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Ingénieurs et architectes suisses 12 juin 1980

Les critéres de rupture en analyse

des contraintes

2¢ partie: Sollicitations statiques

par Nicolas Xenophontidis, Lausanne

3. Critéres de rupture basés sur la
limite d’écoulement

3.1 Généralités
La condition d’écoulement dans I'état de
contrainte tridimensionnelle est essen-
tiellement la généralisation du concept
d’écoulement lors d’une charge mono-
axiale. En général, la condition d’écou-
lement peut étre exprimée soit par
I’équation

i (O'ij) = C,

ou C, représente une constante liée a la
limite d’écoulement
soit encore par I’équation

filoyp) =0

(3.1)

3.2
ou

fi (04) s’appelle fonction d’écoulement.

Pour les matériaux isotropes, la condi-
tion d’écoulement doit étre indépendante
de la direction et peut par conséquent
étre exprimée comme une fonction des
invariants de I’état de contrainte ou
encore comme une fonction symétrique
des contraintes principales. La rela-
tion (3.1) prendra ainsi la forme :

fo (01, 03, 03) = C, (3.3)

L’expérience montre que I’écoulement
n’est pas affecté par une pression hydro-
statique modérée. Ceci permet d’expri-
mer la relation (3.2) au moyen des
invariants du déviateur des contraintes
Ip et I3y :

f3 (ap, I3p) = 0

Parmi les divers critéres d’écoulement

(3.4

Lors du début de I'écoulement, ces
critéres correspondent assez bien aux
résultats expérimentaux.

3.2 Critére du plus grand cisaillement
(Tresca)

Selon le critére de Tresca I’écoulement
survient des que la plus grande con-
trainte de cisaillement atteint la valeur
limite C,. Quand on utilise les contraintes
principales, cette condition prend une
forme simple. En effet, en supposant
que o, > 0. > 03, le critére de Tresca
est donné par I’expression

Vs (01—a3) = C, (3.5

La contrainte maximum de cisaillement
d’un essai de traction monoaxiale, au
moment du début de I’écoulement, est

sgale & ¢
ega —_—
B 2

ou o, représente la contrainte d’écou-
lement,

Ainsi, en se référant a la contrainte
d’écoulement d’un essai de traction, le
critéere de Tresca devient (voir fig. 3.1).

01— 02 = O¢ (3.6)
Lors d’un essai de cisaillement pur le
critere de Tresca prend la forme (voir
fig. 3.1)

o1—03 = 2k 3.7
Dans I’hypothése ou I’'on omet de définir
I’ordre de grandeur des contraintes, les
sollicitations Ty, (= 0y;) sont données
par une des trois relations (3.8):

T, = +% (01—02)

. oy ; A Ty = + Y% (02—0 3.8
qui ont été proposés, nous citerons les 2 = %% (02— 03) (3.8)
criteres de Tresca et de von Mises. T3 = + %2 (03— 01)
T
o 4 T
R
G=Cc  O3=-k = Oi=k
0, = 03:0 Tyt L J2=0 =

Traction simple

Cisaillement pur

Fig. 3.1. — Cercles de Mohr dans le plan o, t.

D’autre part, puisque 7, = 0., il vient
01—0s = +0,
Oy—03 = £0,

03—01 = *+0,

(3.9)

En admettant que o3 est nul, on trouve
les deux cas suivants, étant donné que
la condition d’écoulement dépend évi-
demment des signes de g; et gy :

de signes opposés
(3.10)

a) Pour g; et 03
0,—0y = £0,

b) Pour g, et g,
o, = *+o.,

de méme signe
03 = -0, (3.11)

La figure 3.2 représente graphiquement
les relations (3.10) et (3.11).
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Fig. 3.2. — Théories de rupture basées sur la

limite d’écoulement.

—— Critére de Tresca
— — Critére de von Mises

3.3 Critére du plus grand travail de
distorsion (Von Mises)

Les conditions d’é¢coulement de Tresca,
appliquées aux problémes tridimension-
nels, présentent certaines difficultés ma-
thématiques. Ce fait a conduit von
Mises a I'idée de remplacer le prisme
hexagonal des figures 3.2 et 3.6 par le

cylindre circonscrit :

(01— 02)* + (02—03)* +

+ (03— 01)* = 2 0% (3.12)

Cette relation montre que I’écoulement
survient quand le second invariant du
déviateur des contraintes Iyp (voir rela-
tion (2.18)) atteint la valeur spécifique

Lp = C, (3.13)

Dans le cas ou g3 = 0, la relation (3.12)
devient

03—0.0, + 0k = o2 (3.14)

L’expression (3.14) est celle d’une el-
lipse, représentée a la figure 3.2.

