexagone est égal à jlz. a„

r- 3

puisque cos (fls, o«) Yz. Ce cercle
3

n'est évidemment rien d'autre que la
courbe d'écoulement correspondant au
cylindre donné par la relation (3.12).

3.5 Commentaires

a) La condition de Tresca caractérise
d'une manière satisfaisante l'état
d'écoulement du matériau et
s'accorde avec les observations relatives
aux lignes de Lüder. Des recherches
plus approfondies indiquent que la
contrainte principale intermédiaire
exerce une certaine influence sur
l'état d'écoulement.

b) De nombreuses expériences montrent
que le critère de von Mises est plus
satisfaisant que celui de Tresca. En
effet, selon le critère de Tresca, nous
avions r« 0,5 a,. Le critère de von
Mises quant à lui peut prendre la
forme (voir 2.19)
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vi
(3.18)

et, pour le cisaillement pur (T t),
nous obtenons

y/3
0,577 ae (3.19)

c)

Cette dernière valeur semble plus
proche de la réalité, puisque les

coefficients expérimentaux se situent
entre 0,56 et 0,60.

Les deux critères examinés supposent
que les contraintes d'écoulement sont
identiques en traction et en compression

(voir fig. 3.2). Cette supposition
est satisfaisante pour plusieurs matériaux

ductiles. Cependant, d'autres
matériaux présentent une différence
notable entre les contraintes d'écoulement

en traction et en compression.
Le critère de la plus grande contrainte
normale et celui de Mohr prennent
toutefois en considération cette
différence de contraintes [6] 2.

4. Critères de rupture basés sur la
contrainte de traction

4.1 Introduction
La rupture en traction simple des matériaux

fragiles qui ne présentent pas de
limite d'écoulement est définie par la
contrainte de traction. Pour des matériaux

fragiles et ductiles disposant d'une
telle limite, le critère de rupture dans la
zone plastique est de nouveau la
contrainte de rupture.
Plusieurs théories ont été développées
pour prévoir la contrainte de rupture
dans le cas de charges combinées.

4.2 Critère de la plus grande contrainte
normale

Selon ce critère, proposé par Rankine, la
rupture apparaît dès que la contrainte
maximum de traction — ou la contrainte
minimum de compression — dépasse une
valeur limite. Soient aRt la contrainte
de rupture à la traction et aRc la
contrainte de rupture à la compression, la
rupture d'un élément soumis à une
sollicitation triaxiale alt er2, 03 surviendra
pour les contraintes suivantes :

0i 0jm ou Oi — aRc avec

0i > 02 et <i\ > (73

Il en est de même pour
02 0« ou (72 — Orc avec

02 > 0i et a2 > 03

et finalement pour
08 0fl« et C78 — Orc avec

03 > 0i et 03 > <72

(4.1)

Dans le cas d'un état bidimensionnel, les

relations (4.1) deviennent

2 Les chiffres entre crochets renvoient à la
bibliographie en fin de la quatrième partie
de cette étude.

*an

max

max\ 0i+ Oo
Jn

Fig. 4.1. — Contraintes Tmax et an d'un élément sollicité par les contraintes principales ai.

0| + Ö3

01-02
max

0n

Fig. 4.2. — Cercle de Mohr correspondant à Télément de la figure 4.1.

0i 0jM ou ai — aRc

02 0« OU (72 — Orc
(4.2) *max

01 — 03
;/(0»)

La figure 4.4 représente graphiquement
les relations (4.2). Selon cette théorie les

droites tracées définissent les valeurs des

contraintes conduisant à la rupturee.

4.3 Critère du plus grand cisaillement
(Tresca)

En se limitant à l'état bidimensionnel,
les équations (3.10) et (3.11) prennent
la forme :

/ 01 + 08
(4.4)

01 —02 ±0H
01 ±0B
02 ±0/8

(4.3)

4.4 Critère de Mohr
Mohr a admis que la rupture est amorcée

par la plus grande contrainte de

cisaillement, celle-ci étant une fonction
de la contrainte normale du plan
considéré. Admettons que 01 > Og > 08 et
référons-nous à la figure 4.1. Le critère
de Mohr est alors exprimé par les

relations

On remarquera que, selon cette hypothèse,

la rupture n'est pas influencée

par (7g.