De I’avis de plusieurs auteurs, la démons-
tration de Novozhilov que nous don-
nons ci-aprés conduit a une bonne com-
préhension physique du critére de von
Mises.

Les données expérimentales montrent
que la déformation plastique des maté-
riaux polycristallins est intimement li¢e
aux contraintes de cisaillement. Ainsi,
il est logique de rechercher un critére
d’écoulement basé sur ces contraintes.
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Prenons la moyenne des contraintes de
cisaillement agissant sur tous les plans
autour d’un point et examinons si cette
valeur présente une signification phy-
sique. L’équation (2.22) donnant la
contrainte de cisaillement en fonction de
I'orientation du plan de référence; on
peut écrire

7% = oin} + oin} + oini—
— (011} + 0913 + o3n)

Etudions la valeur moyenne de cette
expression et comparons le résultat aux
données expérimentales.

Dans le développement qui suit, nous
considérerons autour du point donné
une sphére complétement couverte d’élé-
ments plans de méme surface. La valeur
moyenne de 72 sur ces plans est donnée
par les expressions :

N N

2 EAQ

3 | 1
(T%)moy = T - N

24Q

1
avec

N = nombre de facettes
AQ = surface de la facette

En supposant que 42 tend vers dQ2, on a

*12 dQ
(T?z)moy= /[TQ

En se référant a la figure 3.3, ou les
axes sont orientés selon les directions
principales et en choisissant des coordon-
nées sphériques, les cosinus directeurs de
I’élément de surface dQ2 s’écrivent

(3.15)

ny; = sind cos ¢
sinf sin ¢

ng = cosf

I

ng
ou
dQ = r?sinf dp df (Q = 4 nr?)

En introduisant la valeur de 72 dans
I’intégrale (3.15), on a

2 n
(T mey: = ‘—‘% [d¢ /[a% sin?0-sin®¢p +
o 0
+ 0% sin®0-cos?p + a3 cos?l —
— (0, sin0-sin®$ + g, sin%0-cos®p +

+ 04 cos?0)? :| sinfd6

43

Fig.3.3.— Sphére élémentaire autour du point O.
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L’intégration donne ainsi

1
(Bmoy = — [(01—09)? + (02—03)® +

+ (03— 01)?] (3.16)

Cette relation est proportionnelle a Irp
et montre que le critére de von Mises est
équivalent au postulat suivant :

« L’¢coulement plastique débute quand
(t2)moy dépasse une valeur critique. »

3.4 Représentation dans [’espace des
criteres Tresca et von Mises ;
courbes d’écoulement

Considérons ’espace repéré par trois
axes de coordonnées rectangulaires, por-
tant les contraintes principales o;, o et
gs. Dans cet espace, 1’état de contrainte
en un point peut étre représenté par le
vecteur OP (fig. 3.4) dont les compo-
santes sont égales a g, g et gs.

Fig. 3.4. — Espace des contraintes.

Décomposons OP selon la droite 0Z,
dont I’équation est g, = 0, = 03, et le
plan 7 perpendiculaire 8 OZ a ’origine O.
La composante OA représente la con-
trainte hydrostatique et c’est pour cette
raison que la droite OZ est appelée axe

hydrostatique. La composante OB dans
le plan 7 représente le déviateur de I’état
de contrainte. Le plan 7 étant uniformé-
ment incliné par rapport aux axes oy,
il est donné par I’équation

o1+ 02+ 03 =0 (3.17)

Ce plan est appelé « plan du déviateur
de contrainte ».

Dans I'espace repéré par les axes g;, 09
et g3, la condition d’écoulement (3.3).

f2 (01, 03, 03) = Cy (3.3)

définit une surface appelée surface
d’écoulement. Les conditions d’écoule-
ment étant indépendantes de la pression
hydrostatique, il est évident que ces
surfaces sont des cylindres ayant leurs
génératrices paralléeles a [’axe hydro-
statique. Les points de I’espace qui sont
a lintérieur de la surface cylindrique
correspondent a un état de contrainte
du domaine élastique, tandis que les
points qui se situent sur la surface cor-
respondent a I’état du passage du do-
maine élastique au domaine plastique.
Nous appelons « courbe d’écoulement »
la trace de la surface d’écoulement sur
le plan du déviateur.