Les cercles de Mohr correspondant à
l'élément de la figure 4.1 ont été représentés

à la figure ci-dessous.
Selon les relations (4.4), nous pouvons
supprimer les cercles intérieurs. A la
rupture, la dimension du cercle
extérieur dépendra de la position de son
centre sur l'axe des an. En procédant de
cette façon, on obtient une famille de
cercles de Mohr mur les états de rupture
du matériau. Pour construire leur
enveloppe commune, nous supposerons que
celle-ci est unique, quelles que soient les

grandeurs des contraintes principales
intermédiaires Og. C'est là une hypothèse

fondamentale dans la théorie
exposée. Il en résulte que chaque cercle
tracé, tangent à l'enveloppe, définit un
état de contrainte conduisant à la
rupture.

155



Analyse des contraintes Ingénieurs et architectes suisses 12 juin 1980

* T

0, ¦* Ch

Fig. 4.3. — Cercles de Mohr correspondant aux essais de traction et de compression simples ainsi
que celui correspondant à l'état <ri, a% et as.

Une application particulière de la théorie
de Mohr a été universellement adoptée
dans le cas des matériaux fragiles sollicités

biaxialement. Tout en se référant à
la figure 4.3, nous supposerons que les

enveloppes sont des droites tangentes
aux deux cercles correspondant aux
essais de traction et de compression.
Par les triangles semblables, nous
obtenons

AB
_

CD
_

EF
ÂG~ ~CG~ ~ËG

et par substitution des valeurs des
contraintes

01 — 03

Orc/2

0ÄC/2 + 0HC + 01 + 08
0fi( + ' H z—

0/Ö/2

0BW2 + l
Pour l'élimination de /, nous trouvons
par

CRC ,A C\aRc= 01-08 (4.5)
Om

L'équation (4.5) est utilisée dans le cas où

Fig. 4.4. — Théories de rupture.
—— Plus grand cisaillement
— — — Plus grande contrainte normale
— •—•"* Théorie de Mohr
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Orc < 03 < 0, (72 0

et0^ai^am (4.6)

Une pièce sollicitée en traction biaxiale
aura une rupture fragile quand la plus
grande contrainte principale deviendra
égale à aRt. Dans le cas de la compression,

c'est la valeur aRc qui constitue
la valeur limite pour la plus grande
contrainte principale.
Ainsi nous avons :

(02 0)< (73 < cri am
} (4.7)

0i 0flS

et

-Orc 03 < 01 < (02 0) 1

> (4.8)
03 —Orc I

Les équations (4.6), (4.7) et (4.8) sont
représentées graphiquement à la figure
4.4 où apparaissent également les
relations (4.2) et (4.3)-, (73 étant remplacée
par (72.

4.5 Commentaires

Lors de sollicitations biaxiales en
traction, les trois théories donnent des

résultats satisfaisants. Dans le cas où
les contraintes sont de signes opposés, le
nombre limité de résultats jusqu'à ce
jour indique que :

a) La théorie de cisaillement maximum
est à appliquer quand I aRt I

I 0Rc I

•

b) La théorie de Mohr est à appliquer
quand I O/m I # I oRc I.