Si 'on considére le plan 7 depuis I’axe
hydrostatique, les contraintes principales

93

Fig. 3.5. — Projection des axes o1, o2 et as sur
le plan n.

49

Fig.3.6. — Courbes d’écoulement correspondant
aux critéres de Iresca et de von Mises.

apparaissent placées symétriquement a
120° (fig. 3.9).

Examinons quelles sont les courbes
d’écoulement correspondant aux critéres
de Tresca et de von Mises. Les condi-
tions 3.9 définissent un prisme hexagonal
régulier dont I'axe g; = g, = 03 est per-
pendiculaire au plan 7 (par exemple,
I’équation g,— 03 = 0, représente un
couple de plans paralleles au plan défini
par les axes g; et g, = 0, = 03). La
projection du prisme sur le plan 7 est
donc un hexagone régulier (fig. 3.6).
Nous remarquons que le prisme de la
figure 3.6 découpe sur les axes gy, gy et
o3 (voir aussi fig. 3.2) des segments de
longueur ¢, et que le rayon du cercle

/
circonscrit a I’hexagone est égal a Lz Te,
: n_ V2
puisque cos (03, g3) = YZ. Ce cercle
3

n'est évidemment rien d’autre que la
courbe d’é¢coulement correspondant au
cylindre donné par la relation (3.12).

3.5 Commentaires

a) La condition de Tresca caractérise
d’'une maniére satisfaisante [I’état
d’écoulement du matériau et s’ac-
corde avec les observations relatives
aux lignes de Liider. Des recherches
plus approfondies indiquent que la
contrainte principale intermédiaire
exerce une certaine influence sur
I’état d’écoulement.

b) De nombreuses expériences montrent
que le critére de von Mises est plus
satisfaisant que celui de Tresca. En
effet, selon le critére de Tresca, nous
avions 7, = 0,5 g,. Le critére de von
Mises quant a lui peut prendre la
forme (voir 2.19)

O
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— e (3.18)

V3
et, pour le cisaillement pur (7 = 1),
nous obtenons
o
T, = — = 0,577 a,
V3
Cette derniére valeur semble plus
proche de la réalité, puisque les
coefficients expérimentaux se situent
entre 0,56 et 0,60.

¢) Les deux critéres examinés supposent
que les contraintes d’écoulement sont
identiques en traction et en compres-
sion (voir fig. 3.2). Cette supposition
est satisfaisante pour plusieurs maté-
riaux ductiles. Cependant, d’autres
matériaux présentent une différence
notable entre les contraintes d’écou-
lement en traction et en compression.
Le critére de la plus grande contrainte
normale et celui de Mohr prennent
toutefois en considération cette diffé-
rence de contraintes [6] 2.

(3.19)

4. Critéres de rupture basés sur la
contrainte de traction

4.1 Introduction

La rupture en traction simple des maté-
riaux fragiles qui ne présentent pas de
limite d’écoulement est définie par la
contrainte de traction. Pour des maté-
riaux fragiles et ductiles disposant d’une
telle limite, le critére de rupture dans la
zone plastique est de nouveau la con-
trainte de rupture.

Plusieurs théories ont été développées
pour prévoir la contrainte de rupture
dans le cas de charges combinées.

4.2 Critere de la plus grande contrainte
normale

Selon ce critere, proposé par Rankine, la
rupture apparait dés que la contrainte
maximum de traction — ou la contrainte
minimum de compression — dépasse une
valeur limite. Soient oy, la contrainte
de rupture a la traction et ok, la con-
trainte de rupture a la compression, la
rupture d’un élément soumis a une sol-
licitation triaxiale o, 0., g3 surviendra
pour les contraintes suivantes :

gy = O OU 0 = —O0pRe AVEC
g, > 0y et g, > 03

Il en est de méme pour
OJ9 — Ot OU Og — —Ope AVEC

“4.1)
Og > 0y €t 0y > 03

et finalement pour

O3 = Op €L 03 = —0pe avec

O3 > 01 €L 03 > 0y

Dans le cas d’un état bidimensionnel, les
relations (4.1) deviennent

2 Les chiffres entre crochets renvoient a la
bibliographie en fin de la quatricme partie
de cette étude.

Fig. 4.1. — Contraintes tmax et an d’un élément sollicité par les contraintes principales o:.

Fig. 4.2. — Cercle de Mohr correspondant a l'élément de la figure 4.1.

01 = Opi OU 01 = —ORe l

4.2)
Oy = Opy OU O3 = —ORe [

La figure 4.4 représente graphiquement
les relations (4.2). Selon cette théorie les
droites tracées définissent les valeurs des
contraintes conduisant a la rupturee.

4.3 Critére du plus grand cisaillement
(Tresca)

En se limitant a I’état bidimensionnel,
les équations (3.10) et (3.11) prennent
la forme :

01—02 = +0g

o1, = +opg

) +ogr

(4.3)

4.4  Critére de Mohr

Mohr a admis que la rupture est amor-
cée par la plus grande contrainte de
cisaillement, celle-ci étant une fonction
de la contrainte normale du plan con-
sidéré. Admettons que g, > gy > 03 et
référons-nous a la figure 4.1. Le critére
de Mohr est alors exprimé par les
relations

01— 0.
Tmax = 12 3=f(an)=

_ [01+ 03
-7

On remarquera que, selon cette hypo-
thése, la rupture n’est pas influencée
par g,.

Les cercles de Mohr correspondant a
I’élément de la figure 4.1 ont été repré-
sentés a la figure ci-dessous.

Selon les relations (4.4), nous pouvons
supprimer les cercles intérieurs. A la
rupture, la dimension du cercle exté-
rieur dépendra de la position de son
centre sur I’axe des g,. En procédant de
cette fagon, on obtient une famille de
cercles de Mohr pour les états de rupture
du matériau. Pour construire leur enve-
loppe commune, nous supposerons que
celle-ci est unique, quelles que soient les
grandeurs des contraintes principales
intermédiaires g,. C'est la une hypo-
these fondamentale dans la théorie
exposée. Il en résulte que chaque cercle
tracé, tangent a I’enveloppe, définit un
état de contrainte conduisant a la
rupture.

4.4
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AT
G+
0 2
F
On
c E G 4
) 0y
IRc IRt N ! -
Fig. 4.3. — Cercles de Mohr correspondant aux essais de traction et de compression simples ainsi
que celui correspondant a l’état a1, o2 et os.
Une application particuliére de la théorie Ope < 03 < 0,0,=0
de Mohr a été universellement adoptée et 0 < 0p < op (4.6)

dans le cas des matériaux fragiles solli-
cités biaxialement. Tout en se référant a
la figure 4.3, nous supposerons que les
enveloppes sont des droites tangentes
aux deux cercles correspondant aux
essais de traction et de compression.
Par les triangles semblables, nous ob-
tenons

AB _CD EF
AG CG EG

et par substitution des valeurs des

contraintes
0,—03
ORe/2 _ 2 10
ORej2 + Ore + 1 URL+[+J—1jﬂ
2
TRe/2
 omppt 1

Pour [I’élimination de /, nous trouvons
par

ORe
Opce = — + 01— 03 4.5)
O Rt

L’équation (4.5) est utilisée dans le cas ou

Fig. 4.4. — Théories de rupture.

Plus grand cisaillement

— — — Plus grande contrainte normale
—+—+— Théorie de Mohr
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Une piece sollicitée en traction biaxiale
aura une rupture fragile quand la plus
grande contrainte principale deviendra
égale a og,. Dans le cas de la compres-
sion, c’est la valeur oy, qui constitue
la valeur limite pour la plus grande
contrainte principale.

Ainsi nous avons :

(0:=0)<03< 0y =0p 4.7)
01 = OR

et
_0R¢:03<Ul<(02:0)l

(4.8)
03 = —ORe '

Les équations (4.6), (4.7) et (4.8) sont
représentées graphiquement a la figure
4.4 ou apparaissent également les rela-
tions (4.2) et (4.3), s étant remplacée

par o,.