5. Critères de rupture basés sur la
contrainte de rupture réelle

La rupture réelle des matériaux soumis
à des sollicitations multiaxiales est
difficilement prévisible. Même le cas de la
rupture d'une éprouvette sous l'effet

d'une charge axiale est extrêmement
compliqué. Ceci provient des contraintes
triaxiales, qui apparaissent à l'endroit où
l'éprouvette se rétrécit, ces contraintes
variant avec les déformations à mesure
que l'on s'approche de la rupture. Il en
résulte que l'essai de rupture d'une
éprouvette soumise à la traction simple
n'est pas d'un grand intérêt, puisqu'il
s'agit en somme de la rupture d'un matériau

soumis à des contraintes triaxiales
continuellement variables. Pour cette
raison, nous ne pouvons pas prévoir,
même grossièrement, la rupture réelle
d'une éprouvette soumise à un essai
monoaxial.
Les matériaux fragiles ne présentent pas
de phénomène de striction, mais les
imperfections locales jouent un rôle
déterminant dans le processus de rupture.
La rupture fragile a fait, depuis quelques
années, l'objet d'un grand nombre de
publications qui paraissent habituellement

sous le titre de « mécanique de

rupture ». Dans cet article, nous ne
traitons pas les critères de rupture selon
cette théorie.

6. Relations entre contraintes et
déformations dans le domaine
plastique

Lors de l'élaboration du projet d'une
machine ou d'une structure de même
que lors du façonnage des métaux, il
est très utile de prévoir la relation entre
contraintes et déformations dans le
domaine plastique. Récemment, il a été
proposé une théorie basée sur des essais

en traction simple qui permet de prévoir
le comportement des matériaux lors
d'une sollicitation combinée dans le
domaine plastique.

6.1 Relations contraintes-déformations
d'un essai de traction

Nous supposons qu'à l'état initial,
l'éprouvette a une longueur /n et une
section A0. A mesure que la charge varie
dans le domaine élastique, nous avons
par définition :

Ak
k

£n (6.1)

«o (6.2)
AA0

Ao

avec

£o : allongement relatif
q0 : réduction de la section relative

La réduction réelle de section ainsi que
l'allongement relatif réel, respectivement
q et e, sont obtenus par les relations :

(6.3)=/t-'¦é•0

A

ÇdA
1 A

(6.4)
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Dans le domaine élastique, nous avons
pratiquement une égalité entre e et e0.

Il en est de même pour q et q0. Les essais

montrent que dans le domaine plastique,
le volume reste constant :

A0-l0 A-l ou
Ao l_

A la

Ainsi, par (6.3) et (6.4), on a

e q (6.5)

Tï r •? Jl° l~l°Du fait que ßo —r- —.— >

'o «o

nous obtenons par la relation (6.3)

e=/„(l+e„) (6.6)

et pour q, par (6.4)

q=-l»V-q0) (6.7)

D est ainsi possible d'exprimer <r et e

comme des fonctions de la section A.
En effet, la relation (6.5) peut s'écrire

£ q

De même, on a

a

4

P
~A

Ao

A
(6.8)

(6.9)

Nous pouvons encore exprimer c et £

comme des fonctions de e0. En effet :

_
P

_
P

°~ 1 ~ Ao

Ao

A

P
Âo

L
Lo

¦-r0+ £o)
A0

/» (1 + e0)

(6.10)

De nombreux essais sur les métaux ductiles

montrent que si l'on reporte les
valeurs des contraintes et déformations
réelles dans un diagramme à échelle
logarithmique, les points expérimentaux se
trouvent approximativement sur une
droite. Ceci nous amène à adopter une
équation de la forme

a k-en (6.11)

où A; et r sont des constantes expérimentales.

La constante n prend le nom de

«module d'écrouissage ».
Le point de charge maximum sur la
courbe a f(e) d'un essai de traction
est défini par la condition dP 0 ou

dP
OP OP
-a- da + -fi-deda de

En tenant compte du fait que

P — A • a et A Ao e"

On trouve donc

OP

Oa

6P
A ->

Te= -A°-ae

et l'équation (6.12) devient

(6.12)

(6.9)

dP Ao e (da- ade) (6.13)

Au début du phénomène de striction
qui constitue une position d'instabilité,
nous avons dP — 0.

Par (6.13), nous trouvons ainsi

da
de

et par (6.11)

(6.14)

(6.15)

La relation (6.15) indique que la charge
maximum ainsi que le début de la striction

sont atteints lorsque la déformation
réelle devient égale au module d'écrouissage.