4.5 Commentaires

Lors de sollicitations biaxiales en trac-
tion, les trois théories donnent des
résultats satisfaisants. Dans le cas ou
les contraintes sont de signes opposés, le
nombre limité de résultats jusqu'a ce
jour indique que :

a) La théorie de cisaillement maximum
est a appliquer quand | o | =
= | TRe [

b) La théorie de Mohr est a appliquer
quand | op | £ | o |

5. Critéres de rupture basés sur la
contrainte de rupture réelle

La rupture réelle des matériaux soumis
a des sollicitations multiaxiales est diffi-
cilement prévisible. Méme le cas de la
rupture d’une éprouvette sous I'effet

d’une charge axiale est extrémement
compliqué. Ceci provient des contraintes
triaxiales, qui apparaissent a I’endroit ou
I’éprouvette se rétrécit, ces contraintes
variant avec les déformations & mesure
que ’on s’approche de la rupture. Il en
résulte que I’essai de rupture d’une
éprouvette soumise a la traction simple
n’est pas d’un grand intérét, puisqu’il
s’agit en somme de la rupture d’un maté-
riau soumis a des contraintes triaxiales
continuellement variables. Pour cette
raison, nous ne pouvons pas prévoir,
méme grossiérement, la rupture réelle
d’une éprouvette soumise a un essai
monoaxial.

Les matériaux fragiles ne présentent pas
de phénomeéne de striction, mais Iles
imperfections locales jouent un role dé-
terminant dans le processus de rupture.
La rupture fragile a fait, depuis quelques
années, l'objet d’'un grand nombre de
publications qui paraissent habituelle-
ment sous le titre de « mécanique de
rupture ». Dans cet article, nous ne
traitons pas les critéres de rupture selon
cette théorie.

6. Relations entre contraintes et
déformations dans le domaine
plastique

Lors de [I’¢laboration du projet d’une
machine ou d’une structure de méme
que lors du fagonnage des métaux, il
est trés utile de prévoir la relation entre
contraintes et déformations dans le do-
maine plastique. Récemment, il a été
proposé une théorie basée sur des essais
en traction simple qui permet de prévoir
le comportement des matériaux lors
d’une sollicitation combinée dans le
domaine plastique.

6.1 Relations contraintes-déformations
d’un essai de traction

Nous supposons qu’a ['état initial,

I’éprouvette a une longueur /, et une

section 4y. A mesure que la charge varie

dans le domaine élastique, nous avons

par définition :

Al,
5= 6.1)
ly
A4,
=20 6.2
qo Ay ( )

avec
& : allongement relatif

qo : réduction de la section relative

La réduction réelle de section ainsi que

I’allongement relatif réel, respectivement
q et ¢, sont obtenus par les relations :

]
fAul ey
e= | = =1 - ]
Jo "l (
lo
A
‘dA A
q= / = =h7 (6.4)

[

O
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Dans le domaine élastique, nous avons
pratiquement une égalité entre ¢ et &.
Il en est de méme pour g et go. Les essais
montrent que dans le domaine plastique,
le volume reste constant :

A !
Ao‘lo = A/ 0[170 = —

Ainsi, par (6.3) et (6.4), on a
e=gq (6.5)
Aly =1

Du fait que g = — = )
Iy Iy

nous obtenons par la relation (6.3)

e=1(1 + &) (6.6)
et pour ¢, par (6.4)
q = —Iln (1—qo) (6.7

Il est ainsi possible d’exprimer o et ¢

comme des fonctions de la section A.

En effet, la relation (6.5) peut s’écrire
Ao

e=q=1,—

y, (6.8)

De méme, on a

- 6.9)
O'—Z (

Nous pouvons encore exprimer o et &
comme des fonctions de & En effet :

P P A4 P L
C=A " A A Ay Lo
et
P
o= —(1+ &)
Ay (6.10)
e=1,(1 + &)

De nombreux essais sur les métaux duc-
tiles montrent que si 1’on reporte les
valeurs des contraintes et déformations
réelles dans un diagramme a échelle loga-
rithmique, les points expérimentaux se
trouvent approximativement sur une
droite. Ceci nous améne a adopter une
équation de la forme

g=k-e" (6.11)

ou k et n sont des constantes expérimen-
tales. La constante n prend le nom de
«module d’écrouissage ».

Le point de charge maximum sur la
courbe g = f(¢) d’'un essai de traction
est défini par la condition dP = 0 ou

dP:—OfdG—I—gede (6.12)
Oo Oe

En tenant compte du fait que
P=A.cetA= Aye® (6.9)

On trouve donc

or P

0o e

or 4 —
0~ 9°

et I"équation (6.12) devient

dP = Ay e (do—ade) (6.13)

Au début du phénoméne de striction
qui constitue une position d’instabilité,
nous avons dP = 0.