6.2 Relations entre contraintes et défor¬
mations lors de sollicitations
combinées dans le domaine plastique

La théorie exposée ci-dessous est basée

sur les hypothèses suivantes :

a) Les directions des déformations prin¬
cipales Ei, e2 et £3 coïncident avec
celles des contraintes principales aï,
CT2 et as.

b) Le volume du matériau reste constant
dans le domaine plastique :

£i + £a + £3 0 (6.16)

c) Les trois déformations principales
ainsi que les trois contraintes principales

sont régies par les rapports
suivants :.

£1—£2 £2—£3 fis-ei
01 — 02 02 — 03 03 — 01

ki (6.17)

où ki est une constante déterminée

par un essai de traction.

Les équations (6.16) et (6.17) permettent
d'obtenir les déformations plastiques
principales en fonction des contraintes
principales et du module de plasticité ky

£1
*i

ki

[(01-02)

£i y [(02-0s)

81
*i [(03-0l)

(03-0l)]

(01-02)] •

(02-03)]

Pour un simple essai de traction
où

02 — 0s 0 ai a £1 c

nous obtenons
3 a

ki 2e
(6.19)

A l'aide de la relation (6.19), les équations

(6.18) prennent la forme

e

a
e

a

£i/[0i - '/» (0» + 0s)]

8a/[02 - Vi (0i + 08)]

£s/[08 - '/j (0i + 0g)]
a

(6.20)

En élevant au carré et après sommation,
il vient :

£

a

(s? 4 + 4)

[(0i-0a)2 +
(6.21)

+ (02-0s)a + (03-0l)!!]

Cette relation importante lie les
contraintes et déformations principales à la
contrainte et déformation réelles d'un
essai de traction.
La relation (6.21) peut se mettre sous
la forme

£

a
e

â
(6.22)

avec

-r V/(0i-02)!! + (0g-03)8 (6.23)
V2 + ((73-0l)2

(4 + el + eD

V? v/(£i-£2)2 + (82-es)2 (6.24)
3 + (£3-ei)2

Les grandeurs ef et ï sont appelées
contrainte et déformation effectives et sont
équivalentes à la contrainte et déformation

octatédrales (Nadai 1937).
Il est intéressant d'exprimer les
déformations principales en fonction des

contraintes principales. Nous y parvenons

en utilisant la relation (6.11):
1—n

£ £ a "
a a ,1k -

n

(01—0a)2 + (02-0a)8 +
1 + (0s-0i)2

ii 2

n

In

(6.25)

Enfin les relations (6.20) peuvent
s'écrire :

£i=(£)«(a2 + jff2-aj?-a-

-j8+D 2» Il - a
2 1

ß

£2 -m [a2 + ß*--ccß--a

-ß+i) In 1 a —
1
2

V

fis
01 - («s + ßt-uß-a-

-£+l)Ür(j8

avec
02

01
et e

1
'

2

0i

(6.26)

Les équations (6.26) donnent les
déformations à la rupture ou à l'écoulement,
pourvu que ai exprime la contrainte de

rupture. Une valeur plutôt conservatrice
de la contrainte à la rupture ai est

157



Analyse des contraintes I EXPOSITIONS Ingénieurs et architectes suisses 12 juin 1980

obtenue par l'utilisation du critère de
Tresca. Ainsi, en supposant que ai >
> o"2 > 0s, nous obtenons (voir
relations (3.9))

01r — 03r 0r

01r
0r

1-ß
(6.27)

En remplaçant ai dans les relations
(6.26) par oïr, nous obtenons les
déformations principales à la rupture :
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nf(0L,B,n)fc(l-fl)

a.
nf(«,ß,n)k(l-ß)

X —

nf(*,ß,n)k(\-ß)
ß~

(6.28)

£lr

£gr —

Csr —

Selon les relations (6.28) la ductilité des

matériaux soumis à des contraintes
combinées est habituellement définie par
la plus grande déformation principale à
la rupture.
L'influence des sollicitations combinées
sur la ductilité d'un matériau peut être

examinée à partir des relations (6.28) en
admettant une sollicitation biaxiale en
traction :

0i 02. 03 0

Nous obtenons ainsi

filr
0rU fr

2

fi2r

«Sr "«r
Ces résultats indiquent que les déformations

principales à la rupture pour un
tel type de sollicitation ont une valeur
égale à la moitié de celle d'un essai de
traction simple.

(à suivre)

Expositions

Ballenberg, musée suisse de plein air

La région de Ballenberg, où se trouve
le seul musée suisse de plein air, est
formée d'une chaîne de collines visibles
au-dessus de Brienzwiler en direction de
Hofstetten et de Brienz en descendant
te Briinig.
Le parc alpin d'environ 50 hectares qui
abrite le musée, possède deux entrées
situées, l'une à Hofstetten, au-dessus du
village de Kienholz au bord du lac de

Brienz, l'autre à Brienzwiler. Les
automobilistes peuvent parquer leur voiture
à proximité. Les visiteurs arrivant par
le chemin de fer du Briinig descendent
à Brienz, d'où l'autocar postal les
amène directement à l'entrée de
Hofstetten. Le musée est ouvert chaque jour,
d'avril en octobre.

Les objectifs de la Fondation du musée
de plein air de Ballenberg sont définis.
comme suit :

— conserver, à l'intérieur comme à

l'extérieur, des constructions
caractéristiques de notre pays, les équiper
d'un mobilier correspondant, les
remonter sans aucune adjonction étrangère

et les rendre accessibles au
public ;

— les réunir dans un espace assez res¬
treint pour permettre au visiteur
d'établir des comparaisons ; éveiller
la compréhension à l'égard de leurs
particularités par des visites guidées
et commentées ;

— représenter les travaux du paysan ;

— montrer l'exercice d'artisanats an¬
ciens ;

— créer un site représentatif des témoins
de notre architecture rurale sous une
forme compacte et irréprochable du
point de vue scientifique.

'i- iif mt-i s*'/W, « :i S S S
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w «
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Pressoir de Un de Curaglla (Grisons).

La suite naturelle de collines et de vallons,
de forêts de chênes, de tilleuls et d'érables
formant le Ballenberg, les prairies et les
pâturages ont permis l'implantation de
divers groupes de bâtiments reunis selon
les régions géographiques (Jura, plateau
central, plateau bernois, plateau
occidental, plateau oriental, Tessin, Suisse
centrale, Grisons, Oberland bernois,
Suisse orientale et Alpes).
Les maisons sont démontées sur place
avec tout le soin voulu, et les diverses
parties, numérotées aux fins d'identification,

sont ensuite rassemblées à
l'emplacement choisi à cet effet. Ce faisant,
on s'efforce de créer des ensembles homogènes

et de rendre aux bâtiments leur
aspect primitif en supprimant toutes les

adjonctions et « perfectionnements »
ajoutés au cours des années.

On a de même cherché à intégrer la
végétation environnante afin que les

prés et les champs soient en harmonie
avec le type régional des maisons qu'ils
encadrent. Les ensembles sont répartis
de manière à tirer parti au maximum des
conditions naturelles offertes par
l'environnement. Pour les séparer, on a tenu
compte dans la mesure du possible des
écrans naturels, de sorte qu'en dépit
d'un voisinage étroit, ils ne se gênent
nullement.

Il est aussi prévu de faire revivre d'anciens

artisanats. A cet effet, les ateliers
nécessaires seront installés dans des

pièces appropriées et, durant les heures
d'ouverture du musée, des artisans
travailleront sous tes yeux du public qui
pourra ainsi suivre le processus de
fabrication de certains objets (tissage,
dentelle à fuseaux, boulangerie, etc.).

Parmi les pièces particulièrement
remarquables, citons un superbe bâtiment à

usage multiple qui date de 1797 et vient
d'Ostermundigen, une maison à toit sur
colonnes centrales, de Madiswil, datant
de 1710, avec un grenier provenant de
Kiesen ; le « Stockli » de Detligen, an-
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