Par (6.13), nous trouvons ainsi

do

i o (6.14)
et par (6.11)

eE=n (6.15)

La relation (6.15) indique que la charge
maximum ainsi que le début de la stric-
tion sont atteints lorsque la déformation
réelle devient égale au module d’écrouis-
sage.

6.2 Relations entre contraintes et défor-
mations lors de sollicitations com-
binées dans le domaine plastique

La théorie exposée ci-dessous est basée

sur les hypothéses suivantes :

a) Les directions des déformations prin-
cipales ¢&;, & et &3 coincident avec
celles des contraintes principales oy,
gy €t 03.

b) Le volume du matériau reste constant
dans le domaine plastique :

81+82+83=0 (616)

¢) Les trois déformations principales
ainsi que les trois contraintes princi-
pales sont régies par les rapports
suivants :

E1—&  &—&  &—

01— 09

= 0 6.1
09— 03 03— 0

ou k; est une constante déterminée
par un essai de traction.

Les équations (6.16) et (6.17) permettent
d’obtenir les déformations plastiques
principales en fonction des contraintes
principales et du module de plasticité k;

k

&= 5 lo1—0) — (G3—0)]
ky

&= 3 [(6s—03) — (01—02)]} (6.18)
ky

& = ? [(o5—01) — (02— 03)]

Pour un simple essai de traction
ou
Oy = O3 — 0

01 =0 & =8

nous obtenons

3

®|q

A T'aide de la relation (6.19), les équa-
tions (6.18) prennent la forme

e/loy — V2 (03 + 09)]

62/[02 — % (Gl + 0'3)] (620)

Q™ Ql®m Q™

= &/log — Y2 (01 + 0v)]

En élevant au carré et aprés sommation,
il vient :

2
\/5(3%+e§+a§)

(6.21)

Qe

1
> (o1—02)? +
+ (02— 09)* + (03— 01)?]

Cette relation importante lie les con-
traintes et déformations principales a la
contrainte et déformation réelles d’un
essai de traction.

La relation (6.21) peut se mettre sous
la forme

(6.22)

Qle
Qll o

1
— V(61— 02)? + (g2—039)® (6.23)
\/E + (03—01)?

2
=\/§(8%+£%+8§)=

= ﬁ \/(61—82)2 + (e5—é&3)? (6.24)
+ (e3—&1)?

™|

Les grandeurs ¢ et & sont appelées con-
trainte et déformation effectives et sont
équivalentes a la contrainte et déforma-
tion octatédrales (Nadai 1937).

Il est intéressant d’exprimer les défor-
mations principales en fonction des
contraintes principales. Nous y parve-
nons en utilisant la relation (6.11):

1=n
& & .onm
=== ==
ag a ks
n
(01—09)° + (03—03)" + 1—2_"1'
_ 1 + (03—01)®
1 2
k-
B (6.25)

Enfin les relations (6.20) peuvent
s’écrire :

& = <01>l (@2 + fP—off—a—

Z‘ n
1-n a f
“'ﬂ‘f‘l) 2n <l—§—§)
1
& = %)E (o + f2—af—a—

(6.26)

1—n
—B+ 172 (oc—?—%)

1
& = <%>71 (® + fP—af—a—
1—n
—ﬂ+1)'ﬁ< —9‘—3>

2 2
avec
2 g3
o= — et ¢= —
g1 g1

Les équations (6.26) donnent les défor-
mations a la rupture ou a I'écoulement,
pourvu que ¢; exprime la contrainte de
rupture. Une valeur plutdt conservatrice
de la contrainte a la rupture og; est
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obtenue par l'utilisation du critére de
Tresca. Ainsi, en supposant que o; >
> 0y > 03, nous obtenons (voir rela-
tions (3.9))

O1r — O3r = O
ou

1-p

En remplagant o¢; dans les relations

(6.26) par o;,, nous obtenons les défor-
mations principales a la rupture :

O1r (6.27)
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[ P
&1y = _m_nf(a’ B, n
% B
2 2
. 1
Eor = — ;f(ay ﬁa n)
LE—f)] (6.28)
L1
(1)
_( o, L
E3r = _k (l_ﬂ)J"f(a,ﬂ’ n)
o 1
b5

Selon les relations (6.28) la ductilité des
matériaux soumis a des contraintes com-
binées est habituellement définie par
la plus grande déformation principale a
la rupture.

L’influence des sollicitations combinées
sur la ductilité d’un matériau peut étre

examinée a partir des relations (6.28) en
admettant une sollicitation biaxiale en
traction :

g, = 0O, 0'3=0

Nous obtenons ainsi

. _ 1o\l &

rm2\k)" 2
&r

52r=5

E3r = —&r

Ces résultats indiquent que les déforma-
tions principales a la rupture pour un
tel type de sollicitation ont une valeur
égale a la moitié de celle d’un essai de
traction simple.

(a suivre)

Ballenberg, musée suisse de plein air

La région de Ballenberg, ou se trouve
le seul musée suisse de plein air, est
formée d’une chaine de collines visibles
au-dessus de Brienzwiler en direction de
Hofstetten et de Brienz en descendant
le Briinig.

Le parc alpin d’environ 50 hectares qui
abrite le musée, posséde deux entrées
situées, I'une a Hofstetten, au-dessus du
village de Kienholz au bord du lac de
Brienz, I'autre a Brienzwiler. Les auto-
mobilistes peuvent parquer leur voiture
a proximité. Les visiteurs arrivant par
le chemin de fer du Briinig descendent
a Brienz, d’ou [l'autocar postal les
ameéne directement a I’entrée de Hof-
stetten. Le musée est ouvert chaque jour,
d’avril en octobre.

Les objectifs de la Fondation du musée
de plein air de Ballenberg sont définis
comme suit :

— conserver, a l’intérieur comme a
I’extérieur, des constructions caracté-
ristiques de notre pays, les équiper
d’un mobilier correspondant, les re-
monter sans aucune adjonction étran-
gere et les rendre accessibles au
public ;

— les réunir dans un espace assez res-
treint pour permettre au visiteur
d’établir des comparaisons ; éveiller
la compréhension a 1’égard de leurs
particularités par des visites guidées
et commentées ;

— représenter les travaux du paysan ;

— montrer l’exercice d’artisanats an-
ciens ;

— créer un site représentatif des témoins
de notre architecture rurale sous une
forme compacte et irréprochable du
point de vue scientifique.

Pressoir de lin de Curaglia (Grisons).
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La suite naturelle de collines et de vallons,
de foréts de chénes, de tilleuls et d’érables
formant le Ballenberg, les prairies et les
paturages ont permis I'implantation de
divers groupes de batiments reunis selon
les régions géographiques (Jura, plateau
central, plateau bernois, plateau occi-
dental, plateau oriental, Tessin, Suisse
centrale, Grisons, Oberland bernois,
Suisse orientale et Alpes).

Les maisons sont démontées sur place
avec tout le soin voulu, et les diverses
parties, numérotées aux fins d’identifi-
cation, sont ensuite rassemblées a ’em-
placement choisi a cet effet. Ce faisant,
on s’efforce de créer des ensembles homo-
genes et de rendre aux batiments leur
aspect primitif en supprimant toutes les
adjonctions et « perfectionnements »
ajoutés au cours des années.

a3

On a de méme cherché a intégrer la
végétation environnante afin que les
prés et les champs soient en harmonie
avec le type régional des maisons qu’ils
encadrent. Les ensembles sont répartis
de manieére a tirer parti au maximum des
conditions naturelles offertes par 1’envi-
ronnement. Pour les séparer, on a tenu
compte dans la mesure du possible des
écrans naturels, de sorte qu’en dépit
d’un voisinage étroit, ils ne se génent
nullement.

Il est aussi prévu de faire revivre d’an-
ciens artisanats. A cet effet, les ateliers
nécessaires seront installés dans des
piéces appropriées et, durant les heures
d’ouverture du musée, des artisans tra-
vailleront sous les yeux du public qui
pourra ainsi suivre le processus de
fabrication de certains objets (tissage,
dentelle a fuseaux, boulangerie, etc.).

Parmi les piéces particuliérement remar-
quables, citons un superbe batiment a
usage multiple qui date de 1797 et vient
d’Ostermundigen, une maison a toit sur
colonnes centrales, de Madiswil, datant
de 1710, avec un grenier provenant de
Kiesen ; le « Stockli» de Detligen, an-
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